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ABSTRACT
New algorithms are presented for computing annihilating poly-

nomials of Toeplitz, Hankel, and more generally Toeplitz+Hankel-

like matrices over a field. Our approach follows works on Cop-

persmith’s block Wiedemann method with structured projections,

which have been recently successfully applied for computing the

bivariate resultant. A first baby steps/giant steps approach—directly

derived using known techniques on structured matrices—gives a

randomized Monte Carlo algorithm for the minimal polynomial

of an 𝑛 × 𝑛 Toeplitz or Hankel-like matrix of displacement rank

𝛼 using �̃�

(
𝑛𝜔−𝑐 (𝜔)𝛼𝑐 (𝜔)

)
arithmetic operations, where 𝜔 is the

exponent of matrix multiplication and 𝑐 (2.373) ≈ 0.523 for the

best known value of𝜔 . For generic Toeplitz+Hankel-like matrices a

second algorithm computes the characteristic polynomial; in partic-

ular, when the displacement rank is considered constant, its cost is

�̃�

(
𝑛2−1/𝜔

)
. Previous algorithms required 𝑂

(
𝑛2

)
operations while

the exponents presented here are respectively less than 1.86 and

1.58 with the best known estimate for 𝜔 .
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1 INTRODUCTION
We consider the problem of computing the minimal or the charac-

teristic polynomial of Toeplitz-like and Hankel-like matrices, which

include Toeplitz and Hankel ones. The necessary definitions about

those structures are given in Section 2.

Throughout the paper 𝑇 ∈ K𝑛×𝑛 is non-singular and either

Toeplitz-like or Hankel-like, where K is a commutative field. The

structure is parameterized by the displacement rank 1 ≤ 𝛼 ≤
𝑛 of 𝑇 [12, 21]. In particular a Toeplitz or a Hankel matrix has

displacement rank 𝛼 = 2.

The determinant of𝑇 can be computed in �̃�
(
𝛼𝜔−1𝑛

)
operations

in K, where 𝜔 ≤ 3 is a feasible exponent for square 𝑛 × 𝑛 ma-

trix multiplication. For the best known value of 𝜔 one can take

𝜔 ≈ 2.373 [1, 20]. When 𝑇 has generic rank profile (the leading

principal submatrices are non singular) a complexity bound �̃�
(
𝛼2𝑛

)
for the determinant is derived from [21, Cor. 5.3.3]. In the general

case, for ensuring the rank profile one uses rank-regularization

techniques initially developed in [13, 16] that lead to randomized

Las Vegas algorithms assuming that the cardinality of K is large

enough; see [21, Sec. 5] and [3] for detailed studies in our context.

Taking advantage of fast matrix multiplication is possible using the

results in [3, 4], where fundamental matrix operations, including

the determinant, are performed in time �̃�
(
𝛼𝜔−1𝑛

)
for a wide spec-

trum of displacement structures. In this approach the determinant

is revealed by the recursive factorization of the inverse.

The characteristic polynomial det(𝑥𝐼𝑛 −𝑇 ) of 𝑇 is a polynomial

of degree 𝑛. Using an evaluation-interpolation scheme it follows

that it can be computed in �̃�
(
𝛼𝜔−1𝑛2

)
operations in K. We also

refer to [21, Ch. 7] for a Newton-Structured iteration scheme in

time �̃�
(
𝛼2𝑛2

)
.

For a Toeplitz or Hankel matrix these complexity bounds for

computing the characteristic polynomial were quadratic; our con-

tribution establishes an improved bound �̃�

(
𝑛2−1/𝜔

)
for generic

matrices (given in compressed form), which is sub-quadratic in-

cluding when using 𝜔 = 3. We build on the results of [25] where

especially the case of a Sylvester matrix was treated, and show

that the approach can be generalized to larger displacement rank

families. In particular, the Hankel-(like) case requires the use of

sophisticated techniques in order to handle the Toeplitz+Hankel

structure [7, 9] and its generalizations [21].
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The algorithms we propose fit into the broad family of Cop-

persmith’s block Wiedemann algorithms ; we refer to [17] for the

necessary material and detailed considerations on the approach.

Another interpretation in terms of structured lifting and matrix

fraction reconstruction is given in [25].

From 𝑇 ∈ K𝑛×𝑛 , the problem is to compute the determinant

(or a divisor) of the characteristic matrix 𝑀 (𝑥) = 𝑥𝐼𝑛 − 𝑇 . For
1 ≤ 𝑚 ≤ 𝑛 and well chosen projection matrices 𝑉 and𝑊 in K𝑛×𝑚 ,

the principle is to reconstruct an irreducible fraction description

𝑃 (𝑥)𝑄−1 (𝑥) of 𝑉 T𝑀 (𝑥)−1𝑊 ∈ K(𝑥)𝑚×𝑚 , where 𝑃,𝑄 ∈ K[𝑥]𝑚×𝑚 ,

from a truncated series expansion of the fraction. The denominator

matrix𝑄 carries information on the Smith normal form of𝑀 (𝑥) [17,
Thm. 2.12]. Using random 𝑉 and𝑊 allows to recover the minimal

polynomial of𝑇 from the largest invariant factor of𝑀 (𝑥), and for a
generic matrix 𝑇 the characteristic polynomial is obtained [17, 25].

The matrix 𝑄 is computed from a truncation 𝑆 (𝑚) ∈ K[𝑥]𝑚×𝑚
of the series expansion of 𝑉 T𝑀 (𝑥)−1𝑊 ,

𝑆 (𝑚) (𝑥) = −
2 ⌈𝑛/𝑚⌉∑
𝑘≥0

𝑉 T (𝑇−𝑘−1)𝑊𝑥𝑘 , (1)

using for example matrix fraction reconstruction [2, 6]. We will

not detail these latter aspects in this paper since they can be found

elsewhere in the literature: see [17, 25] for the general techniques

involved; [24, Cor. 6.4] for the power series truncation; and [18]

for alternative fraction reconstruction possibilities. The results we

need on matrix polynomials are recalled in Section 3.

We focus on the computation of the power series terms 𝐻𝑘 =

𝑉 T (𝑇−1)𝑘𝑊 of Eq. (1). The idea for improving the complexity

bounds is to use structured projections 𝑉 and𝑊 in order to speed

up the computation of the expansion, as has been done in [5, 25]. A

typical choice is such that the matrix product by𝑉 and𝑊 is reduced.

The central difficulty is to show that the algorithm remains correct;

special choices for𝑉 and𝑊 could prevent a fraction reconstruction

with appropriate cost, or give a denominator matrix 𝑄 with too

little information on the invariant structure of 𝑇 .

For a generic input matrix and our best exponent, in Section 5

we follow the choice of [25] and work with 𝑉 = 𝑊 = 𝑋 where

𝑋 =
(
𝐼𝑚 0

)T ∈ K𝑛×𝑚 . An 𝑛 × 𝑛 Toeplitz or a Hankel matrix is

defined by 2𝑛−1 elements of K, and our algorithm is correct except

on a certain hypersurface of K2𝑛−1. The same way, a Toeplitz-like

or Hankel-like matrix of displacement rank 𝛼 is defined by the

2𝑛𝛼 coefficients of its generators, and our algorithm is correct for

all values of K2𝑛𝛼 except for a hypersurface. If 𝑇 is Hankel, the

matrix 𝑀 (𝑥) = 𝑥𝐼𝑛 − 𝑇 is Toeplitz+Hankel and the algorithm in-

volves a compressed form that generalizes the use of generators

associated to displacement operators [9, 21]. The algorithm com-

putes a compressed representation of 𝑀 (𝑥)−1 modulo 𝑥2 ⌈𝑛/𝑚⌉+1,
and exploits its structure to truncate it into a compressed represen-

tation of 𝑆 (𝑚) (𝑥) = 𝑋T𝑀 (𝑥)−1𝑋 mod 𝑥2 ⌈𝑛/𝑚⌉+1 at no cost. The

parameter𝑚 can be optimised to get an algorithm using �̃�

(
𝑛2−1/𝜔

)
operations when the displacement rank is considered constant.

