Available online at www.sciencedirect.com

NUCLEAR
INSTRUMENTS

3 i SCIENCE@DIRECT° & METHODS
v o IN PHYSICS
o &S RESEARCH

ELSEVIER Nuclear Instruments and Methods in Physics Research A 559 (2006) 207-210 Sectond

www.elsevier.com/locate/nima
High precision numerical accuracy in physics research
Florent de Dinechin®, Gilles Villard
Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
Available online 12 December 2005
Abstract

Concerns arise that the current standard of double-precision floating-point may no longer be sufficient for today’s large-scale
numerical simulations. One approach to solve this problem will be to switch to a wider floating-point format: the upcoming quadruple-
precision standard is introduced and compared to currently available software-based approaches. Another complimentary approach is to
use mathematical and algorithmic techniques to improve the accuracy of large floating-point programs and the confidence in the quality

of the result.
© 2005 Elsevier B.V. All rights reserved.

PACS: 02.70.—c; 07.05.Tp

Keywords: Numerical simulation; Accuracy; Precision; Floating-point; Quadruple-precision

1. Introduction

Floating-point (FP) is the most used representation of
the reals. The standard for hardware FP in current
workstations and mainframes is double-precision, a format
with 53 bits of mantissa (translating to roughly 16 decimal
digits) and 11 bits of exponent (or a range between 107"
and 10°°7). This is more than enough to represent most
values manipulated by physicists. However, current com-
puters are able to perform billions of FP operations each
second, and some physical simulations will require trillions
of FP operations. As each operation may introduce a tiny
rounding error, there is increasing concern that the
accumulation of these errors will render the final result
meaningless [1].

Do such huge computations now require a switch to
quadruple precision (or quad), a new format which would
bring 32 decimal digits? Bailey [2] and Briggs,' authors of
software packages for quadruple-like precision, have
applied them to the study of many physical phenomena,
from climate and supernova to muon decay. Thus software

*Corresponding author. Tel.: +33472728503.
E-mail address: Florent.de.Dinechin@ens-lyon.fr (F. de Dinechin).
'http ://members.lycos.co.uk/keithmbriggs/doubledouble.
html

0168-9002/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
do0i:10.1016/j.nima.2005.11.140

approaches are available now, and hardware quad can be
expected in the near future. They are reviewed in Section 3,
with an evaluation of their performance overhead.

Confidence in a floating-point program, however, should
not depend only on the ability to increase the number of
digits. Many other techniques exist to evaluate, improve or
validate numerical code. They are surveyed in Section 4.

Before addressing these main topics, the next section
reviews the floating-point features available in current
computing systems.

2. Floating-point in 2005

The IEEE-754/IEC 60559 standard for floating-point
arithmetic, adopted in 1985, has solved many of the
reliability and consistency problems that could be experi-
enced with earlier floating-point implementations. This
standard defines the arithmetic: it specifies which beha-
viours are valid for one isolated FP operation in a
computer. However, the translation of a numerical code
to a succession of such operations depends on a language
semantics, implemented by a compiler. Then, the choice
among the various IEEE-754 valid FP behaviours is largely
dependent on the operating system. This section reviews
these questions.

www.elsevier.com/locate/nima
http://members.lycos.co.uk/keithmbriggs/doubledouble.html
http://members.lycos.co.uk/keithmbriggs/doubledouble.html

208 F. de Dinechin, G. Villard | Nuclear Instruments and Methods in Physics Research A 559 (2006) 207-210

2.1. The IEEE-754 standard

This standard defines defines the usual floating-point
formats (single, double, and a family of double-extended
precisions) and precisely specifies the valid behaviours of the
basic operators +, —, x, -~ and NE An example of behaviour
mandated by the standard is for the operators to return the FP
number uniquely defined as the result of the exact operation
applied to the arguments, then rounded to the nearest FP
number. With such well-specified operators, one may prove
properties of FP computations [3]. This standard was also key
to enable FP portability: a computation may be performed on
different computers and produce exactly the same results.

2.2. Floating point hardware in 2005

Virtually all recent computers are able to support the
IEEE-754 standard efficiently through a combination of
hardware and software. Current PC and workstation
processors offer hardware double-precision operators for
+, —, %, and at least hardware assistance for = and /.
Peak performance is typically between 2 and 4 double-
precision FP operations per clock cycle for +, — and x,
with much slower +— and _/ [4]. However, most processors
go beyond this common denominator and offer faster or
more accurate operators. Two examples follow.

