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Motivation

The Fargues-Fontaine curve, introduced in [FF18], is a fundamental and ubiquitous object in p-adic
Hodge theory. For example, it provides a nice framework to study some standard period rings [FF18],
allows for a reformulation of local class field theory [LCF], and paves the way to a geometrization of the
local Langlands correspondence [FS21].

In the absolute case, the Fargues-Fontaine curve is a (nice) scheme of dimension 1, whose closed points
classify untilts of a perfectoid field. While it is not of finite type, it essentially behaves like a standard
curve. In the relative case, the Fargues-Fontaine curve is not a scheme, but rather a p-adic analytic space.
Nevertheless, it is expected to behave like a curve.

In order to explore this idea, one might try and establish analogues of standard duality results for vector
bundles on the Fargues-Fontaine curve - which admit a very convenient Harder–Narasimhan filtration. In
[ALB21], Arthur-César Le Bras and Johannes Anschütz develop a version of Serre’s duality.

One key piece of the argument is a vanishing result of higher extension groups of some standard
period sheaves, as introduced in [Sch13], on perfectoid sites in fixed finite characteristic, endowed with
the v-topology.

The goal of this document is to explain how one can compute such extensions groups. Following
[ALB21], we view this computation as a analytification of an old result by Lawrence Breen in [Bre81], of
extension groups of étale sheaves in a fully algebraic setup.

In this document, we introduce the necessary technical tools to study extension groups on arbitrary
sites, before specifying to an étale, then an analytic setup. We prove as precisely as possible, and using
little prerequisite knowledge, the announced results.

Structure

In this document, we do not assume prior knowledge about period sheaves, adic geometry nor perfectoid
objects. We, however, assume familiarity with scheme theory, elementary étale cohomology, homological
algebra, some algebraic topology and category theory.

In section 1, we introduce standard notions that will be used throughout the paper. We assume that
the reader is at least somewhat familiar with most of them.

In section 2, we introduce technical tools regarding cohomology in topoi, in order to prepare the reader
for section 3 (and 5).

The section 3 is dedicated to the computation by L.Breen and J.Anschütz of the extension groups of
the additive group scheme on the perfect étale site over a fixed affine base of characteristic p.

The section 4 aims to motivate and introduce the main concepts of adic and perfectoid geometry, as
well as some useful period sheaves, motivated by the classifications of untilts.

In section 5, we explain, following [ALB21], how to deduce some results about extensions of period
sheaves from the result by L.Breen and J.Anschütz. We then briefly discuss the importance of such results.
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3



1 Preliminaries

1.1 Sites, Sheaves and Topoi

Throughout this section, we assume familiarity with (1-)categories and sheaves on topological spaces.

1.1.1 Sites

Our main reference is the Stacks project [Sta22, Ch.7].
Informally, a "site" is a category endowed with a topology, which allows for the definition of an adequate
notion of sheaves.

Definition 1.1.1. A site1 is a pair (C, J) consisting of a category C with fiber products equipped with a
Grothendieck pretopology J which consists of, for each object U of C, a collection of covering families
{fi ∶ Ui → U}i∈I such that :

• For all isomorphisms f ∶ V ≅ U in C, {f ∶ V → U} is a covering family.

• If {fi ∶ Ui → U}i∈I is a covering family and, for each i, so is {hi,j ∶ Ui,j → Ui}j∈Ji , then the family
{fi ○ hi,j ∶ Ui,j → U}i∈I,j∈Ui is a covering family.

• If {fi ∶ Ui → U}i∈I is a covering family and g ∶ V → U is a morphism, then the family of pullbacks
{g∗fi ∶ Ui ×U V → V }i∈I given by the diagram below is a covering family.

Ui ×U V V

Ui U

g∗fi

π g

fi

Historically, the notion of site was introduced to construct a proper theory of étale cohomology.

Example 1.1.2. If X is a topological space, the category of its open sets Op(X), where morphisms reflect
inclusions, is naturally endowed with a structure of a site in which covers are jointly surjective families,
i.e. a family {fi ∶ Ui → U}i∈I is a cover if U = ⋃ fi(Ui).
If S is a scheme, the big étale site of S is the category (Sch/S)ét of all S−schemes, in which covers are
jointly surjective families of étale maps.2

As is the case on topological spaces, there is a natural notion of refinement.

Definition 1.1.3. Let (C, J) be a site and {fi ∶ Ui → U}i∈I and {gj ∶ Vj → U}j∈J be covering families.
We say that the first one refines the second one if there exists a map α ∶ I → J as well as morphisms
hi ∶ Ui → Vα(i) for every i ∈ I such that the diagrams :

Ui Vα(i)

U

fi

hi

gα(i)

commute for any i ∈ I.
1This terminology somewhat depends on the author. This definition is the most restrictive one, but every concrete site

considered in this paper respects these conditions.
2Note that, if we replace "étale" with "open immersion", the obtained site is simply Op(S), with the Zariski topology
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Remark 1.1.4. Any two coverings {fi ∶ Ui → U}i∈I and {gj ∶ Vj → U}j∈J of some U admit a common
refinement, given by the pullbacks {hi,j ∶ Ui ×U Vj → U}i,j.

We willingly do not define morphisms of site in order to avoid confusion. Indeed, the standard notion of
a morphism of site (C, J) → (D, J ′) is a functor D → C satisfying certain conditions. We prefer talking
about covariant functors between the underlying categories.

Definition 1.1.5. Let (C, J) and (D, J ′) be sites.
A functor u ∶ C → D is continuous if, for every covering family {fi ∶ Vi → V }i∈I in C :

1. The family {u(fi) ∶ u(Vi)→ u(V )}i∈I is a covering family in D.

2. For any morphism g ∶ T → V in C, the morphism u(Vi ×V T ) → u(Vi) ×u(V ) u(T ) induced by the
universal property of the fiber product :

u(Vi ×V T )

u(Vi) ×u(V ) u(T ) u(T )

u(Vi) u(V )

u(π2)

u(π1)

π2

π1 u(g)

u(fi)

is an isomorphism.

The terminology is justified by the fact that a map between topological spaces f ∶X → Y is continuous if
and only if the associated pre-image functor f∗ ∶ Op(Y )→ Op(X) is continuous.

We conclude this section with a more technical notion :

Definition 1.1.6. Let (C, J) and (D, J ′) be sites.
A functor C → D is cocontinuous if, for every U ∈ Ob(C) and every covering family {gj ∶ Vj → u(U)}j∈J
in D, there exists a covering family {fi ∶ Ui → U}i∈I of C such that the family3 {u(fi) ∶ u(Ui) → u(U)}i∈I
refines {gj ∶ Vj → u(U)}j∈J .

1.1.2 Sheaves

Our main reference is still the Stacks project [Sta22, Ch.7].
In this section, we define sheaves on sites.

Definition 1.1.7. Let C, D be two categories.
A presheaf on C valued in D is a functor Cop → D, where Cop denotes the opposite category of C.
We let Psh(C,D) denote the category of such presheaves, with morphisms given by natural transformations.
Until specified otherwise, the term "presheaf" denotes Set-valued presheaves. We let Psh(C) ∶= Psh(C,Set).

If X is a topological space, presheaves on Op(X) are exactly presheaves over X, in the usual sense.

An important class of presheaves is given by the representable ones :

Definition 1.1.8. Any object X ∈ C induces a presheaf, given by hX = HomC( ,X). Such a presheaf is
said to be representable.

3It needs not be an covering family
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For example, the functor of points of an S−scheme X defines a presheaf on the étale site of S.
At this point, it is a legal obligation to mention Yoneda’s lemma.

Lemma 1.1.9. (Yoneda) If G is a presheaf on a category C, and A an object of C, there is a canonical
isomorphism HomPsh(C)(hA,G) ≅ G(A).
In particular, the embedding C → Psh(C) is fully faithful.

We may now define the gluing condition for presheaves to be sheaves. This mimics the topological case,
except that intersections are replaced by fiber products.

Definition 1.1.10. Let (C, J) be a site and D be a category with products.4

A sheaf on C valued in D is a presheaf F ∶ Cop → D such that, for every covering family {fi ∶ Ui → U}i∈I
in C, the diagram :

F(U) ∏F(fi) // ∏i∈I F(Ui)
pr∗0 //

pr∗1
// ∏(i0,i1)∈I×I F(Ui0 ×U Ui1)

identifies the image of first arrow with the equalizer of pr∗0 and pr∗1 .
Here, pr∗0 is induced by the inclusions Ui → Ui ×U Uj and pr∗1 is induced by the inclusions Ui → Uk ×U Ui.
We let Sh((C, J),D) be the category of D-valued sheaves on C, seen as a full subcategory of PSh(C,D).
When the coverage is clear, we simply write Sh(C,D).

If X is a topological space, we note Sh(X,D) ∶= Sh(Op(X),D). This is the usual notion of sheaves.
For short, we let Sh(C) ∶= Sh(C,Set).

Remark 1.1.11. If A is an abelian category with products, the sheaf condition for functors Cop → A can
be rewritten by asking the sequence :

F(U) ∏F(fi) // ∏i∈I F(Ui)
pr∗0−pr

∗

1 // ∏(i0,i1)∈I×I F(Ui0 ×U Ui1)

to be exact.

Definition 1.1.12. A site (C,J) is said to be subcanonical if every representable presheaf is a sheaf.

While every site considered in this paper will be subcanonical, this is far from being an automatic condition.
As in the topological case, there is a canonical process of "sheafification". In practice, in order to define
a sheaf on a site, it will be enough to define a presheaf.

Proposition 1.1.13. Let (C, J) be a site, and D be a category with products.
The forgetful functor Sh(C,D)→ Psh(C,D) admits a left adjoint, the sheafification, noted F ↦ F ♯.

Proof. cf. [Sta22, Proposition 7.10.12]

1.1.3 Topos

This sections is mainly based on the Stacks project [Sta22, Ch.7] and SGA IV [GV72], Chapter 4.
When considering topoi, set-theoretic issues appear quite quickly. For our purposes, we will ignore them,
and treat every category as if it were small (which is somewhat true if one accepts the existence of a
strongly inaccessible cardinal5).

4One can define presheaves valued in category without products - see [Sta22, Definition 00VR]
5Such a statement is independant of ZFC
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Definition 1.1.14. A topos is a category T that is isomorphic to a category of Set-valued sheaves Sh(C, J)
on some site (C, J), called the site of definition.

Note that a topos admits many good categorical properties, including the existence of all finite limits and
colimits. The simplest topos is Set, seen as the category of sheaves on a point.
There is an intrinsic definition of a topos via categorical axioms, due to Giraud. Since the site defining a
topos is not canonically defined, we will to avoid referencing it whenever possible.

