Integer Smith Form via the Valence:
Experience with Large Sparse Matrices from Homology:

J-G. Dumas
Unité Informatique et
Distribution, B.P. 53 X, 38041
Grenoble Cedex, France.

Jean-Guillaume.Dumas
@imag.fr

www-apache. imag.fr/~jgdunas

ABSTRACT

We present a new algorithm to compute the Integer Smith
normal form of large sparse matrices. We reduce the com-
putation of the Smith form to independent, and therefore
parallel, computations modulo powers of word-size primes.
Consequently, the algorithm does not suffer from coefficient
growth. We have implemented several variants of this al-
gorithm (Elimination and/or Black-Box techniques) since
practical performance depends strongly on the memory avail-
able. Our method has proven useful in algebraic topology
for the computation of the homology of some large simplicial
complexes.

Keywords

Large sparse matrix. Integer Smith form. Gaussian elimi-
nation. Black Box. Wiedemann Algorithm. Valence Algo-
rithm. Simplicial Complexes. Homology groups.

1. INTRODUCTION

In this article we study the computation of the integer Smith
form of sparse matrices. The classical Smith form algo-
rithm performs an elimination process with some gcd com-
putations over the integers or modulo large primes [15, 27].
There exists also some theoretical advances for sparse ma-
trices with iterative methods [13] but those are not very
practical yet.

Our new probabilistic algorithm reduces the Smith form to
computations modulo powers of small primes. Consequently
the algorithm does not suffer from coefficient growth. More-
over the modular computations are independent of each other,
permitting an easy and very effective parallelization. De-
pending on some space/time tradeoff considerations, we may

'Some of this work was done while the first author was vis-
iting the University of Delaware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSAC 2000, St. Andrews, Scotland

©2000 ACM 1-58113-218-2/ 00/ 0008 $5.00

B. D. Saunders
Department of Computer and
Information Sciences,
University of Delaware,
Newark, Delaware 19716.

saunders@udel.edu

www.eecis.udel.edu/~saunders

G. Villard
Laboratoire de Modélisation et
Calcul, IMAG, BP 53 F, 38041

Grenoble cedex 9, France.

Gilles.Villard@imag.fr

www-1lmc. imag.fr/lmc-cf/Gilles.Villard

choose either iterative or direct methods at certain stages
of our algorithm. Some salient features of our approach
are that (1) we use the ovals of Cassini to often get a bet-
ter determinant bound than Hadamard’s and (2) we begin
with the trailing coeflicient (valence) of the minimal polyno-
mial of the symmetrized but unpreconditioned matrix AA".
The method is particularly effective when this polynomial
is of low degree and hence fast to compute by Wiedemann’s
method. This has proven to be the case for many of the
boundary map matrices of the simplicial complexes given to
us by Volkmar Welker [4, 1]. We report on experiments in-
volving these matrices which arise in the computation of the
homology of the complexes. Indeed, the reduced homology
of a simplicial complex is equivalent information to the in-
teger Smith form of its boundary maps [24]. In the cases we
studied, the boundary maps can be very large, e.g. around
10° rows and columns, and very sparse, e.g. 6 entries per
row.

We present an overview of our algorithm in §2; we then
discuss some implementation details (§3 and §4). Finally
we report on experiments using matrices from homology in

§5.

2. VALENCE BASED SMITH FORM
ALGORITHM

In this section we describe a new algorithm for the computa-
tion of the Smith form of an integer matrix. This algorithm
has proven effective on some of the boundary matrices dis-
cussed in this paper, though the asymptotic complexity is
not better than Giesbrecht’s algorithm [13, Theorem 2.5].
The method is particularly effective when the degree of the
minimal polynomial of AA! is small. We begin with some
definitions:

DEFINITIONS 1. The valence of a polynomial is its trail-
ing non-zero coefficient. By extension, the characteristic
valence of a matriz is the valence of its characteristic poly-
nomzal.

The minimal valence or simply the valence of a matriz is
the valence of its minimal polynomial.

The valuation is the degree of the corresponding term. The
characteristic and minimal valuations of a matriz are
semilarly defined.

For 1 < i < min(m,n), the i-th determinantal divisor of a

matriz A, d;(A), is the greatest common divisor of the 1 X i
minors of A. Let do(A) = 1.

The i-th invariant factor of A is s;(A) = d;(A)/di—1(A), or
0 if d;(A) = 0.

The Smith form of A is the diagonal matriz

S =diag(s1(A), ..., Smin(m,n) (A))

of the same shape as A.

For a positive integer q, we denote by 74 the quotient ring
7/q7Z. The set of invertible elements in 74 is denoted by
74".

It is well known that for 1 < ¢ < min(m,n), we have d;_1|d;,
si—1]si, and that A is unimodularly equivalent to its Smith
form.

DEFINITIONS 2. For a positive integer q, we definerank,(A),
the rank of A mod q, to be the greatest 1 such that g does not

divide the 1-th invariant factor of A, and denote this rank

by rq = ranky(A).

The rank of A as an integer matriz will be denoted r =

rank(A).

First we present an overview of the valence method. The
individual steps can be done in many ways. Afterwards we
will discuss the implementation details.

Algorithm: VSF [Valence-Smith-Form]

Input: — a matrix A € Z"*™. A may be a “black box”
meaning that the only requirement is that left
and right matrix-vector products may be com-
puted: ¥ — Ax for x € Z™, y — yA for
yt e 7"

Output: — S = diag(s1,... , Smin(n,m)), the integer Smith
form of A.

(1) [Valence computation]
If n < m, let B= AA", otherwise let B = A"A.
Let N = min(n,m)
Compute the valence v of B. [See section 3]
(2) [Integer factorization]
Factor the valence v.
Let I be the list of primes which divide v.
(3) [Rank and first estimate of Smith form.]
Choose a prime p not in L (i.e. p-v).
Compute r = rank,(A).
[we now know the first r invariant factors are
nonzero and the last N —r are 0’s.]
Set S = diag(s1,...,sn), where s; =1 for i <r
and s; =0 for ¢ > r.
(4) [Non-trivial invariant factors]
For each prime p € L
Compute S, = diag(sp,1,-..,$p,~), the Smith
form of A over the local ring Z(P). [See section 4]
Set S = S®Sp, [That is, set s; = s;sp,; for those
$p,i which are non-trivial powers of p.]
(5) [Return invariants]

Return S = diag(si ...sn) € 277,

In order to prove the correctness of our method we will need
the following theorem.

THEOREM 1. Let A be a matriz in Z7*™. Let (s1,...,8y)
be its non-zero invariant factors. If a prime p € 7 divides
some non-zero s;, then p* divides the characteristic valence
of AA" and p divides the minimal valence(AA"). The same
is true of the valences of A*A as well.

ProoF. Let B = AA'. The argument will apply equally
well to B = A'A. Let M(x) = minpoly(B) and let

v = valence(M) = valence(B). Let C(z) = charpoly(B),
and let Fi(z),... Fx(z) be the invariant factors of B. It is
well known that these are monic integer polynomials with

Fi(z)|F2(z)] ... |(Fr(z) = minpoly(B)) and C(z) = H Fi(z).

