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Abstract

Proposing a new method for parallel computations on algebraic numbers, we establish
that computing the Jordan normal form of matrices over any commutative field F is in NCp.

1 Introduction

Computing normal forms of matrices is a basic problem in linear algebra. In this paper
we are concerned with the parallel computation of the Jordan normal form of matrices over a
commutative field F. This form has many applications such as computing matrix functions,
solving matrix equations, solving differential equations and systems... The reader will refer
to [7] to get an insight into the subject.

The Jordan form has been widely studied from a theoretical point of view [7], and
sequential polynomial time algorithms are known [19, 16, 10, 11]. From a parallel point of
view, few algorithms are reported in the litterature. Fast parallel randomized algorithms may
be foundin {14, 15]: Kaltofen, Krishnamoorthy and Saunders have shown that computing the
Jordan formis in R N C.In [11] Giesbrecht gives a processor efficient randomized algorithm
for the same problem. Those results have been improved in [20], partially answering to a
question in [9], we have established that random choices may be avoided for the Jordan
form and that the problem is in A’C r, unfortunately, since the algorithm uses the squarefree
decomposition of polynomials, we were restricted to fields of characteristic zero or finite
fields. We refer to [3] for the definitions of the boolean complexity classes A’C and RNC
of problems deterministically and probabilistically solvable by boolean circuits. In analogy
with these classes von zur Gathen [9] has defined the classes NCr and RN C g of problems
solvable by arithmetic circuits.

This paper is devoted to a new proof for the fact that computing the Jordan form is in
NCr. The method we propose, based on parallel computations on algebraic numbers, may
be useful in many other situations. Concerning the Jordan form, it leads to a much simpler
algorithm than in [20] and avoids restrictive assumptions on the ground field since this new
algotihm runs over any field F'. The same approach is used in [12] from a sequential point
if view.

For the purpose of giving the organization of the rest of the paper, let us recall the
key idea that we have proposed in [20]. Let A be a matrix of F"*" having ! distinct
eigenvalues A;, Ao, . ...\, with respective multiplicities in the characteristic polynomial
my,ma,...,m;. The Jordan form may be easily computed from the dimensions of the
nullspaces of the successive powers:

A=MNI(A=-ND2,. . (A=XD)™, 1<i<L (1)
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If F is not algebraically closed, the eigenvalues of A lie in an algebraic extension of F' and
an appropriate arithmetic has to be used. After some basic reminders on matrix normal forms
at section 2, we thus show at section 3, how parallel computations on algebraic numbers
may be done in N'C'r in a D5 arithmetic manner (4]. D5 is a powerful system that has been
designed for computing in algebraic closure of fields. Even if only sequential versions of the
system are available 5], its working is intrinsically parallel [6], and the results presented
in this paper essentially rely on it. As examples, this arithmetic on algebraic numbers is
studied for computing the rank and the nullspace of matrices. Then, at section 4, from the
dimensions of the nullspaces of the matrices given by (1), the Jordan normal form will be
computed in a natural way in N'Cr.

2 Basic concepts

We recall some main definitions. In the following, for a commutative field F', Ais a
matrix of dimension n whose entries are in F, having [ distinct eigenvalues Ay, Aa, ..., AL

2.1 Jordan Normal Form

Any matrix A is similar to a unique (up to permutation) block-diagonal matrix J whose
diagonal blocks are matrices of the form:

A1l 0 ...0
0 A 1 0
Jk(/\,')-—- 0 0 A EF‘XI'
1
0...... 0 X

where ); is an eigenvalue of A; J;. isa k x k banded matrix, which is called a k-Jordan block
associated with A;. We refer to [7] for the proof; J is the Jordan normal form of A. Each
block Ji();) corresponds to an elementary divisor (A — \;)* of A. Two similar matrices
have the same Jordan normal form.

When the field F is not algebraically closed, the eigenvalues of A lie in an algebraic
extension of F'. If these are given our algorithm will compute the Jordan form. In general,
since we do not know how to factor polynomials fast in paratlel [9] we will compute a
variant of the Jordan form consisting of blocks corresponding to generalized eigenvalues,
i.e. toeigenvalues belonging to the same factors in a partial factorization of the characteristic
polynomial of A [15, 9]. This form is the symbolic Jordan form, it gives the structure of J
using symbols that take the place of the eigenvalues.

