
Fast parallel computation of the Smith normal form of polynomial matrices

GILLES VILLARD

Institut IMAG - Laboratoire LMC

46, av. F. Viallet, F38031 Grenoble Cedex

Gilles .Villard@imag. fr

Abstract

We establish that the Smith normal form of a polynomial

matrix in F[z]nxn, where F is an arbitrary commutative

field, can be computed in NCF.

1 Introduction

Any matrix A over a principal ideal domain may be brought
into the Smith normal form (SNF); the form is entirely com-

puted within the domain of the entries and consists in a di-

agomdization of A. From a theoretical point of view [7] the

form is well known and has many applications, both in the
integer case [22] and in the polynomial case [7, 12].

From an algorithmic point of view, polynomial time al-
gorithms are known for a sequential computation of the SNF

with integer entries [17] or polynomial ones [16, 14, 23]. In

parallel, finding a fast algorithm is still a difficult question

in the integer case, since the problem relies on integer gcd
computations. In the polynomial case, fast algorithms may

be found in [14, 15, 10, 11] but they use random choices,
so that the problem is only known to be in ‘RNC2. How-

ever, the algorithm in [15] also computes unimodular trans-

formation matrices for the form and does not suffer from

exponential intermediate coefficient growth. Indeed, the au-

t hors have established, over “concrete fields” e.g. over the

rational numbers, that there exist transformation matrices

for the Smith form, whose entries have coefficients of length
polynomial in the dimensions and coefficient lengths of the

input matrices.
Concerning a closely related problem, matrix sirnilarit~

testing, an ingenious solution is given in [24] and leads to
a fast parallel deterministic algorithm showing that both

similarity and non-similarity can be decided in ~C2.
The main result of this paper avoids the random choices

of the above algorithms and establishes a fast parallel deter-
ministic algorithm for computing the Smith normal form of

matrices which entries are in F [z] where F is a commutative
field. After some basic reminders in section 2, elements on
matrix pencils (i.e. matrix pairs) lead us to consider the

SNF as an application of the Frobenius and Jordan normal

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear,. and notice is given
that copying is by permission of the Assoaation of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISAAC 94- 7/94 Oxford England UK
Q 1994 ACM 0-89791 -638-71~/0007.. $3.5O

forms; using the results of [20, 21] concerning these latter
problems, we give an algorithm in N(2F for computing the

Smith normal form.
Our approach depends on the field F in the sense that

we give a general algorithm running over any field but if the

field satisfy some restrictive assumptions we propose a much
simpler met hod. However both solutions are in NCF.

More precisely, when F is perfect and p-th roots can be
taken, this is true for fields of characteristic zero and for fi-

nite fields, the matrix entries and the polynomial coefficients
we manipulate are elements of F: thisis presented in sec-

tion 3. The problem of computing the Smith form reduces
to the problem of computing the Frobenius form, the algo-

rithm in [20] that gives a solution for this latter problem is
directly app~ed.

If F is an arbitrary field, some intermediate steps are

calculations over an algebraic extension of F. Using a par-

allel arithmetic on algebraic numbers as in [21] we show in

section 4 that these computations reduce to computations
in F. This parallel arithmetic is greatly inspired by the one
proposed for the sequential D5 system [4, 5]. This system

is implemented in AXIOM and some of its applications, es-
pecially form matrix normal forms may be found in [13].

From there we extend the algorithms in [21] to compute the

Frobenius form over any field then to compute the Smith

form.
We refer to [3] for the definitions of the boolean com-

plexit y classes AfC and IZNC of problems deterministic ally
and probabilistically solvable by boolean circuits. In anal-

ogY with these classes von zur Gathen [9] has defined the
classes NcF and ‘RN CF of problems solvable by arith-

metic circuits.
This paper focuses on non singular square matrices. They

are no great difficulties to generalize our approach to the
general case.

2 Basic concepts

We recall here some well known definitions and results con-
cerning the Smith normal form. In the following, A(x) is

a non singular matrix of dimension n in F[z]” x‘, with the
degrees of the entries bounded by n, F being a commuta-

tive field. A matrix in F[z] ‘Xn is called unlmodular if its
determinant is a non zero element of F.