Definition 1.1.15. Let T and R′ be topoi.
A geometric morphism of topos T → T ′ is a pair of functors (u∗, u∗), such that u∗ ∶ T ′ → T 6 and
u∗ ∶ T → T ′, satisfy :

• u∗ commute with finite limits.

• u∗ is left-adjoint to u∗.

We call u∗ the push-forward, and u∗ the pullback.

The notation (u∗, u∗) is somewhat unfortunate, since the first morphism u∗ is contravariant.
For psychological reasons, we prefer writing the morphisms in order of the adjunction - the convention
depends on the authors.

Example 1.1.16. Every continuous map between topological spaces f ∶ X → Y induces a morphism of
topos (f∗, f∗) ∶ Sh(X)→ Sh(Y ), where :

• f∗F = F ○ f−1

• f∗G is the sheafification of the presheaf V ↦ limÐ→f(U)⊂V
G(V )

We would like to define cohomology of sheaves on a site. In order to do so, we need to consider sheaves
valued in modules, which a priori might depend on the choice of a site of definition. However, there is a
way to internalize the definition in the topos, using ring and module objects.

Definition 1.1.17. Let C be a category with finite products, and an initial object 0C.
A ring object in C is the data of an object R of C together with morphisms (+R,−R,×R,1R), where
+R ∶ R × R → R, −R ∶ R → R, ×R ∶ R × R → R, 0R ∶ 0C → R and 1R ∶ 0C → R such that the diagrams
corresponding to the usual axioms of a ring commute.

As one might expect, there are similar definitions of group objects, module objects over a ring object, ...
For topoi, such a construction coincides with the expected definition.

Proposition 1.1.18. If T is the topos associated to a site (C, J), the category Sh(C,Ring) is isomorphic
to the category of ring objects on T .

We conclude this section by providing two necessary conditions for functors between sites to induce a
geometric morphism of topos. Both are pretty technical ; the first one will be used in 5.1.6, and the
second will be used in 3.4.3.

Definition 1.1.19. If (C,J) is a site, the topos Sh(C,J) is naturally endowed with a site structure,
called the canonical coverage, which is the largest subcanonical one.

In this setup, it can be explicitely described, since coverings are exactly finite jointly surjective families.
6Some author reserve the notation u∗ when rings are involved (such as morphisms of OX−modules on sheaves). We do

not take such precautions
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Lemma 1.1.20. Let (C,J) and (D,J ′) be sites such that finite limits are representable in C, with a
left-exact functor F ∶ C → Sh(D,J ′) that maps covering families to covering families.
Then F comes from a geometric morphism of topos (f∗, f∗) ∶ Sh(D) → Sh(C), i.e. f∗ ○ hC = F where
hC ∶ C → Sh(C) maps an object to the (sheafification of) the represented functor.

Proof. This follows from [GV72], proposition 4.9.4.

Lemma 1.1.21. Let (C, J) and (D, J ′) be sites, together with continuous functors u ∶ C → D and v ∶ D → C
such that u is cocontinuous and right adjoint to v.
The functors up ∶ Sh(D) → Sh(C) and vp ∶ Sh(C) → Sh(D) defined by up(G)(U) = G(u(V )) and
vp(F)(V ) = F(v(V )) define a geometric morphism of topos (vp, up) ∶ Sh(D, J ′)→ Sh(C, J).
Moreover, up is exact (i.e. commutes with finite projective and inductive limits).

Proof. By [Sta22, Lemma 7.13.2], since u, v are continuous, up and vp map sheaves to sheaves.
By [Sta22, Lemma 7.19.3]7, vp coincides with the functor pu defined at the beginning of [Sta22, Section
7.19], which is left adjoint to up by [Sta22, Lemma 7.19.2].
Moreover, by cocontinuity of u and [Sta22, Lemma 7.20.3], the functor G ↦ (up)#G is exact. But by what
was said above, this is simply up.

1.1.4 Cohomology, points and stalks

The main reference for this section is SGA IV [GV72], Chapters 4-5.
In order to define cohomology, we will fix a ring and work with modules over it.

Definition 1.1.22. A ringed topos is a pair (T ,R) where T is a topos and R is a ring object in T .
If (T ,R) is a ringed topos, we let ModR denote the category of R-modules objects in T .8

We let HomR denote morphisms in that category.

Throughout the paper, we will use curved letters to denote rings in topoi.
As in the standard case, ModR is an abelian category with enough injective objects. Moreover, the
functors HomR(A, ) are left-exact as ModR Ð→ Set. We note ExtiR(A, ) their right derived functors.
The construction of a free module can easily be generalized in that setup.

Definition 1.1.23. Let (T ,R) denote a ringed topos.
The forgetful functor ModR → T admits a left adjoint, noted X ↦R[X].
We call R[X] the free R-module generated by X.

Proof. cf. [GV72], 4.11.3.3.

We may finally define cohomology in ringed topoi. The following notation will justified when looking at
the étale topos (or any topos of schemes over a fixed base), cf 3.3.4.

Definition 1.1.24. Let (T ,R) be a ringed topos, X an object of T , and N an R−module.
We define the cohomology groups as : Hq(X,N) = ExtR(R[X],N).

The notation does not make explicit the base ring R. One can show ([GV72], 5.3.5) that the result does
not depend on the choice of such a R.

Let us now study how ringed objects and cohomology behave with geometric morphisms of topoi.

Proposition 1.1.25. If (f∗, f∗) ∶ T → T ′ is a morphism of topos, then f∗ commutes with finite projective
limits and arbitrary inductive limits, while f∗ commutes with arbitrary projective limits.

7The morphisms u and v defined there are swapped
8This corresponds to sheaves of R-module on (C, J) for any choice of a site of definition
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Proof. cf. [GV72], 4.3.1.2.

The definitions of group, ring and module objects only involve products, which are finite projective limits.
If one wanted to define some more exotic structures such as comodules, one would need to additionally use
finite inductive limits. Hence, the pullback preserves all usual algebraic structures, while the push-forward
preserves some of them.
This remark will be especially useful when we consider the notion of stalks of a topos.

Remark 1.1.26. For any topos T , there is an unique geometric morphism (f∗T , fT ,∗) ∶ T → Set.
For this reason, Set is often referred to as "the final topos".

Proof. This relies on the fact that functors Set → T commuting with arbitrary colimits correspond to
objects of T , since such a functor is determined by its value on a singleton, and can be extended by
colimits. We refer to [GV72], 4.4.3 for more details.

Definition 1.1.27. If T is a topos and I a set, the constant object I in T is the object f∗T (I)
If I is a group (resp. ring, module, ...), then I is a group (resp. ring, module, ...) object in T .

If T admits (C,J) as a site of definition, the constant object I corresponds to the sheafification of the
constant presheaf valuing I.

Definition 1.1.28. For T a topos, a point of T is a geometric morphism Set→ T .
If p = (p∗, p∗) ∶ Set → T is a point of T , and X is any object of T , we note Xp ∶= p∗(X) the stalk of X
at the point p.

This notion extends the notion of stalks of sheaves.

Example 1.1.29. If X is a sober topological space9, then the points of Sh(X) are exactly points of X.
The stalks of objects in Sh(X) correspond with the usual notion of a stalk of a sheaf.

The stalk is a priori only a set, but, if X is endowed with a structure of group/ring/module object, the
stalk becomes a group/ring/module.

Definition 1.1.30. A topos T has enough points if isomorphisms can be tested on stalks, i.e, if
morphisms f ∶ X → Y in T are isomorphisms iff, for any point p ∶ Set → E, the map induced on the
stalks fp ∶ Ep → Fp is an isomorphism.

While every topos encountered in this paper has enough points, this is not true in general. The following
example will be crucial.

Example 1.1.31. Let X be a scheme. The étale topos Sh((Sch /X), Jét) has enough points, and points
are given by morphisms Spec(k)→X, for k an algebraically closed field.

1.2 Homological algebra

Throughout this section, we assume that the reader is familiar with the construction of derived functors in
abelian categories via injective or projective resolutions. We do not assume familiarity with the vocabulary
of model categories.
We fix A an abelian category. Unless specified otherwise, objects and morphisms live in A.
We develop the theory for cochain complexes.

9This is the case whenever X is Haussdorf
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1.2.1 Spectral sequences

This section is based on [Hat00] and [McC00].
Spectral sequences are a very useful technical tool for computing (co)homology groups, based on the
(co)homology of simpler yet related objects. We define the Grothendieck spectral sequence as well as the
spectral sequence associated to a double complex.
We will only need spectral sequence in nice cases, where everything lives in positive degree, and hence
converges. The definition given below is therefore quite restrictive.

Definition 1.2.1. A (cohomological, bigraded, first quadrant) spectral sequence is a sequence {Ep,q
r , dp,qr }p,q,r≥0

of objects Ep,q
r and morphisms dp,qr ∶ Ep,q

r → Ep+r,q+r−1
r in A such that, for every r ≥ 0 :

1. dp+r,q−r+1r ○ dp,qr = 0.
2. Ep,q

r+1 =Ker(d
p,q
r )/Im(dp−r,q−r+1r )

where, outside of the desired range, objects and morphisms are chosen to be zero by convention.
The elements (Ep,q)p,q≥0 for any fixed r form the r-th page.

The page Er+1 is hence computed as the cohomology of the r-th page with respect to the differentials dr.

Definition 1.2.2. Given a spectral sequence Ep,q
r , the sequence (Ep,q

r )r≥0 is stationary10 as r →∞.
We note Ep,q

∞ its limit.
We say that a spectral sequence converges to a family (F kEl)k,l≥0 if

1. For every l ≥ 0, the family (F kEl)k≥0 is a decreasing family of subsets of El such that ⋂k F
kEl = 0

and F 0El = El

2. There are isomorphisms Ep,q
∞ ≅ F pEp+q/F p+1Ep+q for any p, q ≥ 0.

When this is the case, we write Ep,q
r Ô⇒ Ep+q. The filtration is often implicit, and the choice of an

appropriate filtration does not matter in most cases.
We say that a spectral sequence degenerates at some degree r0 if, for any r ≥ r0 and p, q ≥ 0, Ep,q

r = Ep,q
r0 .

A morphism of spectral sequences f ∶ (Ep,q
r , dp,qr )p,q,r≥0 → (F p,q

r , d′p,qr )p,q,r≥0 is a family of morphisms
fp,qr ∶ Ep,q

r → F p,q
r commuting with the differentials.