2.2 Symbolic Jordan Normal Form

With any matrix A we may associate its symbolic Jordan form J. The structure of J is the
same as the structure of J with [ distinct symbols X; taking the place of the eigenvalues. Each
symbol J; is associated with a polynomial A;(A) in F'[A], with the understanding that A; is
a representation of A;, i.e. A;();) = 0. The A; are divisors of the characteristic polynomial
of A.

Clearly, the symbolic Jordan form is not unique, since different choices are possible for
the A;. It coincides with the Jordan form if the eigenvalues are known, i.e. if the A; are the
linear factors (A — A;).
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Butthe 4; need not be irreducible, otherwise polynomial factorization would be required.
In the same way, the previous studies on the subject [15, 20], were assuming the A; to
be squarefree and consequently, algorithms were running only for selected fields. This
assumption is not necessary to obtain the structure of the Jordan form, that is the degrees
of the elementary divisors, and will be removed in the rest of the paper. To distinguish
between eigenvalues having Jordan blocks with different structures, we only need to consider
symbolic Jordan forms corresponding to A; satisfying:

(i) if there exists a dimension & such that A; and A; do not have the same number of
k-Jordan blocks, then A; and A; are relatively prime.

When the eigenvalues are not known, such a symbolic matrix will be improperly called
Jordan form of A. The main fact is that it can be computed by polynomial gcd operations
only and does not require polynomial factorization [15].

3 Parallel rank and nullspace over algebraic numbers

As said in the introduction and as it will be developped at section 4, computing the
rank of matrices over algebraic numbers, is the basic operation of our algorithm for the
computation of the Jordan form.

In the following, F' is a field, A()) is a univariate polynomial over £ with! < n distinct
roots Aj, A, ..., A For any root A of A()), we denote by F(X) the simple algebraic
extension of F' by A. As usually, the elements of F'(A) will be represented as polynomials
in F[A]/(A())). This is common way algebraic extensions appear in computer algebra [6].

Now, let A be a square matrix of dimension n over F'(A), we assume that the entries of
A are polynomial expressions of degree n in F'[A] taken modulo A()). If A is not square, it
is extended by zero rows or columns. Clearly, because the rank of A depends on the chosen
root A of A()), computing the rank or a basis of the nullspace of A leads to an “automatic
discussion”. In a more formal way, we will adress the two following problems:

RANK g(5,: Computes polynomials R, (X), 0 < r < n,over F,such that:
o The rank of A evaluated at any root of R; is equal to 1.
o Ged(R, Ry} = 1if r # v/, and [Ti, (A — ;) divides []7_, Re ().

NULLSPACE,;,: Computes the above polynomials R, 0 < 7 < n, and computes non

singular squares matrices N,, 0 < » < n, of dimension n over F'( A) such that:
e The first » columns of the matrix AN, evaluated at any root of R, are linearly
independent and its last n — » columns are zero.

In sequential, those computations may be achieved using a system like D5 [4, 5]. For
instance, with D5 the rank function would return:
“ Either ) is a root of Ry and the rank is 0,
...or disarootof R, and therankisr, ...
or A is aroot of R, and the rank is n.”
Notice that, the splitting of the initial polynomial A into the polynomials R; does not require
polynomial factorization but only polynomial gcd computations.
We begin at section 3.1 by studying the two basic polynomial operations needed for
this splitting. Then section 3.2 will give some reminders about rank and nullspace parallel
computations over a field, especially we will see that computing the rank and a basis of the
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2

nullspace over F())are in NCF(;). Finally, our purpose at sections 3.3 and 3.4 will be to
extend those results and to show that RAN K p 5, and NULLSPACE g5, are in NCE.

3.1 Preliminary results

In the lemmas below we introduce the two standard basic polynomial operations that will
be needed for the splitting of the polynomial A(A) during the discussion to generate the
different cases. Those operations are the computation of the greatest divisor of a polynomial
relatively prime to another, and the multiple multiplicity free decomposition of a polynomial,
they are important tools when the ground field does not allow to compute the squarefree
decomposition.

Lemma 1. Given two polynomials P(z) and Q(z) of degree n in F [z}, 10 compute »(P, Q),
the greatest divisor of P relatively prime to Q, isin NC%.

