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ABSTRACT

Let B be a basis of a Euclidean lattice, and B̃ an approxima-
tion thereof. We give a sufficient condition on the closeness
between B̃ and B so that an LLL-reducing transformation U
for B̃ remains valid for B. Further, we analyse an efficient
reduction algorithm when B is itself a small deformation
of an LLL-reduced basis. Applications include speeding-up
reduction by keeping only the most significant bits of B,
reducing a basis that is only approximately known, and effi-
ciently batching LLL reductions for closely related inputs.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; F.2.1 [Analysis of Algorithms and Problem
Complexity]: Numerical Algorithms and Problems; G.1.3
[Numerical Linear Algebra]: Conditioning

General Terms

Algorithms
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1. INTRODUCTION
We consider the problem of computing a reducing trans-

formation for a Euclidean lattice basis B using an approxi-
mation B̃ to B ∈ R

m×n. The necessary background on basis
reduction is given in Section 2.2. Our notion of reduction is
a variation, robust to perturbations, of the LLL reduction
introduced by Lenstra, Lenstra and Lovász in [10]. We as-
sume that the basis vectors are given by the columns of a
full column rank matrix B. We establish a bound on the
closeness between B̃ and B so that if U is a reducing trans-
formation for B̃, i.e., the matrix B̃U is LLL-reduced, then
BU also is reduced.
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A main application is to compute a reducing transforma-
tion using only a limited number of bits of the input basis,
hence possibly at a lower cost than using the entire initial
basis. An approach for LLL-reducing a basis B may then
be: 1) use the bound and compute an appropriate rounding

precision, and deduce an approximation B̃ sufficiently close
to B; 2) compute U by reducing B̃; 3) output BU . We
follow this general approach for designing Algorithm 1.

We then develop a column scaling strategy for handling
cases where the input basis vectors have unbalanced magni-
tudes. Indeed, in addition to mastering the bit-size of the
inputs, dealing with homogeneous magnitudes is often bet-
ter for lowering the computational cost: as far as we are
aware of, no known LLL-reduction algorithm preserves the
small bit-size of a “floating-point” basis during the execu-
tion, if the magnitudes of the columns differ. A scaling is
a pre-processing of the basis B that provides with a “more
balanced” matrix B′ that is also appropriate for comput-
ing a reducing transformation. In this purpose we design
Algorithm 2 that may be used as Step 2’) in the general
LLL-reducing scheme above. We note that after both the
approximation and the scaling processes, “almost any”LLL-
reduction algorithm could be used at Step 2) or 2’) for com-
puting the reducing transformation.

An important contribution in the study of approximation
conditions for preserving reducing transformations has been
made by Buchmann in [2]. In the rest of the paper the ma-
trix norm induced by the Euclidean norm is denoted by ∥B∥.
All our vectors will be column vectors, and will be denoted in
bold. Buchmann considers an approximation B̃ = B +∆B
of absolute precision p to B such that ∥∆B∥ ≤ 2−p. He
provides (see [2, Cor. 4] and its proof) a sufficient condition
bound on p to guarantee that if U is such that (B +∆B)U
is LLL-reduced then BU also has small norm vectors, i.e.,
within a factor 2O(n) of the successive minima of the lattice
spanned by B (see Section 2.2 for the definition of the lattice
minima). In his analysis, Buchmann relies on the orthogo-

nality defect od(B) =
∏

i ∥bi∥√
det(BtB)

, and requires a precision p

that is logarithmic in the dimension and the orthogonality
defect od(B), and involves the sizes of the successive min-
ima. In terms of relative precision, i.e., for ∆B such that
∥∆B∥
∥B∥ ≤ 2−p, the bound is at least logarithmic in the or-
thogonality defect.

We work with a wider class of approximations: we con-
sider columnwise perturbations of matrices such that B +



∆B satisfies maxi≤n
∥∆bi∥
∥bi∥

≤ ε, where ε ≥ 0 is small. Hence
B + ∆B is an approximation to B with small columnwise
relative precision. In the case of approximate computations,
the error bound ε is of the order of 2−p, where p is a work-
ing precision. Our type of approximations models matrix
truncation with small error relatively to each column mag-
nitude. This choice is appropriate for taking into account
the backward rounding errors of standard numerical QR-
factorization algorithms such as Householder’s, that are at
the heart of fast reducing algorithms. It also preserves LLL-
reducedness, as shown in [4]. To introduce our results, we
need to define the QR-factorization. Let B ∈ R

m×n be full
column rank. There exists a unique pair (Q,R) such that

B = Q ·R, Q ∈ R
m×n, R ∈ R

n×n,

the columns ofQ are orthonormal and the matrixR is upper-
triangular with positive diagonal coefficients. The matri-
ces Q and R are respectively called the Q-factor and R-
factor of B. For insights into perturbation analysis we may
refer the reader to Higham [6], and to [3, 4] in the context
of QR-factorization.
Our first result is an improved bound that characterizes

which columnwise approximations B+∆B to B are allowed
such that a reducing transformation U for B +∆B remains
valid for B. Instead of using the defect and the lattice min-
ima, we relate the sufficient precision 1/ε to the quantity
cond(R) = ∥|R| · |R−1|∥. This quantity is defined for any
square invertible matrix, and may be viewed as a condition
number for the problem of computing R. (See, e.g., Zha [19]
and Higham [6, Ch. 19].)
In Theorem 1, we show that as soon as

max
i≤n

∥∆bi∥
∥bi∥

≤ 1

cm6 βn cond2(R)

for a constant c that may be made explicit and a constant β
that can be chosen arbitrarily close to 2, if U reduces B +
∆B, then U also reduces B. Because of the approxima-
tion, the matrix BU is LLL-reduced for parameters slightly
weaker than those for which (B + ∆B)U is reduced. How-
ever, one may ensure that the parameters are degraded by
an arbitrarily small amount (by increasing c), and the main
relevant properties of LLL-reduced bases are preserved, such
as those reminded in Lemma 4.
The bound above indicates that taking p = 2 log cond(R)+

n(1+ϵ)+O(logm) bits of precision on the input basis B suf-
fices for an arbitrarily small ϵ. We will see, with Lemma 11,
that cond(R) is a more accurate measure than the orthog-
onality defect od(B). Indeed, the condition we propose is
never more restrictive (up to a O(log n) additive term) and
may be much less so than Buchmann’s. In particular, we
exhibit a family of bases for which we divide the number of
required bits by Ω(n).