Sadly, when a spectral sequence converges, there is no easy general way to compute its limit using E∞.
In special cases, for example when E∞ is concentrated in only a few (1 or 2) columns or lines, one can
compute the limit - at least up to extensions. We refer the reader to [McC00], 5.2 for more detail.
We now turn our attention to some classical ways to construct spectral sequences.

Definition 1.2.3. A double (cochain) complex is a family of objects (Cp,q)p,q≥0 together with differentials
dp,q1 ∶ Cp,q → Cp+1,q and dp,q2 ∶ Cp,q → Cp,q+1 such that, for any p, q ≥ 0 :11

dp+1,q1 ○ dp,q1 = 0, d
p,q+1
2 ○ dp,q2 = 0 and dp,q+11 ○ dp,q2 = d

p+1,q
2 ○ dp,q1

The associated total complex is the cochain complex Tot●(C) given by

Totn(C) = ⊕
p+q=n

Cp,q

with differentials dn = ∑p+q=n(dp,q1 + (−1)pd
p,q
2 ) ∶ Totn(C)→ Totn+1(C).

10This is only true because the sequences live in the first quadrant - and is essentially trivial
11Some authors require anti-commutation instead. In the case, one should replace the definition of the total differential

by dn = ∑p+q=n dp,q1 − (−1)pdp,q2

10



Proposition 1.2.4. Let C●,● be a double complex as above. Let H∗I denote the "horizontal cohomology"
(i.e. differentials are given by d1), and H∗II the vertical one (i.e. differentials are given by d2).
There are two spectral sequences :

1. IE, given by IE
p,q
1 = H

q
II(Cp,●) and IE

p,q
2 = H

p
I(H

q
II C

●,●)

2. IIE, given by IIE
p,q
1 = H

q
I(C●,p) and IIE

p,q
2 = H

p
II(H

q
I C
●,●)

Both converge to H●(Tot(C)).

Proof. cf. [McC00], Theorem 2.15.

Theorem 1.2.5. (Grothendieck’s spectral sequence) Let F ∶ A → B and G ∶ B → C be additive functors
between abelian categories such that A and B have enough injectives, G is left exact and F maps injective
objects to G-acyclic objects.12

Then there is a spectral sequence

Ep,q
2 = (R

pG)(RqF (A)) Ô⇒ Ep+q
∞ = Rp+q(G ○ F )(A)

In particular, the above spectral sequences exists whenever F maps injective objects of A to injective
objects of D.

Remark 1.2.6. We will mention the concept of transgression of a spectral sequence, which we do not
want to expand on. We refer to [McC00], section 6.2 for an overview of the concept.

1.2.2 Derived categories

This section is inspired by [Wei94] and [Mat18b].
It will be useful to define the general formalism of localization in categories, which mimics the usual
localization in modules.

Definition 1.2.7. If C is a category and W a class of morphisms in C, the localized category of C with
respect to W is, if it exists, the category C[W −1] equipped with a canonical functor C → C[W −1] such that
functors C[W −1]→D are exactly functors C →D sending every morphism of W to isomorphisms in D.

Up to set-theoretic issues, localized categories can be constructed by adjoining formal inverses to every
morphism in W . In reality, localized category need not exist in general - we refer to [GZ67] for details.
We will ignore such issues and pretend that localized categories always exist. In the contexts encountered
below, there is, indeed, no problem.
If A is an abelian category, we will define its derived category D(A) as a nice technical framework to work
with derived functors. Let us start with a few preliminary standard notions :

Definition 1.2.8. Let A be an abelian category. We let Ch(A) be the category of cochain13 complexes
valued in A, and Ch+(A) be the category of cochain complex that vanish in negative degree.
A morphism of complexes f∗ ∶ C● → D● consists of a family of morphisms fn ∶ Cn → Dn commuting with
the differentials.
Two morphisms of cochain complexes f∗, g∗ ∶ C● → D● are chain homotopic if there exist morphisms
hn ∶ Cn →Dn−1 such that for all n, fn − gn = dn+1D hn + hn+1dnC .14

12i.e. RnG(F (A)) = 0 for any object A ∈ A and n > 0
13The notation CoCh(A) is more standard. Since we will mostly use cochain complexes in this paper, it is more convenient

to directly write Ch(A). The theory for chain complexes is similar
14We do not require the (hn

) to form a morphism of complex.
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A morphism of cochain complexes f∗ ∶ C● →D● is a homotopy equivalence if there exists g∗ ∶D● → C●

such that f∗ ○ g∗ and g∗ ○ f∗ are respectively chain homotopic to the identity maps idD● and idC● .
A map of cochain complexes f∗ ∶ C∗ →D∗ is a quasi-isomorphism if all the induced maps in cohomology
Hn(f) ∶Hn(C●)→Hn(D●) are isomorphisms.
For k ∈ Z, we let the shift operator [k] ∶ Ch(A)→ Ch(A) be defined as ([k] ⋅C●)n = Cn+k, endowed with
the alternating shifted differentials dnX[k] = (−1)

kdn+k.15

There is a natural embedding A↪ Ch(A) that maps an object X to the complex valuing X concentrated in
degree 0. This identifies A as a full subcategory of Ch(A). If we want to emphasise on this identification,
we let X[0] denote the associated complex.
We define X[k] ∶=X[0][k] the complex concentrated in degree −k and valuing X.

Note that additive functors A→ B can naturally be extended to functors Ch(A)→ Ch(B).

Remark 1.2.9. By definition, every resolution X → A● induces a quasi-isomorphism between the complexes
X[0] and A●.

We may now construct the derived category.

Definition 1.2.10. Let A an abelian category.
Its derived category, noted D(A), is the localisation of Ch(A) with respect to quasi-isomorphisms.
Likewise, we define D+(A) as the localisation of Ch+(A) with respect to quasi-isomorphisms.

Ideally, we would like additive functors F ∶ A → B to extend to F̃ ∶ D(A) → D(B), in which the functors
A→ B associated with (X ↦ F̃ (X[k]))

k∈Z coincide with the derived functors of F .
They are two difficulties with this approach :

1. It is not clear how functors A → B can be extended at the derived level D(A) → D(B) since they
do not preserve quasi-isomorphisms in general.16

2. It is not clear how to describe morphisms in the derived category.

Both these problems can be somewhat tackled by looking at injective resolutions. Starting from now,
we will assume that all our abelian categories have enough injective objects. We note InjA the full
subcategories formed by injective objects of A.

Definition 1.2.11. We define K(A) the quotient category17, whose objects are cochain complexes and
whose morphisms are chain homotopy classes of morphisms of complexes.
Likewise, let K+(A) be the quotient category of non-negative complexes.

By definition, isomorphisms in K(A) are exactly homotopy equivalences.
The quotient category is more convenient then the derived category, since morphisms are explicit and
functors can easily be extended.

Proposition 1.2.12. Any additive functor F ∶ A → B preserves chain homotopies, and thus can be
extended to K(F ) ∶K(A)→K(B).

The quotient and derived categories are closely related, as illustrated by the next three results.

Proposition 1.2.13. Let X,Y ∈ Ch(A) such that Y is bounded below and composed of injective objects.
Then HomD(A)(X,Y ) ≅ HomK(A)(X,Y ).

15The alternating facilitates the definition of cones and distinguished triangles. It will not play a major role in this paper.
16They do if they are exact, in which their derived functors are of little interest
17The term "quotient category" is not standard. It is sometimes called the "homotopy category of chain complexes", but

this can sometimes be confusing
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Proof. This is quite technical since it requires to dive into the construction of the localization.
This is done in [Wei94], corrolary 10.4.7

Recall that the functors Ext are the derived functors of Hom. As announced, they admit a straightforward
reformulation in the language of derived categories.

Corollary 1.2.14. If X,Y are objects of A (and A has enough injectives), then

Extn(X,Y ) = HomD(A)(X[0], Y [n])

Proof. Fix Y → I∗ an injective resolution, such that, via 1.2.9 :

HomD(A)(X[0], Y [n]) ≅ HomD(A)(X[0], I●[n]) ≅ HomK(A)(X[0], I●[n])

By definition, morphisms of complexes X[0] → I●[n] are exactly elements of HomA(X,In) that are in
the kernel of HomA(X,In) → HomA(X,In+1). Moreover, one can check that chain homotopies of such
morphisms of complexes are exactly given by the differentials of morphisms X → In−1.
Hence we can identify HomK(A)(X[0], I●[n]) with the cohomology of the complex Hom(X,I●), which is
exactly ExtnA(X,Y ), by the standard theory of derived functors.

Let us now give an alternative definition of arbitrary derived functors.

Proposition 1.2.15. The natural functor ι ∶K+(InjA)→ D+(A) exists and is an equivalence of categories.

Proof. cf [Wei94], Theorem 10.4.8.

Since every morphism of complexes that is chain homotopic to zero is a quasi-isomorphism, D(A) can
also be realised as the localisation of K(A) with respect to quasi-isomorphisms. It hence comes equipped
with a structural functor πA ∶K(A)→ D(A).
The discussion above allows for a very convenient definition of derived functors.

Definition 1.2.16. Let F ∶ A → B be a left exact additive functor between abelian categories. Assume
that A has enough injective objects.
Then F induces a total derived functor R+F ∶ D(A)+ → D+(B) defined by

R+F = πB ○K(F ) ○ i−1

The functors RiF (A●) ∶=H i(RF (A●)) are the i-th right derived functors of F .

This construction coincides with the standard one, essentially by construction. However, it exhibits the
fact that all the right derived functors can be glued together into a global object.

Notation 1.2.17. We note RHom(A,B) ∶= RHom(A, )(B).

While we will avoid using the RHom functor, it serves two purposes, as far as this paper is concerned.
Firstly, it is a more modern and convenient way to rephrase the results of section 3 and 5 (and is
overwhelmingly used in [ALB21]). Secondly, its construction has to be kept in mind when constructing
the derived simplicial category in 2.3.5, and the hyper-ext functors in the paragraph below.
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1.2.3 Hyper-derived functors

This section is inspired by [Ill71] and [Wei94].
We will extend the definition of ExtA to an hyperext functor Ext ∶ Ch(A) ×Ch(A) → A, which coincides
with ExtA when complexes are concentrated in degree 0.
Based on 1.2.14, it is natural to define :

Definition 1.2.18. For A,B ∈ Ch(A), we let the n-th hyperext group Extn(A,B) =HomD(A)(A,B[n]).

As we will see, hyperext groups can be interpreted as derived functors of an internal Hom object.