Before considering the fast algorithm for the generic case, in

Section 4 we consider the baby steps/giant steps algorithm of [17].

Indeed, thanks to the incorporation of fast matrix multiplication

in basis structured matrix operations [3, 4], the overall approach

with dense projections 𝑉 and𝑊 already allows a slight exponent

improvement. Taking into account that the input matrix 𝑇 is struc-

tured, a direct cost analysis of the algorithm of [17] improves on

the quadratic cost for Toeplitz and Hankel matrices as soon as one

takes 𝜔 < 3. However it is unclear to us how to compute the char-

acteristic polynomial in this case (see the related Open Problem 3

in [14]). The algorithm we propose is randomized Monte Carlo and

we compute the minimal polynomial in �̃�

(
𝑛𝜔−𝑐 (𝜔)

)
operations

with 𝑐 (𝜔) = 𝜔−1
5−𝜔 . For Toeplitz-like and Hankel-like matrices with

displacement rank 𝛼 , the cost is multiplied by �̃�

(
𝛼𝑐 (𝜔)

)
.

Notation. Indices of matrix and vectors start from zero. The vec-

tors of the𝑛-dimensional canonical basis are denoted by 𝑒𝑛
0
, . . . , 𝑒𝑛

𝑛−1.
For a matrix 𝑀 , 𝑀𝑖, 𝑗 denotes the coefficient (𝑖, 𝑗) of this matrix,

𝑀𝑖,∗, its row of index 𝑖 and𝑀∗, 𝑗 its column of index 𝑗 .

2 RANK DISPLACEMENT STRUCTURES
A wide range of structured matrices are efficiently described by the

action of a displacement operator [12]. There are two types of such

operators: the Sylvester operators of the form

∇𝑀,𝑁 : 𝐴 ↦→ 𝑀𝐴 −𝐴𝑁,

and the Stein operators of the form

Δ𝑀,𝑁 : 𝐴 ↦→ 𝐴 −𝑀𝐴𝑁,

where𝑀 and 𝑁 are fixed matrices. A Toeplitz matrix 𝑇 is defined

by 2𝑛 − 1 coefficients 𝑡−𝑛+1, . . . , 𝑡𝑛−1 ∈ K such that𝑇 = (𝑡𝑖−𝑗 )𝑖, 𝑗 . Its
image through Δ𝑍𝑛,𝑍

T
𝑛
, where 𝑍𝑛 = (𝛿𝑖, 𝑗+1)0≤𝑖, 𝑗≤𝑛−1 has rank at

most 2. Similarly, a Hankel matrix𝐻 is defined by 2𝑛−1 coefficients

ℎ0, . . . , ℎ2𝑛−2 such that𝐻 = (ℎ𝑖+𝑗 )𝑖, 𝑗 and its image through∇𝑍𝑛,𝑍
T
𝑛,1
,

where 𝑍𝑛,1 = 𝑍𝑛 + 𝑒𝑛
0
𝑒𝑛T
𝑛−1 has rank at most 2.

As a generalization, the class of Toeplitz-like (resp. Hankel-like)

matrices is defined as those matrices whose image through Δ𝑍𝑛,𝑍
T
𝑛

(resp. ∇𝑍𝑛,𝑍
T
𝑛,1
) has a bounded rank 𝛼 [8, 21], called the displacement

rank, and can be represented by a product𝐺𝐻T
, where𝐺,𝐻 ∈ K𝑛×𝛼

are called generators. These operators are non-singular and a matrix

can be uniquely recovered from its generators.

Lastly, any sum of a Toeplitz and a Hankel matrix, (forming the

class of Toeplitz+Hankel matrices) has an image of rank at most 4

through the displacement operator ∇𝑈𝑛,𝑈𝑛
where𝑈𝑛 = 𝑍𝑛 +𝑍T

𝑛 [7].

This operator is singular and the low rank image does not suffice

to uniquely reconstruct the initial matrix: additional data (usually

a first or a last column) is required for a unique reconstruction [9,

21]. The class of Toeplitz+Hankel-like matrices is formed by those

matrices whose image through ∇𝑈𝑛,𝑈𝑛
has a bounded rank.

2.1 Product of Structured Matrices
Proposition 2.1 ([3, Theorem 1.2]). Let 𝐴 ∈ K𝑛×𝑛 be a Toeplitz-

like or Hankel-like matrix with displacement rank 𝛼 given by its
generators and 𝐵 ∈ K𝑛×𝑚 be a dense matrix. The multiplication of 𝐴
by 𝐵 can be computed in �̃�

(
𝑛max(𝛼,𝑚)min(𝛼,𝑚)𝜔−2

)
operations

in K.

Proposition 2.2. Let 𝐴, 𝐵 ∈ K𝑛×𝑛 be two Toeplitz-like matrices
of displacement rank 𝛼 and 𝛽 respectively, then their product 𝐴𝐵 is a
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Toeplitz-like matrix of displacement rank at most 𝛼 + 𝛽 + 1. Further-
more, given generators for 𝐴 and 𝐵 w.r.t. Δ𝑍𝑛,𝑍

T
𝑛
, one can compute

generators for 𝐴𝐵 w.r.t. the same operator in �̃�
(
𝑛(𝛼 + 𝛽)𝜔−1

)
field

operations.

Proof. Let 𝐺𝐴, 𝐻𝐴 and 𝐺𝐵, 𝐻𝐵 be the generators of 𝐴 and 𝐵

respectively. They satisfy A-𝑍𝑛𝐴𝑍
T
𝑛 = 𝐺𝐴𝐻

T
𝐴
and 𝐵 − 𝑍𝑛𝐵𝑍T

𝑛 =

𝐺𝐵𝐻
T
𝐵
. Consequently

𝐴𝐵 = (𝑍𝑛𝐴𝑍T
𝑛 +𝐺𝐴𝐻

T
𝐴) (𝑍𝑛𝐵𝑍

T
𝑛 +𝐺𝐵𝐻

T
𝐵)

= 𝑍𝑛𝐴𝐵𝑍
T
𝑛 − 𝑍𝑛𝐴∗,𝑛−1𝐵𝑛−1,∗𝑍T

𝑛 + (𝑍𝑛𝐴𝑍T
𝑛𝐺𝐵)𝐻T

𝐵

+𝐺𝐴 (𝐻T
𝐴𝑍𝑛𝐵𝑍

T
𝑛 + 𝐻T

𝐴𝐺𝐵𝐻
T
𝐵),

and therefore 𝐴𝐵 − 𝑍𝑛𝐴𝐵𝑍T
𝑛 = 𝐺𝐴𝐵𝐻

T
𝐴𝐵

for

𝐺𝐴𝐵 =

(
𝐺𝐴 𝑍𝑛𝐴𝑍

T
𝑛𝐺𝐵 −𝑍𝑛𝐴∗,𝑛−1

)
𝐻𝐴𝐵 =

(
𝑍𝑛𝐵

T𝑍T
𝑛𝐻𝐴 + 𝐻𝐵𝐺

T
𝐵
𝐻𝐴 𝐻𝐵 𝑍𝑛𝐵

T
𝑛−1,∗

)
,

thus showing that 𝐴𝐵 has displacement rank at most 𝛼 + 𝛽 + 1.
Computing these generators involves applying 𝐴 on a dense

𝑛 × 𝛽 matrix and 𝐵 on a dense 𝛼 × 𝑛 matrix, and computing the

product of an 𝛼 × 𝑛 by an 𝑛 × 𝛽 matrix and the product of an 𝛼 × 𝛽
by a 𝛽 × 𝑛 matrix. Using [3, Thm 1.2], these cost �̃�

(
𝑛(𝛼 + 𝛽)𝜔−1

)
field operations. □

Proposition 2.3. Let 𝐴, 𝐵 ∈ K𝑛×𝑛 be two Hankel-like matrices
of displacement rank 𝛼 and 𝛽 respectively, then their product 𝐴𝐵
is a Toeplitz-like matrix of displacement rank at most 𝛼 + 𝛽 + 2.
Furthermore, given generators for 𝐴 and 𝐵 w.r.t. ∇𝑍𝑛,𝑍

T
𝑛,1
, generators

for 𝐴𝐵 w.r.t. Δ𝑍𝑛,𝑍
T
𝑛
can be computed in �̃�

(
𝑛(𝛼 + 𝛽)𝜔−1

)
.