A direct application is an interesting situation consid-
ered in [1]. It concerns matrices B whose R-factor satisfies
|rij | ≤ ηrii for η ≥ 0 (see Definition 1, with θ = 0), and for
which the ratio h = max rii

min rii
is bounded. In Lemma 12, we

show that in this case log cond(B) <∼ n log(1 + η) + log h. It
follows that ≈ n(1+2 log(1+η))+2 log h+O(logm) bits of
columnwise precision suffice for computing a reducing ma-
trix. The bound is especially interesting when h ≪ log ∥B∥,
such as in [1, Se. 3.2]. The authors of [1] use a constant fac-
tor fewer bits than we do (they indeed work with about log h
bits). However, their study is restricted to the first vector

of the output basis, which is shown to be no more than a
factor 2O(n) longer than that of an LLL-reduced basis, com-
pared to the nth root of the lattice determinant (see Sec-
tion 2.2 for the definition of the lattice determinant). This
interesting result is an example of transfer between the pre-
cision and the quality of the reduction. It also demonstrates
the accuracy of our all-purpose bound.

It is essential to note that the ratio h given by the diag-
onal of R may not be relevant in general for indicating al-
lowed truncations. Indeed, a large h may not imply a large
cond(·), as shown by LLL-reduced bases, which can have ar-
bitrarily large ratios h but always satisfy cond(R) = 2O(n)

(see Lemma 9).
Our second contribution is an LLL-reduction specifically

designed for (floating-point) matrices of the form B = MB ·
EB , where MB ∈ Z

m×n is full column rank and EB =
diagi(2

ei), with ei ∈ Z for all i. Such matrices include the
ones obtained by columnwise rounding. If the norms of the
columns are unbalanced (i.e., the ei’s have different orders
of magnitude), the compactness of the representation may
be lost when applying an LLL-reduction algorithm to B,
as the columns get mixed. To circumvent this issue, we
propose an algorithm (Algorithm 2) that applies a column
scaling D−1 to MBEB before calling an LLL-reduction algo-
rithm on B′ = MBEBD

−1. The obtained transformation U
for B′ is then mapped to a transformation D−1UD for B.

Concerning the correctness of the approach, the main dif-
ficulty is to find a scaling D such thatD−1UD is unimodular
and indeed reduces B. This is solved by numerically esti-
mating the diagonal of the R-factor R of B and identifying
blocks of consecutive vectors such that rii ≪ rjj if j be-
longs to a block subsequent to the one of i. These blocks
are the main source of unbalancedness between the norms of
the columns of B, and the computed scaling annihilates it.
Our algorithm then relies on a“well-behaved”LLL-reduction
algorithm that does not destroy the block structure (most
known LLL-reduction algorithms are well-behaved, as ex-
plained in Section 5.1).

To measure the efficiency of the approach, the relevant
quantity is the bit-size of the entries of B′ once converted to
an integer matrix. To estimate it, we view B = MBEB as a
distortion B = ΣC of an LLL-reduced matrix C, where Σ ∈
R

m×m is non-singular. We then prove, in Theorem 3, that if
σ1 ≥ . . . ≥ σm are the singular values of Σ, then the bit-size

of B′ is as O
(
n+ log ∥MB∥+ log

∏
i≤⌊n/2⌋

σi
σm−i+1

)
. Sev-

eral Σ’s may exist so that Σ−1B is LLL-reduced, and one
may optimize the choice of Σ to lower

∏
i≤⌊n/2⌋

σi
σm−i+1

.

A direct application is to LLL-reduce for strong LLL pa-
rameters, a basis that is already reduced for some weak LLL
parameters. This is a tempting approach in practice, as
LLL-reducing for weak parameters is typically much faster.
This strategy is mentioned, e.g., in [5, Se. 2.6.1] and [9,
pp. 70–72].1 Here Σ is the identity and

∏
i≤⌊n/2⌋

σi
σm−i+1

=

1. Another particular case is Σ = diag(2ℓ, 1, . . . , 1), for
which we have

∏
i≤⌊n/2⌋

σi
σm−i+1

= 2ℓ. This is used in the

polynomial factoring algorithm of [7] as well as at the bot-

tom of the recursion in the L̃
1
algorithm [15].

Finally, our algorithm may be used to batch reductions of

1In [9], the idea is attributed to He, but we could not find the
corresponding work. Preliminary results, for strengthening
the reducedness, were presented as a poster [11].



closely related lattices (Lk)k desribed by bases (Bk)k such
that Lk+1 = ΣkLk for all k, where the Σk’s have balanced
singular values. One may then LLL-reduce B1, and, for k ≥
1, use the transformation matrix Uk computed for Bk, be-
fore calling our algorithm on Bk+1Uk = Σk(BkUk). This
strategy is used, e.g., in communications theory and crypt-
analysis applications of LLL [13, 1]. Our algorithm could
prove useful to accelerate and analyse these applications.

Remark. The present work generalizes several results pre-

viously investigated for the design of the L̃
1
algorithm [15].

Perturbation analyses and approximations indeed play a key

role since L̃
1
heavily rely on well-chosen truncations. The

results in [15] are essentially focused on LLL-reduced bases,
and on specific deformations of such bases. The generaliza-
tion here is a study with no restrictive assumptions on the
initial basis B.

Notations. IfB is a real-valued matrix, then |B| (resp. ⌊B⌋)
is the matrix obtained by replacing each entry of B by its
absolute value (resp. the largest integer no greater than it).
If B and B′ are two matrices of identical dimensions, the
relation B ≤ B′ must be understood as a componentwise
bound. The notations ∥B∥F and ∥B∥1 respectively refer to
the Frobenius and induced Manhattan norms of B. If B
is square and non-singular we define κ(B) = ∥B∥ · ∥B−1∥.
Clearly, we have cond(B) ≤ κ(B). If (xi)i is a sequence of
cardinality n, we let diagi(xi) denote the n×n diagonal ma-
trix whose diagonal entries are the xi’s. The computational
costs are given in terms of bit operations. We let M(t) the
cost of multiplying two t-bit long integers. Finally, all loga-
rithms are in base 2.

