A STUDY OF COPPERSMITH’S BLOCK WIEDEMANN
ALGORITHM USING MATRIX POLYNOMIALS

GILLES VILLARD

ABSTRACT. We analyse a randomized block algorithm proposed by Copper-
smith for solving large sparse systems of linear equations, Aw = 0, over a
finite field K =GF(q). It is a modification of an algorithm of Wiedemann.
Coppersmith has given heuristic arguments to understand why the algorithm
works. But it was an open question to prove that it may produce a solution,
with positive probability, for small finite fields e.g. for K =GF(2). We answer
this question nearly completely. The algorithm uses two random matrices X
and Y of dimensions m X N and N x n. Over any finite field, we show how
the parameters m and n of the algorithm may be tuned so that, for any input
system, a solution is computed with high probability. Conversely, for certain
particular input systems, we show that the conditions on the input parame-
ters may be relaxed to ensure the success. We also improve the probability
bound of Kaltofen in the case of large cardinality fields. Lastly, for the sake of
completeness of the generalization of Wiedemann’s work to the matrix case,
we will briefly sketch a deterministic block algorithm.

1. INTRODUCTION

The randomized method proposed by Coppersmith [9] solves large sparse systems
of homogeneous linear equations Aw = 0, w # 0. Throughout the paper A will
be a singular N x N matrix over the Galois field with ¢ elements K =GF(q)
and w a vector of N unknowns. One fundamental application of this problem is
integer and polynomial factorization, where such linear systems arise with N over
200,000 [23, 25, 19]. This has motivated several authors to develop fast finite-field
counterpart to numerical iterative methods. The conjugate gradient method has
been used in [23], the Lanczos method in [23, 12] and the block Lanczos method
in [8, 29].

But up to now, only the probabilistic analysis of Wiedemann [39] was giving
a provably reliable and efficient method to solve Aw = 0 over small fields. This
method is based on finding relations in Krylov subspaces using the Berlekamp-
Massey algorithm [28]. The same analysis could be applied to bound the probability
of success of the (bi-orthogonal) Lanczos and conjugate gradient algorithms with
look-ahead of Lambert [24]. Anyway, these various approaches are very similar:
they can be understood in a unified theory [24].

But since they use generating polynomials of scalar sequences, these latter algo-
rithms impose limitations if one wants to perform several operations at a time. To
solve this problem, Coppersmith [9] modifies the approach of Wiedemann and uses
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matriz sequences. This should be viewed as a block version of the same algorithm.
Blocks enable one to take advantage of simultaneous operations: either using the
machine word over GF(2) [9] or a parallel machine [18]. Coppersmith’s algorithm
is very powerful [9, 19, 26] but raises theoretical questions. We are going to answer
some of them in this paper.

We refer to §2 for basic definitions and to §3.1 for a detailed presentation of the
block algorithm. We only consider the method intuitively in this introduction. In
the Wiedemann algorithm [39], one chooses at random a row vector z and a column
vector y and one computes the lowest degree polynomial g(\) = go + g1\ + ga\?
in K[)] that linearly generates the sequence h; = xA’y, 0 <i < 2N — 1. We mean
that g(\) satisfies for all 0 < i < 2N —d — 1:

gohi + grhig1 + ...+ gahiya = x(goAiy + g Aty + .+ gdAi'i'dy) =0.

With high probability, this polynomial is the minimal polynomial 7% (A) of y with
respect to A and is such that 7% (0) = 0 (one does not need the minimal polynomial
of A but only a factor of it):

) = g N + g N+ g 0<l<d, g £0,
Vi, 0 <i<2N —d—1:gA%y 4+ g ATy 4 4 gaAdFiy = 0.

Taking w = g A"y + ...+ g4A% 'y above relation shows that w is a solution:
Aw = 0. Instead of vectors z and y, the modified algorithm of Coppersmith [9]
uses a random matrix X with m rows and a random matrix Y with n columns. Tt
first computes the sequence of m x n matrices H; = XA'Y,i =0,...,L — 1 with
L = N/m+ N/n+ O(1). By analogy with the scalar case we will see in §2 that
one may define vector or matriz generating polynomials for that sequence. With
high probability, such polynomials are also generating polynomials for the sequence
{A'Y};50. They will lead to one or even several (when they exist) independent
solutions w. Note that computing generating polynomials is a main subproblem
of this approach. However, we will not investigate this question in detail in this
document, but only make some remarks in relation with our probabilistic analysis
(see §3.2 and §9).

The method of Coppersmith is randomized, essentially in the sense that a gen-
erating polynomial for {XAiY}ogigL—1 may not be a generating polynomial for
{A"Y};>o and thus may not allow the computation of a solution w. Apart from
being influenced by the work of Wiedemann, our study of the block algorithm, will
use two main previous results. The first one, of Coppersmith [9], relies on the notion
of pathological input matrix A. For matrices having “too many” eigenvalues with
high multiplicities (compared to m and n) the algorithm might fail. Using heuristic
arguments, Coppersmith claims that if the input matrix A is not pathological then
the algorithm succeeds. In addition, he observed experimentally that it is suffi-
cient to consider the first L = N/m 4+ N/n + O(1) terms of the sequence {H;};.
The second result has been given by Kaltofen [18]. Tf m4()) denotes the minimal
polynomial of A, it is possible to precondition A so that degms(A) = rank A + 1.
Then, if the field K has enough elements, the algorithm is guaranteed to compute
a solution. The problem is to provide a full probabilistic analysis. We are going
to establish that for most matrices A and for most choices of the input parameters
(or blocking factors) m and n, the algorithm succeeds with non-zero probability.

Trying to answer the question “why is there no pathological matrix for Wiede-
mann’s algorithm 7?7 — in the scalar case — we are first led to generalize his work,
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knowing that complementary arguments will be necessary — for the matrix case.
Wiedemann in §VI of [39], computes the probability that sequences {zA'y};>q and
{Aiy}izo have the same generating polynomials. This will be extended to the ma-
trix case at §8.1. The concept of pathological matrix has no sense at this stage.
Then, one must determine the number L of terms H; actually needed for the com-
putation. In the worst case, it may be necessary to consider L = N + N/n, thus
L = O(N) terms as in the scalar case. Fortunately, as observed by Coppersmith,
for certain matrix A, only I = N/m 4+ N/n + O(1) terms are required in any case
— for any value of m and n. Precisely, the matrix A is pathological if this is not
true. This concept is thus related only to the latter part of the analysis and to the
values of m and n.

From these remarks, we will improve previous results in two directions by em-
phasizing the role of m and n. On the first hand, we prove that the algorithm may
succeed, with a reasonable constant probability, provided that m > n+2. For that,
we theoretically study the additive term A = O(1) in L = N/m+N/n+O(1). This
gives an algorithm that works for any field K and for any input system, and thus
avoids the notion of pathological matrix. More precisely, theorem 9.1 will show
that

Probx y of success > <i>(m, n, A) + (:)(m, n, A)g=4
where, for m large enough with respect to n, <i>(m, n, A) will be close to a constant
between 1/4 and 1 and (:)(m,n,A) will be close to a constant between 1 and 3.
Using A additive terms of the sequence the probability of success will be made
arbitrarily close to <i>(m, n, A).

Alternatively, we also show that the condition on m and n can be relaxed. We
prove that — as heuristically justified by Coppersmith — the algorithm always works
for non pathological matrices. On the other hand, in the case of large fields, we will
see that the preconditioning required by Kaltofen is not necessary, the algorithm
computes a solution for any input matrix. This will result in a better probability
bound.

By analogy with the Wiedemann’s deterministic algorithm [39], we will conclude
the paper with a modification of the above block version. Using the material of pre-
vious sections we will briefly sketch a deterministic block algorithm for computing
matrix generating polynomials.

The paper is organized as follows. After basic definitions in §2 and the presenta-
tion of the block algorithm in §3, we will characterize the “good blocking matrices”
in §4. We will precisely understand which conditions X and Y must satisfy, so
that the sequence {XAiY}ogigL—1 may be used instead of the sequence {AiY}iZO.
Next, §5 will give two useful technical facts on generating polynomials. We will
then characterize the “generic” behaviour of the algorithm by considering matrices
X and Y with indeterminate entries in §6. This characterization will immediately
apply over large fields to bound the probability of success. It is also useful to ex-
plain what are the expected generating polynomials of the input random sequence.
The main probabilistic analysis is divided into three sections. After the introduc-
tory §7, we will give the first technical results in §8. The reader will then find the
final theorems in §9. Paragraph 9.1 is devoted to small fields and §9.2 will focus on
large cardinality fields. Finally, before conclusion, §10 will be devoted to the block
version of the Wiedemann’s deterministic algorithm.
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By an abuse of notations, we will use “0” to denote either scalars, vectors or
matrices. The dimension will be deduced from context, as it will for I, which
denotes the identity matriz. The degree of a matrix is the maximum degree of its
entries, its determinantal degree 1s the degree of its determinant. A wnimodular
malriz is a nonsingular matrix whose determinantal degree is 0. Two matrices
are right equivalent (resp. left) if they differ by a right (resp. left) unimodular
multiplier. Let M, », (K) and My (K) respectively denote the set of mx n matrices
and of N x N matrices over K.

2. ABOUT REALIZATIONS AND GENERATING POLYNOMIALS

This section is intended to give some definitions and facts about realizations and
about generating polynomials of matrix sequences. The formalism we introduce
was not used by previous authors, but will make easier our presentation.

2.1. Realizations of rational matrices. Let ¥ = (X, A,Y) be a triplet of ma-
trices in My, v (), My (K) and My, (K) respectively. We also consider two
polynomial matrices N (A) in M, » (K[A]) and D(A) nonsingular in M,, (K [A]) such
that the right matriz fraction description H(A) = N(A)D71(A) in My, (K (X)) is
strictly proper i.e. the degree of the numerator polynomial of each entry of H ()
is less than the degree of the denominator polynomial.

Definition 2.1. [41]. If X(A\] — A)~'Y = H()) then ¥ = (X, A,Y) is called an
order N realization of H(A). Furthermore, since H(A) is strictly proper, it has a
formal expansion at the infinity

(2.1) H(\) = iHi/\‘i‘l

where the H;’s are matrices in M, ,(K), we have
(2.2) XAY = H; for i=1,...
and X is also called an order N realization of the above matrix sequence.

The denominator matrix D(A) leads to the notion of generating polynomial. Tf
D(A) = Do+ DiA+ ...+ DgA? with D; in M, (K), 0 < j < d, then by computing
H(A)D(A) we get

NQA) = (H A"+ HA™2 4+ ) (Do 4+ Did+ ...+ Da%).
Since N()) is a matrix polynomial, comparing the coefficient of A=, i > 0, on both
sides of the latter equation leads to
(23) Viz0ZHZ'D0+HZ'+1D1—|—...—|—HZ'+dDdIO.
Any such nonsingular matrix polynomial D(A) is called a right generating matriz

polynomial for the matrix sequence {H;}:2,. As presented in Coppersmith’s pa-
per [9] or in the analysis proposed in [18], we may also consider D(X) column by

column. Tf DUW(X) = D(()j) + ng)/\ + ...+ ng)/\d is the j-th column of D(X) we
get, the vector version of (2.3):
(2.4) Vi>0: H;DY) + Hipy DY) + .+ HiygDV) =0

and the vector polynomial is called a right generating vector polynomial for the
sequence.
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To fully characterize and classify the generating polynomials, we use a module
theoretic approach as done for instance in [35, 4] for matrix Padé approximants.
For the classic facts in the ongoing presentation we refer to [16].