Proof. Let 𝐺𝐴, 𝐻𝐴 and 𝐺𝐵, 𝐻𝐵 be the generators of 𝐴 and 𝐵

respectively, satisfying 𝑍𝑛𝐴 − 𝐴𝑍T
𝑛,1

= 𝐺𝐴𝐻
T
𝐴
and 𝑍𝑛𝐵 − 𝐵𝑍T

𝑛,1
=

𝐺𝐵𝐻
T
𝐵
. Using a similar reasoning as for Proposition 2.2 we can

deduce that

𝐴𝐵 − 𝑍𝑛𝐴𝐵𝑍T
𝑛 = 𝐺𝐴𝐵𝐻

T
𝐴𝐵

for

𝐺𝐴𝐵 =

(
𝐺𝐴 𝐴𝑍T

𝑛,1
𝐺𝐵 𝐴∗,𝑛−1 𝐴𝑍T

𝑛,1
𝐵∗,𝑛−1

)
𝐻𝐴𝐵 =

( (
𝐻𝐵𝐺

T
𝐵
− 𝐵T𝑍T

𝑛 + 𝑒𝑛0𝐵
T
∗,𝑛−1

)
𝐻𝐴 𝐻𝐵 𝐵T

𝑛−1,∗ 𝑒𝑛
0

)
,

thus showing that 𝐴𝐵 has displacement rank at most 𝛼 + 𝛽 + 2.
Computing these generators again costs �̃�

(
𝑛(𝛼 + 𝛽)𝜔−1

)
field op-

erations. □

Proposition 2.4. Let 𝐴 ∈ K𝑛×𝑛 be a Toeplitz-like (resp. Hankel-
like) matrix of displacement rank 𝛼 , then for an arbitrary (resp.
even)𝑟 , 𝐴𝑟 is a Toeplitz-like matrix of displacement rank at most
(𝛼 + 1)𝑟 and its generators can be computed from the generators of 𝐴
in �̃�

(
𝑛(𝛼𝑟 )𝜔−1

)
field operations.

Proof. Using fast exponentiation one computes 𝐴𝑟 as:

𝐴𝑟 =

⌊log 𝑟 ⌋∏
𝑘=0

(
𝐴2

𝑘
)𝑙𝑘

where the 𝑙𝑘 satisfy

log 𝑟∑
𝑘=0

𝑙𝑘2
𝑘 = 𝑟,

which only requires squarings and products between matrices of

the form𝐴2
𝑘
. When𝐴 is Toeplitz-like the result is a straightforward

consequence of Proposition 2.2; when it is Hankel-like the product

𝐴2
is computed using Proposition 2.3, the remaining products are

between Toeplitz-like matrices, and the result again follows from

Proposition 2.2. □

2.2 Reconstruction of a Toeplitz+Hankel-like
Matrix from its Generators

The operator ∇𝑈𝑛,𝑈𝑛
is defined in [21, Section 4.5] as partly regu-

lar, which means that a Toeplitz+Hankel-like matrix is completely

defined by its generators and its irregularity set that may be all the

entries in its first column.

A formula to recover a dense representation of the matrix from

its generators and its first column is given in [21].

Theorem 2.5 ([21, Thm. 4.5.1]). Let𝑀 ∈ K𝑛×𝑛 be a Toeplitz+Hankel-
like matrix,𝐺,𝐻 ∈ K𝑛×𝛼 its generators and 𝑐0 = 𝑀𝑒𝑛

0
its first column,

then

𝑀 = 𝜏𝑈𝑛
(𝑐0) −

𝛼−1∑
𝑗=0

𝜏𝑈𝑛
(𝐺∗, 𝑗 )𝜏𝑍𝑛

(𝑍𝑛𝐻∗, 𝑗 )T (2)

where for an 𝑛 × 𝑛 matrix 𝐴 and a vector 𝑣 of length 𝑛 𝜏𝐴 (𝑣) denotes
the matrix of the algebra generated by 𝐴 which has 𝑣 as its first
column.

We show that one can derive a fast reconstruction algorithm

for a Toeplitz+Hankel-like matrix from Eq. (2) and first detail the

structure of the various 𝜏𝐴 (𝑣) matrices.

Lemma 2.6. 𝜏𝑍𝑛
(𝑣)T is the Toeplitz upper-triangular matrix with

𝑣T as its first row.

Lemma 2.7. 𝜏𝑈𝑛
(𝑣) =

𝑛−1∑
𝑖=0

𝑣𝑖𝑄𝑖 (𝑈𝑛) where 𝑄0 (𝑥) = 1, 𝑄1 (𝑥) = 𝑥

and 𝑄𝑖+1 (𝑥) = 𝑥𝑄𝑖 (𝑥) −𝑄𝑖−1 (𝑥).

Proof. The first column of 𝑄𝑖 (𝑈𝑛) is 𝑒𝑛𝑖 . □

Corollary 2.8. Column 𝑗 of 𝜏𝑈𝑛
(𝑣) is 𝑄 𝑗 (𝑈𝑛)𝑣 .

Proof. With Lemma 2.7 and after checking the property for 𝑗 ∈
{0, 1}, it suffices to prove𝑄𝑖 (𝑈𝑛)∗, 𝑗+1 = 𝑈𝑛𝑄𝑖 (𝑈𝑛)∗, 𝑗 −𝑄𝑖 (𝑈𝑛)∗, 𝑗−1.
This is true for 𝑖 ∈ {0, 1} and if it is for 𝑖 and 𝑖 − 1, then

𝑄𝑖+1 (𝑈𝑛)∗, 𝑗+1 = 𝑈 2

𝑛𝑄𝑖 (𝑈𝑛)∗, 𝑗 −𝑈𝑛𝑄𝑖 (𝑈𝑛)∗, 𝑗−1
−𝑈𝑛𝑄𝑖−1 (𝑈𝑛)∗, 𝑗 +𝑄𝑖−1 (𝑈𝑛)∗,𝑖−1

□

From these we can write the following proposition, inspired

by [7, Prop. 4.2]. It enables fast recursive reconstruction of the

columns of a Toeplitz+Hankel-like matrix from the first one.

Proposition 2.9. Let𝑀 ∈ K𝑛×𝑛 be a Toeplitz+Hankel-likematrix,
𝐺,𝐻 ∈ K𝑛×𝛼 its generators for ∇𝑈𝑛,𝑈𝑛

and 𝑐0 = 𝑀𝑒𝑛
0
its first column.

With the notation 𝑐−1 = 0, the columns (𝑐𝑘 )0≤𝑘≤𝑛−1 of𝑀 follow the
recursion:

𝑐𝑘+1 = 𝑈𝑛𝑐𝑘 − 𝑐𝑘−1 −
𝛼−1∑
𝑗=0

𝐻𝑘,𝑗𝐺∗, 𝑗 . (3)
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Proof. Let 𝐶 be the matrix defined by the recursion formula

and initial conditions of Proposition 2.9, we will prove 𝐶 = 𝑀 .