2. QR AND BASIS REDUCTION
We extensively rely on roundings and perturbations. We

say that B̃ is an approximation to B of columnwise relative
precision p ≥ 0 if B − B̃ = ∆B satisfies maxi

∥∆bi∥
∥bi∥

≤ 2−p.
Approximating real matrices by floating-point ones fits

into this context. A precision-p floating-point number is of
the shape m2e with m, e integers with |m| ≤ 2p − 1. For
any x ∈ R, there exists mx, ex integers with |mx| ≤ 2p − 1
such that |mx2

ex − x| ≤ 2−p|x|. We call mx2
ex a pre-

cision p approximation to x. If x is a non-zero integer
with known bit-length, such an approximation may be com-
puted in time O(p+ log(1 + log |x|)), and ex has bit-length
O(log log |x|).
An interesting matrix perturbation is columnwise round-

ing. Let B = (bi)i ∈ R
m×n be full column rank, and p be

a non-negative integer. For each i ≤ n, let ei be an inte-
ger such that |2ei−∥bi∥|

∥bi∥
< 3/4. Let EB = 2−pdiagi(2

ei)

and MB = ⌊B · E−1
B ⌋. Then ∆B = B − MBEB satis-

fies maxi≤n
∥∆bi∥
∥bi∥

≤
√
m

2p−2 . We may therefore viewMBEB =

MB diagi(2
ei−p) as a columnwise floating-point approxima-

tion to B. Each entry of the mantissa matrix MB is an
integer of magnitude smaller than 2p+1, and the matrix EB

that may be represented on O(n log log ∥B∥ + log p) bits,
gives column exponents.

2.1 Numerical aspects of QR-factorization
The numerical aspects of QR-factorization have been ex-

tensively studied, and we refer the reader to [6, Ch. 19] for
a comprehensive entry point to the topic. The following is
an explicit variant of classical results.

Lemma 1 ([4, Se. 6]). Let p ≥ 0 and B ∈ R
m×n be

non-singular with R-factor R. Let R̂ be the R-factor com-
puted by Householder’s algorithm with floating-point preci-
sion p. If 80mn2−p < 1, then there exists an orthogonal Q̂
such that Q̂R̂ = B +∆B with maxi

∥∆bi∥
∥bi∥

≤ 80mn2−p.

Given a matrix B, the number of bit operations consumed
by Householder’s algorithm for computing an approximation
to the R-factor of B is O(mn2(M(p) + log log ∥B∥)).

The backward stability lemma above is often combined
with a sensitivity result, such as the one below, in order to
obtain forward error bounds on the computed quantities.

Lemma 2 (Adapted from [4, Th. 2.3]). Let B be full
column rank in R

m×n, and let R denote its R-factor. Let
∆B ∈ R

m×n. If maxi≤n
∥∆bi∥
∥bi∥

< 1/(12m
√
ncond(R)), then

B +∆B is full column rank and its R-factor R+∆R satis-
fies ∥∆R ·R−1∥F ≤ 6m

√
ncond(R)maxi≤n

∥∆bi∥
∥bi∥

.

Proof. The assertion on the rank follows from [4, Le. 2.2].
From the end of the proof of [4, Th. 2.3] with D = I, we have

∥∆R ·R−1∥F ≤ (
√
6+

√
3)
√
2m

√
ncond(R)maxi

∥∆bi∥
∥bi∥

.

We will also use the following result on the effect on the
R-factor of a matrix B of applying a distortion to B.

Lemma 3. Let B ∈ R
m×n be full column rank and let R

denote its R-factor. Let Σ ∈ R
m×m be non-singular, and

let R′ denote the R-factor of ΣB. Then, for all i, we have

∥Σ−1∥−1 ≤ r′ii
rii

≤ ∥Σ∥.

Proof. The proof is adapted from the proof of [7, Le. 4].
Let Vi(B) = {bi−

∑
j<i yjbj : y1, . . . , yi−1 ∈ R}. Then rii is

the norm of the shortest vector b in Vi(B). Now, the vector
Σb belongs to Vi(ΣB). As a result, we have r′ii ≤ ∥Σb∥ ≤
∥Σ∥rii. The proof that r′ii ≥ rii

∥Σ−1∥ is analogous.

2.2 Lattices and LLL basis reduction
A lattice L is the set of integer combinations of linearly in-

dependent vectors in a euclidean space R
n: any lattice may

be written as L = L(B) = BZ
n, for some full column rank

matrix B ∈ R
m×n. The columns of B are said to form a ba-

sis of L. If the lattice dimension satisfies n ≥ 2, the lattice
admits infinitely many lattice bases, related by unimodular
matrices (i.e., square integer matrices of determinant ±1):
for two full column rank matrices B,C ∈ R

m×n, we have
BZ

n = CZ
n if and only if there exists a unimodular ma-

trix U such that C = B · U .
The sparsity of a lattice L may be quantified by its suc-

cessive minima, defined as λi(L) = inf(r : dim(spanL ∩
B(0, r)) ≥ i), for all i ≤ n. It may also be quantified with
the lattice determinant detL =

∏
i rii, where R is the R-

factor of any basis of L.
In 1982, Lenstra et al. [10] introduced the notion of LLL-

reduction of a lattice basis and the LLL-algorithm. If a basis
is LLL-reduced, then it is short with respect to the minima
of the spanned lattice, and, further, such a basis can be
efficiently found using the LLL algorithm. Here we use a
variation of LLL-reduction that is more suited to numerical
computations.

Definition 1 ([4, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈
(1/2, 1), θ ∈ (0, 1] and δ ∈ (η2, 1). Let B ∈ R

m×n be non-
singular with QR factorization B = Q ·R. The matrix B is
Ξ-LLL-reduced if:



• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j
(B is said size-reduced);

• for all i, we have δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1

(B is said to satisfy Lovász’ conditions).

Let Ξ = (δ, η, θ) and Ξw = (δw, ηw, θw) be valid LLL-
parameters. We say that Ξw is weaker than Ξ and write Ξ >
Ξw if δ > δw, η < ηw and θ < θw. If a basis is Ξ-LLL-reduced
and if Ξ > Ξw, then it is also Ξw-LLL-reduced. This LLL-
reduction variant is as powerful as the classical definition.

Lemma 4 ([4, Th. 5.4]). Let B ∈ R
m×n be (δ, η, θ)-

LLL-reduced with R-factor R, for valid parameters (δ, η, θ).
Let α = (ηθ +

√
(1 + θ2)δ − η2)/(δ − η2). Then, for all i,

ri,i ≤ α·ri+1,i+1 and ri,i ≤ ∥bi∥ ≤ αi ·ri,i. This implies that

∥b1∥ ≤ α
n−1
2 | detB|1/n and αi−nri,i ≤ λi(L(B)) ≤ αiri,i.