Let v, = valence(C) = characteristic valence(B). and let
v; = valence(F}). It follows easily from the nature of poly-
nomial arithmetic that vi|vz|...|ve = v, and ve = []vs,

Hence all primes that occur in v. occur in v. Thus the
second part of the conclusion follows from the first and it
suffices now to show any prime occurring in the Smith form
of A occurs squared in v, :

NOTATIONS 1. As in [17], we denote by Si* the set of all
length i subsequences of [1..n] and by A7y, I € S7*, J € ST,
the 1 X1 determinant of the submatriz of A in the rows I and
columns J.

Using the Cauchy-Binet formula [12, Proposition 1.§2.14],
note that v., as a coefficient of the characteristic polynomial,
satisfies for some 1:

tve= Y Br=Y Y AmAir=> Y Al

Iesy Iesy Kesy Iesy Kesy

As a sum of squares, such a coefficient is nonzero if and only
if some Arx is nonzero. Hence v. is the coefficient for the
case 1 = rank(A). Therefore if p occurs in the Smith form,
then p|ged(Arx), the r-th determinantal divisor of A. Tt
follows that p2|vc. O

It is straightforward to show that this theorem holds when
7 is replaced by any principal ideal domain of characteristic
zero (in general replacing transpose by conjugate transpose).

COROLLARY 1. Algorithm Valence-Smith-Form correctly
computes the Smith Form.

ProoF. The theorem shows that we consider the relevant
primes. It is evident that the integer Smith form may be
composed from the relevant local Smith forms, since the in-
teger Smith form is the local Smith form at p up to multiples
which are units mod p. [J

The remaining sections are devoted to details, variants, and
experiments concerning the valence algorithm (section §3
is devoted to details on part 1 of the Valence algorithm and
section §4 will focus on part 4).

3. COMPUTING THE VALENCE

The first two steps of the valence algorithm have the purpose
of determining a small, at any rate finite, set of primes which
includes all primes occurring in the Smith form. In this
section we propose two different ways to compute such a
set. One method is by computing the valence, the other is
a partial integer elimination.

3.1 Chinese remaindering

We compute the integer minimal valence, v, of a matrix B
(the valence of its minimal polynomial over the integers) by
Chinese remaindering valences of its minimal polynomials
mod p for various primes p. The algorithm has three steps.
First compute the degree of the minimal polynomial by do-
ing a few trials modulo some primes. Then compute a sharp
bound on the size of the valence using this degree. End by
Chinese remaindering the valences modulo several primes.

3.1.1 Degree of the minimal polynomial

To compute the degree of the integer minimal polynomial,
we choose some primes at random. The degree of the inte-
ger minimal polynomial will be the maximal degree of the
minimal polynomials mod p with high probability. Primes
may have a lower degree minimal polynomial. We call them
“bad” primes. Let d be the degree of the integer minimal
polynomial. There exists a vector u such that the Krylov
subspace associated to B and u, span(u, Bu, ..., B'u) is of
rank d. Therefore there exists a square d X d non-zero minor,
My, of the matrix [u, Bu, ..., B'u]. “Bad” primes must di-
vide this minor. Given an upper bound on M4 we can then
give an upper bound U on the number of bad primes. Let 8
be an upper bound to the norm of the rows of B. Next, using
Hadamard’s inequality [31, Theorem 16.6], we can state that

|Mg| < U, where U = 2"6"2. Suppose we choose primes at
random from a set P of primes greater than a lower bound
I. There can be no more than log,(U) primes greater than
I dividing Mg. It suffices to pick from an adequately large
set P to reduce the probability of choosing bad primes. The
distribution of primes assures that adequatly large P can be
constructed containing primes that are not excessively large.
For instance, we know these bounds on the n-th prime, p,

[21, Theorem A] :
n(log(n) + log(log(n)) — 1.002872) < p, n>2

log(log(n)))

pn < n(log(n) +log(log(n)) — 1+ 1.8 log(n)

Now, for random primes, each polynomial modulo a prime

has a probability at least 1 — % of being of degree d.
Suppose that there are k polynomials of maximal degree.

The probability that this degree is d is then at least 1 —
(logi%glU))k)

In practice the actual number of distinct primes greater than
2!'® dividing valences of homology matrices is very small (no
more than 50, say) and we often picked primes between 215
and 2'® where there are 3030 primes. This giving us only
1.7% of bad primes. With only 10 polynomials this reduces
to a probability of failure less than 2 x 10716,

The next question is how many primes must be used for the
Chinese remaindering. Using Hadamard’s inequality again
would induce a use of O(n) minimal polynomial computa-
tions. We found several methods to reduce this number. In
the two next sections we develop two methods for this pur-
pose. First is an early termination of the Chinese remain-
dering, which is directly useful for sequential computation.
Then, for parallel computation, it is interesting to have a
sharper estimate. We can use the ovals of Cassini to bound
the spectral radius and thence the valence.

3.1.2 Early termination

In our computations for which timings and results are re-
ported here, we compute vp,;, the minimal valence mod p;,
for several primes chosen at random in the vicinity of 2'¢.
We accept the result of Chinese remaindering when the
product of the primes p; exceeds the smaller of the Hadamard
bound or a bound computed by considering ovals of Cassini
as we will see in section 3.1.3. But when both these bounds
are large, we use a probabilistic termination condition. Let
v be v reduced mod M = Hlepi, for randomly chosen
primes p;. Suppose at this point that we believe vy = v,
that is to say we believe to have sufficiently many primes
even if M is lower than our bound (this can happen for in-
stance if this vy remains the same for successive k) Then
it is possible to compute a quick check of this belief in the
following manner. Choose another random prime p* in a
sufficiently large set and compute v*, the minimal valence
mod p*. Compute also vy mod p* = v}, then if vy = v, the
two values modulo p* must also be equal. Now there are
two cases. On the one hand if those two values are distinct
we know that our computation is not finished. On the other
hand if the values modulo p* are equal then vy is v with
high probability . We make this probability explicit in the
following lemma.

LEMMA 1. Let v € Z and an upper bound U be given such
thatv < U. Let P be a set of primes and let {p1 ... pr,p*} be
a random subset of P. Letl be a lower bound such that p* > 1
and let M = Hlep,'. Let vy = v mod m, v* = v mod p*
and v} = vy mod p* as above. Suppose now that v} = v*.
log, (£7)

[P

Then v = v, with probability at least v = 1 —

ProoF. The only way to give an incorrect answer is to have
v # vy and at the same time v} = v*. This means that
vy = v mod m and vy = v mod p* and therefore, as m and

p" are co-prime, p* must divide *57%. To finish we see that

there are at most log,() distinct prime numbers greater
than ! dividing this quotient and that v — vy < U. O

V=V

For instance, the worst example given in section 5.1 is a
matrix for which the valence is bounded by U = 117527, We
choose some primes greater than I = 2'*. We can suppose
that M, the product of primes, is greater than 2, therefore
log,(£) < 379. On the other hand, we know that there
are exactly 3030 primes between 2'° and 2'®. Therefore by
choosing a prime between 2'° and 2'® we still have more than
87% chance of being right and by using this trick four times
this grows to 99.97%. Usually, for the homology matrices
the bound is closer to 10°°°. There, only one application of
the trick gives more than 98.5% confidence!