By definition 𝑐0 is the first column of 𝑀 ; assume now that for

𝑖 ≤ 𝑘, 𝑐𝑖 is column 𝑖 of 𝑀 . Using Lemma 2.6 and Corollary 2.8 on

Eq. (2) that is

𝑐𝑖 = 𝑄𝑖 (𝑈𝑛)𝑐0 −
𝛼−1∑
𝑗=0

𝑖−1∑
𝑙=0

𝐻𝑖−1−𝑙, 𝑗𝑄𝑙 (𝑈𝑛)𝐺∗, 𝑗 (4)

and Eq. (3) can be detailed as

𝑐𝑘+1 = 𝑈𝑛
©«𝑄𝑘 (𝑈𝑛)𝑐0 −

𝛼−1∑
𝑗=0

𝑘−1∑
𝑖=0

𝐻𝑘−1−𝑖, 𝑗𝑄𝑖 (𝑈𝑛)𝐺∗, 𝑗
ª®¬

− ©«𝑄𝑘−1 (𝑈𝑛)𝑐0 −
𝛼−1∑
𝑗=0

𝑘−2∑
𝑖=0

𝐻𝑘−2−𝑖, 𝑗𝑄𝑖 (𝑈𝑛)𝐺∗, 𝑗
ª®¬ −

𝛼−1∑
𝑗=0

𝐻𝑘,𝑗𝐺∗, 𝑗

= 𝑄𝑘+1 (𝑈𝑛)𝑐0 −
𝛼−1∑
𝑗=0

𝑘∑
𝑖=0

𝐻𝑘−𝑖, 𝑗𝑄𝑖 (𝑈𝑛)𝐺∗, 𝑗

□

3 MATRIX POLYNOMIALS
We rely on the material from [17, 25]. For matrix polymonials

and fractions the reader may refer to [11]. The rational matrix

𝐻 (𝑥) = 𝑉 T𝑀 (𝑥)−1𝑊 over K(𝑥) can be written as a fraction of

two polynomial matrices. A right fraction description is given

by square polynomial matrices 𝑃 (𝑥) and 𝑄 (𝑥) such that 𝐻 (𝑥) =
𝑃 (𝑥)𝑄 (𝑥)−1 ∈ K(𝑥)𝑚×𝑚, and a left description by 𝑃𝑙 (𝑥) and𝑄𝑙 (𝑥)
such that 𝐻 (𝑥) = 𝑄𝑙 (𝑥)−1𝑃𝑙 (𝑥) ∈ K(𝑥)𝑚×𝑚 . Degrees of denomi-

nator matrices are minimized using column-reduced forms. A non-

singular polynomial matrix is said to be column-reduced if its lead-

ing column coefficient matrix is non-singular [11, Sec. 6.3]. We also

have the notion of irreducible and minimal fraction descriptions.

If 𝑃 and𝑄 (resp. 𝑃𝑙 and𝑄𝑙 ) have unimodular right (resp. left) matrix

gcd’s [11, Sec. 6.3] then the description is called irreducible. If 𝑄

(resp. 𝑄𝑙 ) is column-reduced then the description is called minimal.

For a given𝑚, define 1 ≤ 𝜈 ≤ 𝑛 to be the sum of the degrees of the

first𝑚 largest invariant factors of𝑀 (𝑥) = 𝑥𝐼𝑛 −𝑇 (equivalently, the

first𝑚 diagonal elements of its Smith normal form). The following

will ensure that the minimal polynomial of 𝑇 , which is the largest

invariant factor of𝑀 (𝑥), can be computed from the Smith normal

form of an appropriate denominator 𝑄 (𝑥).

Theorem 3.1. ([17, Thm. 2.12] and [24].) Let 𝑉 and𝑊 be block
vectors over a sufficiently large field K whose entries are sampled
uniformly and independently from a finite subset 𝑆 ⊆ K. Then with
probability at least 1 − 2𝑛/|𝑆 |, 𝐻 (𝑥) = 𝑉 T𝑀 (𝑥)−1𝑊 has left and
right irreducible descriptions with denominators of degree ⌈𝜈/𝑚⌉, of
determinantal degree 𝜈 , and whose 𝑖th invariant factor (starting from
the largest degree) is the 𝑖th invariant factor of𝑀 (𝑥).

The next result we need is concerned with the computation of an

appropriate denominator 𝑄 as soon as the truncated power series

in Eq. (1) is known. We notice that 𝐻 (𝑥) = 𝑉 T𝑀 (𝑥)−1𝑊 is strictly

proper in that it tends to zero when 𝑥 tends to infinity. For fraction

reconstruction we use the computation of minimal approximant

bases (or 𝜎-bases) [2, 23], and the algorithm with complexity bound

�̃�
(
𝑚𝜔−1𝑛

)
in [6, 10].

Theorem 3.2. ([6, Lem. 3.7].) Let 𝐻 ∈ K(𝑥)𝑚×𝑚 be a strictly
proper power series, with left and right matrix fractions descriptions
of degree at most 𝑑 . A denominator 𝑄 of a right irreducible descrip-
tion 𝐻 (𝑥) = 𝑃 (𝑥)𝑄 (𝑥)−1 can be computed in �̃� (𝑚𝜔𝑑) arithmetic
operations from the first 2𝑑 + 1 terms of the expansion of 𝐻 .

In our case, from Theorem 3.1 we will obtain the existence of ap-

propriate fractions of degree less than ⌈𝑛/𝑚⌉, and use Theorem 3.2

for bounding the cost of the computation of 𝑄 .

4 A BABY-STEP GIANT STEP ALGORITHM
In this section, we propose a direct adaptation of the baby steps/giant

steps variant of Coppersmith’s block-Wiedemann algorithm devel-

opped in [17, Sec. 4] to the case of structured matrices. In order

to compute the terms of the series (1), we will assume that the

input matrix 𝑇 has been inverted, using [3, Theorem 6.6]. In this

section we will therefore denote by 𝑇 this inverse and compute the

projections of its powers.

4.1 Description of the Algorithm
Let 𝑉 ,𝑊 ∈ K𝑛×𝑚 be the block vectors used for the projections.

Algorithm 1 performs 𝑟 baby steps and 𝑠 giant steps to compute

the first terms of the sequence 𝐻𝑘 = 𝑉 T𝑇𝑘+1𝑊 = 𝑉 T (𝑇 𝑟 ) 𝑗𝑇 𝑖+1𝑊
for 0 ≤ 𝑘 ≤ 2⌈𝑛/𝑚⌉, 0 ≤ 𝑖 < 𝑟 , 0 ≤ 𝑗 < 𝑠 and 𝑟𝑠 ≥ 2⌈𝑛/𝑚⌉ + 1.

Algorithm 1 [17] Compute 𝐻𝑘 = 𝑉 T𝑇𝑘+1𝑊 for 0 ≤ 𝑘 ≤ 2⌈𝑛/𝑚⌉
Input: Generators of 𝑇 ∈ K𝑛×𝑛 , Toeplitz-like or Hankel-like
Input: 𝑚, 𝑟, 𝑠 ∈ N s.t. 𝑟𝑠 ≥ 2⌈𝑛/𝑚⌉ + 1, 𝑟 even if 𝑇 is Hankel-like

Input: 𝑉 ,𝑊 ∈ K𝑛×𝑚
Output: 𝐻 =

(
𝐻𝑟 𝑗+𝑖

)
𝑗<𝑠,𝑖<𝑟 where 𝐻𝑘 = 𝑉 T𝑇𝑘+1𝑊

1: 𝑊0 ← 𝑇𝑊

2: for 1 ≤ 𝑖 ≤ 𝑟 − 1 do
3: 𝑊𝑖 ← 𝑇𝑊𝑖−1
4: 𝑅 ← 𝑇 𝑟

5: 𝑉0 ← 𝑉

6: for 1 ≤ 𝑗 ≤ 𝑠 − 1 do
7: 𝑉 T

𝑗
← 𝑉 T

𝑗−1𝑅

8: 𝐻 ←
(
𝑉0 . . . 𝑉𝑠−1

)T (
𝑊0 . . . 𝑊𝑟−1

)
This algorithm relies on three main matrix operations:

(1) The product of a structured matrix by a dense rectangular

matrix, supported by Proposition 2.1 for Steps 3 and 7;

(2) The exponentiation of a structuredmatrix, supported by Propo-

sition 2.4 for Step 4;

(3) The product of two dense rectangular matrices for Step 8.

4.2 Cost Analysis
Proposition 4.1. Algorithm 1 runs in �̃�

(
𝑛𝜔−

𝜔−1
5−𝜔 𝛼

𝜔−1
5−𝜔

)
opera-

tions in K for well chosen𝑚, 𝑟 and 𝑠 .