The use of Ξ-LLL-reduction rather than the classical def-
inition of LLL-reduction (corresponding to taking θ = 0)
is motivated by the following result. It says that a suf-
ficiently precise approximation to a Ξ-LLL-reduced is Ξw-
LLL-reduced for some Ξw < Ξ. This result is incorrect if
one imposes θw = 0.

Lemma 5 (Adapted from [4, Cor. 5.7]). For any
valid sets of parameters Ξ = (δ, η, θ) and Ξw = (δw, ηw, θw)
with Ξw < Ξ, there exists a constant c > 0 (that may be
made explicit) such that the following holds. For any Ξ-LLL-

reduced B ∈ R
m×n and any ∆B satisfying maxi

∥∆bi∥
∥bi∥

≤
1/(cm2(1 + η + θ)nαn) where α is as in Lemma 4, the ba-
sis B +∆B is Ξw-LLL-reduced.

The L3 algorithm from [10] allows one to compute an
LLL-reduced basis of the lattice spanned by a given B ∈
Z

m×n in time O
(
mn4 log2 ∥B∥M(n+log ∥B∥)

n+log ∥B∥

)
(see [8]). The

L2 and H-LLL algorithms from [14, 12] achieve it within
O(mM(n)n3(n+log ∥B∥) log ∥B∥) bit operations, while the
L̃
1
from [15] runs in time Õ(mn4(n+ log ∥B∥)).
Finally, we will use the following generalization of [15,

Le. 5] to arbitrary bases, which provides a bound on the size
of the unimodular matrix between any basis of a lattice and
an LLL-reduced basis of the same lattice.

Lemma 6. Let B ∈ R
m×n be full column rank. Let Ξ be

a valid LLL-parameter, α as in Lemma 4, and U such that
C = BU is Ξ-reduced. We have:

∀i, j : |uij | ≤ m3αncond(R) ·
r′jj
rii

,

where R and R′ respectively denote the R-factors of B and C.

Proof. Let B = QR,C = Q′R′ be the QR-factorizations
of B and C, respectively. Then

U = R−1QtQ′R′ = diagi(r
−1
ii )R

−1
QtQ′R′diagi(r

′
ii),

with R = R · diag(1/rii) and R′ = R′ · diag(1/r′ii). We have

|R−1| ≤ |R||R−1| ≤ cond(R) · T , where tij = 1 if i ≤ j and
tij = 0 otherwise. By Lemma 4, we have |R′| ≤ αnT . We
also have |Q|, |Q′| ≤ M , where mij = 1 for all i, j. Using
the triangular inequality, we obtain:

|U | ≤ cond(R)αn · diag(r−1
ii )TM tMTdiag(r′ii)

≤ mn2αncond(R) · diag(r−1
ii )Ndiag(r′ii),

whereN is the all-1 matrix with appropriate dimensions.

3. WELL-CONDITIONED MATRICES
As we have seen, the quantity cond(·) plays a role both

for the sensitivity of the R-factor under columnwise per-
turbations (Lemma 2) and for the size of the unimodular
transformation between a lattice basis and an LLL-reduced
basis of the same lattice (Lemma 6). It is therefore inter-
esting to investigate sufficient conditions to ensure a small
value of cond(·).

Lemma 7. Let B ∈ R
m×n full column rank and Σ ∈

R
m×m non-singular. Let R and R′ respectively denote the

R-factors of B and ΣB. Then cond(R′) ≤ mnκ(Σ)cond(R).
Further, if B and B′ are square and upper-triangular, then
cond(R′) ≤ κ(Σ)cond(R).

Proof. Write B = QR (resp. ΣB = Q′R′), where the
columns of Q (resp. Q′) are orthogonal. The first result
follows from the equation |R′||(R′)−1| = |((Q′)TΣQ)R| ·
|R−1((Q′)TΣQ)−1| and the triangular inequality. The proof
simplifies when Q and Q′ are square, as in that case we have
∥(Q′)TΣQ∥ = ∥Σ∥ and ∥((Q′)TΣQ)−1∥ = ∥Σ−1∥.

As a corollary, we obtain the fact that a small columnwise
perturbation cannot increase cond(·) by much.

Lemma 8. Let B ∈ R
m×n be full column rank with R-

factor R, and ∆B ∈ R
m×n. If we have maxi

∥∆bi∥
∥bi∥

<

1/(12m
√
ncond(R)), then B +∆B is full column rank and

its R-factor R+∆R satisfies cond(R+∆R) ≤ 4 cond(R).

Proof. We write R + ∆R = ΣR, with Σ = I + ∆R ·
R−1. By Lemma 2, we know that ∥∆R · R−1∥ ≤ ∥∆R ·
R−1∥F ≤ 6m

√
ncond(R)maxi ∥∆bi∥/∥bi∥. Thanks to the

assumption on maxi ∥∆bi∥/∥bi∥, we obtain that Σ is non-
singular. Further ∥Σ∥ ≤ 2 and ∥Σ−1∥ ≤ ∥I +

∑
k≥1(∆R ·

R−1)k∥ ≤ 2. As a result, we obtain κ(Σ) ≤ 4. Lemma 7
provides the result.

The following result shows that any LLL-reduced basis
has a small cond(·).

Lemma 9 ([4, Le. 5.5]). Let Ξ = (δ, η, θ) be any valid
set of LLL-parameters. If B ∈ R

m×n is Ξ-LLL-reduced
and R is its R-factor, then cond(R) ≤ |1−η−θ|α+1

(1+η+θ)α−1 ((1 + η +

θ)α)n, with α as in Lemma 4.

In fact, LLL-reducedness is a much stronger assumption
than needed, for cond(R) to be bounded as 2O(n). A weaker
assumption is used in the following result. Note that the
assumption is satisfied for LLL-reduced bases, by Lemma 4
applied to square diagonal sub-blocks or the R-factor.

Lemma 10. Let B ∈ R
m×n be full column rank with R-

factor R. Assume that there exists α > 1 such that for
all i ≤ j, we have |rij | ≤ αj−i+1rjj. Then cond(R) ≤

α2

(α2−1)
√

4α4−1
(2α3)n.