3.1.3 Ovals of Cassini

For a parallel computation of the valence, in particular, a
sharp bound is very useful. The Hadamard bound seems too
pessimistic an estimation for sparse matrices. Therefore, we
use a bound determined by consideration of Gershgorin disks
and ovals of Cassini. This bound is of the form 8¢ where
3 is a bound on the eigenvalues and d is the degree of the
minimal polynomial. Thus n does not appear as an expo-
nent as in the Hadamard bound. To compute the degree we
compute several polynomials and take the maximal degree
as described in the beginning of this section. To compute

a bound on the eigenvalues we use Gershgorin disks and
Cassini ovals.

The 1-th Gershgorin disk is centered at a;; and has for a
radius the sum of the absolute values of the other entries
on the i-th row. Gershgorin’s theorem is that all of the
eigenvalues are contained in the union of the Gershgorin
disks [28]. One can then go further and consider the ovals
of Cassini [5, 6], which may produce sharper bounds. For
our purposes here it suffices to note that each Cassini oval
is a subset of two Gershgorin circles, and that all of the
eigenvalues are contained in the union of the ovals. We can
then use the following proposition bounding the coefficients
of the minimal polynomial :

PROPOSITION 1. Let B € IR™" with its spectral radius
bounded by B. Let M(X) = minpoly(B) = ZZ:O m; X",
Then | valence(B)| < 8% and¥i € [0..d], |mi| < max(\/dB, 8)%.

ProOF. Tt suffices to note that |m;i| < (¢)5° [22, Theorem
V.§4.1]. O

When d is small relative to n this is an improvement on the
Hadamard bound since the latter would be of order n rather

than d.

This is the case for the Homology matrices in our experi-
ments. Indeed, for those, AA" has very small minimal poly-
nomial degree and has some other useful properties (e.g. the
matrix AA® is diagonally dominant).

There remains to compute a bound on the spectral radius.
We remark that it is expensive to compute any of the bounds
mentioned above while staying strictly in the black box
model. It seems to require two matrix vector products (with
A) to extract each row or column of B. But, if one has ac-
cess to the elements of A, a bound for the spectral radius of
B can easily be obtained with very few arbitrary precision
operations :

Algorithm: 0CB [Ovals-of-Cassini-Bound]
— a matrix A € R™*"™.

- Boc € IR, such that for every eigenvalue A of
AAY N < Boc.

Input:
Output:

(1) [Centers]
Vi€ [l.n], set gi =3 0 az;.

(2) [Radii]
Form |A| , the matrix whose entries are the abso-
lute values of those of A.
Compute v = |A]|4|"[1,1,...,1].
Vi € [1..n], set r; = v; — qi.

(3) [Gershgorin bound]
Set ¢ = max;g[1..n] Gi-
Set 11 such that r;; = max;gp;.n 7.
Set 12 such that ri, = max;e[i. n)\{i;} 7i-

(3) [Return Cassini bound]
Return foc = q+ /ri;74y-

THEOREM 2. Let A € IR™™™ with Q non-zero elements.
Algorithm Ovals-of-Cassini-Bound correctly computes a bound
on the eigenvalues of AAY, using no more than 6 + n field
operations and 3n comparisons.

ProoF. For the correctness of the bound we use the fact
that the eigenvalues lie in the union of the ovals of Cassini.
Now suppose that ¢1 > g2, r1, r2 are the two centers and
two radii of such an oval. Then any point A of this oval
satisfies the following : |A — q1||A — g2| < rir2 [5, Theorem
1]. We want to know the maximal absolute value of such a
A Set 6 =q1 —q2 > 0. First if A > q1, set X = X —q1.
Then X satisfies X2 4+ 86X — rira < 0 and X > 0. Hence
|X] < /rirz. Next if g1 > X > qo, then |A] < q1. Last if
q2 > A. set X = A—q2. Then X satisfies X2 _6X —riry <0
and X < 0. Hence |X| < \/rir2. Therefore foc as in
the algorithm matches the requirements. The complexity
analysis is straightforward. [

3.2 A Point about the Symmetrization
The choice between A°A and AA" is easily made in view of
the following.

THEOREM 3. minpoly(A*A) and minpoly (AA") are equal
or differ by a factor of x.

PROOF. Let m 4t 4(x) and m 4 4: () be respectively the min-
imal polynomials of A*A and AA'. The Cayley-Hamilton
theorem [12, Theorem IV.§4.2] states that m ¢ 4(A*A) = 0.
Then Am i 4(ATA)A" = 0 and (Xm 4:4)(AA") = 0. Since
m 4 4¢ is the minimum polynomial of AA' it follows that
maat|Xm 4t s. We can similarly prove that m 4e 4| Xm 4 4¢.
Then either m 44t = Xmg1 4 Or mpgat = Mt 4 OF X gat =
M oAt A D

Thus the difference of degree has a negligible effect on the
run time of the algorithm. It is advantageous to choose the
smaller of AA" and A'A in the algorithm, to reduce the cost
of the inner products involved. Moreover any bound on the
coefficients of minpoly (A A) can then be applied to those of
minpoly (AA") and vice versa.

3.3 An Alternative to the Valence

Finally, we mention that, in some experiments, we also have
used integer elimination to compute a multiple of the last
non-zero invariant factor. Here we have used essentially
Storjohan’s Bareiss-based probabilistic Smith form algorithm
[27], abbreviated. We compute an integer Bareiss-L.U de-
composition of the matrix storing only some parts of U.
The last non-zero row of this matrix, say the 1 — th row,
contains only 7 X ¢ minors [2, 19]. Therefore the last non-
zero invariant factor divides the gcd of the last non-zero row
of U. We were able to succeed with this heuristic on some
sparse matrices, where complete execution of Storjohan’s al-
gorithm would have required too much memory. Moreover,
as this algorithm is deterministic, the gcd computed is a true
multiple of the invariant factor.

4. LOCAL SMITH FORM AT P

Next consider the question of computing the local Smith
form in Z®. This is equivalent to a computation of the
rank mod p* for sufficiently many k. Recall that we define

the rank mod p* as the number of nonzero invariant factors
mod p*. We do not mean the McCoy rank, the size of the
largest nonzero minor mod p*. Tn anumber of cases, we have
had success with an elimination approach, despite the fill-in
problem. We first present this elimination method then the
iterative method with lower space requirements.

4.1 Elimination Method

Due to intermediate expression swell, it is not effective to
compute directly in Z(p)7 the local ring at p, so we perform
a computation mod p®, which determines the ranks mod p*
for k < e and hence the powers of p in the Smith form up
to p°~'. Suppose by this means we find that s, is not zero
mod p®, where r is the previously determined integer rank
of A. Then we have determined the Smith form of A locally
at p. If, however, the rank mod p° is less than r, we can
repeat the LRE computation with larger exponent e until
sy 1s nonzero mod p°.

Algorithm: LRE [Local-Ranks-by-Elimination-mod-p?]