Proof. From Proposition 2.1, applying an 𝑛 ×𝑚 block to 𝑇 can

be done in �̃�
(
𝑛max(𝑚,𝛼)min(𝑚,𝛼)𝜔−2

)
field operations. Hence
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the 𝑟 baby steps, Step 3, computing the (𝑇 𝑖𝑊 )0≤𝑖<𝑟 cost overall

�̃�

(
𝑛𝑟 max(𝑚,𝛼)min(𝑚,𝛼)𝜔−2

)
(5)

field operations.

By Proposition 2.4, the initialization of the giant steps at Step 4

is the computation of a structured representation for𝑇 𝑟 , which can

be done in

�̃�

(
𝑛𝑟𝜔−1𝛼𝜔−1

)
(6)

operations in K.
Then each of the giant steps, at Step 7, is a product of an𝑚 × 𝑛

densematrix by an𝑛×𝑛matrix of displacement rank𝛼𝑟 . FromPropo-

sition 2.1, these 𝑠 steps cost

�̃�

(
𝑛𝑠 max(𝑚,𝛼𝑟 )min(𝑚,𝛼𝑟 )𝜔−2

)
(7)

Lastly, the computation of the product resulting in 𝐻 at Step 8

uses �̃�
(
𝑛max(𝑚𝑟,𝑚𝑠)min(𝑚𝑟,𝑚𝑠)𝜔−2

)
or equivalently

�̃�

(
𝑛𝑚𝜔−1

max(𝑟, 𝑠)min(𝑟, 𝑠)𝜔−2
)

(8)

field operations.

Let 𝑚 =

⌈
𝑛

𝜔−3
𝜔−5 𝛼

2

5−𝜔
⌉
and set 𝑟 = 𝑠 =

⌈√
2𝑛/𝑚

⌉
. Note that

𝛼 ≤ 𝑚 ≤ 𝛼𝑟 , therefore the bound of Eq. (5) is dominated by the

one of Eq. (8). Moreover the bound of Eq. (7) can be rewritten as

�̃�
(
𝑛2𝑚𝜔−3𝛼

)
, and from Eq. (8) we have �̃�

(
𝑛

𝜔+1
2 𝑚

𝜔−1
2

)
, and these

two quantities are

�̃�

(
𝑛𝜔−

𝜔−1
5−𝜔 𝛼

𝜔−1
5−𝜔

)
.

Finally, the bound of Eq. (6) can be rewritten as �̃�

(
𝑛

𝜔+1
2 ( 𝛼2

𝑚 )
𝜔−1
2

)
,

which is dominated by the one of Eq. (8). □

When the displacement rank 𝛼 is constant, and with the best

known estimate 𝜔 = 2.373 [1, 20] the cost bound given in Proposi-

tion 4.1 becomes �̃�
(
𝑛1.851

)
, while it is �̃�

(
𝑛2

)
for 𝜔 = 3.

Let us now suppose that the entries of 𝑉 and𝑊 are sampled

uniformly and independently from a finite subset 𝑆 ⊆ K, we then
have the following.

Theorem 4.2. The minimal polynomial of an 𝑛 × 𝑛 Toeplitz-like
or Hankel-like matrix with displacement rank 𝛼 can be computed by
a randomized Monte Carlo algorithm using

�̃�

(
𝑛𝜔−

𝜔−1
5−𝜔 𝛼

𝜔−1
5−𝜔

)
field operations, with probability of success at least 1 − (𝑛2 + 3𝑛 +
2𝑛5/3𝛼2)/|𝑆 |.

Proof. The first step is to compute the inverse of 𝑇 , using [3,

Theorem 6.6] in �̃�
(
𝑛𝛼𝜔−1

)
operations in K. Then running Algo-

rithm 1 on𝑇−1 costs �̃�
(
𝑛𝜔−

𝜔−1
5−𝜔 𝛼

𝜔−1
5−𝜔

)
which dominates �̃�

(
𝑛𝛼𝜔−1

)
since 𝛼 ≤ 𝑛. From the sequence of matrices (𝐻𝑘 )0≤𝑘≤2𝑛/𝑚 , one can

compute a minimal denominator 𝑄 for 𝐻 (𝑥) = 𝑉 T (𝑥𝐼𝑛 −𝑇 )−1𝑊 ∈
K[𝑥]𝑚×𝑚 in �̃�

(
𝑛𝑚𝜔−1)

field operations, by Theorem 3.2.

Using Theorem 3.1, the minimal polynomial is then obtained as

the first invariant factor in the Smith form of 𝑄 , computed by [22,

Proposition 41]. This step also costs �̃�
(
𝑛𝑚𝜔−1)

field operations

and since𝑚 ≤ 𝑛 we have

𝑛𝑚𝜔−1 ≤ 𝑛
𝜔+1
2 𝑚

𝜔−1
2

which shows that the cost of these last two computations will al-

ways be dominated by the cost of the product in Eq. (8). The probabil-

ity of failure for the computation of𝑇−1 is at most 𝑛(𝑛+1)/|𝑆 | by [3,
Lemma 6.2]. For the computation of the minimal polynomial it is at

most 2𝑚2𝑛 ≤ 2𝑛5/3𝛼2, from [22, Concl.] and [15, Thm 3.3]. A union

bound combining this probability and the failure probablity of The-

orem 3.1 yields a probability of failure of (𝑛2+3𝑛+2𝑛5/3𝛼2)/|𝑆 |. □

Note that this result carries over to the computation of the char-

acteristic polynomial of any Toeplitz-like or Hankel-like matrix 𝑇

having fewer than𝑚 invariant factors in its Frobenius normal form.

5 USING STRUCTURED INVERSION
In this section we develop a new approach for computing the

characteristic polynomial of generic structured polynomial matri-

ces 𝑇 ∈ K𝑛×𝑛 with displacement rank 𝛼 . Following [25, Sec. 7],

in the Toeplitz-like case the idea is to exploit the structure of

the Σ𝐿𝑈 representation [12]. For Hankel-like matrices (see the dis-

cussion after Theorem 5.4), we generalize the approach using both

generators and irregularity sets that has been introduced in Sec-

tion 2.2 [21].

Principle of the approach. Here, rather than using successive

applications and powering of 𝑇−1 as in Section 4, the first terms

of the sequence sequence {𝐻𝑘 }𝑘 = {𝑉 T𝑇−𝑘−1𝑊 }𝑘 are obtained

as the matrix coefficients of the series expansion of 𝑉 T𝑀 (𝑥)−1𝑊 .

Since 2⌈𝑛/𝑚⌉ + 1 terms are required, and with the special choice

𝑉 =𝑊 = 𝑋 =
(
𝐼𝑚 0

)T ∈ K𝑛×𝑚 , this boils down to computing a

dense representation of the𝑚 ×𝑚 leading principal submatrix of

𝑀 (𝑥)−1 mod 𝑥2 ⌈𝑛/𝑚⌉+1. The outline of the algorithm is as follows.

(1) Compute the inverse𝑀 (𝑥)−1 mod 𝑥2 ⌈𝑛/𝑚⌉+1 in a compressed

representation;

(2) Crop this representation to form a representation of the

𝑚 ×𝑚 leading principal submatrix;

(3) Extract 𝑆 (𝑚) (𝑥) = 𝑋T𝑀 (𝑥)−1𝑋 mod 𝑥2 ⌈𝑛/𝑚⌉+1 in dense

form.

Below we specialize the approach for the two classes of interest.

Our algorithms in Theorems 5.2 and 5.4 are correct for generic

matrices 𝑇 (in the Zariski sense), see Assumptions (A1) and (A2)

in Section 6 to which the discussion on genericity is deferred.