Proof. Insequential »( P, Q) is usually obtained by repeated gcd computations [16,6]. In fact
this can be done with only one gcd computation: if G = ged(P, Q™) then (P, Q) = P/G.
Using the algorithm in [2] for the ged, the computation is in A’CF.. O

Lemma 2. Given a polynomial P(z) of degree n in F|z], the multiple multiplicity free
decomposition (up to a constant) of PP consists of n polynomials Py, P, ..., P, such that
Sor all i, the roots of multiplicity 7 in P are roots of multiplicity i in P; (in a splitting field),
and [[]_, Pi = ¢P, ¢ € F.To compute the decomposition is in N C%.

Proof. For any root A of P(z), the multiplicity of A in P(z) is the valuation of P(z + A).
Now consider A as an indeterminate and let

n

Plz+ ) = Zai(/\)xi.

i=0

For any fixed ¢, the roots of P which are roots of aog(A), ay(A), ..., a;—1(A) butnot of a;(A)
are the roots of multiplicity # in P. Viewing P as a polynomial in A instead of z, define

gi(A) = ged (P(A), ao(A),ar(A), ..., a;(A)). 0< i< n.

By construction, the roots of ¢; are the roots of P whose multiplicity in P is strictly greater
than 7. For 1 <7 < n,let r; = r(g;-1.¢:) be the greatest divisor of ¢;_, relatively prime 1o
gi: the roots of »; are the roots of 2 whose multiplicity in P is precisely i. In other words, if
we denote by /\(1’ . /\‘L.i" the roots of P whose multiplicity is 7, we may write for a certain
power d;, d; < i, and a constant ¢; in F:

ri(A) = ¢ ((,\ A9y - ,\1."")) “

By definition we have

i
)

PN =T, (A= 27) .0 =)
we compute
r(P,ri) = ciTi(A), ¢ € F,
then we have the target polynomials: P = P/r(P,»;), 1 < i < n. Using the algorithm for

the ged of many polynomials in [8] the ¢; are computed in NC';'«, and applying lemma 1 to
compute the 1; and the »( P, r;) we conclude the proof: the P; are computed in A/ C}. 0
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3.2 Parallel rank and nullspace over a field

This section is mlendcd to remind fundamentals results on rank and nullspace basis compu-
tations.

¢ Computing the rank. We briefly describe the algorithm of Mulmuley [18] for the rank
or the dimension of the nullspace of a matrix A4 over an arbitrary field. A is assumed to be
square: if not, A is extended by zero rows or columns. Consider the symmetric matrix

s |0 A
A= [A‘ 0] '
Let Z be a diagonal matrix in an indeterminate = such that Z;; = *~!, 1 < i < 2n. The
highest degree d such that 2¢ divides the characteristic polynomial
Va(z) = det(z] — ZA) (2)

is twice the dimension of the nullspace of . We now point out an elementary property that
will be useful in the following of the paper. Since for any matrices 4;, 4., A3 and A4 of
equal dimensions, we have the following identity on determinants:

A Al -4, A
Az Ay Az —Ay
we deduce that
_ . _ iy — zl —Zl.-l _ 7 —21.4 _—
alz) =det(z] = ZA) = ’—ZQA' 2] l —ZoA! —2l|T xa(—2)

In other words, \ 4 (z) is of degree 2n and is an even function of x. Using the algorithmin (1]
for the computation of the characteristic polynomial, the algorithm of Mulmuley computes
the rank in time O(log® n) using a polynomial number of processors.

o Computing a nullspace basis. We shortly describe the algorithm in [2]. The first step
consists in computing a maximal linearly independent subset S of the set (Cy, Ca, ..., C)
of the columns of the

rank (C,Ca, ..., Cr_y) < rank (Cy,Cq, ..., Cy).

A maximal non singular minor A/ of A is then computed by applying the same process 10
the rows of the selected columns. Up to permutations, let A/ be the » x r principal minor
of A. Let y; be the first » rows of the k-th column of A, » + 1 < k < n, and consider
the solutions z;. of the systems Afx; =y, » + 1 < k < n. A basis of the nullspace of A
then consists of the vectors ‘(x4,0,0,...,—1,0,...,0),7+ 1 <k < n, where —1 isin the
k-th position. In addition we obtain a non singular matrix N such that the first » columns
of the matrix AN are linearly independent, and its last n — » columns are zero. The first
r columns of N corresponds to the permutations used Lo obtain the first 7 columns of A
linearly independent, its last n — » columns are the computed basis of the nullspace. Using
the previous algorithm for lhc rank and the algorithm in [2] for matrix inversion, the matrix
N is computed in time O(log” n) using a polynomial number of processors.