Definition 1 /7J. A non singular matriz S(x) in F[z]nxn
is in Smith normal for-m if it is diagonal, itsdiagonal entries

are monic, each one dividing the next.

312

Theorem 1 [7]. Every non singular matrix A(z) of F[xpxn
is equivalent to a unique matrix S(x) which is in Smith nor-

mal form: S(z) = U(Z) A(Z) V(Z), U(x) and V(z) unimod-

ular. The non unity diagonal entries St($), 1 < i ~ a, of

S(x) (in the reverse order) are called the invariant factors
ofd(z).

In most sequential and parallel algorithms, the SNF is

computed by repeated triangularization of the input matrix
(by computing the Hermite normal form), but this usual

approach is not appropriate to derive a fast parallel deter-

ministic algorithm. Instead we will use the strong links that

exist between the Smith form of special matrices and the

Frobenius and Jordan forms.

Theorem 2 [7]. Every matrix B of F“”” is similar to a
unique matrix C which is in Frobenius normal form (quasi-

companion): C = P~l BPC. The polynomials associated
to the companion blocks of C are the invariant factors of

A(z) = B - XI or equivalently of 1?.

In other words, if the input matrix A(z) G F[z]nxn is

such that there exists a constant matrix B E Fn x” satisfy-

ing A(z) = B - zI, the computation of the Smith form of

A(x) reduces to computation of the Frobenius form of B.

The main idea of our new algorithm is to use this result to
compute the Smith form in the general case. The algorithm
will bring A(z) into an intermediate e form for which such a

mat rix B does exist.

3 S N F over F[z]: F of characteristic zero or finite

When the field F is perfect and p-th roots can be taken,

we have shown in [20] that the Frobenius form of a matrix

can be computed in AfC~. Since this algorithm makes use

of the squarefree decomposition of polynomials in F[z], the
restrictive assumptions on F are necessary.

We proceed in two steps: at lemma 1, following [12],
we first linearize A(z) which entries are of degree n and

reduce the study to a degree 1 matrix Al z + Ao. Then, in
theorem_ 3, we apply the study in [7] on matrix pencils, i.e.

pairs (Al, AO) of matrices, and compute a block-diagonal
form for such pencils that gives the Smith form of A(z).

This second step deals with matrices of the type B - z]
on which we can use algorithms for the Frobenius form as

announced previously.

Lemma 1 Let A(x) be a non singular matrix polynomial of

degree n, A(z) = ~~=o A,z’ in F[x]’’xn. The linearization

of A into a degree 1 polynomial matrix, ~(z) = AIZ + Ao,

with Al and AO constant matrices in Fn2 ‘n= given by

r~oool ro-~ v
“.

A= 0 “ ‘“”
o I I o 0 ““. o

x+ I
[

.

H
...

0 . . . IO o 0 . . . –1
o .. . 0 An AO Al . . . A~_] 1

is such that the invariant factors of A are equal to the in-

variant factors of A.

Proof. Let S~z) be the Smith form of A(z). It can easily be
sho~n that A(z) is equivalent to diag(l, 1, 1, A(m))then
to S(Z) = diag(I, 1,... !{, S(z)). Since the diagonal entries
of S(z) satisfy the d@islbdity property and from the unicity

of the Smith form, S(z) is the Smith form of A(z). ❑

Theorem 3 Let F be a commutative field of characteristic

zero or a finite jield, and A(x) be a non singular matrix in

F[x]nxn with the degrees of the entries bounded by n. If F
contains at least n2 + 1 elements then the problem of com-

puting the Smith normal form of A(z) is in hfC~, otherwise
the problem is in AfC$.

Proof. For more details on the construction of normal forms

for matrix pencils we refer to [7]. Applying lemma 1, the

problems reduces to the problem of computing the Smith
form of a nz by nz matrix A(z) of degree 1: A(x) = Al z+~o.

The purpose of the proof is to show that this latter problem
reduces to Frobenius normal form computations.