Power/PowerPC and Itanium processors have fused
multiply and add (FMA) operators: one instruction performs
the operation a x b + ¢, with only one rounding error with
respect to the exact result. This is usually both faster and
more accurate than a multiplication followed by an addition.

Pentium-compatible processors by Intel and AMD, as well
as the HP/Intel Itanium processors, also provide hardware
double-extended precision formats with 64 bits of mantissa
(about 20 decimal digits) and an extended exponent range.
The FP operators of these processors can be instructed to
round to single, to double, or to double-extended.

2.3. Languages, compilers and processors

Due to this hardware variety, even with a computer
supporting IEEE-754, being in control of the details of the
FP computations of one’s program (for instance to ensure
portability) still requires some efforts.

Firstly, one has to know his language. To take just an
example, in Fortran, an expression written a/b x ¢/d may
be computed either as (a/b) x (c/d), or as (a*¢)/(b*d). A
Fortran compiler may choose the parenthesing it judges the
more efficient. These two expressions are mathematically
equivalent, but do not lead to the same succession of
rounding errors, and therefore possibly to different FP
results.” However, the Fortran2003 standard (ISO/IEC

In the development of the LHC@Home project, such an expression,
appearing identically in two points of a program, was compiled differently.
This unexpected behaviour would very rarely break the distributed
simulation.

1539-1:2004(E)) also states that if parentheses are given in
the source code, they should be respected: the programmer
is in control of this question.

Secondly, one has to know his compiler, which is in
charge of translating the program into a succession of
operations. As an example, to comply with IEEE-754, a
compiler should not use FMA operators,® except to
perform additions a@x1+4+5b and multiplications
axb+0. Of course, the default behaviour of most
compilers will be to try to fuse additions and multi-
plications which, again, usually improves both speed and
accuracy. If one wants portability between, for instance, a
PC (without FMA) and a PowerMac (with FMAs), one
has to find the compiler options—they always exist—that
prevent fusing x and +.

Finally, one has to know his operating system, which is
in charge of setting some aspects of the processor
behaviour, in particular rounding. For instance, the same
C program, compiled by the same compiler in a way
compliant with the C standard (ISO/IEC 9899:1999) may
lead to different results on the same PC hardware under
Solaris and Linux, because by default the first allows
promoting double computations to double-extended (who
will complain since it is more accurate and no slower?), and
the second does not (probably for consistency with Solaris
systems without double-extended hardware). Again, the
programmer is in control: a call to a standard C99 function
(which is a call to the OS) will set the system to a common
behaviour.

These examples show that standard compliance is good
for portability, but usually bad for performance and
sometimes accuracy. The important thing is that, thanks
to existing standards, it is possible for the programmer to
control to the last bit the behaviour of every last FP
operation of his program.

3. Software and hardware for quadruple precision

The quadruple precision format, (hereafter quad), is
already part of the IEEE Standard for Shared Data
Formats 1596.5-1993. This standard does not specify the
operations, which should be in the upcoming revision
of TEEE-754. Quoting the draft of this revision as of
August 2005,* quad is “a 128-bit quadruple precision with
112 fraction bits and implicit integer bit”” whose rationale is
to “match existing hardware and software implementa-
tions, and discourage undesirable alternatives such as
double-double” (this last point is explained below). These
existing software implementations are integrated in com-
pilers from companies like Sun, HP and Intel. To our
knowledge, the only hardware implementation can be
found in some IBM mainframes, and very little documen-
tation exists on it.

3The next revision of the IEEE-754 standard should include the FMA.
4Available at http://754r .ucbtest.org/

http://754r.ucbtest.org/

F. de Dinechin, G. Villard | Nuclear Instruments and Methods in Physics Research A 559 (2006) 207-210 209

Table 1
Cost of double-FP operations

Double-FP operation Cost in FP operations

— 8 +, one <
9%, 15 4+ (or 7 FMA)
2/,8x,17+ (or much less with
FMAs)

\X:‘r

3.1. Quad versus double-double

An alternative to this format is the double-double
format, in which the unevaluated sum of two FP numbers
is used to represent a number with twice the precision, as
1.234 x 10° + 5.678 x 10! could be used to represent the
number 1.2345678 x 10°. Algorithms for computing on
such double-FP numbers were given by Dekker [5] and
have been improved since then [6,7]. Some Fortran
REAL*16 implementations have used this format intern-
ally. The cost of the basic operations is summarized in
Table 1 (the actual cost in cycles is very machine
dependent, and many tricks can be used to improve it in
special cases).