In conclusion, over F'[A], rank and nulispace can be computed in O(Ion ‘n) operauons
in F[A]. We show in the two next sections that they can also be computed in O(log” n)
operations in F'.
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3.3 Parallel rank over algebraic numbers : ‘

We are given a square matrix A of dimension n over F'(A) whose entries are polynomials
of degree n in A modulo A()): X is a symbol representing any root of A(A). A(}) is a
univariate polynomial over F' with | < n distinct roots Al,/\o, ..., Al We show that a
“parallel discussion” on the rank of A may be achieved in O(log® n) operauons in F.

Proposition3. RANK p5, isin N C3.

Proof. For 1 < i < [, let x;(z) be the characteristic polynomial (given by identity (2))
introduced by Mulmuley to compute the rank of A evaluated at A = A;. In the same way, let
%(z, ) be the corresponding characteristic polynomial associated with A viewing A as an
indeterminate. These polynomials are of degree 2n in z and are even functions, so we can

write: ] ‘
2'(:’:) = 2",=0 ai,j zzl' 1 S ? S l;
i(ma A) = ijo a](A) 232'7.

Furthermore, since these polynomials are determinants, we know by homomorphism that:

X(z, M) = xi(z), 1 <i <,
aj(A) =a;;,0<j<n, 1<i<1

From Mulmuley, the highest degree d such that z¢ divides () is twice d;, the dimension
of the kernel of A evaluated at A = J;. In other words, d; is half the valuation of y;(z).
Such a computation has been done previously for the proof of lemma 2: we define

g-1(A) = A(}),
¢;(A) = ged (A(A),ao(A), a1(A)....,a;(A)), 0<j<m,

and, for 0 < j < n, we compute the greatest divisor of ¢;_; relatively prime to g;:
K; =r(qj-1,¢;). The roots of I\; are exactly the A; for which the dimension of the kernel
of A is j. In other words, the wanted polynomials R, are:

R, = ™qnor-1, gnh-r),0<r < 0.

The roots of R, are exactly the A; for which the rank of A4 is 7.

Itremains to establish that the computation can be done in O(log” ») time using a polyno-
mial number of processors. Using the algorithm in [1] the computation of the characteristic
polynomial Y is done in A’C%. The computation of the ¢ ; consists in calculating the gcd of
A and of the polynomials a; which are the coefficients of the previous polynomial y. These
coefficients are polynomials of degree O(n?) in = and in A. The wanted gcd is a univariate
polynomial in A so we may use the algorithm in [8] for the ged of many polynomials, since
the polynomials A and a; are in F[=. )], the computations are done over F(z) the fraction
field of F[z]: in [8] the ged is computed using rank and linear system solutions. From (18]
for the rank and from {1] for the determinant computations and the systems solutions when
entries are rational functions of a variable, the computation of the ¢; is in C3 r. Finally
applying lemma 1 the R, are obtained in N'C%. O

o “Parallel D5 arithmetic”. The polynomials R, may be viewed as generalized algebraic
numbers: as the representations of the algebraic numbers A; satis{ying the property “the rank
of A evaluated at A = ); is »”. From this point of view, the above parallel computation of
the rank simply consists in running O(n) D5 sysiems simultaneously, each computing “\
such that the rank of A is »”, 0 < » < n, and using the algorithm of Muimuley for the rank.
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3.4 Parallel nullspace over algebraic numbers

We keep the same notations than above. Let » be the rank of A, the problem is to transform
A into a matrix AN, = [A’,0], such A’ is a n x » matrix of rank ». We are going to adapt
the algorithm of section 3.2, a difficulty is to show that the same non singular matrix N,
may be chosen for all the roots of a given R,.. Consider for instance
_|lA=1 0 . 2
A= [ 0 )‘_2] with A(A) = A° =32+ 2.
Computing the rank of A yield R;(A) = A(A): both for A = 1and for A = 2 the rank of A
is equal to 1. A maximal linearly independant subset S, of the columns of A is {C-}, the
second column of A for A = 1, and is {C, }, the first column for A = 2. Consequently we
may consider the vector (A — 1)Cy + (A — 2)Cs: itis non zero both for A = 1and for A = 2.
And for N; one may take:
A-1X-2
;|
Ny = [,\ —2A- 1}

The next proposition apply this method in the general case.
Propositiond. NULLSPACE 5, isin NC%.