Definition 1.2.19. For A● and B● complexes18 in A, we let HomA(A,B)● be the complex defined by :

• HomA(A,B)n =⊕n=p+q Hom(Ap,B
q) = Tot(HomA)(A●,B●))n

• The differentials are given by (∂f)(v) = ∂(f(v)) − (−1)deg(f)f(∂(v))

Remark 1.2.20. It is an internal Hom object, i.e. there exists an adjunction

HomCh(A)(A⊗B,C) ≅ HomCh(A)(A,Hom(B,C))

when ⊗ denotes the tensor product of complexes (A● ⊗B●)n =⊕p+q=nA
p ⊗B−q.

A pretty straightforward computation, somewhat similar to the one done in 1.2.2, yields

Proposition 1.2.21. HomK(A)(A,B[n]) = HnHomA(A,B)

Using injective resolutions, this allows us to identify hyper-ext functors as right derived functors of Hom.

Proposition 1.2.22. When A● is fixed, the construction above descends at the derived level to a functor
RHom(A●, ) ∶ D+(A)→ D(Ab). For any B ∈ Ch+(A), we have :

ExtA(A,B[n]) = Hn(RHom(A, )(B))

Proof. Pick an injective resolution of B (using a Cartan-Eilenberg resolution), and apply 1.2.13.
We refer to [Wei94], theorem 10.7.4. for details.

When B is concentrated in degree 0, this yields an explicit way to compute hyper-ext.

Corollary 1.2.23. Let A● a complex in A, B an object of A and B → I● an injective resolution.
Then Ext(A●,B) can be computed as the homology of the complex Hom(A, I)●.

Proof. Recall that HomD(A)(X,Y ) ≅ HomD(A)(X,I●) by 1.2.9.
The result now follows from 1.2.21 and 1.2.13.

One good way to compute hyper-ext groups is to use the following spectral sequence :

Proposition 1.2.24. (Universal coefficient spectral sequence)
Let, X● be a chain complex in A and B an object of A. There is a spectral sequence

Ep,q
2 = Ext

p
A
(Hq(X●),B) Ô⇒ Extp+q

A
(X●,B)

Proof. Choose an injective resolution B → I∗. Consider the double complex defined by

Kp,q = Hom(Xp, I
q)

with differentials given by :
18As the notation suggests, A● is a chain complex and B● is a cochain complex

14



• dp,q1 ∶ Hom(Xp, I
q)→ HomA(Xp+1, I

q) induced by dp+1 ∶Xp+1 →Xp

• dp,q2 ∶ HomA(Xp, I
q)→ HomA(Xp, I

q+1) induced by ∂q ∶ Iq → Iq+1

such that TotA(Kp,q)● = HomA(X,I)●.
Note that Hp

I (K●,q) = Hom(Hp(X), Iq) and Hq
II(H

p
IK
●,●) = Extq(Hq(X),B).

The second spectral sequence given by 1.2.4 writes :

IIE
p,q
2 = Ext

p(Hq(X),B) Ô⇒ Hp+q (Ktot)

which yields the announced result.

The name "universal coefficient spectral sequence" is justified by the following.

Remark 1.2.25. In what follows, we’ll define hypercohomology in a ringed topos (T ,R) by a variant of
Hi(X●, Y ) = ExtR(R[X]●, Y ).19

If Hp(R[Xi], Y ) = 0 for all p > 0, the spectral sequence above yields an hyper variant of the universal
coefficient theorem :

HomR(Hq(X●,R),B) ≅Hq(X●,B)

for B an R−module.

1.3 Commutative algebra

Recall that we assumed every ring to be commutative and unitary.

1.3.1 Perfect rings, perfect schemes

This section is based on [BGA16] and [BS15].
In what follows, we fix p a prime number, and R a ring of characteristic p. It admits a Frobenius
endomorphism given by F (x) = xp.

Definition 1.3.1. We say that R is perfect if the Frobenius F ∶ R → R is an isomorphism.

Every ring admits a natural perfection.

Definition 1.3.2. The perfection of R is defined by Rperf = limÐ→x↦xp
R, where the limit is indexed by

nonnegative integers. This construction is functorial, and R ↦ Rperf defines a functor

{ Rings of characteristic p }→ { Perfect rings of characteristic p }

that is left adjoint to the forgetful functor.

In Rperf , the translation map (i, s)↦ (i + 1, s) gives a p-th root.

Remark 1.3.3. There is another notion of perfection, given by Rperf = lim←Ðx↦xp
R, which yields a right

adjoint to the forgetful functor. This notion will not be used here.
It is, however, closely related to the tilting functor, which will play a key role in sections 4 and 5.

Remark 1.3.4. If R is an integral domain, we can explicitely write : Rperf = R[{r1/p∞}r∈R] , obtained by
formally adjoining to R all pn − th roots of every element r ∈ R in some fixed algebraic closure Frac(R).

An important example is given by the perfection of polynomial rings.
19X will need to be a simplicial object
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Example 1.3.5. If R is a perfect ring,

R[X1, . . . ,Xn]perf ≅ R[X1/p∞

1 , . . . ,X1/p∞

n ] ∶= ⋃
k≥0

R[X1/pk

1 , . . . ,X1/pk

n ]

We can define exact sequences in the category of rings by only looking at the underlying abelian groups.
In that sense, we may say that a functor Ring → Ring is exact if it preserves exact sequences.

Lemma 1.3.6. The perfection functor is exact.

Proof. It is a general fact that filtered colimits are exact in categories of modules (this is Grothendieck’s
axiom Ab5). See for example [Kie06] for an elementary proof.

Remark 1.3.7. Since the perfection functor is exact and a left adjoint, it commutes with finite limits and
arbitrary colimits. Note that it does not commute with arbitrary limits, since, in general,

(RN)perf ≇ (Rperf)N

For example, take R = Fp[x1, x2, . . .]/ (xp1, x
p2

2 , x
p3

3 , . . .) (cf. [Ach20]).

We will now globalize this construction to schemes.

Definition 1.3.8. Let X be a scheme over Spec(Fp).20

The absolute Frobenius morphism, noted F ∶X →X, is defined as :

• The identity id∣X ∣ on the underlying topological spaces.

• The map of sheaf is induced by the Frobenius OX
x↦xp

ÐÐÐ→ OX .

The scheme X is said to be perfect if the absolute Frobenius map is an isomorphism.
The perfection of X is defined as Xperf = lim←ÐF

X. It comes equipped with a morphism Xperf →X.
The perfection defines a functor that is right-adjoint to the forgetful one.

Note that this we use a limit rather than a colimit, since the Spec functor is contravariant.

Remark 1.3.9. By construction, Spec(A)perf = Spec(Aperf)

Remark 1.3.10. The historic definition, as introduced in [Gre65], seems to be flawed. The author claimed
that the presheaf of rings Operf

X (U) ∶= OX(U)perf is a sheaf - this does not hold on a non quasi-compact
base since the perfection functor does not commute with arbitrary products.
See the MathOverflow post [Ach20] for a discussion on that topic.

We will use the fact that the perfection functor preserves some algebraic properties. We refer the reader
to [BS15], lemma 3.4. for an extensive list.

Remark 1.3.11. Let X,Y be schemes of characteristic p. In particular,

(X ×S Y )perf =Xperf ×Sperf
Yperf

Proof. Right adjoints commute with projective limits.

Proposition 1.3.12. Let f ∶ X → Y be an étale map between Fp−schemes. Then the induced map
g ∶Xperf →X ×Y Yperf is an isomorphism.
In particular, the induced map fperf ∶Xperf → Yperf is étale.

20Also called a scheme of characteristic p
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Proof. The morphism g ∶ Xperf → X ×Y Yperf ≅ lim←Ðk
X(k) appears as the projective limit over k of the

following diagram, where X(k) appears as the fiber product of the square below.

X

X(k) Y

X Y

f

FrobkX

Frobk
X∣Y

pr2

pr1 FrobkY

f

Hence, it suffices to show that the relative Frobenius FrobkX ∣Y is an isomorphism for any k ≥ 0.
It is a universal homeomorphism, since its extension after any base change Z → X(k) still is a relative
Frobenius ; and hence induces the identity on the underlying topological spaces. In particular, it is affine
and proper, hence finite, by [Sta22, Lemma 01WM].
It then suffices to show that it is an open immersion, which is local on target, so that we can assume
X and X(k) to be affine. Note X = Spec(A) and X(k) = Spec(B). Let φ ∶ B → A be the étale integral
ring morphism inducing FrobkX ∣Y . By [Sta22, Lemma 00NX], it makes B a locally free A−algebra . By
locality, we can assume B to be a free A−algebra. Note B ≅ Ar.
We pass the morphism through a geometric point s = Spec(Fp), such that FrobkX ∣Y induces an homeomorphism
Spec(Fp

r)→ Spec(Fp), so that r = 1. Hence the relative Frobenius is an isomorphism. This concludes.

1.3.2 Witt vector rings

This section is inspired by the lecture notes [Mé19], §24.3, [RK22], §1.3.3, [Lur18], §3. and [Bej17], §2.
The theory of Witt vector rings plays a key role in this paper. They are, for example, involved in the
classifications of untilts of a perfectoid field, and appears in the low-dimensional extensions of Ga.

Let us start this section by a reminder of the notion of adic completion.

Definition 1.3.13. Let I an ideal of a ring R. The I−adic topology on R is the unique structure of a
topological ring on R such that the (In)n≥1 form a basis of neighborhood of zero.

In many algebraic contexts, it is the most reasonable topology one can consider.

Example 1.3.14. 1. The usual topology on Zp is the (p)−adic topology.

2. For R a topological ring, the (T )-adic topology on RJT K coincides with the product topology.

3. The (p, T )−adic topology on ZpJT K is the topology such that (pn)n≥0 and (Tn)n≥0 converge to 0 at
the same speed.

The completion with respect to the I−adic topology can be described algebraically.

Definition 1.3.15. Let I be an ideal of a ring R.
The I-adic completion of R with respect to I, noted R∧I , is defined as :

R∧I = lim←ÐR/I
n

where transition morphisms are induced by the inclusion In+1 ⊂ In.
The ring R is said to be I-adically complete if the natural map R → R∧I .
If I is generated by some π ∈ R, we usually note R∧π ∶= R∧I .
Similarly, if M is an R−module, we let M∧I = lim←ÐM/I

nM , and say that M is I-adically complete if the
natural map M →M∧I is an isomorphism of R-modules.
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As announced, both notions of completion coincide.

Proposition 1.3.16. R̂I is the (topological) completion of R with respect to the I−adic topology.

Let us give a few important examples.

Example 1.3.17. 1. Zp is (p)−adically complete, and CJT K is (T )−adically complete.