Since ~(t) is non singular, if #F > nz there exist c
in F so that det(d”l c + A-o) # O. If this is not the case,

q = #F < nz, we work in a field extension h’ of F containing

n2 + 1 elements, in particular, a convenient c is found in K.
Let U = Alc + AO. Multiplying A(z) by U-l on the left we
obtain:

Using similarity transformations, U-l Al can be brought

into

where Co and Cl are quasi-companion matrices, CO cor-
responding to the null eigenvalues of U‘1 A-l and Cl corre-
sponding to the non zero eigenvalues. The transformation is
done by first computing the Frobenius form of U-l Al, which

gives the invariant factors S1(z), sz(z), so(z) of U-l&,

and next, by computing the polynomials s:(z) = s, (z)/zU’
where a, is the highest degree so that Zaa divides s,(z),

for 1 < i < a. The matrix CO is quasi-companion of di-

mension ~–~=1 u,, it consists of the companion blocks as-

sociated with the Za$. In the same way, Cl is the quasi-
companion invertible matrix which blocks are the compan-
ion matrices associated to the s:(x). Then, if P is such that

P-l(U-l A~)P = C, let

[

I + (z - C)C(J o 1A(2)(C)= P-lA(l)P =
o I+(z–c)cl “

Notice that 1 + (z – C)CO is unimodular. Multiplying by

Cl-l, we finally get:

A(3)(x) = 1:c)1A(2)(X)
t

I + (z –:)CO o= o XI + C1-l — CI 1

[

v(z) o=
o 1xI—W “

.

Since only constant matrices have been used for the trans-

formation of A(z), A(z) and A(3)(z) are equivalent matrices:

they have the same Smith normaJ form. Furthermore, since

V(z) is unimodular, the Smith form of A(3)(z) is the Smith

form of Z1 – W: applying theorem 2, the problem reduces

to the computation of a Frobenius normal form. The Frobe-

nius form of W gives the invariant factors and the Smith
form of ~(z) and of A(z).

It remains to establish that the computation can be done
in NC~. Once W is computed, we know from [20] that its
Frobenius form so the Smith form of A(z) can be obtained in

~C~. To finish with making the proof, it is easy to see that

al 7

W can also be computed in NC~{. The convenient value
for c may be found by evaluating simultaneously det (Al c +

A.) for c = O,..., nz. The matrix C is fast computed also

from [20], and for the matrix inverses U–l and Cl–l we use
the algorithm in [2].

Now if #l’ > nz then K = F and the problem is in
Nc; .

Otherwise, if q = #F < nz, let F be of characteristic p,
the elements of the algebraic extension K are represented
as polynomials of degree less than [log~(n2 + 1)1 over F,

To apply the ~C~{ algorithm in [20] we need to compute
multiplications, divisions and p-th roots in K (the algorithm

relies on the NC~ squarefree decomposition of polynomials

over h’ given in [8]). Each arithmetic operation in K requires
C@g logqn)operations in F, and from [6] a ~-th root can be

computed in 0(log2 (log~ n) +log(q)) operations in F. Hence

the totaJ parallel time is 0(log2 (n)(log2 (log, n) + log(q)))

over F. As announced the problem is in JVC~. Q

Since it appears to be quite huge, we will now spend only
a few words on the processor- demand of our algorithm. If

O(Lf(n)) and O(P(n)) operations are sufficient to respec-
tively multiply two n x n matrices and two polynomials of

degree n over F, the overall demand of the algorithm in [20]

for the Frobenius form is 0(n5ikf(n)). The computation of

the Smith form consequently requires O(n1° Lf(n2)) proces-
sors if #F > n2 and 0(n]0ikf(n2)P(log n)) otherwise,

The results we have given so far are all in terms of count-
ing operations in F. In addition, for “concrete fields”, our
algorithm does not suffer from exponential coefficient-size

blow-up. Let us assume for example that the input matrix
A(z) has polynomial entries with the degrees bounded by
n and which coefficients are rationaJ numbers with lengths

bounded by n. We have seen that computing the Smith form

of A(z) requires to compute matrix inverses and Frobenius
forms of matrices with rational entries: their sizes clearly

depend polynomially on n. Since the algorithm in [20] for

the Frobenius form runs in three steps involving only opera-

tions (characteristic polynomials, squarefree decompositions

and gcd) on polynomials which coefficients are entries of the

inpnt matrix, we deduce that our computation of the Smith
form involves only elements of lengths polynomial in n.