5.1 Generic Toeplitz-like Matrices
If 𝑇 is Toeplitz-like, so it is𝑀 (𝑥) = 𝑥𝐼𝑛 −𝑇 . If𝑀 (𝑥) is represented
in Σ𝐿𝑈 form by generators 𝐺,𝐻 ∈ K[𝑥]𝑛×𝛼 such that 𝑀 (𝑥) =∑𝛼−1
𝑖=0 𝐿(𝐺∗,𝑖 )𝐿(𝐻∗,𝑖 )

𝑇
, where 𝐿(𝑣) is the lower triangular Toeplitz

matrix with 𝑣 as its first column [12, 13]. The𝑚 ×𝑚 leading prin-

cipal submatrix of any product 𝐿(𝑣)𝐿(𝑤)T is the product of the

𝑚 ×𝑚 leading principal submatrix of these factors, which in turn

is 𝐿(𝑣0..𝑚−1)𝐿(𝑤0..𝑚−1)T. Algorithm 2 relies on this property to

produce 𝑆 (𝑚) from the𝑚 first rows of the generators of𝑀−1.

Proposition 5.1. Algorithm 2 is correct for𝑀 (𝑥) = 𝑥𝐼𝑛 −𝑇 ; if 𝑇
has generic rank profile it uses

�̃�

(
𝑛2

𝑚
𝛼𝜔−1 + 𝑛𝑚𝛼

)
operations in K.
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Algorithm 2 Compute 𝑆 (𝑚) : Toeplitz-like case

Input: (𝐺,𝐻 ) generators of𝑀 ∈ K[𝑥]𝑛×𝑛 , a Toeplitz-like matrix

of displacement rank 𝛼

Output: 𝑆 (𝑚) = 𝑋T𝑀−1𝑋 mod 𝑥2 ⌈𝑛/𝑚⌉+1 in dense form

1: (𝐸, 𝐹 ) ← generators for𝑀−1 mod 𝑥2 ⌈𝑛/𝑚⌉+1

2: 𝐸 ′ ← 𝑋T𝐸; 𝐹 ′ ← 𝐹𝑋

3: 𝑆 (𝑚) ← ∑𝛼−1
𝑖=0 𝐿(𝐸

′
∗,𝑖 )𝐿(𝐹

′
∗,𝑖 )

T
mod 𝑥2 ⌈𝑛/𝑚⌉+1

Proof. From the discussion at the beginning of the section, 𝐸 ′ =
𝐸0..𝑚−1,∗ and 𝐹 ′ = 𝐹0..𝑚−1,∗ are generators for 𝑆 (𝑚) = 𝑋T𝑀−1𝑋 .
We use the algorithm of [4, Prop. 5] for computing the generators of

the inverse. Note that no division by 𝑥 in the ringK[𝑥]/⟨𝑥2 ⌈𝑛/𝑚⌉+1⟩
will occur in Step 1 since 𝑀 (0) = 𝑇 has generic rank profile, and

consequently all leading principal minors of 𝑀 (𝑥) are not divisible
by 𝑥 which shows the correctness.

By [4, Prop. 5], computing the generators of𝑀−1 at Step 1 can

be done in �̃�
(
𝑛𝛼𝜔−1

)
operations over K[𝑥]/⟨𝑥2 ⌈𝑛/𝑚⌉+1⟩ which in

turn is

�̃�

(
𝑛2

𝑚
𝛼𝜔−1

)
(9)

operations in K.

The dense reconstruction of 𝑆 (𝑚) in Step 3 is achieved by 𝛼

products of an𝑚 ×𝑚 Toeplitz matrix 𝐿(𝐸 ′∗,𝑖 ) by an𝑚 ×𝑚 dense

matrix 𝐿(𝐹 ′∗,𝑖 )
T
for a total cost of

�̃� (𝑛𝑚𝛼) (10)

operations in K. □

From the efficient computation of the first terms of the expansion

of𝑋T𝑀 (𝑥)−1𝑋 and using fraction reconstruction, the characteristic

polynomial of 𝑇 is obtained.

Theorem 5.2. The characteristic polynomial of a generic 𝑛 × 𝑛
Toeplitz-like matrix with displacement rank 𝛼 (assumptions (A1)

and (A2) in Section 6) can be computed in �̃�
(
𝑛2−

1

𝜔 𝛼
(𝜔−1)2

𝜔

)
opera-

tions in K when 𝛼 = 𝑂

(
𝑛

𝜔−2
−𝜔2+4𝜔−2

)
, and �̃�

(
𝑛

3

2 𝛼
𝜔
2

)
otherwise.

Proof. FromLemma 6.1 (genericity assumption (A2)), irreducible

left and right fractions descriptions of 𝑋T𝑀−1𝑋 have degree at

most ⌈𝑛/𝑚⌉. Thus Theorem 3.2 ensures that a denominator 𝑄 of

a right description can be computed from 𝑆 (𝑚) (𝑥) = 𝑋T𝑀 (𝑥)−1𝑋
mod 𝑥2 ⌈𝑛/𝑚⌉+1. By Lemma 6.1 again, the determinant of 𝑄 gives

the characteristic polynomial of 𝑇 .

Besides the computation of 𝑆 (𝑚) by Proposition 5.1 (genericity

assumption (A1)), the computation of the denominator 𝑄 of its

irreducible right fraction description costs

�̃�

(
𝑛𝑚𝜔−1

)
(11)

operations by Theorem 3.2. Computing the determinant of 𝑄 has

same cost using the algorithm in [19]. The total cost depends on 𝛼 .

Case 1: 𝛼 = 𝑂

(
𝑛

𝜔−2
−𝜔2+4𝜔−2

)
. We set 𝑚 = 𝑛

1

𝜔 𝛼
𝜔−1
𝜔 so that 𝛼 =

𝑂
(
𝑚𝜔−2)

and the term in Eq. (10) is dominated by the one in Eq. (11).

For the chosen value of 𝑚 the terms in Eq. (9) (decreasing in 𝑚)

and Eq. (11) (increasing in 𝑚) are equal, leading to a full cost of

�̃�

(
𝑛2−

1

𝜔 𝛼
(𝜔−1)2

𝜔

)
operations in K.

Case 2: 𝛼 = Ω
(
𝑛

𝜔−2
−𝜔2+4𝜔−2

)
. We set 𝑚 = 𝑛

1

2 𝛼
𝜔−2
2 so that 𝛼 =

Ω
(
𝑚𝜔−2)

. In this case the term in Eq. (11) is dominated by the one

in Eq. (10) and for this value of𝑚 we have equality between the

terms in Eq. (9) and Eq. (10), leading to a full cost of �̃�

(
𝑛

3

2 𝛼
𝜔
2

)
operations in K. □

The exponent in Theorem 5.2 is𝑂
(
𝑛1.579

)
(resp.𝑂

(
𝑛1.667

)
) for 𝛼

constant and 𝜔 = 2.373 (resp. 𝜔 = 3). When 𝛼 = Θ
(
𝑛

𝜔−2
−𝜔2+4𝜔−2

)
and

taking 𝜔 = 2.373 (resp. 𝜔 = 3), both expressions become �̃�
(
𝑛1.74

)
(resp. �̃�

(
𝑛3

)
). The complexity bound when 𝛼 is small can also be

written as

�̃�

(
𝑛𝜔−𝑓 (𝜔)𝛼 𝑓 (𝜔)

)
,

similarly as in Proposition 4.1, which can be interpreted as a transfer

of part of the exponent from 𝑛 to 𝛼 by using the structure of the

matrix.

5.2 Generic Toeplitz+Hankel-like Matrices
We now adapt the previous approach to more general structures.

If 𝑇 is Hankel-like then𝑀 (𝑥) = 𝑥𝐼𝑛 −𝑇 is Toeplitz+Hankel-like. In

this section we consider generic matrices with such a structure.

Compared to the Toeplitz case in Section 5.1, only the computa-

tion of the truncated expansion of 𝑋T𝑀 (𝑥)−1𝑋 is modified. Com-

puting the characteristic polynomial from there does not depend

on the structure of𝑀 or 𝑇 (dense matrix polynomial operations).