2. The (p, T )−adic completion of Zp[T ] is Zp⟨T ⟩ ≅ {∑n xnT
n ∈ ZpJT K, xn Ð→

n→∞
0}, called the ring of

restricted power series over Zp.

Let us now define the rings of Witt vectors, both unbounded and of finite length.
The idea of the construction is to mimic the construction of Zp, starting from Fp. While there is a
somewhat canonical set-theoretic bijection FN

p ≅ Zp, the ring structures are very different.
While the construction is quite obscure, over a perfect base, important properties are captured by 1.3.19.

Proposition–Definition 1.3.18. Fix R a ring of characteristic p. Denote W (R) the set RN.
Define the map ω ∶W (R)→W (R) by ω(x)n = ∑n

k=0 p
kxp

n−k

k .
There exists unique polynomials S,P ∈ Z[(Xk)k∈N, (Yk)k∈N] such that, for any n ∈ N :

ωn(S(x, y)) = ωn(x) + ωn(y) and ωn(P (x, y)) = ωn(x) ⋅ ωn(y)

We let Sk(X,Y ) = S(X,Y )k and Pk(X,Y ) = P (X,Y )k ∈ Z[X1, . . . ,Xk, Y1, . . . , Yk].
We endow W (R) with the ring structure given by x+̂y = S(x, y) and x̂⋅y = P (x, y), such that the map
ω ∶W (R)→ RN is a ring morphism.

We call W (R) the ring of Witt vectors. It comes equipped with a multiplicative, but not additive map
x ∈ R ↦ (x,0,0, . . . ) ∈W (R), called the Teichmüller lift and noted x↦ [x].

Note that the construction of Witt vectors can be made functorial by applying a ring morphism coordinate
by coordinate.
Over a perfect ring, the ring of Witt vectors can be characterised as follows :

Theorem 1.3.19. Let R be a perfect ring of characteristic p. W (R) is uniquely characterized by the
following properties :

1. There is an isomorphism W (R)/pW (R) ≅ R
2. The element p is not a zero divisor in W (R)
3. W (R) is (p)-adically complete.

and we can write Wn(A) ≅W (A)/(pn)

A technical, yet useful result is the following :

Proposition 1.3.20. Every element x ∈W (R) can be uniquely written as

x = [c0] + [c1]p + [c2]p2 + . . .

for some (cn)n∈N ∈ R.

Proof. By construction, for r ∈ R,π([r]) = r where π denotes the projection W (R)→W (R)/pW (R) ≅ R.
Hence, if x ∈W (R), x and [π(x)] are congruent modulo p, so one can write x = [c0]+p ⋅y where c0 = π(x)
and for some y ∈W (R).
We then iterate the construction by induction. Unicity follows from the injectivity of [⋅].
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Let us now characterize the ring of Witt vectors via a universal property.
Fix R a perfect ring of characteristic p, A a p−adically complete ring and a map h ∶ R → A/pA.
One may extend it to a map W (R) → A by mapping x = (x0, x1, . . . ) to ∑∞i=0 pi[h(xi)]1/p

i
, where the

choice of a pi−th root exists and is unique since R is perfect. The sum converges since A is p-adically
complete.

Proposition 1.3.21. For any p-adically complete ring A, the reduction modulo p as well as the construction
above induce a bijection :

HomRing(W (R),A) ≅ HomRing(R,A/pA)
Proof. cf. [Lur18], Proposition 3.8.

We now turn our attention to Witt vectors of finite length.

Definition 1.3.22. For n ≥ 0, we define Wn(R) ∶= πn(W (R)) where πn ∶ RN → Rn is the projection on
the first n coordinates, endowed with the induced ring structure.
This the ring of Witt vectors of length n over R.

Example 1.3.23. We have W (Fp) = Zp and, for n ≥ 0,Wn(Fp) ≅ Z/pnZ.
By definition, for any ring R, W1(R) ≅ R.

Proposition 1.3.24. The projections W (R)→Wn(R) induce an isomorphism of rings

W (R) ≅ lim←ÐWn(R)

where transition morphisms are induced by the projections on the first coordinates.

The Witt vectors of finite length are equipped with :

1. The Verschiebung is the additive (but not multiplicative) map

(x0, . . . , xn) ∈Wn(R)↦ (0, x0, . . . , xn) ∈Wn+1(R)

2. The Frobenius is the unique ring morphism F ∶Wn(R)→Wn−1(R) such that the diagram below :

Wn(R) Wn−1(R)

Rn Rn−1

F

ω ω

πn−1

commutes (here, πn−1 denotes the projection on the first n-1 coordinates).

The construction of the Witt vectors rings can be globalized into group schemes. We will use very little
about those objects, and will not define more than we need. We refer the reader to [Oor66], section 9 for
an overview of the theory.

Definition 1.3.25. Fix R a ring.
The n-th Witt group scheme over R is the group scheme over Spec(R) noted WR,n and defined by

WR,n(X) =Wn(OX(X))

endowed with the addition, for any scheme X → Spec(R).
The morphisms defined above induce a Frobenius F ∶Wn,R →Wn,R, a Verschiebung V ∶Wn,R →Wn+1,R

and a restriction R ∶Wn+1,R →Wn,R

Note that, by construction, WR,1 is simply the additive group Ga, defined as follows.

Definition 1.3.26. Let S be a scheme. The additive group over S is the sheaf T ↦ OT (T ), seen as an
étale sheaf on S.
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2 Stable homology theory

The goal of sections 2 and 3 is to establish the following, due to Lawrence Breen in [Bre81].

Theorem 2.0.1. Let S = Spec(R) be an affine scheme of characteristic p, and Ga the additive group
scheme over S, seen as a sheaf of Fp-vector spaces over the site Sperf of all perfect S−schemes, endowed
with the étale topology. The extension groups, computed in the associated topos, are :

ExtnSperf ,Fp
(Ga,Ga) =

⎧⎪⎪⎨⎪⎪⎩

R[T,T −1]nc if n = 0
0 if n > 0

where R[T,T −1]nc denotes the non-commutative ring of Laurent polynomials, in which the commutation
relation is induced by T ⋅ x ∶= xp ⋅ T for x ∈ R.
The formal element T corresponds to the action of the Frobenius morphism on Ga.

In this paper, we follow the historic proof by Breen. It is stems from a generalization of standard
computations in algebraic topology, generalized to arbitrary topoi. Hence, we need to define some quite
heavy machinery about simplicial objects and stable homology in arbitrary ringed topoi.
This section mostly acts as a toolbox for section 3, in which the computation will be detailed. Some
concepts will also be needed in section 5

Remark 2.0.2. Note that they are some more modern proofs that are more algebraic in nature. We refer
the reader to the appendix of [Mat22] for alternative methods and further references.

2.1 Elements of algebraic topology

This section presents some standard concepts and results in algebraic topology. While they will not be
used directly, they act as a guideline ; as we will establish analogues of them when replacing topological
spaces by simplicial sheaves in 2.3.

2.1.1 Eilenberg-MacLane spaces and suspension

Our main reference for this section is Hatcher’s [Hat00].
In this paragraph, we recall various notions of algebraic topology. We will assume that the reader is
familiar with CW-complexes, singular homology and higher homotopy groups.
Unless specified otherwise, (co)homology denotes singular (co)homology. If the coefficient ring is not
specified, it is implicitely chosen to be Z.

Let us start by defining two important notions of "weak isomorphisms" between topological spaces.21

Definition 2.1.1. Let f ∶X → Y be a continuous map between topological spaces.

1. It is a weak homotopy equivalence if induces a bijection on the set of connected components
π0(f) ∶ π0(X) ≃ π0(Y ), and isomorphisms in higher homotopy πn(f) ∶ πn(X,x) ≃ πn(X,f(x)) for
any base point x ∈X and n ≥ 1.

2. It is a homotopy equivalence if there exists a continuous map g ∶ Y →X such that f ○ g and g ○ f
are respectively homotopic to idX and idY .

Lemma 2.1.2. Weak homotopy equivalences induce isomorphisms in homology and cohomology.

Proof. cf. [Hat00], proposition 4.21
21This definition should be read with 1.2.8 in mind

20



Clearly, every homotopy equivalence is a weak homotopy equivalence. A very important theorem by
Whitehead tells us that the converse holds for CW-complexes.

Theorem 2.1.3. (Whitehead) Any weak homotopy equivalence between two CW-complexes is a homotopy
equivalence.

Proof. cf. [Hat00], corollary 4.33

Let us now define the Eilenberg-MacLane spaces.

Proposition 2.1.4. Let G be a group, and n ≥ 1. We require G to be abelian whenever n ≥ 2.
There exists a connected pointed CW-complex (X,x) such that :

πk(X,x) =
⎧⎪⎪⎨⎪⎪⎩

G if k = n
0 if k /∈ {0, n}

Moreover, such a space is unique up to weak homotopy equivalence.
We note it K(G,n), and call it the Eilenberg-MacLane space associated with (G,n).

A key property of Eilenberg-MacLane spaces is that they represent cohomology :

Proposition 2.1.5. For any CW-complex X, there is a canonical isomorphism

[X,K(G,n)] ≅ Hn(X,G)

where [X,Y ] denotes the set of homotopy classes of morphisms X → Y .

Proof. cf. [Hat00], thm 4.57. The proof relies on the successive extension of maps on higher-dimensional
cells vie obstruction theory.

We conclude this section by a discussion on suspension of topological spaces.

Definition 2.1.6. Let (X,x0) and (Y, y0) be two pointed topological spaces.
The smash product of X and Y , denoted X ∧ Y , is defined as

X ∧ Y = (X × Y )/(X ∨ Y )

where X ∨ Y denotes the wedge sum of X and Y based in (x0, y0), defined as (X ⊔ Y )/x0 ∼ y0.
The suspension of X is the topological space ∶

ΣX ∶=X ∧ S1 =X × [0,1]/ ((x,0) ∼ {∗} and (x,1) ∼ {∗})

The suspension is functorial, and respects the subcategory of CW-complexes.
If X and Y are path-connected, the suspension does not depend on the choice of the base points, and we
need not explicit them.

Example 2.1.7. The smash product of two spheres Sn ∧ Sk is homeomorphic to Sn+k.
The suspension of Sn is hence ΣSn ≃ Sn+1.

The suspension operation appears somewhat naturally as an adjoint to the loop space construction.

Proposition 2.1.8. The suspension functor is left adjoint to the loop space functor (X,x)↦ ΩX, where
ΩX is the space of loops in X based on x, endowed with the compact open topology.
Note that πn(ΩX) = πn−1(X)22, so that, by unicity, ΩK(G,n) ≅K(G,n − 1).