The set of the right generating vector polynomials for the sequence {H;}52, is a
K[A]-submodule W of K™[A]. We know that such a submodule W has a basis of at
most n elements. Since the columns of the diagonal matrix diag(ma(A), ..., ma (X))
— where m4(A) is the minimal polynomial of A — are all in W, any basis of W must
have exactly n elements.

All the bases — arranged as columns in a matrix — of W differ by a right uni-
modular multiplier. Thus the set of the right generating matrix polynomials of a
sequence (2.2) can be uniquely determined by choosing a particular representative.
As emphasized in [6, 37] several matrix polynomial normal form can be chosen. In
next paragraph we focus on the Popov form which provides a notion of minimal
polynomial.

2.2. Minimum generating polynomials. From a complexity point of view it
is important to handle relations (2.3) or (2.4) of minimal length. We will define
minimal bases for W, these will correspond to minimal bases of vector spaces [13,
36]. In addition, to extend the notion of minimal scalar polynomial, we will speak
(by abuse of language) of minimal generating matriz polynomial.

A basis given by the columns of a matrix D(A) will be minimal (see theorem 2.4
below) when D(A) will be column reduced. Uniqueness will be ensured by the Popov
form. Let us define this latter form. For D(A) in M, (K[A])let d;, 1 < j < n, the
J-th column degree, be the degree of the j-th column of D(X). The coefficient vector
of A% is the j-th leading column coefficient vector. We let [D(A)]. be the matrix
of these leading vectors.

Definition 2.2. [33]. A matrix D(]) is said to be column reduced if rank [D(N)]. =
rank D(A), thus its determinantal degree is deg det D(\) = ¥7_, d;. If, in addition,
D(X) satisfies the following properties, we shall say that D(A) is in Popov form:

1) the column degrees are increasingly ordered;

11) the last entry of degree d; in each column is monic and is called the pivot

of column j with row index r;;

1) if d; = dy and j < k then r; < ry;

1v) all the entries in a row containing a pivot element have degrees lower than

that of the pivot.

The Popov form is normal in the following sense:

Theorem 2.3. [33, 17]. Any two right equivalent matrices in M, (K[X]) are right
equivalent to a same unique matriz in Popov form.

Here is an important classical fact that identifies column reduced forms and
minimal bases.

Theorem 2.4. [13]. Let D(X) be a basis of W with j-th column degree d;, 1 <
J < n. For any element w(X) of W let w(X) = D(A)v(X). Then, D()) is column
reduced if and only if it is a minimal basis in the sense that any w(\) satisfies:

(2.5) deg w(X) = maxje,{d; + deg v;(A)}

where v is the set of indices j such that the j-th entry v;(X) of v(A) is non-zero.
Furthermore, any two minimal bases of W have the same set of column degrees
{d;}1<j<n, they are called the Kronecker indices of W.
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If the indices are arranged in increasing order, identity (2.5) shows that the
corresponding elements of W are the first linearly independent ones with minimal
degrees [13, 17]. This motivates the following definition.

Definition 2.5. The unique minimal basis Dy ()A) in Popov form is called the
minimal (right) generating matriz polynomial for the matrix sequence {X A'Y }£2,,.

We may also look at this characterization column by column. For instance,
the first column degree dy of Dy (A) is the smallest possible length for a vector
recurrence of type (2.4):

(2.6) Vi> 01 HiDWy o+ Higi D)) + ...+ Hiya, DYy, = 0.
Example 2.6. Consider the matrix sequence {H;};>o over GF(2):
[01][11][10] [01][11][10]
O 1t {1t 1’1 o0|’10 1|1 1’1 0| "
for which ) )
DM)I[A +$+1 ltA:

is a generating polynomial:

0 1
The column Popov form of D(A) is

DW“):[? 1iA]'

For instance, the first column of Dy (A) gives a vector recurrence of smallest length:

1 1 1 0 1 1 .
HZ|: :|+HZ'+1|:0 0:|+Hi+2|:0 0:|—0f01'0§2§4~

1 .
Hi[$]+Hi+1[0 ] =0for0<i<h.

Minimal bases appear in various domains and especially in Padé approximation
theory. The reader may refer to the uniqueness conditions for the matriz minimal
Padé problem in [6] and to the o-bases in [3].

3. COPPERSMITH’S BLOCK WIEDEMANN ALGORITHM

Using above terminology, we now give the Coppersmith’s version [9] of Wiede-
mann’s algorithm for the solution of Aw = 0. The matrix A is singular and square
of dimension N over a field K. In §3.1, we follow the notations of Kaltofen [18] and
his variant of the method. We will then briefly discuss in §3.2 of the computation
of generating polynomials.

3.1. Coppersmith’s algorithm for singular systems. The algorithm picks up
a random matrix X in M,, y(K) — say a left blocking matriz — and a random
matrix Y in My, (K) —say a right blocking matriz. The first step consists in com-
puting the first terms of the sequence {XA'Y}$2,. Coppersmith has introduced
an additive term in O(1) as a safety measure and has recommended to compute
N/m+ N/n + O(1) terms of the sequence. This additive term will be denoted by
A and will be called the shift parameter of the algorithm. We refer to §8 and to §9
for a detailed study of the theoretical behaviour of the algorithm with respect to
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that key parameter. We also refer to the experiments reported in [26, 19].

Algorithm. Coppersmith’s block Wiedemann.

Input: A a N x N matriz over K and the shift parameter A, a non-negative
integer.

Step 1. Pick up random matrices X, Y. Let 7 = AY.

Step 2. Let & = [N/m] and §, = |[N/n]. Compute

Hi=XA'Z, i=0,...,00+0, + A —1.

Then, solutions w such that Aw = 0 are constructed from generating vector poly-
nomials for that sequence.
Step 3. Compute a generating vector polynomial

gN) =go+ g A+ ...+ g\ € K™[)]
of degree at most 8, for the sequence {X A'Z}; i.e. such that:
(3.1) XA Zgo+ XA Zg1 + .. 4+ XA 79, = 0.

foro<i<é§+A-1.

With high probability, as we will prove later (see theorem 9.1 and theorem 9.6),
the left projection by X does not modify the invariants of the sequence and g(A) is
a generating vector polynomial for {A?Z};:

0<i<&{+A—-1:A4"Zg0+ A Zgy + ...+ AT 79, =0.

Let g; be the first non-zero vector coefficient of g(A). Since 7 = AY, above identities
give in particular:

(32) AT (Vg +AYV g+ ...+ AT Y g.) = A'Zg 4+ .+ AZga = 0.

The left-hand side leads to a solution.

Step 4. Compute w =Yg + AY gip1 + ...+ ATV g,.

With high probability, @ is a non-zero vector (again, see theorem 9.1 and the-
orem 9.6). From identity (3.2) we know that we can find an integer ¢ such that
At = 0.

Step 5. Compute the first integer ¢ such that A'w = 0.

Output: If 1 > 1 then w = A"~ else w = 0.

The algorithm is randomized concerning two points: identity (3.2) may be false
and the algorithm may return the trivial solution. The former point will be the ma-
jor concern of subsequent sections, the probability of getting a non-trivial solution
has been bounded by Coppersmith.

3.2. One or several generating polynomials. As noticed in the introduction,
a main subproblem of the solution of Aw = 0 is the computation of one or several
generating polynomials for the sequence { X A'Y };. Indeed, it seems that for several
known methods, one may compute one or several generating polynomials at the
same asymptotical cost.

Typically, Coppersmith has proposed a generalization of Berlekamp-Massey al-
gorithm [28] to the matrix case. Tt can be seen that — as precisely stated in the
scalar case in [11] — the algorithm is strongly related to Euclidean division [1, 6].
The reader may refer to [38] for a detailed study of these relations and a proof of
the correctness of the algorithm. Its cost is O((m 4 n)N?) arithmetic operations
in K. If Dz()) is the minimal generating polynomial for {X A7} and has j
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columns of degree less than §,, then Coppersmith’s method actually computes —
with high probability — j independent generating polynomials (independent over
K"[A]) [38]. This will motivate us, in §9, to bound the probability of success either
to compute one generating polynomial or several ones.

The same remarks remain valid if we use instead a method based on Padé approx-
imation. This approach enables one to use the superfast deterministic algorithm
in [3]. Using FFT-based polynomial multiplication, generating polynomials will be
computed at deterministic cost O((m+n)>m(N/n)log(mN/n)loglog(mN/n)) [38].

Another point of view may be found in [22]. In the current context, the reader
will refer to [18] for a survey of the main probabilistic results and other references.
Computing a generating polynomial can be done by finding a vector in the kernel
of a block-Hankel matrix. Rewritting (3.1) in matrix form gives that a generating
polynomial g(A) = go + g1X + ... + gaA? in K"[)\] is found by solving:

Hy Hy ... Hy go
. H1 Hz Hd_|_1 g1

M@ +Ad+1)§= ) ; .1 =0
Hsjyn—1 .. .. Hsqpagpa— 9d

where for any integers dy and da, M (dy, ds) denotes the block-Hankel matrix whose
blocks are the {H,ij_2}i;’s, 1 < i < dy and 1 < j < dy. Thus, step 3 of the
block algorithm can be implemented as the computation of vectors in the ker-
nel of M (6 + A,0, + 1) or of the associated block-Toeplitz matrix. Using the
Bitmead-Anderson/Morf method [5, 30], this can be done at probabilistic cost
O((m 4+ n)?>Nlog® N loglog N) [18].

4. CHARACTERIZATION OF GOOD BLOCKING MATRICES

We have to characterize “good” matrices X and Y. This characterization is
divided into two parts. They both study the relationship between the value and
properties of the minimal generating polynomials and of the triplet ¥ = (X, A,Y)
that defines the sequence. In §4.1 we see how the minimal polynomial of {A7Y};
and of {X A'Y'}; can coincide. In §4.2 we focus on the length of the sequence that
must be considered.

4.1. Blocking matrices and Krylov subspaces. Let < Y >= span(V, AY,
A?Y,...) and denote by Acys the restriction to < Y > of the linear operator
associated to the matrix A. The non-unity invariant factors (see appendix A) of
Dw(A) depend on the spectral structure of A and on the choice of (X,Y) with
respect to that structure.

Theorem 4.1. Let Dw(X) be the minimal generating matriz polynomial of the
sequence associated to a strictly proper rational matriz H(X). Any realization ¥ =
(X,A)Y) of H(X) satisfies deg det Dy (A) < order ¥ = dim A and there exists
a realization (X,, As,Y,) such that the equality holds. The non-unity invariant
factors of A, and of Dw(X) are the same.