Proof. Let R = R · diag(r−1
ii ). We have cond(R) =

cond(R) ≤ κ(R). A direct computation shows that ∥R∥ ≤
(
∑n

i=1

∑i
j=1 α

2j)1/2 ≤ (
∑n

i=1 α
2i · α2

α2−1
)1/2 ≤ αn+2

α2−1
. It now

suffices to bound ∥R−1∥ from above.
Write R = I + M , where M is the matrix having same

elements as R but with zeroed diagonal coefficients. We have



R
−1

= (I + M)−1 =
∑

0≤k<n(−M)k. Using the triangle

inequality, we obtain that |R−1| ≤
∑

0≤k<n |M |k. Let J
denote the n × n matrix such that Jij = 1 if i − j = 1,
and Jij = 0 otherwise. By assumption, we have |M | ≤
α
∑

1≤k<n(αJ)
k = α2J(I − αJ)−1. As a consequence:

|R−1| ≤
∑

0≤k<n

(α2J(I − αJ)−1)k

= (I − α2J(I − αJ)−1)−1

= (I − αJ)(I − (α+ α2)J)−1

≤
∑

0≤k<n

(α+ α2)kJk ≤
∑

0≤k<n

(2α2)kJk.

We derive that ∥R−1∥ ≤ (
∑n−1

k=0 (2α
2)2k)1/2 ≤ (2α2)n√

4α4−1
,

which leads to the result.

As discussed in the introduction, Buchmann provides in [2]
a sufficient bound on the input precision to guarantee the
correctness of the algorithm of the next section. The bound
is at least logarithmic in the orthogonality defect od(B) =∏

i
∥bi∥
rii

. of the full column rank matrix B ∈ R
m×n with

R-factor R. Our sufficient condition involves a precision
logarithmic in cond(B). The following lemma reveals the
relationship between cond(B) and od(B).

Lemma 11. Let B ∈ R
m×n be full column rank and R be

its R-factor. Then for all i, we have ∥bi∥ ≤ rii cond(R), im-
plying that od(B) ≤ cond(R)n. Oppositely, we have cond(R)·
n−3/2 ≤ od(B). Finally there exists a sequence of full col-
umn rank matrices B ∈ R

n×n of growing dimension n such
that od(B) = cond(R)Θ(n).

Proof. For each j ≥ i, the coefficient (j, i) of |R| · |R−1|
is bounded from below by |rji|/rii (when doing the inner
product of the jth row of |R| with the ith column of |R−1|,
the coefficient |rji| is multiplied with 1/rii). This implies

that ∥ri∥
rii

≤ cond(R) holds for all i. Multiplying over vary-
ing i gives the first statement.
We now prove the second statement. The coefficient (i, j)

of |R−1| is bounded from above by 1
rii

·
∏

i<k≤j
∥bk∥
rkk

(this can

be obtained by using the cofactors of R to compute |R−1|
and then applying Hadamard’s bound). As a result we ob-
tain that the coefficient (i, j) of |R| · |R−1| is bounded from

above by
∑

i≤k≤j

∏
k≤ℓ≤j

∥bℓ∥
rℓℓ

, which is itself ≤ n · od(B).
Finally, consider the n-dimensional upper triangular ma-

trix R defined by rij = αj−i+1, for α > 1 arbitrary. By
considering only the first row of R, we obtain that od(R) ≥
αn(n−1)/2. Lemma 10 allows us to complete the proof.

Another class of bases with relatively small cond(·) is
given by upper triangular matrices B whose diagonal en-
tries have balanced magnitudes, and which are size-reduced
with θ = 0 in Definition 1. If the largest ratio h between
two diagonal entries is small, then as shown by next lemma,
the quantity cond(B) ≤ h2O(n) may be thought as small.
(A geometric interpretation is given in [4, Se. 3.3].)

Lemma 12. Let B ∈ R
n×n be an upper triangular, in-

vertible matrix with the property that for all i < j we have,
|bij | ≤ η|bii|, for some η ≥ 0. Then we have cond(B) ≤
2n(1 + η)n−1 maxi,j

|bii|
|bjj |

.

Proof. Let B = diag(b−1
ii ) · B. For all i < j we have

|bij | ≤ ηbii = η. Therefore, we have |B−1| ≤ T−1, where T ∈
R

n×n is upper triangular with tii = 1 and tij = −η for i < j
(see, e.g., [6, Th. 8.12]). Since S = T−1 satisfies sii = 1 and
sij = η(1+η)j−i−1 for i < j (see, e.g., [6, Eq. (8.4)]), we ob-
tain vij = 2η(1 + η)j−i−1, for i < j, where V = |T |T−1.
It follows that |V | ≤ 2(1 + η)n−1M where mij = 1 for

all i ≤ j, and mij = 0 otherwise. Since |B||B−1| ≤ V ,
we may now write cond(B) = ∥diag(bii) · V · diag(b−1

jj )∥ ≤
2(1 + η)n−1∥( bii

bjj
)1≤i,j≤n∥, which shows the assertion.

Given an invertible B ∈ R
n×n with R-factor R, one may

estimate cond(R) in the following way. By [17], we have:

cond(R) ≤ ncond(B) ≤ n3/2∥|B| · |B−1|∥1
≤ n3/2∥BD−1∥1∥DB−1∥1
≤ n5/2∥BD−1∥∥DB−1∥,

where D = diagi(∥bi∥1). Therefore, it suffices to find esti-
mates of ∥BD−1∥ and ∥DB−1∥. We refer the reader to [6,
Ch. 15] for a presentation of classical approaches for estimat-
ing a matrix norm ∥A∥, such as through a random sampling

of vectors xi for measuring maxi
∥Axi∥
∥xi∥

. If B is an inte-
ger matrix, this results in an algorithm of bit-complexity
Õ(n3 log ∥B∥) using [18].

4. REDUCING BY ROUNDING
Our first main result is Theorem 1. We analyse the effect

of applying to a lattice basis B a transformation matrix U
reducing a perturbationB+∆B of B. We rely on Lemma 13,
which shows that a reducing transformation U for a given
basis B remains a reducing transformation for any basis suf-
ficiently close to B. This result, with a backward stability
flavor, is then applied to B + ∆B for establishing the re-
ducedness of B.

Lemma 13. For any valid sets of LLL-parameters Ξ =
(δ, η, θ) and Ξw = (δw, ηw, θw) with Ξw < Ξ, there exists a
constant c > 0 (that may be made explicit) such that the
following holds. Let B ∈ R

m×n full column rank, R its R-
factor, and U such that BU is Ξ-LLL-reduced. Assume that
∆B ∈ R

m×n satisfies maxi
∥∆bi∥
∥bi∥

≤ 1/(cm6βncond2(R))

with β = (1 + η + θ)α2 and α as in Lemma 4. Then (B +
∆B)U is Ξw-reduced.