22This can be seen using the fibration ΩX ↪ PX →X where PX is the space of paths starting from X, which is contractile.
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The homology of a suspension can easily be computed :

Proposition 2.1.9. There are isomorphisms in reduced homology H̃n(X) ≅ H̃n+1(ΣX).

Proof. This follows from the Mayer-Vietoris exact sequence.

The homotopy groups can sometimes be computed.

Theorem 2.1.10. (Freudenthal suspension theorem)
Let X be a path-connected space such that πk(X) = 0 whenever 1 ≤ k ≤ n.
The suspension map πi(X)→ πi+1(ΣX) is an isomorphism for i ≤ 2n and a surjection when i = 2n + 1.

Proof. This follows from properties of the long exact sequence of a pair in homology.

Let us conclude this section by mentioning the Hurewicz isomorphism :

Theorem 2.1.11. (Hurewicz) Let n ≥ 2 and X be a path-connected topological space such that πk(X) = 0
whenever 1 ≤ k < n. Then πn(X) ≅ Hn(X,Z).

Proof. cf. [Hat00], theorem 4.32

2.1.2 The homotopy category

This section is intended to be read with 1.2.2 in mind. A good part of the redaction was inspired by the
MathOverflow question [Pst11], and we thank Thomas Nikolaus and Karol Szumiło for their answers.
The goal of this section is to construct a topological version of the derived category and other concepts
introduced in 1.2.2.
As a guideline, we want Eilenberg-MacLane spaces to represent cohomology at the derived level.
Based on 2.1.5, it is natural to define :

Definition 2.1.12. The quotient category, noted K(Top)23, is the category whose objects are topological
spaces and morphisms are homotopy classes of continuous maps

HomK(Top)(X,Y ) = [X,Y ] ∶= HomTop(X,Y )/homotopy

As in the setup of chain complexes, while the quotient category is useful, it is not the ’right’ notion of a
derived category. The following definition is due to Quillen.

Definition 2.1.13. The true homotopy category, noted hTop, is the localization of Top with respect
to weak homotopy equivalences.

Likewise, we’ll let hCW denote the localization of the category of CW-complexes with respect to (weak)
homotopy equivalences.
We will now show that Eilenberg-MacLane spaces represent cohomology in the homotopy category. Let
us first establish two lemmas :

Lemma 2.1.14. Two homotopic maps in Top are equal in the category Ho(Top) obtained by localizing
Top with respect to homotopy equivalences.

Proof. We let F ∶ Top→ Ho(Top) be the localization functor. Let f, g ∶X → Y be two homotopic maps.
We note H ∶ X × [0,1] → Y the homotopy, define the inclusions on both ends i0 ∶ X ≅ X × {0} → I ×X
and i1 ∶X ≅X × {1}→X × [0,1] such that f =H ○ i1, g =H ○ i2, and the projection π ∶X × [0,1]→X.
We know that π ○ i0 = π ○ i1 = idX . Hence, F (π) ○ F (i0) = F (π) ○ F (i1) = idF (X). Moreover, since π is an
homotopy equivalence, F (π) is an isomorphism, so that F (i0) = F (i1).
Finally F (f) = F (H) ○ F (π1) = F (H) ○ F (π2) ≅ F (g).

23This is sometimes called the naïve homotopy category and noted hTop. We prefer reserving these terms for the true
homotopy category, defined below
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Likewise, we note Ho(CW) the localization of the category of CW-complexes with respect to homotopy
equivalences.

Lemma 2.1.15. The categories K(Top) and Ho(Top) are equivalent.

Proof. We check that K(Top) satisfies the universal property of the localization.
To a functor F ∶ K(Top) → D, we can associate a functor F̃ ∶ Top → D by declaring F̃ (X) = F (X)
and F̃ (f) = F ([f]) where [⋅] denotes homotopy classes. This clearly maps homotopy equivalences to
isomorphisms. By Yoneda’s lemma, this defines a functor Ho(Top)→K(Top).
We construct a quasi-inverse G ∶ K(Top) → Ho(Top) by choosing arbitrary representatives of homotopy
classes. This is well defined by the above lemma.
We easily check those functors induce an equivalence of category.

All the work above leads to the following reformulation of 2.1.5 :

Theorem 2.1.16. Let X be a topological space, G an abelian group and n ≥ 2.
There is an isomorphism :

HomhTop(X,K(G,n)) ≅ Hn(X,G)
Proof. By the CW approximation theorem (cf. [Hat00], proposition 4.13), we may fix a CW-complex X̃
that is weakly equivalent to X.
By Whitehead’s theorem, quasi-isomorphisms between CW−complexes are exactly homotopy equivalences,
so that morphisms in hTop between CW-complexes are exactly morphisms in Ho(CW).
Moreover, the embedding Ho(CW)→ Ho(Top) is clearly fully faithful. We now compute :

HomhTop(X,K(G,n)) = HomhTop(X̃,K(G,n)) since X, X̃ are weakly equivalent

= HomHo(CW)(X̃,K(G,n)) since both spaces are CW-complexes

= HomK(Top)(X̃,K(G,n)) by 2.1.15

= [X̃,K(G,n)] by definition of K(Top)
≅ Hn(X̃,G) by 2.1.5

≅ Hn(X,G) by 2.1.2

Hence the result.

This result is especially surprising since the proof of 2.1.5 makes heavy use of the cell structure. To the
best of my knowledge, there is no direct proof of the result above.

2.1.3 Stable cohomology operations

This section is inspired by [FF16] and [Hat00].
The goal of this section is to define operations in singular cohomology, and their link with cohomology of
Eilenberg-MacLane spaces. We then introduce a stabilized version.

For any ring R, the cup-product, defined at the level of singular cochains via (c ⌣ d)(σ) = c(σ ○ ι0,1,...,p) ⋅
d(σ ○ ιp,p+1,...,p+q)24, induces a bilinear mapping

⌣∶ Hp(X,R) ×Hq(X,R)→ Hp+q(X,R)

which endows H●(X,R) with the structure of a graded ring.
For example, this yields a map

x ∈ Hp(X,R)↦ x ⌣ x ∈ H2p(X,R)
Such an operation is functorial in X, and forms an example of a cohomology operation.

24Here, ι denotes the inclusion of the standard simplexes
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Definition 2.1.17. Let m,n ≥ 0 and R,S be rings.
The additive group of cohomology operations of type (R,m,S,n) is defined as

Op(R,m;S,n) = {Natural transformations Hm( ,R) Ô⇒ Hn( , S)}

where cohomology are seen as functors (CW − cplx)→ModR and (CW − cplx)→ModS.

Because of the representability results established above, cohomology operations groups can be identified
with cohomology of the appropriate Eilenberg-MacLane spaces.

Proposition 2.1.18. There is a canonical isomorphism

Op(R,m;S,n) ≅ Hn(K(R,m), S)

given by Φ ∈ Op(R,m;S,n)↦ Φ(ι), where ι ∈ Hm(K(R,m),R) is the fundamental class corresponding to
the identity map idK(R,m) ∈ [K(R,m),K(R,m)] via 2.1.5.

Proof. Since cohomology is invariant up to quasi-isomorphisms 2.1.2, the operations groups can be
computed with functors hCW →Mod. By Whitehead’s theorem 2.1.3, hCW ≅ Ho(CW). By the proof of
2.1.16, Ho(CW) ≅ hTop. The result now follows from 2.1.16 and Yoneda’s lemma.
For a more geometric proof starting from 2.1.5, see [Hat00], proposition 4L.1.

A fundamental class of cohomology operations are given by the stabilisation Σ ∶ Hn(X,R)→ Hn+1(ΣX,R).
Cohomology operations commuting with the stabilization will be called stable.

Definition 2.1.19. A stable cohomology operation of type (k,R;S) is a family (φn)n≥0 ∈ Op(R,n;S,n+k)
such that, for all X, (φn)X ○Σ = Σ ○ (φn)ΣX .
The group of such operations is noted Opst(k,R;S).

Stable cohomology operations are well-behaved. For example, they are compatible with the cohomology
of a pair (cf. [FF16], 28.4.B)
Using 2.1.18, a stable cohomology operation corresponds to a sequence ψn ∈ Hn+r(K(R,n), S).
The stability condition indicates that fn(ψn) = ψn−1 where fn is defined as the composition

Hr+n(K(R,n), S) i∗nÐ→ Hr+n(ΣK(R,n − 1), S) Σ−1ÐÐ→ Hr+n−1(K(R,n − 1), S)

where Σ−1 is induced by 2.1.9 and i∗n is the pullback along any map of the class [ΣK(R,n − 1),K(R,n)]
corresponding to idK(R,n−1) via the isomorphism given by 2.1.8 :

[ΣK(R,n − 1),K(R,n)] ≅ [K(R,n − 1),ΩK(R,n)] ≅ [K(R,n − 1),K(R,n − 1)]

At last, we have proven :

Proposition 2.1.20. There is a canonical isomorphism :

Opst(k,R;S) ≅ lim←Ð
n

Hn+k(K(R,n), S)

where transitions are given by the fn.
These are also called stable cohomology groups and noted Hk

st(R,S) ∶= lim←Ðn
Hn+k(K(R,n), S).

In this setup, the limit is stationary (cf. [FF16], p.394). This gives some form of hope that stable
cohomology operation groups can actually be computed, at least in simple cases.
Let us see what happens when R = S = Z/pZ.
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2.1.4 The Steenrod algebra

This section is mainly based on [FF16].
In this section, we define the stable cohomology groups with coefficients in Z/2Z, then Z/pZ for p a prime
number.
While the operation x ↦ x ⌣ x, is not stable, when R = Z/2Z, it appears as a special value of some
important stable operations, called the Steenrod squares.
In order to lighten the notation, we briefly let Zp ∶= Z/pZ for any prime number p.

Proposition–Definition 2.1.21. Fix i > 0.
The i-th Steenrod square on a topological space X is a natural family of additive morphisms

(Sqi(X))n≥0 ∶ Hn(X,Z2)→ Hn+i(X,Z2)

They form a stable cohomology operation of type (i,Z2;Z2) such that :
• Sqi(x) = x ⌣ x when dim(x) = i
• Sqi(x) = 0 when deg(x) < i.
• Sqi(x ⌣ y) = ∑p+q=i Sq

p(x) ⌣ Sqq(y).

Moreover, Sq0 = id.

The Steenrod squares are uniquely characterized by the properties above. The construction of those
square is very technical, and we refer to [FF16], section 29, for details. We will briefly mention the idea
behind the construction in the appendix 6.1.