Input: - amatrix A € ZOPHDX0+D) with elements (aiy)
for i, 5 € [0..m] x [0..m].
— a prime p, and a positive integer e.
Output: — rpi, for 1 <i<e.
(1) [Initializations]
set k=e
set r =20
(2) [e successive Gauss steps]
for (exponent k =1 to e) do
while (3(s,t) € [r..m] x [r..n],p fas)
[as: is the pivot]
Swap rows r, s, and columns r, ¢
for all (i,5) € [r+ 1..m] x [r + 1..n] do
[elimination, with division, mod p*~**!]
set a;; = a;j —ar;a;r[ary(mod p~FF)
set r =r 4+ 1.
set rpx =7
[and invariant factors s; = pk_1 for Tpk—1 < 1 <
Tk]
for all (i,) € [r..m] x [r..n] do
set a;; = ai;/p
(3) [Return local ranks]

return rpi, Vi € [1..€]

THEOREM 4. For a positive integer e, algorithm L.ocal Ranks
by Elimination mod p® is correct and runs using O(r m n)
arithmetic operations mod p® where r is the rank mod p°.

Proor. It is equivalent to consider the case when the row
and column permutations are done in advance so that the
pivots are already in the (r, r) position in the while loop. For
each k, then, we have an elimination phase determining r
followed by a division phase. The elimination may be viewed
as multiplication by a unit lower triangular matrix, call it’s
inverse Ly. The division is multiplication by Dk_l7 where
Dy = diag(1,... ,1,p,...,p), with r x 1’s. Then in effect,
A has been factored as P [[;_, LxDrA'Q, where P and Q
are permutations, A’ is the upper triangular final form of A
after the elimination, and the)’s and I’s are as above. We
note that D.A’ = D.U, where U is the unimodular matrix

obtained by replacing the last n — rpe rows of A’ by those
of the identity matrix. It follows that A is equivalent to
B = szl LiDy. From this it is easily seen that the the
Smith form of A in Zpe is S = diag(s:) = [[;_, D&, because
for both B and S and for each j, the leading principal j x j
minor contains the the least power of p, namely []7_, si. To
see this for B, use Cauchy-Binet expansion of the minors
together with the lower triangularity of the Lx. [

4.2 Iterative Methods

4.2.1 Wiedemann’s algorithm and diagonal Scaling
For some matrices the elimination approach just described
fails due to excessive memory demand (thrashing). It is
desirable to have a memory efficient method for such cases.
This section propose three iterative methods. The first one
is a quick check that the integer rank is the rank mod p.
The second one is to use Wiedemann’s algorithm [32] with
diagonal scaling [11, Theorem 6.2] to compute the rank mod
p. This algorithm has much lower memory requirements
than elimination, has better asymptotic complexity and is
effective in practice for actually large sparse matrices over
large fields [8]. Still it doesn’t give the complete local Smith
form at p. In 4.2.3 we propose a p-adic way to compute the
last invariant factor of this local Smith form at p, completing
the algorithm.

4.2.2 Null Space Method

Consider a prime p which occurs in the Smith Form of A.
We know that p? divides the characteristic valence of AA°®.
It seems more likely in general that p® divides the mini-
mal valence than that it divides two or more successive in-
variant factors of the characteristic polynomial. Of course
one can construct examples to the contrary. For instance

consider A = [_11 H, it has Smith form [(1) g] However
AAY = ATA = [g g] and has minimum polynomial z — 2

and characteristic polynomial (z — 2)2. At any rate, in the
boundary matrix examples from homology that we exam-
ined we have never encountered a prime occuring singly in
the valence which actually occurs in the Smith form of A.

Thus we take as the next goal after the valence computa-
tion in algorithm VSF| to determine for a prime p occuring
singly in the valence, if the rank mod p is the integer rank.
Moreover we would like to be able to decide this as quickly
as possible. This job may be done by computing the rank
mod p via Wiedemann’s algorithm as is discussed below or
via elimination. However the run time of those methods is
a function of the rank. We therefore propose here a method
with run time a function of the degree of the minimal poly-
nomial of B = AA". However this method requires arbitrary
precision integer arithmetic while the rank mod p approach
does not. Despite this, when the rank is large relative to
this degree, this method is likely to be less costly.

The idea is to use a factor R of M = minpoly(B) such that
M = RN. We would like to know if this factor is repeated
in the Frobenius normal form of A, i.e. if the dimension of
the kernel of R(B) is the degree of R or a multiple of this
degree. We will show in the following lemma that in the
case where R and N are coprime, the dimension of the span
of N(B) is equal to the dimension of the kernel of R(B).
This leads to a probabilistic algorithm: For d = deg(R), we

try d + 1 random vectors u; and see if the v; = N(B)u; are
dependent. Then if the vectors are dependent we know that
with high probability the dimension of the kernel of R(B)
is d and that R is not repeated. It follows that any prime
occuring singly in valence(R) and valence (M) will occur also
singly in the characteristic valence of AAT. And then such
a prime cannot appear in the Smith form of A.

We now give the complete algorithm, then the dimension
lemma and end this section with the probabilistic analysis.

Algorithm: NSD [Null-Space-Dimension)]

— a matrix A € 2", A may be a BlackBox.

— the minimal polynomial M of AA", and a factor

Rof M.

— ¢ € IR such that 0 < e < 1.

Output: — a list T of all the primes in valence(R) which
do not occur in the Smith form of A. The list is
correct with probability at least 1 — e.

Input:

(1) [Initializations]
Set L =10
Set d = deg(R).
M
Set N = ")
Set g = [e™4].

Set po a random prime such that po > g and
po - valence(M).
Form the BlackBox N(B).

(2) [Probabilistic Null-Space dimension]
Select d + 1 random nonzero vectors u; € (Zp,)".
Vi € [0..d), set v; = N(B)u;.
if rcmk([vo vy 'Ud]) < d + 1 modulo po.
for each prime p dividing valence(R)
if p? does not divide valence(M), add p to L.

3 Return not occuring primes
g P
return L.

Of course this algorithm can be applied to any factor of M to
determine primes which can be removed from the candidate
list L of primes which divides valence(M). To prove its
correctness we need the following lemma.

LEMMA 2. Let B € Z"*". Let N,R € Z[X] coprime such
that N(B)R(B) =0 € Z"*". Thenspan(R(B)) = ker(N(B))
and span(N(B)) = ker(R(B)).

ProoF. First, since R(B)N(B) = N(B)R(B) = 0 the span
of one matrix polynomial is included in the kernel of the
other one. Now, using [12, Theorem VII.§2.1], we know that
ker(R(B)) and ker(N(B)) are supplementary. We conclude

by the dimension theorem, proving the lemma. [

THEOREM 5. Algorithm Null-Space-Dimension s correct.

PrOOF. Let B = AA". B is symmetric, so its minimal poly-
nomial P is squarefree. We now suppose that this minimum
polynomial is not irreducible. Let N and R be two cofac-
tors of P. As P is squarefree, N and R are coprime. By the
lemma, the span of N(B) is the nullspace of R(B). Thus
the nullspace of R(B) has dimension kd, where k is the mul-
tiplicity of R in the characteristic polynomial of B. Hence
algorithm NSD may give incorrect result only if it’s d 4+ 1

random vectors are preimages of d+1 dependent vectors in a
space of dimension kd over a field with more than g scalars.
Note that the v; are uniformly distributed in span(N(B)) if
the u; are uniformly distributed in (Z,,)".