This idea can be extended to arbitrary multiple precision
[8,9], but with current hardware, the simpler approach
where the mantissa is stored in an array of integers (see for
instance MPFR® based on GMP) is more efficient for
precisions larger than quad.

Performance of software quad is also much lower than
that of hardware double, but it is difficult to compare quad
and double-double: the available quad implementations are
not libraries, but directly integrated in compilers. A library
approach suffers from the overhead of function calls
(several tens of cycles on modern systems, or the equivalent
of 5-10 FP operations), and prevents many optimizations
which a compiler may perform.

Both software quad or software double-doubles have
their pros and cons. Conversions between double and
double-double are trivial, whereas conversion between
double and quad has a cost. Quad has a larger exponent
range that double-double, and 113 bits of significant versus
53+ 53 =106 for double-double. A more fundamental
problem with double-double is that blindly replacing all the
double operations of a working program with double-
double may lead to a non-working program (here “work-
ing” means for instance without overflows and under-
flows). This does not happen when going from double to
quadruple (of course a non-working program may be
converted to a working one). Such questions are important
enough for the IEEE-754 revision committee to describe
the double-double format as ““indesirable”.

However, well controlled use of double-double techni-
ques allows for very efficient implementation. An example
is the quad elementary functions libraries by HP and Intel,

5http: //www.mpfr.org/

which internally use double-double-extended arithmetic
(and not the quad operations developed by these same
companies). The published performance of these functions
[10] is roughly ten times slower than the corresponding
double-precision function. This is consistent with the
previous table (taking into account that a quad function
must use a more accurate algorithm than a double
function).

As a conclusion, one should expect the performance of
optimized software quad or double-double to be in the
order of 10 times slower than that of double precision.

3.2. Tradeoffs for hardware quad

Let us now consider hardware quad implementations.
The algorithmic space and time complexities of current
implementations of FP operators [4] are summarized in
Table 2 (the reader should be aware that the constraints of
current deep submicron, multi-gigahertz VLSI technology
add many other dimensions of complexity).

One would conclude from this table that going from
double to quad means roughly doubling the silicon cost of
the adder, quadrupling that of the multiplier, and probably
adding one cycle to the latency of each operation. With the
silicon budget of current high-end microprocessors, and
considering that the FP unit rarely occupies more than %Oth
of the area, this could be implemented with current
technology, and therefore will happen as soon as the
market justifies it.

However, a hardware quad operation will still be more
expensive than a double one. Consider the evolution of FP
hardware in the x86 family. The initial double (extended)
operators were supplemented with the SSE unit, which was
(roughly speaking) able to perform either one double-
precision operation, or two single-precision operations in
the same time. Then the SSE2 unit was added with a 128-
bit data path which may perform either two double-
precision operations, or four single-precision operations.
The next step could be for this unit to support quad
operation. Indeed Akkas and Schulte have designed a unit
capable either of quad multiplication in three cycles, or of
two parallel double multiplications in two cycles [11]. Here
the raw performance ratio of quad to double is equal to 3.
They report a cost of 146,000 gates (versus 70,000 for a
double-precision multiplier), and a delay of 6.11 ns (versus
4.68 ns). All this is consistent with Table 2. Note that the
FP unit is only one aspect of hardware quad in a processor:
another challenge is to feed it with data, requiring 128-bit

Table 2

Space and time complexity of FP operations (n is the mantissa size)
Operation Space Time

+, — nlog(n) log(n)

X n? log(n)

http://www.mpfr.org/

210 F. de Dinechin, G. Villard | Nuclear Instruments and Methods in Physics Research A 559 (2006) 207-210

registers and buses running at full speed. However, this
challenge is already met e.g. in the SSE2 extensions.

The conclusion here is that it is very probable that
hardware quad, when it comes, will be at least twice slower
than double precision. Another desirable—but currently
inaccessible [12]—tradeoff would be a quad unit also able
of operations on double-precision complex numbers and
intervals (see below).

4. Improving confidence in FP programs

Blindly replacing all the double-precision operations
with quad-precision operations may solve some accuracy
problems, but not all. It may even increase the confidence
in a nevertheless wrong result, if for example the
discretization of the problem is inadequate and introduces
methodological errors much larger than the rounding
errors.