Proof. Using proposition 3 we compute the rank of A, and the polynomials R,. For all »,
0 < » < n, we simultaneously compute a matrix N,: we assume 7 to be fixed.

Following the method presented at section 3.2, we begin by computing a set of r linearly
independent columns of 4, i.e. a non singular matrix Af, such that the first » columns of
A; = AM, are linearly independent. The same argument will be then applied on the rows
of A; to get a matrix L, so that the principal » x » minor of A» = L, A; is non singular.
Solving n — r linear systems will finally lead 10 a matrix N, such that AN, = [A’,0].

As said above we firstly focus on the computation of amaximal sct of lincarly independent
columns of A. Let C} denote the k-th column of A4, and, forall k£, 1 < k& < n, and apply
proposition 3 to the matrices [Cy, Ca, . . ., Ci] with A(A) = R,(X). This yields polynomials

R;k), for1 < k < nand 0 < j < r, with the understanding that for all the roots of
R, the rank of [Cy. Ca...., Ci] is equal to j. In addition, we take /2, /(A) = Re(M),
and R.;-O’ (A) = 1,1 < j < r. The generalization of the previous example leads to consider

polynomials @}’ whose roots satisfy

rank ([Cy,Co.....C}y])) =] (3)
rank ([C1,Ch,....Ciq]) =j— 1.

Those polynomials can be computed simultancously for all j, 1 < j < », and for all &,
1 < k < n, From the definition of the R;-k) we have

Q¥ = ged(RM. RIET), 1<j<r 1<k <.

In other words, Q(“( A) = 0, represents a gencralized algebraic number for which the
column &£ may be laken Lo be the j-th column of a maximal tinearly independent set of the
columns of A: the column & may be taken to be C'7, the j-th column of A,. Conversely, for
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r(Re(A), Q;-“(/\)) = 0 (greatest divisor of R, relatively prime 1o Qﬁ.k ", the column k do
not have o be taken, consequently we may construct C'7 as [ollows:
n
“ k .
;=3 r(ROLQPW) G155,

k=1
By duality, let Pj(k), be the polynomials whose roots satisfy:

dimker ([Cy,Ca,...,.Ct]) =J 1)

dimker ([C1,C2,...,Cr-1]) =7 — 1,
they are computed simultaneously forall j,1 < j < n —r,and forall ¥, 1 < k < n using
polynomials Ix'J(k ): for all the roots of 1\'1(- *)_ the dimension of the kernel of [C1, _Cg, .oy Ci)
is equal to j (see polynomials A’; computed in the proof of proposition 3). If C.4; denote
the last n — » columns of A;, we may take,

n .
Coaj=S 7 (R,(,\),P;"’(,\)) Ci1<j<n—r

k=1

And M, is given by:

(,7\[,‘)1.‘]- =7 ]?,._Q;M J1<j<r 1<k<n,
(M )grpj =7 R.r,P;k) 1< j<n—r, 1 <k<n.

For any root of R,()), A, is non singular since it is nearly a pcrmutation matrix : with
constant entries instead of 1’s. Applying the same process on the rows of A; = AM,
we obtain a matrix 4. = L,.AM, whose principal minor is non singular for any root
of R.(A). As explained at section 3.2, using matrix inversion, we now compute a basis
A1 (A), Xa(A), ..., X,—r(A), of the kernel of A, and:

Id

AM, x [0

],.\'hxg,....xn_, = |cr.c3,....cr.0,0,...,0] =[4',0),
- N —’

n-—r
r

SO we can take:

N, = M, x Hlod ] N Nas N,
To conclude, we have 10 show that A', can be computed in A"C'3.. From proposition 3 the
polynomials R;“ and l\'J‘ " are computed simultaneously for all j and all &, using the al-
gorithm in [2] for the ged computations and lemma 1 the matrix A/, is computed in NC}.
Finally, using the algorithm in {1] for the inversion of a matrix in one indeterminate, the
vectors X1 (A), N2(A), ..., .\, —, and the matrix N, are computed in A'C. @)

o “Parallel D5 arithmetic”. From a D5 point of view, the polynomials Q;“ and Pj“‘) are
generalized algebraic numbers satisfying rclations (3) and (4). They are computed in parallel
by running O(n>) D5 systems simultaneously.