This is a classical result. The proof may be found in several papers. We refer to
[7, 40] or to [17] and references therein. Given Dy (A), next result states precisely
how to choose X so that the generating polynomial remains unchanged. It is proven
using also classical arguments from linear system theory (see [17] for instance).
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Lemma 4.2. Let Dy () and Dw(A) be the minimal generating matriz polynomials
of the sequences { A'Y }2, and {X A'Y }$2,. Let Ny denote the dimension of <Y >
and Ay be a matriz associated to Ay~ 1.e. there exists a similarity transformation

P such that
Ay A
0 A

Then Dy (A) = Dw(A) if and only if the dimension Nxy of the vector subspace of
KN generated by the rows of {X Py, X Py Ay, X Py A%, ...} is equal to Ny .

P~'AP =[Py P, ' A[Py P5] = [

Proof. For the if part we prove that Ny is the lowest possible order for a realization
of {XA'Y}$2,, then by theorem 4.1 the assertion will hold. Let us first construct
a realization of order Ny :

HQA) =X\ —A)"'Y = XP(A[ - P7'AP)~'P~1Y

_ (/\ — Ay)_l Ty Y

= X [Py Pl 0 (A=)t || 0
where T} and Y are Ny X (N — Ny) and Ny x n matrices. Tt follows that:
(4.1) H(\) = XPy (A — Ay)™'Y.

Now, let (X', A", Y') be a realization of H()) of order N < Ny . Consider the matri-
ces O and C constructed from the row vectors of {X Py, X Py Ay, ... ,XPyAgy_l}
and the column vectors of {Y, AyY ..., AgyAY} (from the Cayley-Hamilton

theorem the whole corresponding space is obtained). In the same way we con-
struct @' and €’ using X', A’ and Y’. Since (X Py, Ay,Y) and (X', A|Y’) are

two realizations of H (), we must have (cf identity (2.2)) H; = XPy ALY =
X'(ANY! for i > 1, and thus OC = @'C". Using the assumptions we can compute

the ranks of @C and of @’C’. From the Sylvester’s inequality we have
(4.2) rank(Q) + rank(C) — Ny < rank(OC) < min{rank(Q), rank(C)}.

Using that both O and C have rank Ny, we get that OC' is of rank Ny. But
since. A’ has dimension N’ strictly lower than Ny: rank(O’C’) < Ny which
is a contradiction and there is no realization of H(A) of order lower than Ny.
Applying the same reasoning with (I, A,Y), we also see that there is no real-
ization of the sequence {A'Y'}; of order lower than Ny. By theorem 4.1 we
get deg det Dy (A) = deg det Dw(A) = Ny so the two matrix polynomials dif-
fer by a unimodular multiplier. Furthermore, they are both in normal form so
Dy (A) = Dw(A).

For the only if part, let us assume that the dimension of the row vector space
generated by {X Py, X Py Ay, ...} is of dimension N’ < Ny. We can apply the
same reasoning as above. There exists a similarity transformation ) such that

Q' AyQ = [Qx Q4] [ f{f;y A(; ] [@x Q2]

with Axy of dimension N’. Thus we can construct a realization of order N’ using
X given by the first Nxy columns of X Py @ and Y given by the first Nxy rows
of Q7Y -

H(/\) = X(/\I - Axy)_1Y.
This is a contradiction and concludes the proof since by theorem 4.1, Ny, the
determinantal degree of Dy (A), is the lowest possible order for a realization of

H(N). O
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4.2. Length versus degree. Lemma 4.2 indicates how X must be chosen to en-
sure that we can consider the sequence {X A'Y}; instead of the sequence {A?Y};.
The next problem we address is how many terms of the sequence are required to
compute the vector generating polynomials (see step 3 of the block algorithm). Of
course, this will heavily depend on the actual degrees of these polynomials.

Lemma 4.3. Let §, be the first index such that span(Y, AY,... A%=1Y) is of
mazimal dimension Ny . The minimal right generating polynomial Dy () of the
sequence {A'Y }2 is of degree exactly 8, (at least one of the column degree is equal

to oy ).

Proof. Consider any generating vector polynomial g(A) = go+g1A+. . .4+ g5, 41 Aort1
of degree 4, + 1:

Vi>0: AV go+ AT Yo + . 4 ATy s =0,

By assumption the vector A" Y gs 1 can be expressed in terms of lower powers
A*Y |k < §, — 1. Thus there exists a generating vector polynomial h()\) = hg +
hA+...+ hgr_lx\ér_l + g5r+1/\5r, by definition:

Vi>0:AVho+ ...+ AT Whs 4+ ATV g L =0.

We now see that
g(A) = Ah(A) +7(})

where 7()) is also a generating polynomial of degree at most §,, in other words,
any generating polynomial of degree §, + 1 can be expressed using generating poly-
nomials of degree at most §,. The same can clearly be done for any higher degree
polynomials, this implies that Dy (A) is at most of degree J, since it is minimal
(theorem 2.4).

If all the elements of the basis Dy () are of degree ¢’ strictly lower than d,. By
definition 2.2 we know that

rank [Dy (A)]. = n.

Up to multiplications by A we can thus construct n generating polynomials of degree
at most &' < d, — 1 whose leading column coefficients form a basis of K™. These
basis and polynomials can be used to express A%"Y in terms of lower powers which
contradicts the assumption on d,. In conclusion, there must be at least one column

of Dy (A) of degree exactly 4,. O

In this lemma we have considered the overall degree of the minimal generating
polynomials, 1t could be that the degree differ a lot from a column to another. Next
lemma consider Dy (A) column by column.

Lemma 4.4. Let X be such that the vector subspace generated by the rows of
{XPy,XPyAy, ..., XPyA(;/l_l} is of dimension Ny (lemma 4.2) and let &; be the
first index such that this is true. Any vector polynomial g(\) = go+ g1 A +. ..+ gar\?
such that

(4.3) XAYVgo+ XA Yg 4+ ...+ XAH Vg, =0
for 0 <i <4 — 1, is a generating vector polynomial for the sequence {A'Y }92.
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Proof. We keep the same notations as in lemma4.2. The Sylvester’s inequality (4.2)
applied to

X Py
M@ d+1y=| Yy 4y ALY ]
X Py AQ !
gives - - -
rank M (§,d+1) = rank[Y AyvY ... Agl,Y]
= rank[ Y AY ... A%Y ]
Further, since by identity (4.1), H; = X A'Y = X Py ALY for all i > 0, we have
Hy Hy ... Hy
Hi  Hs ... Him
rank ) = rank [Y AdY] .
Hsot oor oo Hippaor

Any polynomial g(\) that satisfies (4.3) corresponds to a vector § = *['go, ... " g4
of K™(4+1) which is in the kernel of the above block-Hankel matrix. From the last
rank equality ¢ is also in the kernel of the right-hand side Krylov matrix, hence it
corresponds to a generating polynomial for {A7Y}52,. O

Thus, any generating vector polynomial of degree d for the sequence {X A'Y};
up to the (6 + d — 1)-th term, is a generating polynomial for {A?Y}%2 .

Remark 4.5. Since Dy (A) has determinantal degree at most N and since it has n
columns, for any A and Y we know that there always exists at least one generating
vector polynomial of degree less than | N/n| for {ATY}52,.

Tt is well known that identity (4.3) has two main interpretations, in the reverse
sense 1n relation with Padé approximation and in the direct sense in relation with
Euclids’s algorithm [1, 11, 6, 38]. As seen in §3.2, these interpretations actually
give various methods to compute generating polynomials. For a polynomial g(A)
of degree d, denote by g()) its reversal g(A\) = A%g(1/)). The same can be defined
for vector or matrix polynomials by reversing all the entries with respect to the
maximum degree. By abuse, let also H(/\) denote:

H\) = (1/A)NA/ND7L(1/A) = iHi/\i.

Now, a vector polynomial g(A) of degree d satisfies (4.3) if and only if it satisfies
(4.4) H(\)g(\) = h()) = 0 mod At +d
for a vector polynomial h(A) of degree lower than d — 1. This relation may be
viewed as giving a partial approximation of H(/\) If we go back to the direct sens,
interpreting (4.4) as

HN)g(A) + RN+ = h(}),
and taking H(/\) = Ho\0td=1 4 g a+d=2 4 4[5 4 1 we obtain
(4.5) H(N)g(\) + (AN = B'(N).
Matrices H()\) and A +4T may then be viewed as the inputs of a matrix extended
Euclid’s algorithm.
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We conclude this section with an easy consequence of the two previous lemmata.
Let 4, defined as in lemma 4.3 and §; and the block-Hankel matrix M defined as
in lemma 4.4.

Lemma 4.6. If the blocking matrices X and Y are such that the two subspaces
span(X Py, X Py Ay, ..., XPyA(;/l_l) and span(Y, AY, ..., A=Y are of dimen-
sion Ny then the minimal generating polynomial Dy (\) for {A'Y}$2, can be com-
puted from the kernel of M (81,6, + 1).

Proof. By lemma 4.3 we know that Dy (A) has degree d,, thus by lemma 4.4 we
know that each generating polynomial of the basis is found from the kernel of
M (d;,d, + 1). In addition we may notice that from the Sylvester’s inequality (see
(4.2) and the assumptions on d, and ¢&;, the rank of M (d;,4,) is equal to Ny. O

The assumptions of this lemma imply that the left ! minimal generating polyno-
mial for the sequence {X A'Y }22 is of degree &; and that the right one is of degree
d,. The main purpose of the analyses of the block algorithm [9, 18], is precisely to
show that these degrees are both small enough.

5. SEPARATION AND CONTINUATION

We prove two additional facts that will be useful for the computation of minimal
generating polynomials. We first show at §5.1, that the correct choices of X and
Y can be studied up to a factorization of polynomials. Then at §5.2 we will see
that the generating polynomials can be constructed using successive matrices Xy,
k> 1.

To simplify the notations and by analogy with the case of scalar polynomials, we
define the action — with respect to A — of a matrix polynomial D(X) on a constant
matrix Y. For a matrix polynomial D(A) = Dy + DiA+ ...+ DA% in M, (K[N\])
and a matrix Y in My ,(K) it is natural to consider

Y.D(\) =Y Do+ AY Dy + A*Y Dy + ... AY Dy € My n(K).

This can be rewritten column by column as

Y.DA) = | Dy j(A)Y D 4 Dy s (AYE 4+ 4 D, 5 (A)Y ) € Mnn(K),
j=1,....n

where the entries of D(A) are denoted by D; ;(A), 1 <4,j < n, and the columns

of Y are denoted by Y, 1 <1 < n. This action clearly makes Mpyn(K) aright

M, (K[A])-module. The nonsingular elements in the annihilator of ¥ are what we

have called, the generating matrix polynomials for the sequence {A'Y}52,.

5.1. Separation. In the scalar case, for a matrix A in My (K), if v and «’ are
two vectors whose minimal polynomials g, (A) and gy (A) with respect to A are
relatively prime, then we know (see [14] for instance) that the minimal polynomial of
w 4" 18 pry (A pryr (A). This result remains valid in the case of matrix polynomials.