As said previously, the algorithm of this section has a

main drawback: since it relies on the algorithm in [20], it

makes use of squarefree decomposition of polynomials and
requires assumptions on the ground field F. Next section

intends to show how this can be avoided.

4 SNF over F[z]: F any field

The Smith form of a matrix A(z) will be computed as above

from the Frobenius form of constant matrices. For the Frobe-

nius form itself, no fast parallel algorithm running over any
field was known. We are going to show that the algorithm

in [21], which directly computes the Jordan form, may be
used: from the entries of the Jordan form that lie in an alge-
braic extension of F, the entries of the Frobenius form in F
can be recovered. Two main difficulties have to be bypassed:

(i). We are going to deal with algebraic numbers repre-
sented as roots of polynomials over F. Unfortunately

since squarefree decomposition is not available, some
expressions involving such numbers may be hard to

(ii).

simplify. This will occur for the computation of the

invariant factors if a naive method is used.

The Frobenius form of a matrix over F has its entries

in F, These entries will be obtained from the Jordan
form as expressions involving algebraic numbers over

F. We will have to prove that their representations in
F can be recovered from their representations in the
given algebraic extension of F.

We begin in section 4.1 with some reminders about the

Jordan form, and we explain how it produces, in a natural
way, the invariant factors and the Frobenius form. Then

we illustrate the point (i) above and explain why, from a

practical point of view, a more elaborated approach has to

be found. The method we propose is described in section 4.2,
it leads to a AfC~ algorithm for the Frobenius form that is

presented in section 4.3. In particular a solution is given
for the problem (ii) above. The final result, concerning the
Smith normaJ form is given in section 4.4.

4.1 The Jordan form and the invariant factors

Any matrix B in F n x n is similar to a unique (up to permu-

tation) block-diagonal matrix J in Jordan form i.e. which
diagonal blocks are matrices of the form [7]:

[

Aj 1 . . . 0

Jk(Aj) =
o AJ ““. o 1G Fkxk,

r “. 1
0 ... 0 Aj 1

where ~j is an eigenvaJue of B; Jk is a k x k banded matrix,
which is called a k-Jordan block associated with ~j. Each

block jh (A,) corresponds to an elementary divisor (z – ,lJ)k
of B.

From the Jordan form J and from a theoretical point of
view, the Si (x) (the invariant factors in the reverse order) of

B are easily computed: if the Jordan blocks associated with
any eigenvalue Aj are numbered from I to nj by increasing

dimensions, then the element ary divisor (z – ,X3)~j,’ is a

divisor of ~i (z) if and only if Yj,i is the dimension of the i-th

block associated with Jj.
From a computational point of view, the situation is

more complex. Indeed, when the field F is not algebraically
closed, the eigenvalues of B lie in an algebraic extension of
F, and in general, the standard Jordan form cannot be com-

puted. But we may always compute a symbolic Jordan form

~: this form gives the structure of J using symbols that take

the place of the eigenvalues [15, 9]. Each symbol ~j is a gen-
eralized eigenwalue, it is associated with a polynomial A(A)

in F[A], with the understanding that A is a representation

of Jj, i.e. A(A3) = O. This representation is a factor of the

characteristic polynomial of B.

For a given matrix, many choices are consistent with this.
The symbolic form coincides with the “true” Jordan form
if the eigenvalues are known, i.e. if the representations are
linear factors (1 – Ai). The representations could be chosen
irreducible but this would lead to restrictive assumptions
since we do not know how to factor polynomials fast in par-
allel [9]. The representations could be chosen squarefree but

again it is not a reasonable choice in order to work over ar-
bitrary fields. However such assumptions are not necessary

to compute the structure of the Jordan form and the Smith
form: in the following our representations will simply be

products of elementary divisors of fixed exponent.