To start with, rounding is not always the culprit of a
loss of accuracy. In the subtraction 1.23456 — 1.23455 =
1.00000 x 107>, the zeroes of the mantissa of the result
correspond to digits absent from the two inputs, and hence
hold no valid information: the result has only one valid
digit left! However, this subtraction was exact, without any
rounding error. This phenomenon is called cancellation.
This example and others can be found in a FP tutorial by
Goldberg [3] (versions of which are freely available on the
web) or on the web page of W. Kahan.®

Physical knowledge may come to the rescue here: as
most FP variables can be related to physical or geometrical
quantities, the programmer may check whether a cancella-
tion has no effect on the simulation (because it corresponds
to a very small value of some physical quantity, whose
physical influence will be negligible anyway), or in contrary
if it should be considered seriously (if for instance it
affects the angle of a vector describing the motion of a
particle, so that its effect will be amplified by the
subsequent motion of the particle). Physical knowledge
will also help decide where parentheses should go in a
Fortran arithmetic expression to maximize the accuracy of
its evaluation, etc.

More general error analysis techniques help quantify in a
mathematical way how equations are sensitive to roundoff
errors [13]. Other mathematical techniques can be im-
plemented as automatic tools. According to a survey by

6http: //www.cs.berkeley.edu/~wkahan/

Kahan,” the safest of these approaches is interval
arithmetic [14], which replaces all the FP variables with
intervals guaranteed to hold the corresponding real. It is
possible to almost automatically convert a FP program to
an interval one. However, this will likely expose places
where accuracy is lost, but not repair the program: this still
requires a programmer’s knowledge, and maybe algorith-
mic changes: for the same computation, different algo-
rithms will have different numerical behaviours. A typical
example is the sum of a large array of numbers: its
accuracy may be improved by sorting the numbers first,
then summing them in increasing order of magnitude.
Another solution is the use of accurate sum algorithms [15].
All these techniques and tools are complimentary (see
for instance a comparison in [16]). At the very least,
awareness of some of these techniques teaches the limits of
floating-point and how to get around them. They will also
help the performance-conscious programmer to use slower
quadruple-precision computing only when needed.

References

[1] U. Kulisch, Does the computer result really solve the problem?
Computer Zeitung, September 6, 2004 (in German).

[2] D.H. Bailey, Comput. Sci. Eng. 7 (3) (2005) 54.

[3] D. Goldberg, ACM Comput. Surveys 23 (1) (1991) 5.

[4] M.D. Ercegovac, T. Lang, Digital Arithmetic, Morgan Kaufmann,
Los Altos, CA, 2003.

[5] T.J. Dekker, Numer. Math. 18 (3) (1971) 224.

6] D. Knuth, The Art of Computer Programming, vol. 2, Addison-

Wesley, Reading, MA, 1973.

[7] S. Linnainmaa, ACM Trans. Math. Software 7 (3) (1981) 272.

[8] R.P. Brent, ACM Trans. Math. Software 4 (1) (1978) 57.

[9] Y. Hida, X.S. Li, D.H. Bailey, Algorithms for quad-double precision
floating-point arithmetic, in: 15th IEEE Symposium on Computer
Arithmetic, June 2001, pp. 155-162.

[10] Peter Markstein, A fast quad precision elementary function library
for Itanium, in: Real Numbers and Computers, 2003, pp. 5-12.

[11] A. Akkas, M.J. Schulte, A quadruple precision and dual double
precision floating-point multiplier, in: Euromicro Digital System
Design, IEEE Computer Society, Silver Spring, MD, 2003.

[12] N. Holmes, W. Kahan, D. Zuras, Computer (2005) 7.

[13] N.J. Higham, Accuracy and Stability of Numerical Algorithms,
SIAM, Philadelphia, PA, 1996.

[14] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Clifts, NJ, 1966.

[15] Y. He, C.H.Q. Ding, J. Supercomputing 18 (2001) 259.

[16] H. Hasegawa, Utilizing the quadruple-precision floating-point
arithmetic operation for the Krylov subspace methods, in: SIAM
Linear Algebra, 2003.

Twww . cs .berkeley.edu/~wkahan/Mindless.pdf

http://www.cs.berkeley.edu/wkahan/
http://www.cs.berkeley.edu/wkahan/
http://www.cs.berkeley.edu/wkahan/mindlesspdf
http://www.cs.berkeley.edu/wkahan/mindlesspdf

	High precision numerical accuracy in physics research
	Introduction
	Floating-point in 2005
	The IEEE-754 standard
	Floating point hardware in 2005
	Languages, compilers and processors

	Software and hardware for quadruple precision
	Quad versus double-double
	Tradeoffs for hardware quad

	Improving confidence in FP programs
	References