In the next section, using R.4AN N 5, as a key routine, we prove in a more natural way
than in [20], that computing the Jordan normal form is in A’C'%.
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4 Parallel Jordan normal form

We now give a fast parallel deterministic algorithm for computing the Jordan form over
any field F'. We begin with a standard lemma giving a method of computing the number of
Jordan blocks. Its proof is omitted, the reader may refer to [17]. From this lemma we will
then develop the algorithm computing also the representations A; of the eigenvalues defined
at section 2.2. Computations are over algebraic numbers, using the resulls presented above,
they will be done in N Cp.

For F' a field, we consider a matrix 4 of dimension n whose entries are in F, having [

distinct eigenvalues Ay, Aq, ..., A;. For any eigenvalue A; of A, lct us consider the kernels
of the successive powers of A — ;1. It is widely known that
ker(A — A\iJ) C ker(A = MNI)2 C ... Cker(A — NI = ... =ker(A— NI)™,

where y; and m; are respectively the multiplicities of A; in the minimal polynomial ¢ 4 and
in the characteristic polynomial \ 4 of A.

Lemma 5. If d\*" is the dimension of the kernel of (A — M\ 1)*, then the number §5) of
blocks Jy( of dimension k associated with A; in the Jordan normal form of A is given by:

85 = 2d — gV gt 1 <i<land 1 <k < .

The problem consequently reduces to rank, or equivalently, to nullity (dimension of the
kernel) computations [20]. In the following we adress two slightly different problems: to
compute the structure of the Jordan normal form, this will be in A"C', and to compute a sym-
bolic normal form with representations .1; that distinguish between eigenvalues associated
with different block structures, this will be in A’C%..

Theorem 6. For F a fieldand A € F"*", 1o compute the structure of the Jordan form of
A, that is the degrees of the elementary divisors of A, isin NCFp.

Proof. Forany fixed dand k, 1 < d, k < n, we compute polynomials .J(',k )(/\) whose roots
A; are the cigenvalues of A which arc associated with exactly d Jordan blocks of dimension
k: which are associated with d elementary divisors (x — A;)*.

To compute the ,](‘f Y(A), we first use proposition 3 and calculate polynomials 1\’;“()\)
whose roots are the eigenvalues ; such that dim (ker(.4 — X, I)¥) = j. From lemma 5, an
eigenvalue ); is associated with exactly ¢ Jordan blocks of dimension & if and only if there

exist dy, d» and d3 such that 2d, — d» — d3 = d and such that ), is a root of I\ d“ N, “"“

and I¥ d‘ +h . Conscquently,

J“" H ged (1\“) IH—” K ““'), 1<d. k< n.
0<didy.da<m
2dy ~do —ds =d

Using O(n®) parallel processes, the above geds can be simultaneously computed for all d
and (d;, da, d3) such that 2d, — d» — d3 = d. Then the Jff) arc obtained by multiplications.
From proposition 3 the 1\'1(- ") are computed in .\"C7, and we usc the algorithm in [2] for

the ged of polynomials to compute the J4*' in A’C%. a
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e “Parallel D5 arithmetic”. The polynomials J (‘i“ may be viewed as generalized algebraic
numbers satisfying:

dim (ker(4 = AI)*) =d;
dim (ker(A — AI)*~1) = d,
dim ker(A - /\I)’H" = ds, 2d1 - d2 - d3 =d.
They are computed in parallel by running O(n®) D5 systems simultaneously.

Now the problem is to refine the polynomials J, ,(,k) to obtain target representations A; of

the eigenvalues, as introduced at section 2.2 and satisfying property:

(i) if there exists a dimension & such that the two eigenvalues A; and A; do not have the
same number of k-Jordan blocks then their representations A; and A; are relatively
prime.