We now quantify the probability of such a dependence.
Let P(j,n) be the probability of a dependency among j ran-
dom vectors in a space of dimension n (j < n) over the
field Z,, with h elements. Then P(j,n) = P(j — 1,n) +
P(first j — 1 independent but j-th dependent) which gives

P(j,n) < P(j—1,n) + 52t < G < (b — 1),
Hence, as h > g, if k > 2 then P(d+1,kd) < g? 7% < ng <

e. O

4.2.3 The Last Invariant Factor of the Local Smith

Form at p

We have not entirely worked out an extension of Wiede-
mann’s approach suitable for computation of the rank mod
a power p°. The method of Reeds and Sloan [25] can be
adapted to compute the annihilator of our matrix Zpe. Tt
may be possible to adapt this to the purpose of computing
the rank of the matrix in Zpye. We do not currently know
how to do this in a memory efficient way.

In practice we have encountered matrices whose invariant
factors are square free. To verify this it suffices to show that
the exponent of p is 1 in the last invariant factor (last non-
zero Smith form entry). The following method will do this
and a little more.

Let A be a matrix of rank r in Z™*” whose local Smith
normal form at p is S, = diag (p*',p"2,... ,p*",0,...,0).
The problem is to compute the multiplicity k = k, of p in
the last nonzero invariant factor. Since determining whether
K is zero reduces to comparing the rank modulo p and the
rank over), we assume that x > 1.

Our purpose is to derive a black-box algorithm with cost
linear in k rather than in X;k;, say.

¢ Invertible matrix case. We assume for the moment
that A is n x n invertible. For a vector # of reduced integer
fractions, we define the order ord,(z) of z as the largest
exponent, of p in the denominators of the entries of x. For
a random b the solution x to Az = b satisfies in general
ordy(z) = k. To reduce the cost of computing &, let us
ensure the same property for the order of the first entry of a
well chosen system solution. Let v be a nonzero n x 1 vector
with first nonzero entry vy, 1 < I < n, and let u be the first
canonical vector. Define the n x n matrix E(v) by:

Eijii=1for1 <1< and F;; =1for I <1 <mn,
E; ; =0, otherwise.

LEMMA 3. Let b and v be two random integer vectors with
entries chosen uniformly in [0,p — 1]. With probability (1 —
1/p)?, E(v) + uv' is invertible (v # 0) and &k is the order
of the first entry of the solutiony to A(E(v) +uv") "'y =b.
When v #£ 0, the order cannot be strictly greater than k.

PrROOF. If E(v) — uv' is invertible and » denotes the solu-
tion to Az = b then y = (E(v) 4 uv’)x and the first entry of
yis y1 = 2;vix;. Let U and V' be unimodular transforma-

tions such that S = U AV is in Smith form, U and V define

bijections on [0,p — 1] and on (Z/pZ)" thus:

P, = Proby(ordy(z) = k; Az = b)
= Proby(ordy(z) = k; S(V_lx) = Ub)
= Proby(ord,(z) = k; Sz = b)
> Probp(1<b, <p—1)=1-—1/p.

If ordy(z) = k then p"x Z 0 mod p. With probability
1 —1/p we have also p™ 3. v;z; Z 0 mod p and the order
of y1 is k. In this latter case v is nonzero and by construction
E(U) + uv® is invertible. This proves the first assertion of
the lemma. For the last assertion it suffices to notice that
since the v;’s are integers, the order of ¥;v;x; is lower than

the order of . [

Let us now associate to A a new matrix A whose Smith
form is related to the one of A and such that one entry of
the solution to Az = b can be computed fast:

LEMMA 4. Let g # p be a prime, for 7 > 1 integer define
A =p" +qA. Locally at p, the nonzero invariant factors
of A and A having exponents strictly lower than T are the
same.

nxXn

PROOF. The matrices A and A as matrices in (7/(p7))
are equivalent. []

LEMMA 5. Letb be an integer vector with ||b||c < ||A]|e =

B. Any entry of the solution v to Ax = b may be com-
puted in N = n~(log2 n + 2log,(p” + ¢B)) /(log, q) + 2 mul-
tiplications of A times a vector with entries bounded by g
and O (n2(log2 n+ 2log,(p” + qﬂ))2) additional binary op-
erations. In addition to the matrixz storage, the algorithm

requires an O(n (log, n + 2log,(p™ + qB))) bits of storage.

ProoF. We apply the algorithm of Dixon [7] based on a
g-adic expansion of the solution. The matrix A is invert-
ible in Q"™ and in (Z/pZ)™*™ A™'=p~"Id mod q. The
number N of iterations is given in the lemma, each itera-
tion has binary cost O(N log2 q) when the g-adic expansion
of only one entry of the solution is computed. The ratio-
nal value of that entry is constructed from the expansion
within the same cost. The extra amount of storage needed

is O(Nlog,q). O

For any integer 7, from lemma 3 and lemma 4 we may give a
randomized algorithm which compares 7 to x with an arbi-
trary error tolerance € > 0: By repeated random choices of
q, b, v, 1t is possible to produce an algorithm returning, with
probability as low as required, « if kK < 7 (maybe wrong) and
reporting that « is strictly greater than 7 otherwise (always
correct).

Algorithm: LIF [Largest Invariant Factor] order
Input: - A € Z"*” invertible,
— a prime p, an integer 7 > 1,
— an error tolerance € > 0.
Output: — with probability at least 1 —¢, returns K if Kk < 7
(maybe wrong) and reports that is strictly
greater than 7 otherwise (always correct).

(1) [Conditioning]
Set max_order = 0.

Choose_a prime q # p.
Build A =p™t' + ¢A.

(2) [Order]
For ¢ from 1 to [log(e)/log(1 — (1 —1/p)*)] do
Choose random b and v in [0,p — 1]".
If v # 0 construct E(v) + uvt
Compute y1 € Q the first entry of y such that
A(E(v) + uvt)_ly =b.
If ordp(y1) > 7 then Return(“c >” 7).
max_order := max{max_order, ord,(y:)}.
Return(“s =” max_order).

ProposiTiON 2. The algorithm LIF works as specified, if
K < 7 then it returns k with probability at least 1 — € or a
lower value with probability less than €. If k > 7 then it dis-
covers the latter inequality with probability at least 1 —e¢, this
result is always correct, or returns a wrong value lower than
T with probability less than €. The cost of the algorithm is
bounded by the cost in lemma 5 times the number of passing
through the for loop (a function of the error tolerance and
of p).
Proor. If k < 7 then by lemma 4 all the invariant factors
of A =p™t" 4 gA are also of order less than x. By lemma 3,
the probability that v = 0 or that y; gives an order strictly
less than kis 1 — (1 —1/p)?. The computed order cannot be
strictly greater than k. After [log(e)/log(1 — (1 — 1/p)*)]
trials, the probability to have a wrong result is less than
e. If k > 7, the largest invariant factor of A is at least
of order 7 + 1, in the same way, this will be found with
probability at least 1 —e. This latter result is always correct
since by lemma 3 the computed order cannot be greater than
the actual one. The cost bounds are immediately derived
(multiplying by the inverse of E(v) + uv' requires linear
time only). [

One may see for instance that with 24 random choices for b
and v, it is possible with probability more than 1 — 107°
independently of the dimension of the matrix, to certify that
k > 2 for p = 3. By constructing orders of number fields,
as done in [14, §5] for Diophantine equations, the number of
trials could be reduced up to some increase in time for the
applications of lemma 5.