Proof. By Lemma 6, we have |uji| ≤ m3αncond(R) · r′ii
rjj

for all i, j, where R (resp. R′) is the R-factor of B (resp.
C = BU). Let C+∆C = (B+∆B)U . We obtain that∆ci =∑

j uji∆bj satisfies (for all i):

∥∆ci∥ ≤
(
m3αncond(R)max

j

∥∆bj∥
∥bj∥

)
·
∑

j

r′ii
rjj

∥bj∥.

Now, by Lemma 11, we have that ∥bj∥/rjj ≤ cond(R) holds
for all j. By using the fact that r′ii ≤ ∥ci∥, we derive that:

max
i

∥∆ci∥
∥ci∥

≤ m4αncond2(R)max
i

∥∆bi∥
∥bi∥

.

Applying Lemma 5 to C and C+∆C provides the result.

The following result extends [15, Le 7], to any full column
rank matrix B.



Theorem 1. For any valid sets of parameters Ξw < Ξ,
there exists c > 0 (that may be made explicit) such that the
following holds. Let B ∈ R

m×n full column rank, R its R-
factor, and ∆B satisfying maxi

∥∆bi∥
∥bi∥

≤ 1/(cm6βncond2(R))

with β as in Lemma 13. Then if U is such that (B+∆B)U
is Ξ-LLL-reduced, then BU is Ξw-LLL-reduced.

Proof. By Lemma 8, we have cond(R+∆R) ≤ 4cond(R),
where R +∆R is the R-factor of B +∆B. We conclude by
using Lemma 13 on B + ∆B with perturbation −∆B, to
establish the reducedness of B = (B +∆B)−∆B.

As a corollary of the theorem just above, Algorithm 1 is
correct. Note that an upper bound of cond(R) is required as
part of the input, where R denotes the R-factor of B. Such
a bound may be derived from a priori information on B
(e.g., using Lemmata 7, 8 and 9), or may be estimated, as
explained at the end of Section 3. At Step 7, any LLL-
reducing algorithm may be used. In the next section, we
describe and analyze an LLL-reducing algorithm specifically
designed for floating-point lattice bases MBEB , when they
are themselves small distortions of LLL-reduced bases.

Input: B ∈ R
m×n full column rank;

valid LLL-parameters Ξw;
χ ≥ cond(R), where R is the R-factor of B.

Output: A Ξw-reduced basis of the lattice spanned by B.
1 Choose valid LLL-parameters Ξ > Ξw.
2 Compute the constants c and β of Theorem 1.
3 Set p := ⌈log(4cm7βnχ2)⌉.
4 For each i ≤ n, find ei ∈ Z such that |2ei−∥bi∥|

∥bi∥
≤ 3/4.

5 Set EB := 2−pdiagi(2
ei).

6 Set MB := ⌊B · E−1
B ⌋.

7 Compute U such that (MBEB) · U is Ξ-LLL-reduced.
8 Return B · U .

Algorithm 1: LLL-reduction of B using a columwise
floating-point approximation of B.

5. REDUCING BY SCALING
We now describe and analyze an algorithm for efficiently

LLL-reducing floating-point lattice basesMBEB , such as the
one involved at Step 7 of Algorithm 1. To LLL-reduce the
floating-point matrix MBEB , we may interpret it as an inte-
ger matrix, and LLL-reduce that integer matrix. However, if
the exponents are very unbalanced, the bit-size of MBEB as
an integer matrix (and hence the cost of the LLL-reduction)
may be much higher than the bit-size of MBEB as a floating-
point matrix. Our algorithm scales the columns of MBEB ,
to obtain a matrix MBEBD

−1, so that the conversion to an
integer matrix essentially preserves the small bit-size of the
floating-point representation. The main difficulty to estab-
lish the correctness of the algorithm is to ensure that the
transformation matrix U when LLL-reducing MBEBD

−1 is
relevant for LLL-reducing MBEB (note that the spanned
lattices are different).

Input: MB ∈ Z
m×n full column rank;

EB = 2−pdiagi(ei) with ei ∈ Z for all i;
valid LLL-parameters Ξ = (δ, η, θ);
χ ≥ cond(R), where R is the R-factor of MBEB .

Output: A matrix pair (U,D) such that D−1UD is uni-
modular, (MBEB)(D

−1UD) is Ξ-LLL-reduced
and D = diag(2di) with di ∈ Z for all i.

1 Set p := 10 + ⌈log(m3.5χ)⌉.
2 Call Householder’s algorithm on MBEB with

precision p; let R̂ be its output.
3 Set i0 := 1 and k := 1.
4 For i ≤ n, do: If (minj≥i r̂jj > (8/θ) ·maxj<i r̂jj),

then increment k and set ik := i.
5 For all 1 ≤ ℓ < k,

set gℓ := (miniℓ≤i<iℓ+1
r̂ii) / (maxiℓ−1≤i<iℓ r̂ii).

6 For all 1 ≤ ℓ < k and all iℓ ≤ i < iℓ+1,
set di := e1 +

∑
ℓ′<ℓ⌊log(gℓ′/4)⌋.

7 Set D := diag(2di). /∗ Column scaling ∗/
8 Set Ξ′ = (δ, η, θ/2).
9 Compute U s.t. (MBEBD

−1) · U is Ξ′-LLL-reduced.
10 Return (U,D).

Algorithm 2: LLL-reduction of a floating-point ma-
trix MBEB using column scaling.

Algorithm 2 can be divided into four main parts:

• Finding approximations of the diagonal coefficients of
the R-factor of the input basis MBEB (Steps 1-2) for
determining the scaling.

• Finding blocks, delimited by the iℓ’s, of consecutive
vectors in MBEB , such that typical LLL-reduction al-
gorithms do not swap vectors between these blocks, be-
cause the rii’s increase (Steps 3-4). Appropriate gaps
between blocks allow to preserve the block structure
after the scaling, which is a key ingredient for ensur-
ing that U is block upper-triangular, and D−1UD is
unimodular.

• Scaling the columns of MBEB , to shrink the eventual
magnitude gaps between the rii’s of different blocks
(Steps 5-7).

• LLL-reducing the scaled matrix (Steps 8-10).

5.1 Correctness
The following lemma ensures that the r̂ii’s are good ap-

proximations of the rii’s.

Lemma 14. The matrix R̂ computed at Step 2 of Algo-
rithm 2 satisfies maxi |r̂ii − rii|/rii ≤ 1/2.