A least common right multiple D(X) (lerm) of two matrices P(A) and Q(X) is
a common right multiple which is a left divisor of every common right multiple
of P(A) and Q(A) [27]. In particular, P(M)U(A) = Q(A)V(A) = D(A) for some
matrices U(A) and V(A). Every pair of non-singular matrices P(A) and Q(X) have

Lall the definitions have been given using column operations (right equivalence, right fraction

description, ... ). Everything can be done using row operations, we leave the reader to make the
appropriate changes.
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a lerm [27]. Tf P(A) and @Q(A) have relatively prime determinants p(A) and ¢(A)
then the determinant of a lerm is p(A)q(A).

Lemma 5.1. Let A be in My (K). LetY’ andY" in My ,,(K) such that the min-
imal generating polynomials P(X\) and Q(\) for {X A'Y'}2, and for { X A'Y""}22,
have relatively prime determinants. The minimal generating polynomial for the

sequence { X AN (Y' 4+ Y")}52, is a lerm of P(A\) and Q(X).

Proof. Let DA = Do+ ...+ D4A% be an arbitrary generating polynomial for
{XAY}2, where Y =Y/ + V", Applying D()A) to the sequence {A4;Y'}52, we let

Z=Y'D(\) =Y'Dy+ AY'Di + ...+ AY'D,
— (Y —Y")Do + ...+ AYY — Y")Dy.
By definition of D(A), for all positive 7,
XAZ = XA(Y =Y")Dy+ ...+ XA+ (Y —Y")D,
= —XAY"Dy = .. — XAy,
=XAZ,
where 7 = =Y. D()). The columns of 7 belong to < Y” > thus by theorem 4.1,
the determinant of the minimal generating polynomial Dz()) for {XA'Z}%2, =
{XA*Z}22, must be a divisor of the determinant of @()\). Further, using the
assumptions Dz(A) and P(A) must have relatively prime determinants. Now,
Z.Dz(A) = Y'D(AN)Dgz(A), thus D(A)Dz(A) is a generating polynomial for this
latter sequence. Therefore, D(X) Dz (A) is a right multiple of P(A). But Dz (A) and
P(XA) are relatively prime determinants thus D(X) is a right multiple of P(X). In
the same way, by considering Y =Y — Y’ | it is easily shown that D(}) is a right
multiple of Q()\). This establishes that any generating polynomial for {X A?Y }2
is a common right multiple of P(A) and @(A). A minimal generating polynomial is
thus a lerm of these two matrices. O

As an obvious consequence,

Corollary 5.2. Assume that A is a block-diagonal matriz A = diag (Ap, Ay) and
that the characteristic polynomials p(A) and q(X) of A, and Ay, are relatively prime.
Consider Y = '['Y, 'Y,] in Mn »(K) with corresponding dimensions of blocks. The
minimal generating polynomial for the sequence {X A'Y Y22, is a lerm of the min-
imal generating polynomial D,(\) for {XA;Yp}?io and of the minimal generating
polynomial Dgy(\) for {XAf]Yq}Z?’iO.

Proof. By theorem 4.1 we know that D, (A) and Dy ()) have relatively prime deter-
minants. They are also the minimal generating polynomials of {XAiﬁ,};’io and of
{XAY,}22,, where Y, and Y, are the block matrices '['Y,, 0] and ['Y, 0]. Finally,
above lemma is applied with A and Y = Yp + Yq. O

Example 5.3. Consider the left blocking matrix

=l

0 1 1 1
that satisfies the assumptions of lemma 4.2 over GF(2) for
01 0 0 11
|1 10 Y 101
A=100 01 andY_[Yq]_ 11
0 0 1 0 0 1
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The minimal generating polynomials of { X A'Y,}$2, and of {X A'Y,}52, are:

1+Xx 1 1+ A 0
ny=| " ] =T 0]
One can take

B 1 o14+x ] 1 0 C[1+x 0
Dw = Dp(3) x [ 0 142 ] = Da(}) x [ 0 AfA+1 ] = [ 114 ]
as lerm of D,(A) and of Dy(A). Since it is under Popov form, it is the minimal
generating polynomial of {XA'Y}%2.

The reader should notice that the degree of a lerm can be much larger than the
sum of the degrees of the two matrices (only the determinantal degrees are actually
involved). For that reason, corollary 5.2 will be useful to generalize Wiedemann’s
analysis in §8.1. Contrary to that, it seems difficult to use the same stategy with
Coppersmith’s analysis, which heavily depends on the actual degrees of the matri-
ces.

5.2. Continuation. By analogy with Wiedemann’s deterministic algorithm [39],
the variant of the block algorithm of Coppersmith we will propose in §10, will be
based on

Lemma 5.4. Let A be in My(K)and Y in My, (K). Let X1 and Xy be two
left blocking matrices in M, v(K) and in My, v(K). If D1 y(A) is the min-
imal polynomial for {X1A'Y 152, and if Day(N) is the minimal polynomial for
{XzAi(Y.Dlyy(/\)) 20, then the Popov form of Dy y (X\)Dsy (A) is the minimal
polynomial for {'['X1,! Xo]ATY }52,.

Proof. Clearly, D1 y(X\)Ds,y (}) is a generating polynomial for {/[*X7," X5]A'Y }52,.
We have to show that it is minimal. Let D(A) be any generating polynomial for this
latter sequence. Then, D()) must be a generating polynomial for {X; AV} . By
definition of Dy y (A), there exists U(A) such that D(A) = Dy y (A)U(A). Now, U(X)
must be a generating polynomial for { X A*(Y. Dy y (X)) }£2,, then there exist V(A)
such that U(X) = Day (A)V(A). In conclusion, D(A) = Dy vy (A\) D2y (A)V(X). O

Lemma 5.4 will be used to compute minimal generating polynomials using, if
necessary, several left blocking matrices.

Example 5.5. We compute the minimal generating polynomial of {A'Y }52, over

GF(2) with

and Y =

—_—= O =

1
0
1
1

—_——_—0 o O
O == O
—_ O = =
—_—0 O
OO O =

0 111 0

Let m = 2 and consider three successive left blocking matrices X7, Xy and Xj:

X, = 11010]’)(2:[10101]’)(3:[1 1 1 0 0

—_

01 0 1 1 01 100 0 0 0 0 0]
We denote by D1 v (A), Day(A) and D3y () the corresponding partial generating

polynomials. The minimal generating polynomial for {X; A'Y }22 is

1 AZ4 A+
Dlyy(/\):[l +0+]
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which is a left divisor of Dy (A). To continue the computation we apply Di v (}A) to
Y:
Vi=[IxVYW 4 rxy® (A2 4+ A4V 40xv®

where Y1) and V(2 are the first and the second columns of Y. The minimal
generating polynomial for {X,A'Y;}%2 is

1+X 1
D”(A):[ 0 1—1—/\]'

Applying D v (A) to Y7 gives Y5 and the minimal polynomial for {X3A1Y,}82, is
found to be

1 0
D3y (A) = [0 /\:|.
The Popov form of the product of these three partial generating polynomials is

T+X M4+l
DY(/\):[H—/\ 1 ]

which is the minimal polynomial for {A7Y }52,.
6. (AENERIC DEGREE PROFILES OF MINIMAL POLYNOMIALS

Given any matrix A, does the block algorithm work for any m and n? In Cop-
persmith’s justification (§6 of [9]) one basic assumption is m > n. In Kaltofen’s
analysis (§5 of [18]) there is no restriction on m and n but in return, there are
restrictions on A. Indeed, let A* denote a restriction of A to its range space. If
¢~ denotes the number of blocks of the Frobenius form of A* (see theorem 11.1 in
appendix A), then one must have ¢* = 1 [18]. Tn the following we will see that only
m > min{¢*,n} is required (see also proposition 8.2). In §9 we will see that this is
not so restrictive.

To justify the probabilistic analysis of two next sections we need to state the
result below that give generic degree profiles of minimal generating polynomials.
This concept catches what are, in general, the column degrees of the generating
polynomials for sequences constructed from a given matrix A. This is the same
concept than the generic rank profiles [10] that catches what are, in general, the
ranks of leading principal submatrices of matrices equivalent to a given matrix
A. We thus follow the technique from Kaltofen, Pan and Saunders [20, 21, 18].
We call generic degree profile of the minimal generating polynomials for sequences
{X A'Y}$2, (X has m rows and Y has n columns) the column degrees of the minimal
generating polynomial for the sequence {X' A?Y}52,. where the entries of X' and of
Y are indeterminates &5, 1 <j<m,and vy;, 1 <I<n, with1 <k <N.

Proposition 6.1. Let A be a matriz in My (K) whose Frobenius form has ¢ com-
panion blocks. Let v = f1 + ...+ fmin{s,n} be the sum of the dimensions of the
first n or ¢ blocks of F. The minimal generating polynomial Dy () for the generic
sequence {A'Y}2 has determinantal degree v and has degree exactly 6, = [v/n]
(over the rational function field K(vi1,...,UNy)) with column degrees

(6.1) [di,...,dn] =10 —1,... 0, —1,6,,...,8,]
where 8, — 1 is repeated T = n[v/n]|—v times. Further, the pivol row indices satisfy:

L n_T+ja1§j§Ta
(6.2) r]_{j—r,r—l—lgjgn.
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Proof. By uniqueness of the Frobenius form, we may consider A either as a matrix
over K or as a matrix over K(v11,...,Uny,). The sum v of the dimensions of
the first n blocks of F' is by construction the dimension of the vector subspace
< Y >. By theorem 4.1 this dimension is equal to the determinantal degree of
Dy () and the first assertion is proven. For the second assertion, by lemma 4.3 we
may equivalently show that:

(6.3) rank [y,Ay, o ,Aér_ly] =
Indeed, the degree cannot be lower than 4, because
n(é, — 1) < v.
To prove (6.3) we are going to specialize the indeterminates vy 1, ..., Un,,. Since
the rank cannot be greater than v, it is sufficient to find a specialization of rank v
for [V, ..., A°>=1)]. We construct this specialization by intermixing the columns

of n Krylov matrices T; over K, 1 <[ < n, themselves obtained from a modular
cyclic basis with respect to A.

Since the right blocking matrix has n columns, with no lack of generality we
may assume that ¢ < n (otherwise, as done during the proof of lemma 4.2, up to
a change of basis we can restrict ourselves to the first n blocks). In particular we
have v = f; + ...+ fs. Consider a change of basis P such that P~'AP = F| F
being the Frobenius normal form of A (see appendix A). We know that P gives a
modular cyclic basis generated by ¢ vectors uy, ..., ug i.e. P can be written as:

P= [ul,Aul,...Afl_lul,... S Uy ,Af¢_1u¢] .

If fi = 6, for all I, 1 <1 < n, it is sufficient to specialize the columns of Y
to the u;’s. In the general case the blocks of F' have different sizes — some are
of dimension greater than J, and some are of lower dimension — and we need to
balance the columns in P.