Definition 2.1.22. For p a prime number, we let Ap = ⊕kOpst(k,Zp,Zp) ≅ ⊕kH
k
st(K(Zp),Zp). The

composition of natural transformations

Opst(k,Zp,Zp) ×Opst(l,Zp,Zp)→ Opst(k + l,Zp,Zp)

induces a structure of a graded algebra on Ap. We call it the Steenrod algebra of rank p. Note that it is
not commutative25.

The algebra A2 is essentially generated by the Sqi. The following structure theorem is due to Serre [Ser53].

Theorem 2.1.23. The algebra A2 is isomorphic to the graded algebra generated by the Sqa such that :

• Sq0 = id

• For any 0 < a < 2b, Sqa Sqb =
⌊a/2⌋

∑
j=0

(b − 1 − j
a − 2j )Sq

a+b−j Sqj

The second condition defines the commutation relations.

Moreover, this structure theorem respects the structure of the cohomology rings

H∗(K(Z2, n),Z2) =⊕
k≥0

Hk(K(Z2, n),Z2)↪ Ap

Definition 2.1.24. A sequence of positive integers I = (i1, . . . , ik) is said to be admissible if

i1 ≥ 2i2 ≥ 4i3 ≥ ⋅ ⋅ ⋅ ≥ 2k−1ik

If I = (i1, . . . , ik) is an admissible sequence, its excess is defined as exc(I) ∶= i1 − (i2 + ⋅ ⋅ ⋅ + ik).26

If I is an admissible sequence, we let SqI ∶= Sqi1 Sqi2 . . .Sqik .
25It is actually commutative up to homotopy
26This is nonnegative by definition
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The structure now theorem writes as follows :

Theorem 2.1.25. For any k ≥ 0, H∗(K(Z2, n),Z2) is additively generated by the SqI ⋅ en for all admissible
I = (i1, . . . , ik) such that exc(I) < n,

where en ∈ Hn(K(Z2, n),Z2) is the fundamental class corresponding to the identity as a cohomological
operation via 2.1.18.

When p ≠ 2, the situation is slightly more complicated.

Proposition 2.1.26. We may define the following natural additive morphisms :27

• The reduced p-th power operation P i ∶ Hn(X,Zp)→ Hn+2i(p−1)(X,Zp) for any i ≥ 0.
• The Bockstein map β ∶ Hi(X,Zp)→ Hi+1(X,Zp)

They satisfy, and are characterised by the fact that :

1. Pn ∶ H2n(X,Zp)→ H2np(X,Zp) is given by the p-th cup power x↦ x ⌣ ⋅ ⋅ ⋅ ⌣ x.
2. If 2n > deg(x), Pn(x) = 0
3. Pn(x ⌣ y) = ∑p+q=n P

n(x) ⌣ Pn(y)

Moreover, P 0 = Id

The algebra Ap is generated by the two operations above.

Theorem 2.1.27. Ap is isomorphic to the graded algebra generated by β and the P a such that :

• P 0 = 1

• If a < p ⋅ b, P aP b =∑
i

(−1)a+i((p − 1)(b − i) − 1
a − pi )P a+b−iP i

• If a ≤ p ⋅ b, P aβP b =∑
i

(−1)a+i((p − 1)(b − i)
a − pi )βP a+b−iP i +∑

i

(−1)a+i+1((p − 1)(b − i) − 1
a − pi − 1 )P a+b−iβP i

As is the case for p = 2, one can see that this decomposition respects the structure of the H∗(K(Zp, n),Zp).
The key feature of the Steenrod algebra is that it admits a structure of a Hopf algebra, which endows
its dual with an algebra structure, that is often easier to describe. We will develop this notion in full
generality in 2.3.4.

2.2 Simplicial sets

In this section, we study simplicial sets, as a combinatorial model of topological spaces. We will define,
in this setup, combinatorial analogues of the constructions of the paragraph above. They will then be
further generalized to simplicial objects of any topos.
Good general references include [Bre78], [GJ09] and [Lur22].

27When p = 2, β = Sq1 and P i
= Sq2i
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2.2.1 Simplicial objects

This section is based on [Lur22].
Let us start by some very standard definitions :

Definition 2.2.1. Let ∆ be the simplicial category, where :

• Objects are [n] = {0,1, . . . , n} for n ∈ N
• Morphisms are increasing functions [n]→ [m]

For any n ≥ 0, 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1, we define the i − th face maps σni ∶ [n − 1] ↪ [n] as the only
injective increasing map whose image avoids i, and the j − th face maps δnj ∶ [n] ↠ [n − 1] as the only
surjective increasing map that hits j twice.

Note that every morphism in ∆ can be written as a composition of degeneracy and face maps.

Definition 2.2.2. Let C be a category. A simplicial object in C is a functor ∆op → C.
The simplicial category associated to C is the category Simp(C) whose objects are simplicial objects in
C and whose morphisms are given by natural transformations.
If F ∶∆op → C is a simplicial object, we will usually note Fn ∶= F ([n]).
A simplicial object of Set will be called a simplicial set.

Elements S∗ of Simp(C) are given by diagrams in C :

S0 S1 S2 ⋯

where the arrows denote the image of the degeneracy and face maps.
Let us now define some standard simplicial sets.

Example 2.2.3. To a topological space X, one can associate its singular simplicial set Sing(X) :

Sing(X)([n]) = HomTop(∣∆n∣,X)

where ∣∆n∣ denotes the topological standard n-simplex ∣∆n∣ = {(t0, . . . , tn) ∈ [0,1],∑ ti = 1}, that contains
enough information to compute singular homology. 28 This defines a functor Sing ∶ Top→ Simp(Set).

We refer to [Lur22, Subsection 001Q] for more details about this construction.

Definition 2.2.4. The standard n-simplex is the simplicial set : ∆n ∶ [m]↦ Hom∆([m], [n]).
Its boundary is the simplicial set defined as : (∂∆n)[m] = {α ∈ Hom∆([m], [n]), α not surjective}.
If 0 ≤ i ≤ n, the horn Λn

i is the simplicial set defined by :

(Λn
i )([m]) = {α ∈ Hom∆([m], [n]) ∶ [n] ⊈ α([m]) ∪ {i}}

Remark 2.2.5. By Yoneda’s lemma, for S∗ a simplicial set, HomSimp(Set)(∆n, S∗) = Sn.
For instance, functors s ∶∆0 → S∗ are exactly points s ∈ S0.

Simplicial sets admits a geometric realisation, which is a (topological) simplicial complex. When considering
this very restricted class of topological spaces, usual notions in topology can be made purely combinatorial.

Proposition–Definition 2.2.6. The functor Simp admits a left adjoint Simp(Set) → Top, called the
geometrical realization functor and noted X ↦ ∣X ∣.

Proof. cf. [Lur22, Corollary 0022]
28As we will later see, it also contains enough information to compute homotopy groups
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For example, ∣∆∣n is homeomorphic to the standard n-simplex, ∣∂∆n∣ to its boundary, and ∣Λn
i ∣ to the

subset of ∣∂∆n∣ obtained after removing the face opposite to the i − th vertex.
Let us now study homotopy groups. First, we will need a pointed version.

Definition 2.2.7. A pointed simplicial set is a pair (S∗, s) for S∗ a simplicial set and s ∶∆0 → S∗.
A morphism between pointed simplicial sets (S∗, s) → (T∗, t) is a simplicial morphism f ∶ S∗ → T∗ such
that f(s) = t.

2.2.2 Simplicial homotopy groups

This section is based on [Lur22] and [GJ09].
The goal of this section is to define homotopy groups of simplicial sets.
In order to define such groups, we’ll need the notion of Kan complexes. While it is a key notion in
the theory of infinity category, we’ll try to avoid extensive use of this concept. We will simply use Kan
complexes as a framework where homotopies are well behaved, and we refer to [Lur22, Chapter 00SY] for
many more detail.

Definition 2.2.8. A Kan complex is a simplicial set X29 such that every morphism from every horn
Λn
i →X can be extended to ∆n →X for 0 ≤ i ≤ n.

An important technical result is as follows :30

Proposition 2.2.9. Any simplicial group is a Kan complex.

Proof. cf. [Lur22, Proposition 00MG].

We will try and mimic the standard definition of higher homotopy groups :

Definition 2.2.10. Let (X,x) be a pointed Kan complex.
Let f0, f1 ∶ ∆n → Y such that fi(∂∆n) = {y}. They are said to be homotopic with respect to the
boundary if there exists h ∶∆1 ×∆n → Y such that

• h∣{0}×∆n = f0
• h∣{1}×∆n = f1
• h∣∆1×∂∆n corresponds to the constant map valuing x.

Proposition 2.2.11. The relation defined above is an equivalence relation.

Proof. This is non trivial, and makes use of the Horn extension property of Kan complexes. This is a
consequence of [Lur22, Proposition 00HC] (where Lurie used an alternative definition of homotopy as
pointed maps from the quotient ∆n/∂∆n).

We may then define the homotopy groups :

Definition 2.2.12. Let (X,x) be a pointed Kan complex. Let

πn(X,x) = {f ∶∆n →X,f ∣∂∆n = {x}}/homotopy

Proposition 2.2.13. There is a natural group structure on πn(X,x) for n ≥ 1.
It is abelian whenever n ≥ 2.

29From the modern point of view, ∞-categories, form a good notion of a space. Since Kan complexes are a fundamental
class of ∞-categories, they will be noted X - as for topological spaces

30One some vaguely related note, Lie groups are better behaved then varieties, since the neighborhood of every point may
be canonically identified with the neighborhood of the identity element
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Proof. cf. [Lur22, Subsection 00W3].

Fortunately, this is compatible with standard homotopy groups.

Proposition 2.2.14. Let X be a Kan complex. The groups πn(X,x) and πn(∣X ∣, x) are isomorphic.

Proof. One needs to show that both groups behave well with (Kan) fibrations, use the path-loop fibration
ΩX → PX →X and proceed inductively. We refer to [GJ09], proposition 11.1.

The definition above can be extended to arbitrary simplicial sets X by picking a weak equivalences with
a Kan complex X ≅ Y and computing the homotopy of Y . We will not need this construction.
However, there is no a priori good way to extend this definition onto Simp(C), for C an arbitrary category.

2.2.3 The Dold-Kan correspondence

This section is based on [Bre78] and [GJ09].
We fix A an abelian category. In this section (and this section only), we let Ch≥0(A) denote the category
of bounded below chain complexes in A.31 Clearly, simplicial objects resemble chain complexes.
We present a construction, due to Dold and Puppe in [DP61], of an adjoint equivalence Ch≥0(A) ↔
Simp(A).
Let us give a first way of associating chain complexes to simplicial objects.