Proof. Thanks to the choice of p, Lemmata 1 and 2 en-
sure that ∥∆R · R−1∥F ≤ 29m3.5χ2−p ≤ 1/2, where ∆R =

R̂−R. Looking at the diagonal coefficients of ∆R·R−1 leads
to the result.

The next part of the algorithm aims at determining the
column scalings to be applied to MBEB . The scalings are
computed by grouping the columns of MBEB according to
the magnitudes of the r̂ii’s. Columns with indices in Iℓ =
[iℓ, iℓ+1) belong to the same block. By construction, the
index iℓ+1 is the smallest i > iℓ such that minj≥i r̂jj > (8/θ)·
maxj<i r̂jj . Let the amplitude gap between two consecutive
blocks Iℓ−1 and Iℓ be gℓ = (mini∈Iℓ r̂ii)/(maxi∈Iℓ−1

r̂ii). By
construction of the blocks, and θ ≤ 1 (see Definition 1), we
have gℓ ≥ (8/θ) ≥ 8 for all ℓ.



At Step 7, the column scaling is set to D = diagi(2
di),

for each ℓ and each i ∈ Iℓ. By choice of the di’s, the block
structure of MBEB is preserved for MBEBD

−1, but the gap
between two blocks gets shrunk to at most a constant. The
following result is a direct consequence of Lemma 14 and of
the choice of the di’s.

Lemma 15. Let R′ denote the R-factor of MBEBD
−1.

Then, for all ℓ, we have 4/3 ≤
mini≥iℓ

r′ii
maxi<iℓ

r′
ii

≤ 32.

At Step 9 of Algorithm 2, an LLL-reduction algorithm is
called. It is required that this algorithm does not interfere
with the block structure. In most LLL-reduction algorithms,
the only operations performed on the current lattice basis A
are of two types: size-reductions of vectors (an integer lin-
ear combination of basis vectors aj with j < i is subtracted
from the basis vector ai), and swaps (two consecutive ba-
sis vectors ai−1 and ai are exchanged). We require that
swaps occur only when ri,i < ri−1,i−1. This is the case for
most known LLL-reduction algorithms, including [10, 16,
14, 12, 15]. We say that these LLL-reduction algorithms
are well-behaved. Further, if the used LLL-reduction algo-
rithm handles only integer matrices, we may multiply ma-
trix MBEBD

−1 by a power of 2 to make it integral, and
reduce the scaled matrix: the computed transformation U
will also be a valid LLL-reducing matrix for MBEBD

−1 as
LLL-reducedness is invariant under basis scaling.

Theorem 2. Assuming the LLL-reducing algorithm used
at Step 9 is well-behaved (as defined just above), Algorithm 2
is correct. In particular, the matrix D−1UD is unimodular
and the matrix (MBEB)(D

−1UD) is Ξ-LLL-reduced.

Proof. Using Lemma 15 and the assumption on the LLL-
reducing algorithm used at Step 9, we obtain that the com-
puted matrix U is block-upper triangular, in the following
sense. For any ℓ, ℓ′, we define Uℓℓ′ = (uij)i∈Iℓ,j∈Iℓ′ . Then for
any ℓ > ℓ′, we have Uℓℓ′ = 0. Now, the diagonal coefficients
of D are non-decreasing powers of 2, and di = dj when i, j
belong to the same Iℓ. As a result, the matrix D−1UD is
integral: for ℓ ≤ ℓ′, submatrix Uℓℓ′ becomes 2dℓ′−dℓ · Uℓℓ′ .
Further, since 1 = | detU | =

∏
ℓ | detUℓℓ|, we obtain that

all Uℓℓ’s are unimodular. This implies that D−1UD is uni-
modular. It remains to show that (MBEB)(D

−1UD) is
Ξ-LLL-reduced. Let R′ and R′′ respectively denote the
R-factors of (MBEBD

−1)U and (MBEB)(D
−1UD). We

have r′′ij = r′ij2
dj , for all i, j. By (δ, η, θ/2)-reducedness of

(MBEBD
−1)U , we have, for any i ≤ j:

|r′′ij | = |r′ij |2dj ≤ (η2dj ) · r′ii +
(
θ
22

dj
)
· r′jj

= (η2dj−di) · r′′ii + θ
2 · r′′jj .

(1)

If i and j belong to the same Iℓ, then dj = di and the size-
reduction condition of Definition 1 is satisfied. Otherwise,
we have i ∈ Iℓi and j ∈ Iℓj for some ℓi < ℓj . Thanks to
the assumption on the LLL-reducing algorithm (and noting
that the R-factor of MBEBD

−1 is RD−1), we have:

r′jj ≥ mint∈Iℓj
r′tt ≥ mint∈Iℓj

(rtt2
−dj )

≥ 2
θ maxt∈Iℓi

(rtt2
−di) ≥ 2

θ maxt∈Iℓi
r′tt ≥ 2

θ r
′
ii.

For the second inequality, we used the fact that for a well-
behaved LLL-reduction algorithm, the minimum of the R-
factor diagonal factors in a block cannot decrease. Similarly,
in the fourth inequality, we used the fact that, the maximum

of the R-factor diagonal factors in a block cannot increase.
For the third inequality, we used the definition of the blocks
and the lower bound on the gap between two blocks, and
Lemma 14. As a result, we have r′′jj ≥ 2dj−di 2

θ r
′′
ii, and,

by (1), we obtain that |r′′ij | ≤ θr′′jj . The output basis satisfies
the size-reduction condition of Definition 1.

Similarly, by reducedness of (MBEBD
−1)U , we have:

∀i : δ(r′′i,i)2= δ22di(r′i,i)
2 ≤ 22di

(
(r′i,i+1)

2 + (r′i+1,i+1)
2
)

≤ 22(di−di+1)
(
(r′′i,i+1)

2 + (r′′i+1,i+1)
2
)

≤ (r′′i,i+1)
2 + (r′′i+1,i+1)

2,

where we used the fact that di+1 ≥ di. The output basis sat-
isfies the Lovász’ conditions of Definition 1. This completes
the proof of the theorem.