314

Now, if we apply the previous construction to compute
the invariant factors from the symbolic Jordan form, we will

obtain only symbolic representations of them. Since we work

over any field and since squarefree decomposition of polyno-

mials is not available, these representations will not allow

to find the invariant factors in l’~zl as in ~201 for fields of
!., ,,

characteristic zero or finite fields. A simple illustration of

this fact is given by example 1.

Example 1. let ~ be a symbolic Jordan form:

10 A] o 0
1= o Io AZ 1 ‘

A(J) = (J2 + 1)3.

00 0 h

In other words, j corresponds to a block with two eigen-
values Al and AZ represented by the generalized eigenvalue

(A’ + 1)’= o.
Since each eigenvalue is associated with only one Jor-

dan block, j give; rise to only one invariant factor: S1(z) =

(X2 + 1)2. From the dimensions of the Jordan blocks, it
is easy to give a symbolic representation of SI (z): SI (z) =

((z - Al)(z - A’))2 with A(AI) = O and A(Az) = O. But
there is no simple way to simplify this latter expression if

the squarefree decomposition of polynomials is not available
and especially if roots of (A2 + 1)3 cannot be taken.

The solution we propose is to explicitly construct a trans-
formation PC for the Frobenius form C (i.e. C = P~’ BPc)

from a transformation PJ for the symbolic Jordan form (i.e.

I = Pyl BPJ).

4.2 From the Jordan form to the Frobenius form

The construction we use to obtain a transformation for the

Frobenius form from a transformation for the Jordan form
may be found in [7]. Let B be a matrix in Fn ‘n and J its

Jordan form. Any transformation PJ for the Jordan form

has a well known structure.

Definition 2 Let PJ be o transformation for the Jordan

form i.e. PJ is such that J = P~l BPJ, Let [jl, j’,..., jk]

be k consecutive columns of J corresponding to a k-Jor-dan

block associated with any eigenua!ue Aj of B. The corre-
sponding columns ~], pz, pk] of I’J constitute a length k
Jordan chain associated with AJ. It satisfies:

The vector p,$ is called end of the Jordan chain, it is such

that:

The two first reiations ensure that starting from Pk, the
chain is exactly of length k, the Range condition gives that
the chain is not included in a longer chain. In addition, the

minimat polynomial Of pk is an elementary diViSO~ (X ‘~j)k.

Next lemma is based on classic results, we omit its proof.

Lemma 2 For any invariant factor s,(x) of B, if the vec-

tors p~), p$), . . . ,pj) are ends of Jordan chains associated

with the Jordan blocks corresponding to s,(z), then .9,(z) is

the product of the minimal polynomials of the p~’), 1<1<8.

This lemma consequently yields a desired transforma-

tion Pc from the matrix B to its Frobenius normal form.

Any companion block of the Frobenius form corresponds
to an s,(x) (theorem 2). The associated columns of the

transformation Pc are built by iterating a cyclic vector p(:)

i.e. a vector which minimal polynomial is s,(z). Applying
lemma 2, such a vector can be obtained from the corre-

sponding ends of chains, taking for instance p(’) = p~:) +

“) Ifs,(z) is of degree d,, this gives d, columnsP$)+. ..+P6 .

of Pc: ~(’), Bp(’), B2p(’), BdI-lp(’)].

In the next section, we extend these arguments to the

computation of the Frobenius form from a symbolic Jordan

form.