To simplify the presentation we only detail the case where v is a multiple of n.
We construct n matrices T; with the same number §, of columns. Assuming that
F has ¢1 blocks of dimension greater than §,, we define the first ¢; matrices T; by:

(6.4) T = [, Awg, . AT ], 1< < ¢

For the other n— ¢, matrices Y, we consider n— ¢ temporary matrices Y;. These
latter matrices are obtained from columns corresponding to the blocks of F' of
dimension lower than 4, (“small blocks”) and from columns corresponding to the
rest of the above blocks of dimension greater than §, (“large blocks”). Tt is easy to
see that ¢ — ¢1 matrices Y; with 6, columns can be chosen under the form

(65) Y, = [ul, S ,Afl_lul,Aslu]'l, S ,Atlu]'l, S ,AskUjk, o ,AtkUjk] ,
for ¢1 +1 <1 < ¢. These matrices are obtained by completing the sets of columns

corresponding to each of the ¢ — ¢; small blocks with columns from large blocks
(stopping the completion when the number of columns is 6,). The indices k,

S1y... 8k, T1,...,tx and ji,...jr depend on I. Anyway, by construction since
these indices correspond to large blocks, we have:
(6.6) $; > 6y, 1<i<k.

And we may also ensure that

(6.7) Vi, 1<i<k—1,31:t;=f



STUDY OF COPPERSMITH’S ALGORITHM USING MATRIX POLYNOMIALS 21

if for each completion we use the maximum number of columns corresponding to a
given large block. The last n — ¢ matrices T, also of dimension 4., can be chosen
as:

(68) Tl = [Aslu]'l, ce ,Atlu]'l, ce ,AskUjk, PN ,AtkUjk]

for ¢ +1 <1 < n, by taking the rest of the columns corresponding to the large

blocks (the indices k,s,¢ and j. still depend on [). By construction, the matrix
T = [T1,.. . To, Torstrerr Tl

is invertible in My (K) . We now bring the Y;, ¢1+1 < I < n, to Krylov form Y, by
performing elementary invertible transformations on Y, so that this latter matrix
remains Invertible. From identities (6.5), (6.8) and from properties (6.6), (6.7) we
can focus on bringing matrices

Tl = [ul,... ,Af’_lul,O,... ,0] ,
and B
Ty =1[0,...,0, A%uj, A luj, ... Aluy,0,...,0], s> 4,,
to Krylov form. Indeed, the Y;’s can then be themselves transformed by linear
combination of these two types of matrices. To bring 7} to Krylov form, it suffices

to add suitable linear combinations of its first f; columns to its last §, — f; columns
to get:

(6.9) Ty = [ug,. o, AT g, AT ]

This is always possible since the dimension of the corresponding invariant subspace
is fi. Surely Ty is not invertible but we have performed only invertible transforma-
tions on Y. In the same way, for T5, we add to its first zero columns suitable linear
combinations of columns of [Y4,...,T4,] to get

(610) [Aru]', AT-HUJ', ce ,Asu]', As+1u]', ce ,Atu]', 0, ce ,0] s

this is always possible for a non-negative integer r since s > 4,.. To finish the
construction, we add suitable combinations of columns to the latter zero ones to
construct

(611) Tz = [Aru]', ce ,Asu]', ce ,Atu]', PN ,Avu]'] .

These last operations can always be performed since by (6.7) we know that ¢ is the
dimension of an invariant subspace (if there actually remains some zero columns).
Applying all the corresponding invertible transformations to T we get:

Y=[T1,... Yo Topts s Tl

where T, 1 <1 < n, is either a Krylov matrix of the form (6.4) or a linear combi-
nation of matrices of the form (6.9) and (6.11). By construction, T is invertible:

(6.12) rank T = v.

)

Let Tl(j), 1 < j < 4., denotes the j-th column of T;, 1 <l < n. By specializing
to
vy =1 ,TM

and using (6.12) we have, as announced, a specialization of (6.3) to

YO

yr n yrtt

rank T(ll)
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This establishes the second assertion of the lemma when n is an exact divisor of v.
In the general case let 7= n[v/n] — v. We specialize a submatrix of the left-hand

side of (6.3):
(6.13) rank |V, AY, ... A2y A0ty Aty — )

where Y 1 <1 < n, denotes the I-th column of }. Using the same method than
above — the proof is omitted — one can construct n — 7 Krylov matrices T; with J,
columns and 7 Krylov matrices T; with §, — 1 columns. These matrices provide a
suitable specialization of identity (6.13) which is thus proved:

() Y= o) =,

gy n—

1 5,—1
rank T(l),..., ,...,T(l ),...,

It remains to see that the column degrees and the corresponding pivot indices
of the minimal generating polynomial are as claimed. On the one hand, applying
the same reasoning — column by column — than for lemma 4.3, we see that iden-
tity (6.13) implies that there exists a generating polynomial for {A?Y}52, whose
column degrees actually satisfy

[d e da] =1 6 =1, 8 =1, ryen. .

T

This generating polynomial is given by dependencies between the columns of

O L S R d O NN S Lo NN S CIOMe & o IO Gl

the entries of the j-th column of the generating polynomial are obtained by writting
T;ér) or T§6r+1) (depending on j) as a linear combination of the previous columns
in £. On the other hand, there is no generating polynomial for {A?Y}52, with a
column degree strictly lower than d, — 1, otherwise the rank of the left-hand side
of identity (6.13) should be strictly lower than v.

Concerning the pivot row indices of Dy (A) under Popov form, from (6.13) the
last 7 columns of Y (indexed by n — 7+ j, 1 < j < 7) lead to a column degree
d, — 1 in Dy(A) thus

ri=n—714+7j 1<j<T,
and the first n — 7 columns of Y (indexed by j — 7, 74+ 1 < j < n) lead to a degree
o, thus

rp=j—7, 7+1<j<n.
This conclude our characterization of the minimal generating polynomial of a
generic sequence. O

Example 6.2. Consider a matrix A over GF(2) consisting of ¢ = 2 companion

blocks:

o oNeBell el
o O = OO
o O o= O
— O O O o
o O O oo
— O O O o

0 0 0 1 0

If we denote by e;, 1 < i < 6, the i-th canonical vector, we can take uy = e; and
us = eq to generate a modular cyclic basis.
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If n = 3, the ¢ = 2 blocks are of dimension greater than §, = 6/3 = 2.
Following (6.4) we take:
{ Tl = [61,A61]
Tz = [64, A64]
and following (6.8):
Tg = [Azel,A264] .
This latter matrix is transformed by adding Aey to its first column following (6.10),
then by adding A%e; = Ae; to its second column following (6.11). This leads to
Tg = [A261 + A64,A(A261 + A64)] .

The minimal generating polynomial for {A'Y 122,V = [ey, eq, A%e; + Aeq] is:

A0
n=3 Dy(\)=| A A 0
1A 1+

If n = 4 we take

:fl = [61,A61] s Tz 27[64, A64]
Tg = Tg = [Azel] ,T4 = T4 = [A264]

The corresponding minimal polynomial is

A0 A2 0
0 A 0 A
n=4h Dy =y g 4
0 A 0 1

with r1 =3, ro =4 and r3 = 1,7, = 2.

The properties of Dy(A) given by proposition 6.1, do not uniquely determine
a generating polynomial. Indeed, different specializations may lead to different
minimal generating polynomials with the same column degrees and pivot indices.
Note also that the entries of Dy are not, in general, over the ground field K but
lie over K (v11,...,Un,n). This is a main difference with the scalar case — e.g. see
proposition 2 in [18]. Next example illustrates these remarks.

Example 6.3. We work with the matrix

10 0 0
01 10
A_OOIO
0 0 1 1

The minimal generating polynomial for the generic sequence {A'Y1}52, (n = 2 over

GF(2)) with indeterminate entries vy, 1 <l <2and 1 <k <4, is
U3’2A+ Vs, 2 AZ _|_1
D A — U3, 1 U3, 1 .
v [ A+1 0 ]

Two “good” specializations of J may be

ty, - 0 14 A2
Yl—[1 0 0 0]’DY1(/\)_[1+/\ 0

and )
e [0 1 10 [+ 14
YZ‘[l 0 1 1]’DY2(A)_[1+A 0o |-
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The two corresponding minimal polynomials have the same degree profile than the
generic one. A lerm of Dy (), Dy, (M) and Dy, (A) is:

por[§ B Jemon [V 5] o [) ]

’ 14 )2 0
0 1422

where 14+ A? is the minimal polynomial of A.

Proposition 6.1 has described the generic situation when lemma 4.3 is applied.
In the same way we describe the generic situation corresponding to lemma 4.6:

Corollary 6.4. Let A be a matriz in My (K) whose Frobenius form has ¢ blocks
and let v = fi + ...+ fmingg,n}- If m > min{¢,n} then the minimal generating

polynomial Dy (X) for the generic sequence {A'Y}2, can be computed from the
kernel of

Ho H1 ... Hs,
Hy Ho ... Hs,+1
M6, 6, +1) = . .
Hesp=1 ovov oo M 461

where H; = X A'Y, i > 0, and where 6, = [v/n] and & = [v/m]. The rank of
M(81,6,) is equal to v.

Proof. Let Y be a specialization of Y provided by the proof of proposition 6.1. We
have < Y >=< Y > over K(v11,...,Un,n). Let Ay and P = [Py Ps] be — as
in lemma 4.2 — a corresponding restriction of A and an associated transformation
matrix. The matrix Ay = Ay has dimension v and its structure is given by the
first n blocks of the Frobenius form of A. By applying proposition 6.1 on the left
and using the assumption m > min{¢, n}, we get that the left minimal polynomial
for {X Py AL, }52, has determinantal degree v and degree d; = [v/m]. Indeed, we
can first specialize a generic matrix X' of dimension m x v for the generic sequence
{XAL}52, to a matrix X. Then [X 0]P~' is a suitable specialization for X. We
conclude as done for lemma 4.6. (]

We conclude this section with an easy consequence that will be needed for the
block method, which computes generating polynomials for {A?Z}%2 | with 7 = AY
instead of Y (see step 1 in §3.1).

Corollary 6.5. Let ¢g be the number of singular companion blocks of the Frobenius
form I of A, and let v* = fi+.. .+ fmin{o,n}— Mmin{do, n}. The minimal generating
polynomial Dz(X) for the generic sequence {A'Z}2,, Z = AY, has determinantal
degree v* and has degree exactly 6 = [v*/n]. If m > min{¢* ,n} then it can be
computed from the kernel of the block-Hankel matriz {X AI=22}, . 1 < i < &
and 1 < j <8} + 1, which is of rank v*.