o General case. When A is m X n singular of rank r,
unlike in lemma 4, the use of the modified matrix A will
always introduce new nonzero invariant factors that prevent
from computing x using algorithm LIF. An alternative way
to proceed is to apply the algorithm to an invertible r x r
matrix Ag constructed from A, whose local Smith form is
Sr = diag (p*1,p™2,... ,p*"). Such a matrix As may be
obtained by conditioning A. We generalize the construc-
tion of [23, Lemma 11]. Let us denote by U and V two
unimodular multipliers such that UAV is in Smith form:
UAV = [501 g] and consider two pre-conditioners P € Z"*"™
and Q € Z™*". If T € Z™*" is the matrix constructed
with the first » columns of U™ and if W € Z"*" is con-
structed with the first r rows of V™! then: A = TS;W
thus PAQ = (PT)S;1(WQ). We see that if PT and WQ
are invertible modulo p, we can take As = PAQ. Since U
and V are unimodular, T" and W have rank r modulo p and
the condition depends on the choice of P and . We have
proven:

LEMMA 6. There exists two matrices W € 27*", T € 77"
only depending on A giving : If P € Z7°™ and Q € Z™*" are
such that p fdet(PT) and p fdet(WQ) then As = PAQ
18 invertible and its local Smith form at p is the invertible
submatriz St = diag (p*1,p"2, ..., p*r) of the local Smith
form of A.

For pre-conditioners satisfying the lemma condition one may
consider Toeplitz matrices as used in [18, Theorem 2] or
in [14, §5]. Define n = [log, 2r(r + 1)] and let " € Z[z] be
a monic polynomial irreducible modulo p, of degree n and
with coefficients bounded in absolute value by p. Let § =
mod I" and V), be the set of the polynomials of degree less
than n with coefficients 0 or 1 over Z[6].

PROPOSITION 3. [14] Let A € Z™*" be of rank r, p a
prime. Consider as pre-conditioners P and Q, an upper
and a lower triangular Toeplitz matriz with unit diagonal
and whose other entries are randomly chosen in V,. The
local Smith form of As = PAQ at p is St with probability
greater than 1/2.

The algorithm LIF may then be applied to Ag or the ran-
dom choice of the conditioners may be included in the for
loop of a modified algorithm. In that case [14], if y1 =

Zo<l<n ygl)el € Q(#) is the first entry of the solution to
A~5(E(U)—|—uvt)y = b, one look at the order of ygo). The sizes
of the integers (numerators and denominators) involved in
the computations are a factor O(n) i.e. O(logr) greater
than for the regular case. The cost bounds of lemma 5 will

be modified by the same factor.

Instead of Toeplitz matrices one may use sparse matrices as
in [32, §I11] or [30] to avoid order fields.

PROPOSITION 4. [32, Theorem 1°] Let A € 77" be of
rank r, p a prime. A random procedure exists for gener-
ating sparse pre-conditioners P and Q with coefficients in
{0,1} and of total Hamming weight O(rlogr). With prob-
ability at least 1 — € they satisfies that the local Smith form
of As = PAQ at p is S;.

In any case, one can include the preconditionning in the
preceding process; thus only increasing the computation of
the matrix-vector products by a factor O(log(r).

S. EXPERIMENTS WITH HOMOLOGY
MATRICES

In this section we describe the structure of the boundary
maps of a simplicial complex. More details on the connec-
tion between homology groups of simplicial complexes and
linear algebra can be found in [24]. We will mainly talk
about three homology matrix classes. The matrices will be
denoted by three naming patterns:

¢ mki.bj denotes the boundary matrix 5 from the matching
k-complex with 7 vertices.

e chi-k.bj denotes the boundary matrix j5 from the 2 by k
chessboard complex.

e nick.bj denotes the boundary matrix j from the not -
connected graph with k vertices.

For details on those simplicial complexes see [1, 3].

The boundary matrices are sparse matrices with a fixed
number k of non-zero elements per row and [per column. If
A; is the boundary map between the dimensions i and 1—1 of
a simplicial complex then k =1+ 1. All entries are —1, 0 or
1. Moreover, the Laplacians A; Af and A!A; also have —1, 0
and 1 as entries except for the diagonal which is respectively
all k and all I. However, as expected, those Laplacians have
more than twice as many non-zero elements as A;. Thus,
we did not perform the matrix multiplications to compute
A; Ajv. We performed two matrix-vector products, A;(Alv),
instead.

We will also check in section 5.1 that the Laplacians have
indeed a very low degree minimal polynomial (say up to 25
for the matching and chessboard matrices, close to 200 for
the not-connected). This fact was our chief motivation to
develop the Valence method. Figure 1 illustrates the pat-
terns occurring in these matrices. It shows ch4-4.b2, the
boundary map between the second and first dimensions of
the 4 x 4 chessboard complex, together with its Laplacians.
It is of size 96 x 72 with 288 non-zero elements. It has 3 el-
ements per row and 4 per column. On the other hand AA*®
is of size 96 x 96 with 960 non-zero elements and A*A is of
size 72 X 72 with 648 non-zero elements.

Our experiments were realized on a cluster of 20 Sun Mi-
crosystem Ultra Enterprise 450 each with four 250MHz Ultra-
IT processor and 1024 Mb or 512 Mb of memory. We com-
puted ranks of matrices over finite fields GF'(g) where g has
half word size. The chosen arithmetic used discrete loga-
rithms with precomputed tables, as in [26]. The algorithms
were implemented in C4+4 with the TINBOX! library for
computer algebra and the ATHAPASCAN? environment for
parallelism.

5.1 Experiments

We will call w the number of non-zero elements per row, s
the shape and r the integer rank of the matrix under consid-
eration. We will produce these elements only in table 1. The
name of the matrix will be repeated in the following tables.
For several cases, fill-in causes a failure of elimination. This
is due to memory thrashing (MT). All the timings presented
are in seconds except as otherwise specified and reflect the
cpu time for sequential computations and the real time for
parallel computations.

In table 1 we present computations of the integer minimum
polynomial of some homology matrices. We indicate the
Cassini bound, CB, for those and present the number of
Chinese remainders needed, Rem, the degree of the min-
imum polynomial, d,, and the minimal valence, v,,. As
some v, are quite large, we write explicitly only the smaller
prime factors and denote by C; a product of ¢ larger prime
factors. In one case, Csg4 denotes a product of at least 59
primes. This number has 57 known prime factors and a an-
other composite factor of 376 digits that we were unable to
factor. We give timings for sequential and parallel compu-
tation of the minimal valence. A first approach for parallel
computation is to use sequential routines for Cassini bounds,