5.2 Complexity analysis
So far, we have shown that Algorithm 2 is correct. We now

turn to estimating its run-time. Unless the exponents in EB

are uncommonly huge, the dominating component of the
cost is the LLL-reduction of Step 9. Our aim here is to bound
the bit-size of the coefficients of the matrix MBEBD

−1,
when this matrix is viewed as an integer matrix. The al-
gorithm takes any floating-point lattice basis as input, but
the run-time bound will depend on how close is MBEB

is to be LLL-reduced. More precisely, we consider a non-
singular matrix Σ and a set Ξ′ of valid LLL-parameters
such that Σ−1MBEB is Ξ′-LLL-reduced. Such a Σ always
exists (take Σ such that Σ−1MBEB is orthonormal), but
the bit-size bound to be proven will depend on the singu-
lar values of Σ. More precisely, for all ℓ, we define Eℓ as
the |Iℓ|-dimensional subvector space of Rm that is spanned
by the columns of MBEB with indices in Iℓ. We define Fℓ

as the projection of Eℓ orthogonally to F1 + . . . + Fℓ−1, so
that the column span of MBEB is the orthogonal sum of
the Fℓ’s. Now, by orthogonality, the distortion Σ acts in-
dependently on any of the Fℓ’s. We let Σℓ denote the cor-
responding |Iℓ|-dimensional non-singular linear map. The
bit-size bound of the integer matrix MBEBD

−1 to be given
as input to an LLL-reduction algorithm at Step 9 will in-
volve the quantity log

∏
κ(Σℓ). By orthogonality of the Fℓ’s,

the latter is bounded from above by log
∏

1≤i≤⌊n/2⌋
σi

σm−i+1
,

where σ1 ≥ . . . ≥ σm are the singular values of Σ. The fol-
lowing lemma provides a bound on the amplitude of the r̂ii’s
within a block.

Lemma 16. With α′ as in Lemma 4 (for Ξ′), for any ℓ,

we have
maxi∈Iℓ

r̂ii
mini∈Iℓ

r̂ii
≤ 3(8α′/θ)|Iℓ|κ(Σℓ).

Proof. We prove that for any i, j ∈ Iℓ, we have r̂jj/r̂ii ≤
3(8α′/θ)|Iℓ|κ(Σℓ). Suppose first that j ≤ i. Then, by
Lemma 4, we have r′jj/r

′
ii ≤ (α′)i−j , where R′ denote the

R-factor of C. By Lemma 3, we obtain that rjj/rii ≤
(α′)i−jκ(Σℓ). Finally, by Lemma 14, we obtain that r̂jj/r̂ii ≤
3(α′)i−jκ(Σℓ). Suppose now that j > i. If r̂ii = maxt≥i r̂tt,
then the bound holds since the right hand side is ≥ 1. Oth-
erwise, from the definition of blocks, there exists some i′ ∈ Iℓ
with i′ > i, such that r̂i′i′ ≤ (8/θ) · r̂ii. Applying the same
idea to i′ we get r̂i′′i′′ ≤ (8/θ)t · r̂ii, with i′′ = iℓ+1−1, where
t ≤ |Iℓ| is the number of times this recursion is applied.

Since j ≤ i′′, we conclude that r̂jj ≤ 3(α′)i
′′−jκ(Σℓ)r̂i′′i′′ ≤

3(8α′/θ)|Iℓ|κ(Σℓ)r̂ii (using the first part of the proof).

From here, we can derive a bound on the amplitude of the
diagonal coefficients of the R-factor of MBEBD

−1.



Lemma 17. Let R′ denote the R-factor of MBEBD
−1.

Then
maxi r′ii
mini r′

ii
≤ cn ·

∏
κ(Σℓ), for some c depending only

on Ξ′.

Proof. Thanks to Lemma 15, we have that for all ℓ,
mini∈Iℓ r

′
ii ≤ 32 ·maxi∈Iℓ−1

r′ii.
Using Lemma 14 we then translate the bound of Lemma 16

for Iℓ−1 in terms of the r′ii’s rather than the r̂ii’s, hence get:
mini∈Iℓ r

′
ii ≤ 100(8α′/θ)|Iℓ|κ(Σℓ) ·mini∈Iℓ−1

r′ii. Taking the
product over all values of ℓ leads to the result.

We can now prove the following bit-size bound for the
input to the LLL-reduction algorithm.

Theorem 3. Assume that the input matrix MB is inte-
gral with ∥MB∥ ≤ 2p. Let Σ ∈ R

m×m be non-singular, such
that Σ−1MBEB is Ξ′-LLL-reduced, for some valid set Ξ′ of
LLL-parameters. Let C = MBEBD

−1 be the matrix given
as input to an LLL-reduction algorithm at Step 9 of Al-
gorithm 2. Then there exists a constant c such that C ∈
2−k

Z
m×n for some k satisfying:

log ∥C∥ − k ≤ c · n+ 2p+ 2 log
∏

1≤i≤⌊n/2⌋

σi

σm−i+1
,

where σ1 ≥ . . . ≥ σm denote the singular values of Σ.

Proof. Lemma 11 gives: max ∥ci∥ ≤ cond(C)max r′ii,
where R′ denotes the R-factor of C. Further, by Lemmata 7
and 9, there exists a constant c1 such that cond(C) ≤ κ(Σ) ·
cn1 . Using Lemma 17 and the fact that min ∥ci∥ ≥ min r′ii,
we obtain that

max ∥ci∥
min ∥ci∥

≤ cn2κ(Σ)
∏

ℓ

κ(Σℓ) ≤ cn2
∏

1≤i≤⌊n/2⌋

σ2
i

σ2
m−i+1

,

for some constant c2. Now, using the assumption that MB

is integral of norm ≤ 2p, we have

max 2ei−di

min 2ei−di
≤ 2p · max ∥ci∥

mini ∥ci∥
≤ 2pcn2

∏

1≤i≤⌊n/2⌋

σ2
i

σ2
m−i+1

.

To complete the proof, we note that the entries of C are

sums of powers of 2, and we use that 2p max 2ei−di

min 2ei−di
bounds

from above the ratio between the smallest and the largest
entries.

As our bound applies to any Σ such that Σ−1MBEB is
LLL-reduced, we are interested in the existence of such a Σ
with a small log

∏
i≤⌊n/2⌋

σi
σm−i

.

6. PRACTICAL CONSIDERATIONS
Several important points deserve further investigations,

especially from a practical point of view. The sharpness of
the sufficient bound 2 log cond(R) + n(1 + ϵ) +O(logm) on
the input precision is unclear. Studying heuristic values for
the different quantities to choose, e.g. for the constant c of
Lemma 13, remains to be done. In the same vein, under-
standing the impact of the chosen precision and the input
basis structure on the output parameters Ξ = (δ, η, θ) is
an interesting problem. For an idea of practical accelera-
tions that can be obtained thanks to the scaling, we may
refer to [1, Se. 5]. A extensive experimental study should be
made.
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