4.3 A fast parallel algorithm for the Frobenius form

From ([21], theorem 6) a symbolic Jordan form j of a matrix
B in Fn x n and a corresponding transformation are com-

puted in ~C~.
The symbolic form gives us the structure of the Jordan

form, i.e. the number of blocks and their dimensions, and

gives representations for the generalized eigenvalues. In-
deed, as said previously, since in general the eigenvalues

cannot be computed, we deal with algebraic numbers given

by generalized eigenvalues, i.e. eigenvalues belonging to the

same factors in a partial factorization of the characteristic

polynomial of B. Following [4], these generalized eigenval-

ues are represented as polynomials in F[A], the polynomials

J(k) (A) below. In particular, unlike in ([21], theorem 7),

t~ese polynomials need not to be squarefree or even rela-

tively prime, and we do not have to pay for a corresponding
additional cost of log n. Our representations are products of

element ary divisors of fixed exponent.
More precisely, applying ([21], theorem 6), for any fixed

8 and k, 1<6, k < n, we compute:

a polynomial J\k) (A) in F[J] which roots Aj are the

eigenvalues of B associated with exactly 6 Jordan blocks of

dimension k: associated with 8 elementary divisors (~ –~j)k.

Since we know that the problem of computing a nullspace

basis over generalized eigenvalues is in tiC~ ([21], propo-

sition 4), we also easily compute the ends of the Jordan

chain giving a transformation matrix for the symbolic Jor-
dan form. For any fixed 5 and k as above we get:

(k’6)(A), p2-8 ends of Jordan chains PI (k’o)(A), . . . ,p$@)(A).

These vectors are computed using:

{

‘k’o) @ Ker(B - M)k-l,(k,o) ~ ~’er(B – ~~)k, PI

~~k’d) @ Range(B – M), 1< I <8, with J~k)(A) = O.

Given k and ~, for ~ L the P\’’’)(J) are VeCtOrS which
entries are combinations of the eigenvalues represented by

the polynomial J~k) (A); they are represented as polynomials

in F[J]/(J~k)(A)).
From here we are going to use an additional variable z

to avoid any confusion between the invariant factors and the
representations of the eigenvalues. To compute the Frobe-
nius form of B, we proceed in two steps: first, for each

s,(x), we isolate the associated ends of chains; then, apply-
ing lemma 2, we construct an appropriate transformation.

315

Lemma 3 Let B be a matrix in Fnxn. Let the structure of

the Jordan form of B be given by the polynomials J$k)(A),

l~ii, k<n,andletp{ k,$)(~) 1 < ; <6, be the correspond-

ing ends of Jordan chains. ?he ends of chains associated

with each s,(z) can be computed in AfC~ (the si(~) are the
invariant factors in the reverse order).

Prooj. In section 4.1 we have seen that if the Jordan blocks

are numbered by increasing dimensions, then ~i (z) is com-

puted from the i-th blocks. From [21], as the Jjk) (A), poly-

nomials ~$k) (~) which roots are the eigenvalues of B that
are associated with exactly j blocks of dimensions strictly

lower than k can be computed in AfC~. We take B$k)(A) = O
if there is no block of dimension strictly lower than k. Now,

let

(
l(k’6)(A) = gcd B\!\(}), J~k)(~)) , 1< i, k, 6< n.I

By construction, the roots of l$k’6) (-4) have i – 1 blocks of

dimensions strictly lower than k and 6 blocks of dimension

k. In other words the roots of l~k’d)(~) are the eigenvalues

~~ for which the elementary divisor (z - Aj)k is a divisor of

~,(~),si+l(~),..., Si+d-1 (z). From there, the corresponding

‘k’d)(~) mod ~$k’d)(~).ends of chains are simply the vectors PI

We conclude the proof by noticing that the lfk’o)(~) are com-

puted simultaneously in AfC~ using the algorithm in [2] for
the gcd of polynomials. •1

The Frobenius form is now directly computed by apply-

ing lemma 2 in this new context.

Lemma 4 For F a commutative field and a matrix B in
F“ ‘n, to compute the Frobenius form of B is in Nc%.

Proof. Since the symbolic Jordan form and the Jordan

chains are computed over an algebraic extension of F, the
main point of the proof is to verify that the Frobenius form

or equivalently the invariant factors, that are quantities over
F, can be recovered.