'Symbolic linear algebra library,
http://www.cis.udel.edu/~caviness/linbox
2Parallel execution support of the APACHE Project,

http://www-apache.imag.fr/software

Pl
Figure 1: Chessboard complex 4-4, boundary matrix 2 with AA" and A'A.
| Matrix || w, 8, T || CB | Rem | dm Um, || Sequential | Parallel |
mk9.b3 4, 945x1260, 875 12 2 X°© 2 .31 0.31 0.39
mk10.b3 4,4725x%3150,2564, 24 3 X7 2.3*.5%.7.13 1.16 0.81
mk11.b4 5, 9450x17325, 9324 14 3 X°® —2°.3%.5%.7.11 4.00 1.80
mk12.b3 4, 51975x13860, 12440 60 3 X7 210 3% 5.7.11.13 16.68 5.55
mk12.b4 5, 62370x51975, 39535 30 4 X1 —212 37 5.7.11 34.49 11.39
mk13.b4 || 5, 270270x135135, 111463 || 50 4 X1 —23.211.37.5%.7.11.13 149.06 42.13
mk13.b5 || 6, 135135x270270, 134211 || 18 4 X112 210 3% 52 11.13 96.11 29.41
ch4-4.b2 3, 96x72, 57 12 1 x4 273 0.08 0.24
ch5-5.b3 4, 600x600, 424 16 3 X® 2°.3% 52,7 0.35 0.39
ch6-6.b4 5, 4320x5400, 3390 20 3 X1 210.3% 511 1.83 1.43
ch7-7.b4 5, 52920x29400, 22884 45 6 X1® —19.17.2'1.37.5%.7%.11.13 45.17 10.28
ch7-7.b5 6, 35280x52920, 29448 24 4 X2 —29.41.367.34504396919539 23.88 7.52
ch7-8.b5 6,141120x141120, 92959 36 7 X2 19.17.2'8.3° 5%.7%.11.13 123.18 24.85
ch7-9.b3 4, 105840x17640, 16190 96 7 x1e 29.19.2'? 310 5% 7% 11.13.31 82.57 15.04
ch7-9.b4 || 5, 317520x105840, 89650 | 75 9 X2 —1433.C4 471.22 64.67
ch7-9.b5 || 6, 423360x317520, 227870 || 48 9 X 23.19.17.2%4.319 54 74,112,132 775.33 | 106.15
ch8-8.b4 || 5, 376320x117600, 100289 || 80 7 x1e 29.19.17.2%2.3%.5%.72.11.13 386.13 64.78
ch8-8.b5 || 6, 564480x376320, 276031 || 54 7 X1 —19.17.227 3% 5*.72.11%.13 732.44 | 127.57
ch8-8.b6 || 7, 322560x564480, 279237 || 28 5 X 215 3% 5% 7.11.13 337.72 77.52
ch8-8.b7 8, 40320x322560, 40320 8 1 X! —23 10.63 10.47
ch9-9.b3 4, 381024x42336, 39824 || 144 | 5 X1 —73.6287.C} 190.74 45.10
ch9-9.b4 5, 1905120x381024, ?7? 125 | 8 X —21% 312 56 7% 132 Cs 2279.32 | 358.97
n2c6.b6 7, 5715x4945, 2943 63 25 | X°¢ 17.2%6 32! 52.7.13%.C10 55.43 3.44
n2c6.b7 8, 3990x5715, 2772 64 58 | X192 172.28% 355 550 73 132.04 206.18 7.51
n3c6.b9 10, 2511x4935, 1896 60 15 | Xx*° 17227313 5%.134.7.Cq 15.80 1.83
ndc5.b5 6, 4340x2852, 1866 60 | 39 | x'0? —216 310 516 132 1912 .89%.Cy, 82.76 4.04
n4c5.b6 7, 4735x4340, 2474 63 | 82 | X6 19.17.245 310 526 7,672 592 .Cay4 401.05 11.49
ndc5.b7 8, 3635x4735, 2261 64 | 100 | X?%%° —17.2%7 3'% 528 11.132.59% .Cs¢ 511.69 14.26
ndc5.b8 9, 1895x3635, 1374 63 | 62 | X' | 172.2%5.3%5 5%3.11.13%.379%.Cy 125.93 5.30
n4c6.bs 6, 51813x20058, 15228 96 | 44 | X104 —23.2.52009.C5 1161.39 35.35
n4c6.b12 13, 25605x69235, 20165 117 | 358 | X827 | —224% 343 5% 77 114.132.312.C04 66344.40 | 1181.61
n4c6.b13 14, 6300x25605, 5440 98 | 37 | X% —2°1 38 58 72 11%2.13.31%.C1s 249.28 9.90

Table 1: Computing the Integer Minimal Polynomial of AA' via Chinese remaindering

minimum polynomial over Z,, and Chinese remaindering of
integers. The algorithm has 3 steps. First compute the
Cassini bound and some minimum polynomials in parallel.
Using the bound and the degree of the minimum polynomi-
als, the maximum number of remainders needed is known.
Therefore, the second step is the computation in parallel of
some more minimum polynomials as required [9]. The last
step is a Chinese remaindering of the coefficients. A future
implementation will also use parallel matrix-vector products
as well as block methods [16, 29] to improve speed.

Matrix Elimination | Wiedemann
mk9.b3 0.26 2.11
ch7-7.b6 4.67 119.53
ch7-6.b4 49.32 416.97
ch7-7.b5 2179.62 4283.4
ch8-8.b5 MT 55 hours
n2c6.b6 6.44 72.96
n2c6.b7 3.64 57.10
n4c5.b6 2.73 51.75
n4c6.b12 231.34 4131.06
n4c6.b13 8.92 288.57

Table 2: rank modulo 65521, Elimination vs. Wiede-
mann

In table 2 we report some comparisons between Wiedemann’s
algorithm and elimination with reordering for computing the
rank. More sequential comparisons and some parallel ones
are reported in [8]. We just want to emphasize the fact that
for these matrices from homology, as long as enough mem-
ory is available, elimination is more efficient. However, for
larger matrices, Wiedemann’s algorithm is competitive and
is sometimes the only solution.

In table 3 we compare timings of our algorithm to some im-
plementations of other methods. We compare here only the
results obtained using the version of the Valence Smith Form
algorithm in which we use Wiedemann’s algorithm to com-
pute the Valence and then elimination modulo small powers
of primes p to compute the invariant factors locally at p.
Simplicial Homology [10] is a proposed GAP share pack-
age. It computes homology groups of simplicial complexes
via the Smith form of their boundary maps. It features
a version of our Valence algorithm as well as an elimina-
tion method for homology groups by Frank Heckenbach .
The latter is a variant of the classical elimination method
over arbitrary precision integers for Smith form [15], tak-
ing advantage of the particular structures of the boundary
maps. The entry “Hom-Elm-GMP” in this table refers to
this elimination-based method using Gnu Multi Precision
integers. Fermat [20] is computer algebra system for Macs
and Windows. Its Smith form routine is an implementation
of Kannan & Bachem’s [15] as is Heckenbach’s but with a
different pivot strategy.

“Hom-Elim-GMP” and “Valence” ran on the 250MHz Ultra-
IT processor with 1024 Mb, but Fermat is only available
on Mac and Windows. We therefore report on experiments
with Fermat on a 400 MHz Intel i860 processor with only 320
Mb. First we see that “Fermat” cannot compete with “Hom-
Elim-GMP” in any case. The main explanation is that the
pivot strategy used by “Hom-Elim-GMP” is very well suited
to the homology matrices. We can see also that as long as

Matrix Fermat | Hom-Elim-GMP Valence
ch6-6.b4 1138.04 3.48 41.51
mk9.b3 39.49 0.34 1.27
mk10.b3 33.24 1.60 20.23
mk11.b4 || 98937.27 4269.14 210.24
mk12.b3 3900 46.10 491.37
mk12.b4 MT MT | 31688.20

Table 3: Fermat vs. Hom-Elim-GMP vs. SFV

no coefficient growth is involved “Hom-Elim-GMP” is often
better than “Valence”. Indeed, where “Hom-Elim-GMP”
performs only one integer elimination, “Valence” performs
an elimination for every prime involved - of course in parallel
this difference will disappear. But as soon as coefficient
growth becomes important “Valence” is winning. Moreover,
“Valence” using only memory efficient iterative methods can
give some partial results where memory exhaustion due to
fill-in prevents any eliminations from running to completion.
In table 2 we can see some of these effects.