Proof. These results are obtained as done for proposition 6.1 and corollary 6.4. Tt is
sufficient to notice that if the invariant factors of A<y~ are s1(X),. .., Smin{g,n}(A),
then the invariant factors of A,z are

51 (A)/A, cee asmin{¢g,n}(A)/Aa 5min{¢g,n}+1(A)a cee asmin{¢,n}(A)~

This is a generalization of proposition 3 in [18] to any type of matrix.
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7. FoLLowING WIEDEMANN AND COPPERSMITH’S ANALYSES

We are going to rely on two main ingredients. The first one is a generalization of
Wiedemann’s work [39] in §8.1. We bound the probability of picking two matrices
X and Y such that Dy (A) = Dw(A) (following the notations of lemma 4.2). This
equality only gives an incomplete answer with respect to Coppersmith’s algorithm.
Indeed, it does not focus on the actual degrees of Dy (A) and Dw (A) but only on
their determinantal degrees. This is a key difference between the scalar and the
matrix cases. In the scalar case, the dimension of span(y, Ay, A%y, ...) is equal to
the degree of the minimal polynomial 7, (A), of y with respect to A. In the matrix
case, there is no such relation between the degrees of the columns of Dy (A) and
the dimension of span(Y, AY, A%Y,...). The quantity that should be considered
then is the determinantal degree of Dy (A). To establish his results, Wiedemann
has proven the following fact:

Proposition 7.1. [39]. Let x and y be a row and a column vector over K. Let
Toy(A) and my(X) be the minimal generating polynomials for {x A'y}; and for {A'y};.
Consider the space R1 of polynomials of degree less than the degree of my () in K[A].
There exists a surjective linear map

G KN SRy

such that
Vo e KN mpy(A) = my (M) iff - ged (my (A), G (w)) = 1.

Then, over K =GF(q) in analogy with the Euler’s Phi function of an integer,
the probability that a random polynomial {(z) in K[A]/(my(A)K[A]) is a unit can
be computed. Lower bounds for that probability are given in [39] and in [15]. To
apply lemma 4.2, in §8.1 below we propose a way of bounding the probability in the
matrix case. In particular, this will result in a new proof of Wiedemann’s bounds
in the scalar case.

The second ingredient of the analysis, will consist in bounding the probability
that X and Y lead to generating polynomials with “almost” generic degrees. This
will enable us to bound the number of needed terms H;. In the generic case —
as characterized by proposition 6.1 — the minimal generating polynomial has 7 =
n[v/n] — v columns of degree 6, — 1 and n — 7 columns of degree §,. But, as
implicitly noticed in [9, 18, 26], to always have exactly the generic degrees seems
unlikely. We will prove instead, that with a good probability, X and Y lead to
degrees at most A plus the generic ones, for A a fixed positive integer. This will
be done in §8.2 using certain results of Coppersmith [9]. In §3.1, A has been called
the shift parameter of the block algorithm. Fortunately, this relaxed condition on
the degrees will be sufficient.

8. PRELIMINARY PROBABILITY ANALYSIS

We keep the notations as in previous sections to investigate the two complemen-
tary analyses.

8.1. Generalization of Wiedemann’s analysis. The probability that {A'Y}5°
and {X A'Y }§° have the same minimal generating polynomials is computed in terms
of the function ®,(f, ¢). This function is defined over K =GF(q) for a polynomial
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F(A) in K[A] and two positive integers n and ¢, n > ¢:

(8.1) D, (f,¢) = H ((1 _ q—(p+u)degg) H (1- q—kudegg))
g i |f k=2

where the product is taken over the irreducible factors of f(A) in K[A] and where

u=|n/é] and p satisfy ¢: n = ué + p. Lower bounds for &, (f, ¢) will be given in

appendix B.

Lemma 8.1. Let A be a N x N matriz over K with minimal polynomial 7 (),
and let Y with n > ¢ columns chosen at random. If K =GF(q) then

Proby {dim <V > = v} > ®,(7wa,¢).

Proof. Up to a change of basis P we may assume that A is under rational Jordan
form (see theorem 11.4 in appendix A). We mean that K~ is decomposed into a
direct sum of invariant subspaces with respect to A whose minimal polynomials are
powers of irreducible factors of m4(A) in K[A]. This may be denoted by:

(8.2) A= P VAP = diag ({A,,};) = ({Agp, o ,Ag‘f”)}i)

where g;(A) is the i-th irreducible factor of m4(A) and AE,‘Z), 1 < j < ¢;, is one the
¢; < ¢ square blocks over K associated to ¢;(A). By analogy with the dimension v,
we denote by v; the dimension of Ay, the block-diagonal matrix formed by all the
blocks associated to g;(\). Since multiplication by P~!: Mpyn(K) = My, (K) is
a bijection, it follows that Y is chosen uniformly at random over K if and only if
Y = P~V is uniform random over K. Using corollary 5.2, we may thus separate
the problem according to (8.2). Let py be the probability that dim< VY >= v:

py = Proby {dim span(Y, AY, A%V ...) = 1/}

(8.3) =[], Proby, {dim span(Y;, A,,Y;,...) = v;},

where Y; denotes the v; x n submatrix of Y whose row indices correspond to the row
indices of A, in A. We are going to compute a lower bound for each probability
in above product. We focus on Ay, and Y;. Let g;(A) be of degree d; and let each
block AE,J), 1 < j < ¢4, be of minimal polynomial gfj(/\) and thus of dimension
kid;: (k1+...+kg,)d; = v;. Let us restrict ourselves for the moment to the random
choice of the first ¢; columns ¢q,... ¢y, of ¥ (¢; < ¢ < n). We denote by V; the
vector space generated by ¢, ..., ¢;:

— 2 . .
Vi =span(cr, Ag,er, Ay er, ..o 2,000 65, Agiey, ),

for 1 < j < ¢; and let Vj = {0}. A sufficient condition to ensure that the dimension
of span(Y;, A,,Yi,...) is v, is that dimV}, = v;. This condition will be satisfied
if for any j, the minimal polynomial of ¢; modulo V;_; is any power of g;(})
corresponding to a block of A,, different from those associated to the previous
columns of Y;. We compute the probability that ¢, ...cg, satisfy this property by
induction on ¢;, 1 < j < ¢;.

For j = 1, ¢y must span any of the ¢; invariant subspaces, its minimal polynomial
has to be any power of g;(A) corresponding to a block of Ay. For one block

B; = Ag{) the probability of failure is the probability that ¢y satisfies
9" (Bj)er = 0.

i
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The rank of gfj_l(Bj) is d;, for B; the probability of failure is thus ¢=%. Further,
we may look separately at the entries of ¢y corresponding to the different blocks,
thus the probability of failure for the choice if ¢; is ¢~%i%. We now assume that
1, ..., cj—1 satisfy the property. The minimal polynomial of ¢; modulo V;_; must
be any power of g;(A) corresponding to one of the remaining ¢ — j + 1 blocks. Up
to a change of basis with respect to V;_; we may follow the same reasoning than
for ¢1. For one block the probability of failure is ¢~%, thus the probability that ¢
does not satisfy the property is ¢~ (#i=i+1)d: f py,; denotes the probability that
dim span(Yj, Ay, Yi,...) = v;, this shows that

> Probg.y, {dim Vg, = v;}

> (=g ) (1 — g7 (@D (1 —g7%).

Above bound can be easily improved when n is greater than ¢;. Indeed, let n =
1o + p, thus, in particular, we have u¢; + p < n. Above construction can be done

using p columns of Y; for each of the first ¢; — 1 blocks of Ay, and p + p columns
for the last one:

o A P S A [C i}
Finally, from (8.3) we obtain
py > [J(1=q7?# %) (1= g7 (1 — g B0 > @ (74, 6).

K3

Py,

O

The function ®,(m4,¢) is a rough lower bound, but this will be sufficient to
bound the probability of failure. Note that for n = 1 our study reduces exactly to
the analysis of Wiedemann [39]. Now, applying the lemma on the left:

Proposition 8.2. Let A be a N x N matriz over K =GF(q), let X andY be chosen
at random with m rows and n columns. If m > min{¢,n} then Dy (A) = Dw ()
with probability no less than @, (74, min{¢, n}).

Proof. From lemma4.2 (with the same notations) we know that the probability pw
that Dy (A) = Dw (1)) is the probability that dim span(X Py, X Py Ay,...) = Ny.
We recall that Ay is a restriction of A to < Y > associated to the similarity
transformation P. Since P is invertible, if X is selected uniformly at random
in My, nv(K) then so it is for XP and then, X Py is also uniform random in
M Ny (K) . If we denote by ¢y the number of non-trivial invariant factors of Ay
and by ma, (A) its minimal polynomial, we know that ¢y < min{¢,n}. Further,
using the assumptions, ¢y < m. We may thus apply lemma 8.1 on the left with
Ay and XPy: pw > ®pn(ma,, ¢y). Now, since ma, (A)|ra(X), ®m(may,dy) >
D, (74, ¢y) and since ¢y < min{¢, n}, Py, (74, ¢y) > Py (ma, min{e, n}). O

To simplify the statement of the proposition and since in general Ay is unknown,
we have given the probability in terms of the structure of A, but as shown by the
proof, Ay plays the key role. Note also that Dy (A) = Dy (A) implies that m > ¢y
which is thus a necessary condition on m.
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8.2. Using Coppersmith’s analysis. We first focus on the probability that, for
a random Y, the column degrees of Dy (A) are not “too far” from the generic
situation. For matrices A and Y, define

Ky (8,) = |V, AY, ... A»=2y A0—ty () o=ty (n=7)

where YU, 1 < [ < n, denotes the I-th column of Y. The column degrees of
Dy (A) are strongly related to the rank of Ky (6,). If rank Ky (d,) > v — A then the
determinantal degree of Dy (A) is also strictly greater than v — A| and the column
degrees of Dy (A) must be less than 4, + A. If this is true with A small, Dy (})
should be viewed as nearly generic. Next lemma is an interpretation of lemma 6.2
in [9] to fit the current context. We formulate it using the function @, (f, ¢) defined
over K =GF(q) for a polynomial f(A) in K[)], a positive integer n and a matrix A
whose Frobenius form has ¢ companion blocks:

(84) @n(f’ ¢) =14+ Z ql/—n deg g—rank g(A)
glf

where the sum is taken over all the factors of f(A). This definition is slightly
different from the original one in [9]. The reader may refer to the latter article
concerning the properties of the function that remain unchanged. We propose
lower bounds for ©,(f, ¢) in appendix B.

Lemma 8.3. Let A be a N x N matriz over K with minimal polynomial 74 (X).
The matriz'Y is chosen at random with n > ¢ columns. If K =GF(q) then

Proby {rank Ky (§,) > v — A} > 1—0,(ra, qS)q_A.
Proof. Following [9] we relate the probability of failure — Dy (A) has small determi-

nantal degree — to the existence of small degree polynomials g1 (), ..., gn(A) such
that
(8.5) gAY D 4 gAY 44 g, (AY ) =0.

Intuitively, Dy ()) is a generating polynomial for { A’Y }92 . the columns of Y. Dy (})
are zero:
Dy j(A)YW 4 Dy j(A)YE 4 4 D, (A)Y) =0,
for 1 < j < n, where the D; ;(A)’s denote the entries of Dy (A). But since Dy ()
is the minimal polynomial, its entries must be the lowest degree polynomials such
that the above relation is true. More precisely, Dy (A) satisfies (6.1) and (6.2) i.e.
rank Ky (6,) = v, if and only if
(C): the trivial collection, g;(A) = 0 for 1 < i < n, is the only collection of n —r
polynomials g1(A), ..., gn—r(X) of degrees at most d, — 1 and of 7 polynomials
In—r+1(A), ..., gn(A) of degrees at most d, — 2 such that (8.5) holds.