For any target invariant factor s,(z) of B, let the aaso-
(;) (i)

“) Let the entriesciated ends of chains be PI , Pz , pd .

of p~’), 1 < i < 6, be polynomials in a generalized eigen-

value represented by Al(A) in F[A]. They are computed by
lemma 3. Then define

By construction, for any eigenvalue Aj root of si(~)j the

vector p(i) (Aj) is an end of a Jordan chain giving the Jordan

block associated to Aj which corresponds to si (z). From
lemma 2, we know that s,(z) is the product of the minimal

polynomials of the p(’) (Aj) for Aj root of $i (z).
Now, we view the input matrix B az a matrix over the

field F(A) of the polynomial fractions in ~ over F. The

Frobenius form so the invariants factors of B remain the
same. Over F(A), we may consider the minimal polynomial

~i(~) of the vector p(’)(A). From standard properties of the
minimal polynomial of a vector, see [7] for instance, T,(z)

is a multiple of the minimaJ polynomials of the pf’) (Aj) for
all Aj root ofs, (z). Consequently, using lemma 2 M noticed

above, ~i(~) is a multiple of si(~).
Following section 4.2, we may now construct ~ transfor-

mation PC over F(A) to bring B into a form C(A), very

close to the Frobenius form. If si (z) is of degree di, P(’)(~)

considered as a cyclic vector gives us d, columns of Pe (~)
corresponding to the companion block associated with s,(z):

~fi), Bp(i), B2P(:), Bd*-lP(i)]. Since the minimal poly-

nomial of p(’1(~) is a multiple of s,(z), we have 6(A) =

P&l BPC:

C(A) =

C.,(*) B\Z)(A) B\3)(A) . . . B!*)(A)

o C*,(Z) Bp(A) . . . B:U)(A)

o 0 c.,(z) . . . I?$’’)(A) ,

“o

o “C*&(=)Lo

where C,, (=l is the companion matrix associated with s,(z)

(see example 2 below). By construction, C is in polycyckc

form (see [18, 19]), i.e. each matrix B~t) is zero except its
last column. From such a form, a transformation toward the
Frobenius form could be computed [18, 11], however, this is

not currently our purpose since the form itself is already

obtained.

It remains to get convinced that the computations can

be done in NC;.

This is clear for the simultaneous computations of the

p(’) (J) and of Pe using elementary operations on polynomi-

als and matrices. Using the algorithm in [I] for the inversion

of a matrix in one indeterminate, we invert PC. Then ~ and
C the Frobenius form of B are easily calculated. ❑

Example 2. Consider a matrix

[1
010–2

B=
0010

000–1
1000

whose a symbolic Jordan form is

[1
Al1 0 0
0 Al o 0

~= o
0 AZ 1 ‘

A(A) = (A’ + 1)’.

00 0 A’

As above, only one invariant factor S1(z) is involved, asso-

ciated with it we may take

[1
_A3

py)(~)= :

–A2

M end of Jordan chain. The entries of p\l) (J) are polyno-

mials in the generalized eigenvalue (A2 + 1)2 = O.
To compute the Frobenius form of B it now suffices to

construct an appropriate transformation by iterating p:) (J)

as a cyclic vector: PC(A) = ~$1), Bp\l), B2p~), B3p$)],

[

–~3 1+2A2 A+2A3 –3A2-2

PC(A) =
A A’ A3

: A’ A3 1–1–2A2 “

-AZ -A3 1+2A2 A+2A3

316

And the polycyclic form ~ = P~l (A) BPO(A) is directly ob-
t ained, here it coincides with the Frobenius form:

[1

000–1

c= 1000
010–2”

0010

Observe that this last step involves only standard computa-
tions over the polynomial fractions in A and leads to constant

companion matrices.

4.4 A fast parallel algorithm for the Smith form

From lemma 4 and from arguments similar to those used for

theorem 3, our finaJ result follows immediately.

Theorem 4 For F a commutative field and a non singu-

lar matrix A(z) in F[z]nx” with the degrees of the entries
bounded by n, the probtem of computing the Smith normal

form of A(x) is in ~C~ if F contains at least n’ + 1 ele-
ments, and is in NC% otherwise.