6. CONCLUSION

The preceding comparison of two elimination implementa-
tions and our Valence method provides a convenient basis
for summary remarks.

(1) Elimination can be effective on these sparse but pat-
terned simplicial complex boundary matrices. However this
is true only if the pivoting strategy is well suited to this
situation.

(2) For large enough sparse matrices, fill-in makes elimina-
tion more time consuming than the Valence method, and
for the largest examples, elimination fails altogether due to
excessive memory demand. With the Valence approach, we
were able to compute the rank modulo primes for matrices
with 500,000 or more rows and columns, while elimination
was failing for matrices of sizes larger than about 50,000.

(3) Tt remains open how to efficiently determine the ranks
modulo powers (> 1) of primes while using memory-efficient
iterative methods.

7. REFERENCES

[1] E. Babson, A. Bjérner, S. Linusson, J. Shareshian,
and V. Welker. Complexes of not i-connected graphs.
Topology, 38(2):271-299, 1999.

[2] E. H. Bareiss. Sylvester’s identity and multistep
integer-preserving Gaussian elimination. Mathematics
of Computation, 22(103):565-578, July 1968.

[3] A. Bjoerner, L. Lovasz, S. Vreéica, and R. T.
Zivaljevié. Chessboard complexes and matching
complexes. Journal of the London Mathematical
Society, II. Ser. 49, No.1, 25-39, 1994.

[4] A. Bjorner and V. Welker. Complexes of directed
graphs. STAM Journal on Discrete Mathematics,
12(4):413-424, Nov. 1999.

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(18]

A. Brauer. Limits for the characteristic roots of a
matrix. Duke Mathematical Journal, 14:21-26, 1947.

R. A. Brualdi and S. Mellendorf. Regions in the
complex plane containing the eigenvalues of a matrix.
American Mathematical Monthly, 101(10):975-985,
Dec. 1994.

Dixon, John D. Exact solution of linear equations
using p-adic expansions. Numerische Mathematik,
40:137-141, 1982.

J.-G. Dumas. David and Goliath : computing the rank
of sparse matrices. Technical report, Sept. 1999.
Internal report, Linbox group.

J.-G. Dumas. Calcul du polynéme minimal entier en
athapascan-1 et linbox. In RenPar '2000. Actes des

douziémes rencontres francophones du paralllismes,

June 19-22 2000.

J.-G. Dumas, F. Heckenbach, B. D. Saunders, and
V. Welker. Simplicial Homology, a share package for
G AP, Mar. 2000. Manual
(http://www.cis.udel.edu/~heckenba/Homology).

W. Eberly and E. Kaltofen. On randomized Lanczos
algorithms. In W. W. Kiichlin, editor, ISSAC °97.
Proceedings of the 1997 International Symposium on

Symbolic and Algebraic Computation, Maui, Hawaii,
pages 176-183. ACM Press, July 21-23, 1997.

F. R. Gantmacher. The Theory of Matrices. Chelsea,
New York, 1959.

M. W. Giesbrecht. Probabilistic computation of the
Smith Normal Form of a sparse integer matrix. Lecture
Notes in Computer Science, 1122:173-186, 1996.

M. W. Giesbrecht. Efficient parallel solution of sparse
systems of linear diophantine equations. In Parallel
Symbolic Computation (PASCO’97), pages 1-10,
Maui, Hawaii, USA, July 1997.

C. S. Tliopoulos. Worst-case complexity bounds on
algorithms for computing the canonical structure of
finite Abelian groups and the Hermite and Smith
normal forms of an integer matrix. STAM Journal on
Computing, 18(4):658-669, 1989.

E. Kaltofen. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Mathematics of Computation,
64(210):777-806, Apr. 1995.

E. Kaltofen, M. S. Krishnamoorthy, and B. D.
Saunders. Parallel algorithms for matrix normal
forms. Linear Algebra and its Applications,
136:189-208, 1990.

E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In H. F.
Mattson, T. Mora, and T. R. N. Rao, editors,
Proceedings of Applied Algebra, Algebraic Algorithms
and Error—Correcting Codes (AAECC '91), volume
539 of LNCS, pages 29-38, Berlin, Germany, Oct.
1991. Springer.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

H. R. Lee and B. D. Saunders. Fraction free Gaussian
elimination for sparse matrices. Journal of Symbolic
Computation, 19(5):393-402, Apr. 1995.

R. H. Lewis. Fermat, a computer algebra system for
polynomial and matrixz computations, 1997.
http://www.bway.net/~lewis.

J.-P. Massias and G. Robin. Bornes effectives pour
certaines fonctions concernant les nombres premiers.
Journal de Théorie des Nombres de Bordeauz,
8:213-238, 1996.

M. Mignotte. Mathématiques pour le calcul formel,
chapter Majoration de la taille des facteurs d’un
polynéme, page 168. PUF, 1989.

T. Mulders and A. Storjohann. Diophantine linear
system solving. In International Symposium on
Symbolic and Algebraic Computation (ISSAC 99),
pages 181-188, Vancouver, BC, Canada, July 1999.

J. R. Munkres. Flements of algebraic topology, chapter
The computability of homology groups, pages 53-61.
Advanced Book Program. The Benjamin/Cummings
Publishing Company, Inc., 1994.

J. A. Reeds and N. J. A. Sloane. Shift-register
synthesis (modulo m). STAM Journal on Computing,
14(3):505-513, Aug. 1985.

E. Sibert, H. F. Mattson, and P. Jackson. Finite Field
Arithmetic Using the Connection Machine. In

R. Zippel, editor, Computer algebra and parallelism,
Proceedings of the second International Workshop on
Parallel Algebraic Computation, volume 584 of LNCS,
pages 51-61. Springer Verlag, May 1990.

A. Storjohann. Near optimal algorithms for computing
Smith normal forms of integer matrices. In Lakshman
Y. N., editor, ISSAC ’96: Proceedings of the 1996
International Symposium on Symbolic and Algebraic
Computation, July 24-26, 1996, Zurich, Switzerland,
pages 267-274. ACM Press, 1996.

O. Taussky. Bounds for characteristic roots of
matrices. Duke Mathematical Journal, 15:1043-1044,
1948.

G. Villard. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
systems. In W. W. Kiichlin, editor, ISSAC ’97.
Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation, Maui, Hawaii,
pages 32-39, July 21-23, 1997.

G. Villard. Applications of sparse pre-conditioners
over finite fields. Technical report, Feb. 1999. Internal
report, Linbox group.

J. Von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, New York, NY,
USA, 1999.

D. H. Wiedemann. Solving sparse linear equations
over finite fields. TEFFE Transactions on Information
Theory, 32(1):54-62, Jan. 1986.