For the “if part”, it is easily seen that if Dy ()A) satisfies (6.1) and (6.2) then
condition (C) is true. Conversely, for the “only if” part, on the one hand (C)
ensures that Dy (A) has no column of degree less than d, — 1. On the other hand,
it implies that one can find 7 columns of degree §, — 1 with pivots as expected
(otherwise a collection that violate (C) is exhibited among the columns of degree
dr — 1) and in the same way, that one can also find n — 7 columns of degree 6, with
pivots as expected.
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As done in [9] we may now bound the expected value Ey of the number W (n) of
“wrong collections”. We mean the number of choices of collections that satisfy (8.5)
but violate (C), plus one for the trivial choice:

(8.6) Fy = Fxpy# {{gi}i;Eigi(A)Y(i) = 0} = 3" Proby {Eigi(A)Y(i) = 0}.
gi

To bound the above sum of probabilities, for any non-trivial collection we consider
the polynomial

(8.7) 9(A) = ged (ma(A), g1(A), - gn(N)) -

Given such a g()), there are ¢°~~17989 possible g;(\) of degree at most 4, —
2 such that g(\) divides g;(\), thus there are at most ¢"(%r=1=9¢89) collections
{9i(X) }iz1,.. n of degree at most 6, — 2 that satisfy (8.7). Adding the collections

n—T

whose first n — 7 polynomials are of degree §, — 1 this gives ¢"(0r—1-degg) 4 (q —
1)(]”<5r_1_deg 9) thus ¢* =989 collections of degrees lower than the generic degrees.
For a given collection, the probability that a random Y will satisfy

g1 (A)Y(l) + gz(A)Y(Z) + ...+ gn (A)Y(”) =0,

is the same that the probability that a random vector y will satisfy g(A)y = 0. Tt

is g~rank 9(4) Then using (8.6) we get:

EXPY {W(n)} < 1+ Z qy—ndegg—rank g(A) — en(ﬂ'A,¢)~

glma
Now, we use the fact that W (n) is related to the rank of Ky (4, ) so that, W(n) =
q”_mnk Ky (ér) This finally leads to

Expy {q—rank Ky(ér)} < en(ﬂ'A,Qj))q_V

and
Proby {rank Ky (d,) <v —A} < 0O, (74, qS)q_A,
which concludes the proof. O

We will also use the same result on the left:

Proposition 8.4. Let A be a N x N matriz over K =GF(q), let X and Y be
chosen at random with m rows and n columns. Let §; = [v/m] and

Kxv (&)= |XPy,XPy Ay, ..., X Py AL

If m > min{¢,n} then with probability no less than 1 — O, (74, min{é,n})g~> we
have rank Kxy (d;) > Ny — A.

Proof. We use the same arguments as in proposition 8.2. Since X is uniform ran-
dom, so is X Py in My, n, (K). We keep the notations for ¢y and for ma, (A).
Since m > ¢y, by lemma 8.3 we get that

Probx {rank Kxy ([Ny /m]) > Ny — A} > 1 — 0., (7, by )q 2.
But rank Kxy(d;) > rank Kxy ([ Ny /m]) and using that w4, (A) divides m4(X)
and ¢y < min{¢,n}, we conclude with ©,, (74, ,¢y) < On(7Ta, ¢). O

The remarks after proposition 8.2 remain valid here.



30 Gilles VILLARD

9. PROBABILITY OF SUCCESS

The block algorithm uses 77 = AY rather than Y. Asin §6 we thus define A* to
be a restriction of A to its range space. We let ¢* be the number of blocks of the
Frobenius form of A* and v* be the dimension of the first ¢* or n blocks. Clearly,
all previously seen results with A, ¢ and v, can be applied with A*, ¢* and v*.

We do not know whether the block algorithm — as stated in [9] and in [18] -
produces a solution with good probability for any A, m and n. In the following,
we will work under the assumption that m is at least greater than min{¢*, n},
fortunately this is not too restrictive in most cases. Besides, there are two ways to
bypass this difficuly.

To work with any matrix A: one may simply choose m greater than n. In-
deed, even if ¢* 1s large, the blocking factor n on the right always actually
limits the number of blocks to min{¢*,n}. This can be used to apply theo-
rem 9.1 below for computing at least one solution of the system.

To work with any given m and n: the matrix A is either assumed or forced
to be non pathological. Coppersmith has assumed m > n > ¢*. Using
the same notations, Kaltofen has proposed a preconditioning of A to ensure
¢* = 1. This type of assumption is required for computing several solutions
as an application of corollary 9.5.

9.1. Over small cardinality fields. By remark 4.5, to find at least one solution
to the linear system Aw = 0, mainly the choice of X and the shift parameter A are
relevant:

Theorem 9.1. Let A be a N x N singular matriz over K =GF(q). The matrices
X € Mpn(K) and Y € My n(K) are chosen at random. Suppose that m >
min{¢* n} and let V = |ker A|. If w is computed by the block algorithm of §3.1
with shift parameter A, then Probx y {w # 0, Aw = 0} is greater than

(9.1) (<I>m(7TA, min{¢*,n}) — Op (74, min{e™, n})q_A) (1=1/V).

Proof. We begin by bounding the probability of having Aw # 0. Following the
notations used in §3.1, we have §; = [N/m] and 6, = | N/n|. We simultaneously
apply proposition 8.2 — which controls the dimension v* of the corresponding space
— and proposition 8.4 — which indicates whether the target dimension is reached.
As done for corollary 6.5, these propositions are applied with Z = AY rather than
with Y. We denote by Nz the dimension of span(Z, AZ,...). If X is such that
rank Kxz(8) = Nz — A and if Dz(X) = Dw(A) then rank Kxz(d; + A) must be
Nz. Thus by lemma4.4, any vector in the kernel of the corresponding block-Hankel
matrix M (6 + A, d, + 1) must be a vector generating polynomial and must provide,
by definition, a w such that Aw = 0. Note that — by remark 4.5 — the kernel of
M + A, 8, + 1) is not trivial. Now, by proposition 8.2 and proposition 8.4 we
know that

Probx {Aw # 0} <1 — ®,, (74, min{¢*,n}) + O, (74, min{d* n})g~2.
Finally, by an argument of Coppersmith [9] we know that the probability — on the
choice of Y — that w # 0 is more than (1 —1/V). O

The condition m > n and consequently the condition m > min{¢*, n} of the-
orem 9.1 are harmless if A’ times a vector can be computed with no loss of effi-
ciency. Indeed, in that case, on can find w! such that w®A® = 0 using a left version
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of the block algorithm. From a theoretical point of view, on may use Tellegen’s
theorem [32] which states that an algorithm computing A times a vector can be
converted to one for A! times a vector.

However, in the general case we have to make a slight additional restriction
especially if the ground field is GF(2). By lemma 11.5, we have a reasonable bound
for O (ma, min{¢*, n}) only if m > min{¢*, n}+2. If this is true, by taking A > 8,
the probability of success given by theorem 9.1 is quite low but greater than a fixed
€o. Next corollary is easily obtained from the bounds given in appendix B.

Corollary 9.2. If m > min{¢* , n} + 2 and A > 8 then the probability of success
1s always greater than ¢y = 0.03.

Fortunately — to explain the good practical behaviour of the algorithm — the
probability may be much greater, even over GF(2). Especially when m >> ¢*:

Corollary 9.3. If m > 4¢*, A > 8, V > 4 then the probability of success is greater
than 0.6.

Remark 9.4. . Tt has been experimentally observed in [19, 26] that blocking may
amplify the success probability. This can be easily explained by looking at the
values taken by (9.1). Intuitively, the more one uses blocking vectors the more a
block-Krylov subspace of dimension v* is easy to get (see also Wiedemann about
the success of his algorithm 1 in [39]). If, for instance, ¢™ = ¢ is a constant. When
m and n increase (m — ¢* and n — ¢* increase), @, (74, ¢o) increases and tends
to 1, and O, (ma, o) decreases and tends to 2. The probability in theorem 9.1
increases and can be made arbitrarily close to (1 — 1/V).

We may also consider a more general problem than finding at least one solution
to the linear system. One may wish for a family of vector generating polynomials
and further, for the matrix minimum generating polynomial for the current matrix
sequence. This may be used to compute, as actually done in [9], several independant
vectors in the kernel of A when they exist, or a multiple of the minimum polynomial
of A. The proof of next result — for small fields — reduces to apply the proof of
theorem 9.1 on both matrices X and Y. These two matrices now play the same
role.

Corollary 9.5. Let A be a N x N matriz over K =GF(q), let § = [N/m] and
d, = [N/n]. Suppose that the left blocking matriz X with m rows and the right one
Y with n columns are chosen at random over K. Suppose that n > ¢ and m > n.
Then the minimum generating polynomial Dy (\) for the sequence {A'Y}$2, can
be computed from the kernel of M(§; + A, d, + A+ 1) with probability no less than

(q)m(ﬂ-Aa ¢) - em (7TA, ¢)q_A) (q)n (7TA, ¢) - en (7TA, ¢)q_A) .

Proof. From lemma 8.1, with probability less than 1 — &, (74, ¢) the dimension of
<Y > is less than v. From lemma 8.3, with probability less than O, (74, ¢)¢~2
the rank of Ky (d,) is lower than v — A. Thus

Proby {rank Ky (8, + A) = v} > &, (74, ¢) — On(7a, qS)q_A.

Using the same arguments on the left for X (see the proof of theorem 9.1) and
applying lemma 4.6, the claim is proven. O
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9.2. Large fields — Generalization of Kaltofen’s analysis. For large fields,
another technique can be used. We follow the work of [20, 21, 18]. These ideas
have been successfully applied to singular matrices A whose minimal polynomial
has degree deg m4(A) = rank(A) + 1. Using the generalization of corollary 6.5, we
get for any matrix:

Theorem 9.6. Let A be a N x N singular matriz over K and let m > min{¢*, n}
Suppose that X with m rows and Y with n columns are chosen at random over K.
If w is a vector computed by the block algorithm of §3.1 with A = 0 then

Probxy {w# 0and Aw=0}>1- (2N - 1)/|K

Proof. We take § = [N/m] and &, = | N/n| and 7 = AY. Let Nz be the dimen-
sion of span(Z, AZ,...). If the associated Hankel matrix M (d;,d,) is of rank Ny
(we are going to ensure this condition which is stronger condition than necessary)
then by lemma 4.6, any vector in the kernel of M (d;, 4, + 1) provides a w such that
Aw = 0. By corollary 6.5 we know that this is true — with Nz = v* — for matrices
X and Y which entries are indeterminates 5, 1 < j < m, and v, 1 <1 < n,
with 1 <k < N. If

D* (&1, ,é€m N, U1 1, , UNn)
is a minor of rank v* of the associated Hankel matrix, then the probability that
Aw = 01s greater than the probability of hitting matrices X and Y which entries do
not form a root of D*. By corollary 1 of Schwartz [34] we know that the probability
of hitting a zero is less than

deg(D™)/|K| < 2v*/|K| < 2N/|K]|.
Summing this with the probability that w = 0 — at most 1/V as seen at theorem 9.1
— we conclude the proof. O

Over large fields, as shown in effect during the latter proof, degrees are actually
generic both on the right and on the left. A minimum generating matrix polynomial
with generic degrees, can thus also be computed from the kernel of M(d;,d, +
1), with the same probability of success than for at least one generating vector
polynomial.