In addition to the generators one has to consider an irregularity

set for𝑀−1. These data are computed by Algorithm 3 at Step 1 using

the recursive matrix decomposition in [21, Ch. 5]. The irregularity

set we consider is the first column. The dense form of 𝑆 (𝑚) (𝑥) =
𝑋T𝑀 (𝑥)−1𝑋 mod 𝑥2 ⌈𝑛/𝑚⌉+1 is then recovered from its compressed

representation using Proposition 2.9.

Algorithm 3 Compute 𝑆 (𝑚) : Toeplitz+Hankel-like case

Input: (𝐺,𝐻, 𝑣) generators and irregularity set of 𝑀 ∈ K[𝑥]𝑛×𝑛 ,
a Toeplitz+Hankel-like matrix of displacement rank 𝛼 .

Output: 𝑆 (𝑚) = 𝑋T𝑀−1𝑋 mod 𝑥2 ⌈𝑛/𝑚⌉+1 in dense form

1: (𝐸, 𝐹, 𝑐) ← generators and irregularity set for 𝑀−1, the irregu-
larity set is the first column (𝑀𝑐 = 𝑒𝑛

0
)

2: 𝑐0 ←
(
𝐼2𝑚−1 0

)
𝑐

3: 𝑐1 ← 𝑈2𝑚−1𝑐0 −
𝛼−1∑
𝑗=0

𝐸0, 𝑗𝐹0...2𝑚−2, 𝑗

4: for 1 ≤ 𝑘 ≤ 𝑚 − 2 do
5: 𝑐𝑘+1 ← 𝑈2𝑚−1𝑐𝑘 − 𝑐𝑘−1 −

𝛼−1∑
𝑗=0

𝐹𝑘,𝑗𝐸0...2𝑚−2, 𝑗

6: 𝑆 (𝑚) (𝑥) =
(
𝐼𝑚 0

)
(𝑐0 · · · 𝑐𝑚−1)
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Proposition 5.3. Algorithm 3 is correct for𝑀 (𝑥) = 𝑥𝐼𝑛 −𝑇 ; if
𝑇 has generic rank profile it uses

�̃�

(
𝑛2

𝑚
𝛼2 +𝑚𝑛𝛼

)
operations in K.

Proof. As discussed in the proof of Proposition 5.1, no division

by 𝑥 occur in the ring K[𝑥]/⟨𝑥2 ⌈𝑛/𝑚⌉+1⟩ since since 𝑀 (0) = 𝑇

has generic rank profile. Step 1 can be performed in �̃� (𝛼2𝑛) opera-
tions on truncated power series, so �̃�

(
𝑛2

𝑚 𝛼2
)
operations in K [21,

Corollary 5.3.3]. Each step of the for loop consists of a number of

polynomial operations modulo 𝑥2 ⌈𝑛/𝑚⌉+1 linear in𝑚𝛼 as 𝑈2𝑚−1
has only two non-zero entries on each row. Lines 2 to 5 can be per-

formed in �̃� (𝑚2𝛼) power series operations, so �̃� (𝑛𝑚𝛼) operations
in K. By Proposition 2.9, if the first 2𝑚 − 𝑘 coefficients of 𝑐𝑘−1 are
equal to the ones of column 𝑘 − 1 of𝑀−1, then the first 2𝑚 − 𝑘 − 1
coefficients of 𝑐𝑘 are equal to the ones of column 𝑘 of𝑀−1. Since
𝑐0 gives the 2𝑚 − 1 first coefficients of column 0 of 𝑀−1, Step 6

outputs 𝑆 (𝑚) (𝑥). □

The characteristic polynomial is then obtained following our

general strategy.

Theorem 5.4. The characteristic polynomial of a generic 𝑛 ×
𝑛 Toeplitz+Hankel-like matrix with displacement rank 𝛼 (assump-

tions (A1) and (A2) in Section 6) can be computed in �̃�
(
𝑛2−

1

𝜔 𝛼
2(𝜔−1)

𝜔

)
field operations when 𝛼 = 𝑂

(
𝑛

𝜔−2
4−𝜔

)
, and �̃�

(
𝑛

3

2 𝛼
3

2

)
otherwise.

Proof. The arguments are similar to those of the proof of Theo-

rem 5.2, we do not repeat them here. We have only have to discuss

the slighlty different cost bound. The overall cost is that for comput-

ing the matrix denominator 𝑄 and its determinant in �̃�
(
𝑛𝑚𝜔−1)

operations in K, plus the cost of computing the sequence {𝐻𝑘 }𝑘 .
We distinguish two cases:

If 𝛼 = 𝑂

(
𝑛

𝜔−2
4−𝜔

)
: we take𝑚 = 𝑛

1

𝜔 𝛼
2

𝜔 so that 𝛼 = 𝑂
(
𝑚𝜔−2)

, with

overall cost bound �̃�

(
𝑛2−

1

𝜔 𝛼
2(𝜔−1)

𝜔

)
.

If 𝛼 = Ω
(
𝑛

𝜔−2
4−𝜔

)
: we take𝑚 = 𝑛

1

2 𝛼
1

2 so that 𝛼 = Ω
(
𝑚𝜔−2)

, with

overall cost bound �̃�

(
𝑛

3

2 𝛼
3

2

)
. □

Given ∇𝑍𝑛,𝑍
T
𝑛,1
-generators of length 𝛼 for a Hankel-like matrix T,

∇𝑈𝑛,𝑈𝑛
-generators of length𝑂 (𝛼) can be computed in time �̃� (𝑛𝛼).

T can be written as a sum of 𝛼 terms of the form 𝐿𝑈 𝐽𝑛 , where 𝐿

and𝑈 are Toeplitz and 𝐽𝑛 =
(
𝛿𝑖,𝑛−1−𝑗

)
0≤𝑖, 𝑗≤𝑛−1 [21, Example 4.4.4].

Constant-length ∇𝑍𝑛,𝑍
T
𝑛
- and ∇𝑍 T

𝑛,𝑍𝑛
-generators for each of the 𝛼

terms can then be derived from ∇𝑍𝑛,𝑍𝑛
- and ∇𝑍 T

𝑛,𝑍
T
𝑛
-generators for

the products 𝐿𝑈 using [21, Theorem 1.5.4] and the fact that 𝐽𝑛 is

in the kernel of ∇𝑍𝑛,𝑍
T
𝑛
and ∇𝑍 T

𝑛,𝑍𝑛
. Concatenation of the obtained

generators yields the result.

Note that the complexity bound in 𝑛 in Theorem 5.4 is the same

as in the Toeplitz-like case (Theorem 5.2), we obtain however a

stronger dependence in 𝛼 . Indeed, we have used a Toeplitz+Hankel-

like inversion in 𝑂 (𝑛𝛼2) [21], a better cost bound in 𝑂 (𝑛𝛼𝜔−1)

would require to generalize the results of [3, 4] to partly regular

operators.

6 SPECIAL MATRICES FOR GENERICITY
In order to identify the matrices 𝑇 for which the algorithms of Sec-

tion 5 output the characteristic polynomial (Theorems 5.2 and 5.4),

we use the rank of the block Hankel matrix [17]

Hk𝑚, ⌈𝑛/𝑚⌉ =
(
𝑋T𝑇 𝑖+𝑗𝑋

)
0≤𝑖, 𝑗≤⌈𝑛/𝑚⌉−1

.

We indeed have the following.

Lemma 6.1. Let 𝑇 ∈ K𝑛×𝑛 . If rankHk𝑚, ⌈𝑛/𝑚⌉ = 𝑛 then the irre-
ducible left and right fractions descriptions of 𝑋T (𝑥𝐼𝑛 −𝑇 )−1𝑋 have
degree at most ⌈𝑛/𝑚⌉. Furthermore, the determinant (made monic) of
the denominator𝑄 ∈ K[𝑥]𝑚×𝑚 of such a right irreducible description
is the characteristic polynomial of 𝑇 .