When the field F is such that squafree decomposition of polynomials can be computed in
F[)], one may use a result in [15]: computing the representations /A; consists in computing
the standard squarefree relatively prime basis of polynomials {J((,k "}1<k ,a<n, this can be
done in A’C% [15]. In the general case, we have to use the more general definition of a
ged-free basis [13]: such a basis exists over any field. A gcd-free basis of polynomials
{Py, P2, ..., P,} in F[)] consists of non unit polynomials {/y, s, ..., I} in F[}] that
satisfy:

e I; and I; are relatively primefor1 < i< j < m.

e Forall 1 < j < n there exist positive integers e; ; such that P; = [/, I,

i=1 "4

Next theorem consists in computing a gcd-free basis of {J;" Vi ae

Theorem 7. For F a field, to compute a symbolic Jordan form of A € F™*" isin N C}.

Proof. By construction, a gcd-free basis of {Jf,k)}k,d will yield desired representations
Ai(A) of the eigenvalues (without repetition). Since they are divisors of the characteristic
polynomial of A4, the J‘Sk) are of degrees less than n.

We now give an algorithm to compute rapidly in parallel a gcd-free basis of a set
{Py, Ps,..., P,} of polynomials of degrees less than n. Without loss of generality, by
lemma 2 we may assume the P; are multiple multiplicity free (all the roots of P; have the
same multiplicity in a splitting field) for all 1 < j < n. The algorithm is a generalization
of the algorithm in [13] in the case where squafree decomposition cannot be computed. We
proceed in three steps: we compute a ged-free basis of two polynomials, then merge two
ged-free basis and finally compute a basis for the whole given set.

Let P(A) and Q(A) be two multiple multiplicity free polynomials, and G()) be their
gcd. Let g be the greatest squarefree divisor of G in a splitting ficld. We may write for some
P', @' € F[)])and p, ¢ positive integers:

P=Pyg, Q=Qy".
These decompositions are computed as follow:
Gp = g}’ = P/T(P,G), Gq = gq = Q/T(QvG)

If v = ged(p, ¢) and a and B are such thatap+ B¢ = v, let b( P, Q) = Gquf’ =g € F[)\].
A ged-free basis of { P, Q} consists of the polynomials {b( P, Q). »( P, G),»(Q,G)}. Using
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lemma 1, »(P,G),»(Q, G) then G, and G, are computed in N'C’%. Applying lemma 2, we
calculate p and g, since polynomials we consider are of degrees bounded by », a, 3 and v
are then computed in time O(log® n). From there, b( P, Q) is computed in A C%.

Let {F;}; and {Q;}; be two gcd-free basis. The above scheme is easily extended
to compute a merged basis. The entries of a merged basis are B; ; = 0(P;, Q;), P} =
r(P;,[1; Bi;) and Qj = r(Q;,[]; Bi;). Units entries may be discarded. The B;; are
computed simultancously in A’C%, then the P;* and Q; are obtained in N’'C%. by multipli-
cations and lemma 1.

To conclude the proof it remains to construct a gcd-free basis of a given set {Py,
P, ...,P,} (by lemma 2 the polynomials are assumed to be multiple multiplicity free).
Each P; is a gcd-free basis of { 7;}. The n bases P; may be merged by pairs, repeating this
process iteratively: the target basis is computed in log(n) steps. The whole computation is
done in N'C%. ' m]

If the eigenvalues of A are known, in other words, if the characteristic polynomial
of A can be completely factorized, the computation of the Jordan form is clearly NCp-
reducible to linear system solutions and can be computed in A C'} The next corollary
follows immediately, its proof is omitted. Given a field F', we refer to [9] for the definition
of the complexity class D ET r of the problems easier than the determinant.

Corollary8. For F afield, Ain F™*" and given the | distinct eigenvalues \; € F of A, to
compute the Jordan normal form of A is complete for DET F.

If the factorization of the characteristic polynomial of A is not known, the problem
consists in obtaining “good” representations of the eigenvalues. In this case, as seen above,
the complexity is dominated by the computation of a gcd-free basis.

5 Conclusion

To deal with algebraic numbers is a central problem in computer algebra. We have shown
how this can be done rapidly in parallel in a D5 philosophy, and how some crucial questions
of linear algebra can be solved. An interesting problem will be to develop and generalize our
model to still simplify its use. Those results have various applications especially in linear
algebra [7, 10, 21].
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