10. ALTERNATIVE VARIANT OF THE BLOCK ALGORITHM

For the sake of completeness of the generalization of Wiedemann’s work, this
last section is devoted to a matrix version of another algorithm. Indeed, using
lemma 5.4 it is not difficult to give an adaptation, in the matrix case, of Wiede-
mann’s deterministic algorithm (see §1T of [39]). Again, since this is not the purpose
of this paper to study the way minimal generating polynomials for a sequence are
computed, the corresponding part of the algorithm is not given.

We define the matrices Uy, Us, ..., U|nym| by dividing the set of the rows of the
identity matrix of dimension N, into | N/m| subsets of m or m + 1 rows. Selecting
X to be successively Uy, Us, ... ,Un/m|, We can give a deterministic block algo-
rithm to compute a generating matrix polynomial for a sequence {AiY}OSiSL_lz

Algorithm. Block Wiedemann’s deterministic algorithm.

Input: A a N x N matrix over K, Y a N x n matriz over K and L a non-
negative integer.

Step 1. Compute A'Y,0<i<L—1.



STUDY OF COPPERSMITH’S ALGORITHM USING MATRIX POLYNOMIALS 33

Step 2. Let k=1 and Dy (A) = 1.

Step 3. Compute the sequence {UkAiY}ogigL—l from the data produced in
step 1.

Step 4. Apply Dy (A) to this sequence.

Step 5. Compute a generating matriz polynomial D(X) for this latter sequence.

Step 6. Set Dy (A) = Dy (A)D(A).

Step 7. Set k =k +1 and if k < |N/m| then go to step 3.

Output: Dy (A).

Such an algorithm could be also used to solve a linear system Aw = 0. In
a subsequent work we will try to know whether it can be time-competitive with
respect to the algorithm of §3.1.

11. CONCLUSION

Our approach has been influenced by matrix polynomial theory, where many
operations on scalar polynomials are generalized. Especially over GF(2), our con-
tribution is based on a very accurate tuning of parameters (m, n, A). The problem
is solved because some constraints are relaxed in a first step (see lemma 8.3 con-
cerning dimensions of Krylov subspaces) while others seem to be inevitable (see
the comments after theorem 9.1 about m and n). Even if the experiments tend to
confirm these facts, a problem is to know whether or why the remaining assump-
tions are necessary. In passing, one question is to know whether is particular the
structure of matrices arizing in factorization algorithms. This could corroborate
our analysis.

Future work will concern some extensions of our study. We have focused on a
particular block algorithm, the other block ones cited in the introduction may also
be considered. We have focused on finite fields, our results may be used for other
computable fields.

APPENDIX A — SOME FACTS FROM LINEAR ALGEBRA
The reader may refer to [14] or to [16] for the following matrix basic facts.

Theorem 11.1. Any N x N matriz A with entries in K 1s similar to a unique
block-companion matrix

F =P AP = diag (Cy,Ca,...,Cy) € Mn(K),
where C; is associated to some s;(\) in K[A], and s;(X) is a factor of s;_1(X) for
2<i<¢.
The matrix F is called the Frobenius normal form of A. The polynomials

s1(A), ..., s4(A) are called the invariant factors of A.

Theorem 11.2. Let A and Y be a N x N and a N x n matriz over K. There
erists a transformation matriz P such that

P YAP =[Py P, ' A[Py P;] = [ Ay A ]

0 A

where Ay is a restriciton of A tospan(Y, AY, A%Y,...). The transformation P may
be chosen such that Ay is shift-Hessenberg [2] or polycyclic form [31]. This form is
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block-triangular:

rCy lez T173 Ca T17¢Y T
0 Cy Tys :
Ay = 0 0 a1§¢Y§na
: : g Toy-1,6v
0 .. .0 Gy ]

where each diagonal block is companion and each upper-triangular block has non-
zero entries only in its last column. The structure of P~'Y corresponds to the
structure of P"'AP. We mean that
Y
Py =

b
and the first ¢y columns of Y form a modular cyclic basis with respect to Ay . The
J-th column, 1 < j < ¢y, 1s the k;-th canonical vector of KV, k; being the first
row index of block C}.

Theorem 11.3. Any n X n matriz D(X) with entries in K[)\] is equivalent to a
unique diagonal matrix

S(A) = UN)DMNV(A) = diag (s1(A),...,s6(A),1,...,1,0,...,0) € M, (K[A]),
where U(X) and V(X) are unimodular matrices in My (X) and where the s;(\)’s in
K[A] are such that s;(X) is a factor of s;_1(X\) for 2 <i< ¢.

The polynomials s1 (), ..., s4(A) are called the non-unity invariant factors of
D(X). For any irreducible polynomial g(A) of degree d in K[)], a rational Jordan
block associated to g(A) is, for some integer m, a block matrix

¢, 1 0
5= 0 @ O 1 e Moma(K),
SR
0 ... 0 C

g
where Cy is the companion matrix of g(A).

Theorem 11.4. Any N x N matriz A with entries in K 1s similar to a unique
block-diagonal matriz (up to the order of the blocks)

J=0Q'AQ = diag (J;p,... J(on), ,J<1>,...,J§§j’z’>) € My (K),

gl g,
()

where each Jgi‘ is a rational Jordan block associated to g;(A), and the g;(A)’s,
1 < j < p, are the irreducible factors in K[A] of the minimal polynomial of A.

APPENDIX B — BoUNDs oN O, (f,¢) AND &, (f, ¢)

Next two results give lower bounds for the values of the functions 0, (f, ¢) and

®,,(f, ¢) defined by identities (8.1) and (8.4).
Lemma 11.5. For f(A)|ra()) of degree N > q and forn > ¢+ 1:

14log, N if n = ¢ + 1,
On(f,¢) < { 14 exp (1/q"7=%72 +1/¢2=9)3) 'n > 6 + 2.
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Proof. We first look at the values taken by

0n(9,6) = v—ndegg —rank g(A)

depending on g(A). Let ¢;(A) and d; denote the i-th irreducible factor of f(A) and
its degree. Also assume that g;(A) is a factor of ¢; < ¢ invariant factors of A i.e.
is involved in ¢; blocks of the Frobenius form of A. For any given g;()), we have

On(9i,0) = v —nd; — (v — ¢idi) = —(n — ¢;)d; < —(n — ¢)d;.
In particular, the greatest possible value of 0, (g;, ¢) is —d;, it corresponds to the
case where g;(A) is a factor of ¢ = n—1 invariant factors of A. For two polynomials
gi(A) and g;(A) such that gf’(/\) and gfj(/\) are factors of f(A) we obtain in the
same way:
— n(k’ldl + k’jdj) — (I/ — ¢ikid; — (f)jk’jdj)

On(9i'g;",0) <
(11.1) s < —(n— @) (kid; + k;d;).

The greatest possible value of 6, (gf’gfj,q/)) is —k;d; — kjd;, it is reached if g;(X)
and g;(A) are factors of ¢ = n — 1 invariant factors of A. By definition of ©, (f, ¢),

On(f,6) =1+ "%,

glf
Using that 0, (1,¢) = 0 and using identity (11.1), ©,(f, ¢) is thus bounded by

1+14+ Z g~ (1= ) krdiy o hsdi )

9=9; 1~~~ Jlf

and further, by
141a Z Z - (n=¢)(krdiy +.. +kjdi;)
1,085 R,k

where the latter double sum is taken over all the sets of j indices ¢y, ... ,%; of factors
of f and of j corresponding multiplicities k1, ..., k;. Thus:

(11.2) On(f,0) <1+ TI (1 +a7"%).

i k=n—¢
We now bound the logarithm of above double product:

(11.3) log [ TT TT 47 <> >0 a7+

i k=n—¢ i k=n—¢

We may proceed using the computations done in [39] for the Euler’s Phi function
for polynomials over finite fields.

We first address the case n — ¢ > 2. The number of irreducible factors of degree
i is at most ¢' /i thus

gt < (d'/NaTF+(a?/2)a7* 4

(11.4) (r=r=r) = —log(1 = 1/4" ).

= log
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Since if n — ¢ > 2 then k > 1 and since —log(1 — 2) < # + 22 when 0 < 2 < 1/2
we bound the right-hand side of (11.3) by

(11 5) ZZ ij q_kdl < Zzo:n—¢ (1/qk‘—1 + 1/q2(k_1))
| <1/qnmmr 4 1/gPn =978,
Using this latter bound in (11.3) then in (11.2), we obtain as announced:

n—6>2: Ou(f,¢) <1+exp (1/qn—¢—z n 1/qz<n-¢>—3) .

We terminate the proof by considering the case n — ¢ = 1. Using the claim for
n—¢ =2 we get:

)B) SR (Zq-d’) +(1+1/4)

i k=1
and using proposition 3 in [39]:

Z gl <14 loglog, N,
thus,

ZZq_kd’ <24 1/q+loglog, N.
i k=1

Using (11.3) and (11.2) we finally obtain
n—¢=1:0,(f¢) <1+exp(2+1/q)log, N < 14log, N
which is the claim. O

Lemma 11.6. For f(X) of degree N > ¢ and n > ¢:

1/(45log, N) if n = ¢,

Bu(f,6)> 4 1/30if p=[n/6] =1 and p> 1,

1—1/g"=t = 1/¢*=Dif = n/¢] > 2.

Proof. For the second term of the product we have:
LT (1= 7%) > (I (L= =) (T, Tl (1 - g~#%)
> (1= q7 ) (1 =32, 2o g a™ ),

which is greater, using identities (11.4) and (11.5) of the proof of lemma 11.5, than:
(11.6) (1+1og(1—1/¢=1)) (1 =1/~ = 1/4°#77) .
The claim of the lemma is obtained by noticing that this latter expression is always
greater than 1/9 and is greater than 1 —1/¢2#=2if y > 2.

For the first term of the main product, if p+ pu = 1 i.e. if n = ¢ then from
theorem 3.15 of [15]:

10 -a%) > 1/(10g, N).

which gives with the lower bound for (11.6):
n=¢: ®,(f,¢)>1/(45log, N).
If p+ > 1 then using (11.4)
[T =7 #9%) > 14 log(1 = 1/g7+7),

7
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we have

pu=1,p>1: ®,(f,¢) > (1 +log(l —1/2))/9 > 1/30.

TIf > 2, using (11.5) and the previously given bound for (11.6) then we finally get:

10.

11.

12.

13.

14.
15.

16.
17.
18.

19.

20.

21.

22.

®,(f, 6) > (1__1/qp+u—1__1/q%p+u—1n (1__1/q2u—2)
> 1__1/qp+u—1__1/q%p+u—1)>,1__1/qu—1__1/q%u—1X
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