5 Conclusion

We have have provided a parallel algorithm to compute the

Smith normal form of polynomial matrices over an arbitrary

fiel F. Our algorithm is of main interest since it shows that
the problem can be solved deterministically in NCF. Two

questions remain opened: how to compute the unimodular
transformation matrices and how to avoid intermediate cal-

culus in an algebraic extension of F ?

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Borodin, S.A. Cook, and N. Pippenger. Parallel
computation for well-endowed rings and space bounded

probalistic machines. Information and Control, 58:113–
136,1983.

A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast

parallel matrix and gcd computations. Information and
Control, 52:241-256, 1982.

S.A. Cook. A taxonomy of problems with fast paraJlel

algorithms. Inf. Control, 64:2–22,1985.

J. Della Dora, C. Dicrescenzo, and D. Duval. About a

new method for computing in algebraic number fields.
In Proc. EUROCAL ’85, LNCS 204, Springer Verlag,

pages 289-290, 1985.

C. Dicrescenzo and D. Duval. Algebraic extensions and

algebraic closure in Scratchpad II. In Proc. ISSA C’88,
LNCS 358, Springer Verlag, pages 440-446, 1988.

F.E. Fich and M. Tompa. The parallel complexity of

exponentiating polynomials over finite fields. In Proc.
17th Annual ACM Symp. Theory Comp., 1985.

F.R. Gantmacher. Th60rie des matrices. Dunod, Paris,
France, 1966.

J. von zur Gathen. Parallel algorithms for algebraic

problems. SIAM J. Comp., 13:802-824, 1984.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. von zur Gathen. Parallel arithmetic computations:
a survey. In Proc. I.%h Int. Symp. Math. Found. Com-

put. Sci., Brattslava, pages 93–112. LNCS 233, Springer
Verlag, 1986.

M. Giesbrecht. Nearly optimal algorithms for canonical
matriz ~orms . PhD thesis, Department of Computer

Science, University of Toronto, 1993.

M. Giesbrecht. Nearly optimal algorithms for canonical

matrix forms. SIAM ,lourna/ on Computing, 1994. To
appear.

I. Gohberg, P. Lancaster, and L. Rodman. Matriz poly-

nomials. Academic Press, New York, 1982.

T. G6mez-Diaz. Quelques applications de /’&valuation

dynamique. PhD thesis, Universit6 de Limoges, France,

1994.

E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders.
Fast parallel computation of Hermite and Smith forms

of polynomials matrices. SIAM J. Atg. Disc. Meth., 8

4, pp 683-690, 1987.

E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders.

Parallel algorithms for matrix normal forms. Linear
Algebra and its Applications, 136:189–208, 1990.

R. Kannan. Solving systems of linear equations over

polynomials. Theoretics/ Computer Science, 39:69-88,
1985.

R. Kannan and A. Bachem. Polynomial algorithms for
computing the Smith and Hermite normal forms of an

integer matrix. SIAM J. Comput., 84, pp 499-5o7,
1979.

W. Keller- Gehrig. Fast algorithms for the characteristic
polynomial. Theoretical Computer Science, 36:309-317,
1985.

P. Ozello. Calcul exact des formes de Jordan et de

Frobenius d’une matrice. PhD thesis, Universit4 Sci-

entifique et M6dicale de Grenoble, France, 1987.

J.L. Roth and G. Villard. Fast parallel computation of
the Jordan normal form of matrices. Parallel Processing

Letters, 1994. To appear.

J.L. Roth and G. Villard. Parallel computations with
aJgebraic numbers, a case study: Jordan normaJ form

of matrices. In Parallel Architectures and Languages
Europe 94, Athens Greece, LNCS, July 1994.

A. Schrijver. Theory of linear and integer program-
ming. Wiley-Interscience series in Discrete Mathemat-

ics, 1986.

G. Villard. Computation of the Smith normal form of
polynomial matrices. In International Symposium on
Symbolic and Algebraic Computationr Kiev, Ukraine.

ACM Press, pp 209-217,July 1993.

Y. Zalcstein and M. Garzon. An NC2 algorithm for

testing similarity of matrices. Information Processing
Letters, 30:253-254,1989.

317