Proof. The determinant of a denominator 𝑄 of an irreducible

right fraction description of 𝑋T (𝑥𝐼𝑛 − 𝑇 )−1𝑋 is a divisor of the

characteristic polynomial of 𝑇 [17, Thm 2.12], hence has degree at

most 𝑛. The claims then follow from [25, Lem. 2.4] sinceHk𝑚, ⌈𝑛/𝑚⌉
has maximal rank 𝑛. □

Genericity Assumptions. To apply Theorems 5.2 and 5.4, a matrix

𝑇 is “sufficiently” generic if it satisfies the following assumptions:

(A1) 𝑇 has generic rank profile, so that the truncated generators

of𝑀 (𝑥)−1 can be computed fast [4, 21];

(A2) there exists an 𝑛 × 𝑛 submatrix Hk
(𝑛)

of Hk𝑚, ⌈𝑛/𝑚⌉ whose
determinant is nonzero, so that Lemma 6.1 can be applied.

The genericity in the Zariski sense can be expressed either based

on the coefficients of 𝑇 or on its generators. Indeed, the determi-

nant of an 𝑛 × 𝑛 submatrix Hk
(𝑛)

of Hk𝑚, ⌈𝑛/𝑚⌉ is a polynomial

in the coefficients of 𝑇 . Toeplitz and Hankel matrices have 2𝑛 − 1
independant coefficients. With non-singular displacement oper-

ators, the coefficients of a Toeplitz-like or Hankel-like matrix of

displacement rank 𝛼 are themselves polynomials in the coefficients

of its generators, so detHk
(𝑛)

is by composition a polynomial on

the 2𝑛𝛼 coefficients of the 𝑛 × 𝛼 generators of 𝑇 .

In Sections 6.1 and 6.2, we show that we can construct an 𝑛 × 𝑛
submatrixHk

(𝑛)
ofHk𝑚, ⌈𝑛/𝑚⌉ such that detHk

(𝑛)
is not uniformly

zero on the space of Toeplitz (resp. Hankel) matrices, by finding

one Toeplitz (resp. Hankel) matrix for which Hk𝑚, ⌈𝑛/𝑚⌉ has rank 𝑛.
This establishes that assumption (A2) is satisfied for all matrices

of each class except for those with coefficients in a certain hy-

persurface of K2𝑛−1. As the displacement rank of the matrices

we show is at most 2, they are Toeplitz-like (resp. Hankel-like)

and can be represented with larger generators (padded with ze-

ros). (A2) is thus also satisfied for matrices with displacement

rank 𝛼 ≥ 2 whose generators’ coefficients are not in a certain

hypersurface of K2𝑛𝛼 . The special matrices we construct are also

Toeplitz+Hankel and Toeplitz+Hankel-like so the same reasoning

shows that (A2) is satisfied for all Toeplitz+Hankel matrices except

for those with coefficients in a certain hypersurface of K4𝑛−2 and
all Toeplitz+Hankel-like matrices with displacement rank 𝛼 ≥ 4 ex-

cept for those on a certain hypersurface ofK2𝑛𝛼 . Using the fact that
in the Toeplitz+Hankel-like case the operator is partly regular [21,
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Sec. 4.5], the hypersurface can also be defined by considering the

coefficients of the generators together with the irregularity set.

The generic rank profile condition (A1) can be handled similarly

by considering the product Δ of the principal minors of 𝑇 , though

we omit details. This polynomial in the coefficients of𝑇 is non-zero

for𝑇 = 𝐼𝑛 in the Toeplitz case. For the Hankel case, the determinant

of an 𝑛 ×𝑛 Hankel matrix 𝐻 defined by ℎ0, . . . , ℎ2𝑛−2 such that 𝐻 =

(ℎ𝑖+𝑗 )𝑖, 𝑗 has a unique term in ℎ𝑛
𝑛−1, hence is a non-zero polynomial

in the ℎ𝑖 ’s; the same holds for Δ.
From the polynomial (detHk(𝑛) ) · Δ in the entries of 𝑇 , one

can then define the general hypersurfaces outside of which our

algorithms are correct.

6.1 A Toeplitz Point
Let

T =

(
0 𝐼𝑚

𝐼𝑛−𝑚 0

)
and𝑀 (𝑥) = 𝑥𝐼𝑛 − T . Let 𝑃 (𝑥) ∈ K[𝑥]𝑛×𝑚 defined by:

𝑃𝑛−𝑚+𝑘,𝑘 = 1, for 0 ≤ 𝑘 < 𝑚;

𝑃𝑖,𝑘 = 𝑥𝑃𝑖+𝑚,𝑘 , for 0 ≤ 𝑘 ≤ 𝑚, 0 ≤ 𝑖 ≤ 𝑛 −𝑚 − 1.

With

𝐷 (𝑥) =
(

0 𝑥 ⌊𝑛/𝑚⌋ 𝐼𝑛 mod𝑚

𝑥 ⌊𝑛/𝑚⌋−1𝐼−𝑛 mod𝑚 0

)
we can write 𝑃 (𝑥) =

(
𝐷 (𝑥)T 𝑅(𝑥) 𝐼𝑚

)T
for some polynomial

matrix 𝑅. From there we have 𝑀 (𝑥)𝑃 (𝑥) =
(
𝑥𝐷 (𝑥)T − 𝐼𝑚 0

)T
and thus

𝑋T𝑀−1 (𝑥)𝑋 = 𝑋T𝑃 (𝑥) (𝑥𝐷 (𝑥) − 𝐼𝑚)−1 .

That is 𝑋T𝑀−1 (𝑥)𝑋 = 𝐷 (𝑥)𝑄−1 (𝑥) (we have used the form of 𝑃 )

with 𝑄 (𝑥) = 𝑥𝐷 (𝑥) − 𝐼𝑚 . As (𝑥𝐼𝑚) · 𝐷 (𝑥) − 𝐼𝑚 · 𝑄 (𝑥) = 𝐼𝑚 , the

fraction 𝐷𝑄−1 is irreducible and

det𝑄 (𝑥) = ±𝑥 ( ⌊𝑛/𝑚⌋+1) (𝑛 mod𝑚)+⌊𝑛/𝑚⌋ (−𝑛 mod𝑚) − 1

from which we get deg det𝑄 = 𝑛. By [25, Lemma 2.4], Hk𝑚, ⌈𝑛/𝑚⌉
has rank 𝑛.

6.2 A Hankel Point
Consider the 𝑛 × 𝑛 Hankel matrix H = (𝐼𝑛 + 𝑍𝑚𝑛 ) 𝐽𝑛 (with 𝐽𝑛 =(
𝛿𝑖,𝑛−1−𝑗

)
0≤𝑖, 𝑗≤𝑛−1). For 𝑗 such that 2 𝑗 ≤ ⌈𝑛/𝑚⌉ − 1, rows 𝑗𝑚

to ( 𝑗 + 1)𝑚 − 1 of H2𝑗𝑋 are 𝐼𝑚 and the following rows are 0.

This can be seen by recursively applying the band matrix H2 =

𝑍𝑚𝑛 + 𝐼𝑛 + 𝑍𝑚𝑛 𝑍𝑚T
𝑛 + 𝑍𝑚T

𝑛 to 𝑋 . By applying H to H2𝑗𝑋 we get

that the rows 𝑛 − ( 𝑗 + 1)𝑚 to 𝑛 − 𝑗𝑚 − 1 ofH2𝑗+1𝑋 are 𝐽𝑚 , and the

preceding rows are 0.

Let 𝐾𝑟 be the first 𝑛 columns of

(
𝑋 |H𝑋 | . . . |H ⌈𝑛/𝑚⌉−1𝑋

)
. This

matrix 𝐾𝑟 is non-singular, as its columns can be permuted to get a

matrix of the form (
𝐿T
1

0

0 𝐿2

)
where 𝐿1 and 𝐿2 are lower triangular with ones on the diagonal.

SinceH is symmetric, the 𝑛 × 𝑛 principal submatrix of Hk𝑚, ⌈𝑛/𝑚⌉
is 𝐾T

𝑟 𝐾𝑟 , hence Hk𝑚, ⌈𝑛/𝑚⌉ has rank 𝑛.
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