Proposition 2.2.15. If X is a simplicial object of A, we define its alternating face map complex or
Moore complex X∼ as the chain complex in A defined by :

• (X∼)n =Xn

• dn = ∑n
i=0(−1)idni

This construction is somewhat natural since is the one used to define singular homology from the singular
simplex defined in 2.2.3. Likewise, once a base ring is chosen, we may define homology of simplicial sets.

Definition 2.2.16. Let (S∗, s) be a pointed simplicial set, and R a ring.
We let R[S∗] be the freely generated simplicial R- module generated by S∗, as the simplicial R-module
obtained by applying the (functorial) free module construction at each level.
This defines a left adjoint to the forgetful functor Simp(ModR)→ Simp(Set).
We now define Hn(S∗,R) as the homology of the complex of R-modules R[S∗]∼.
We also define the reduced homology H̃n(S∗,R) as the homology of R+[S∗] ∶= R[S∗]∼/R[0].32

In order to construct the Dold-Puppe correspondence, we’ll need to consider a large subcomplexNX ⊂X∼.

Proposition 2.2.17. For any simplicial object X in A, there is a decomposition X∼ ≅ NX ⊕DX, where

• The normalized complex NX is defined by :
– (NX)n = ⋂i>0Ker(dni ∶Xn →Xn−1).
– The differentials are induced by the 0−face map : ∂n ∶= dn0 ↾(NX)n ∶ (NX)n → (NX)n−1.

• The degenerated complex is defined by :
– (DX)n = ⋃i Im(sn−1i ∶Xn−1 →Xn).
– Morphisms are induced via the inclusion (DX)n ⊂Xn.

Moreover, DX is homotopically trivial, such that the natural inclusion NX ↪X∼ is a quasi-isomorphism.
31One can likewise construct a dual equivalence between cochain complexes and cosimplicial objects
32This is defined as the complex valuing R[S∗] in every degree besides 0, in which case it values R[S0]/R[s]
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Proof. cf. [GJ09], theorem 2.4.

Note that both these constructions can be made functorial Ch≥0(A)→ Simp(A).
Let us now construct a morphism that will form, together with N , an equivalence of categories.

Definition 2.2.18. The Dold-Puppe transformation is the functor K ∶ Ch≥0(A) → Simp(A) defined
on a chain complex Y● as :

• KYn = ⊕
0≤p≤n

⊕
f ∶[0,n]↠[0,p]

Yp,f , where the Yp,f are just copies of Yp.

• To θ ∶ [m] → [n], we construct a map θ∗ ∶ ⊕
0≤k≤n

⊕
f ∶[n]↠[k]

Yk,f → ⊕
0≤l≤m

⊕
g∶[m]↠[l]

Yr,g induced by Yk,f →

Ys,h where [m] gÐ→→ [l] ∗Ð→ [k] is the epi-mono factorization of [m] θÐ→ [n] fÐ→→ [k].
Let us now state the main result :

Theorem 2.2.19. (Dold-Kan equivalence)
The pair of functors (K,N) induces an adjoint equivalence Ch+(A)↔ Simp(A).33

Proof. The original proof is [DP61], 3.6. For a more modern text, see [GJ09], corollary 2.3.
We refer to [Wei94], exercise 8.4.2, to show that (K,N) is an adjunction.

While this construction may seem ad hoc, discussions related to 2.4.6 indicate that this definition is
actually fundamental.

2.2.4 Eilenberg Mac-Lane spectra

This section is based on [Bre78].
The goal of this section is to establish a simplicial analogue of the Eilenberg Mac-Lane spaces, defined in
2.1.2, and show that they also represent cohomology in that setup. A is still a fixed abelian category.
A very important technical remark is as follows :

Theorem 2.2.20. Let (X,x) be a pointed simplicial abelian group. Then πn(X,x) ≅Hn(NX,Z).
A fortiori, such homotopy groups are independent of the base point.

Proof. This essentially follows from the definitions. See [GJ09], corollary 2.5.

Definition 2.2.21. For A an object of A, define K(A,n) ∶=K(A[n]).
This is known as the Eilenberg-Mac Lane space34 of degree n.

Example 2.2.22. K(A,0) is the simplicial complex concentrated in degree 0, valuing A.

The naming is justified by the following property :

Proposition 2.2.23. Let A be a simplicial abelian group. Then :

πk(K(A,n)) =
⎧⎪⎪⎨⎪⎪⎩

A if k = n
0 if k ≠ n.

Proof. By 2.2.20, whenever X a simplicial abelian group, πn(X,x) =Hn(NX) for any point x ∈X.
Then πn(X) =Hn(N ○K(A[n]),Z) =Hn(A[n],Z) since N ○K ≅ id, and isomorphisms of chain complexes
preserve homotopy. Hence the result.

As we will later see, in that setup, Eilenberg Mac-Lane represent hypercohomology at a derived level, and
thus deserve the name of a spectra. We do not elaborate on these notions further, and refer the interested
reader to [Fra74].

33i.e. K is left adjoint to N , such that N ○K and K ○N are natural isomorphisms
34They deserve the name "space" since, if A = Ab, they are Kan complexes (as simplicial abelian groups)
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2.3 Stable homology in ringed topoi

This section is inspired by [Bre78] and [Ill71].
The goal of this section is to generalize the constructions of the previous one to simplicial objects valued
in any topos. We will reuse the notations introduced in 1.1.3.

Let us fix (T ,R) a ringed topos, realized as sheaves on a site (C, J).
We will generalize the standard case, where (T ,R) = (Set,Z).

2.3.1 (Derived) simplicial sheaves

For psychological reasons, simplicial objects in T are called simplicial sheaves. Such objects are exactly
sheaves on (C, J) valued in Simp(Set).
We let A denote the category of abelian groups in T , and will use the functors N , K and the Eilenberg-
MacLane spaces in this setup. Objects of Simp(A) is then called the simplicial abelian sheaves of T .

A pointed simplicial sheaf is a pair (X,x) where X is a simplicial sheaf, and x ∶ e→X where e = {∗}
is the final object of T .
Our goal is to glue together the previous constructions on a sheaf.

Definition 2.3.1. Let (X,x) be a pointed simplicial sheaf on T .
Define πn(X,x) ∈ T as the sheafification of the presheaf on (C, J) defined by U ↦ πn(X(U), x ↾ U).
It is a sheaf of abelian groups on (C,J), called the n-th homotopy sheaf.

One can check that such a definition is independant of the site of definition. In fact, if X is a simplicial
abelian group in T , the homotopy sheaves admit the following reformulation.

Proposition 2.3.2. If X is a simplicial abelian sheaf in T , then πn(X,x) ≅ Hn(NX,Z).

Proof. This essentially follows from the definition.

Therefore, the homotopy groups of Eilenberg-MacLane spaces are still as expected.

Remark 2.3.3. If t is a point of T and X a simplicial sheaf, then πn(X,x)t ≅ πn(Xt, xt).

The Hurewicz theorem still holds in that setup.

Theorem 2.3.4. (Simplicial Hurewicz). Assume T has enough points.35

Let (X,x) be a path-connected pointed simplicial abelian group and n ≥ 2 such that πk(X,x) = 0 whenever
0 < k < n. Then there is an isomorphism πn(X,x) ≅ Hn(X,Z).

Proof. Since T has enough points, we can assume T = Set. Then, we apply [GJ09], Theorem 3.7.

In order to obtain representability results similar to 2.1.5, we’ll need to construct a derived category of
simplicial sheaves.

Definition 2.3.5. A morphism between pointed simplicial sheaves f ∶ (X,x) → (Y, f(x)) in Simp(T ) is
a quasi-isomorphism if all the induced morphisms πn(f) ∶ πn(X,x) → πn(X,f(x)) are isomorphisms
of simplicial abelian sheaves.
The derived category of simplicial sheaves in T is the localisation of Simp(T ) with respect to quasi-
isomorphisms. We note it D(T ).

Note that, if R is a ring in T , the category ModR is an abelian category, so that we can define its derived
category in the usual way.
Finally, let us remark that the stalk morphism can be extended at the derived level.

35I don’t know if this assumption is necessary
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Lemma 2.3.6. Let X,Y be simplicial sheaves of T , and t a point of T .
The point induces a morphism HomD(T )(X,Y )→ HomD(Simp(Set))(Xt, Yt)

Proof. The morphism induced by the point at the level of simplicial objects descend at the derived level
by 2.3.3.

Proposition 2.3.7. Let X,Y be R−modules, and t a point of T .
The point induces a morphism HomD(R)(X,Y )→ HomD(Rt−Mod)(Xt, Yt)

Proof. By definition, the pullback function of a geometric morphism of topos preserves finite limits and
colimits, so it is exact, and hence commutes with homotopy.
The induced morphism at the level of complexes hence descends at the derived level.

The morphism above can be reformulated as a morphism ExtnR−Mod(X,Y )→ ExtnRt−mod(Xt, Yt).

2.3.2 Homology and (hyper)-cohomology

In this section, we define the adequate notion of homology and cohomology for simplicial sheaves.
Homology groups are naturally generalized from the definition for simplicial sets in 2.2.16.

Definition 2.3.8. Let P be a R−module, and X a simplicial sheaf. Recall the alternating face map
construction from 2.2.15.
The construction 1.1.23 can be applied at every rank of a simplex, and yields a functor

Simp(T )→ Simp(ModR)

that is left adjoint to forgetful functor. We denote it R[ ].
Likewise, we define R+[ ] by R+[X] =R[X]/R[0]

We may then define the notion of homology of such a complex as follows :

Definition 2.3.9. Let X be a simplicial sheaf in T , and P be a R-module.
The homology of X with coefficients in P is the P-module defined as Hn(X,P) ∶= Hn(P[X]∼)
Likewise, we define the reduced homology as H̃n(X,P) ∶= Hn(P+[X]∼)

As usual, homology is compatible with stalks.

Remark 2.3.10. In this context, one can construct a Künneth map

Hi(X,P)⊗P Hj(Y,P)→ Hi+j(X × Y,P)

Let us now define a notion of cohomology, which extends 1.1.24. To insist on the fact that this involves
an hyper-ext functor (and following Illusie [Ill71]), we call it hypercohomology.

Definition 2.3.11. The Hypercohomology of a simplicial sheaf X with coefficients in P is defined as

Hn(X,P) = ExtnR(R[X]∼,P)

Moreover, we define a reduced version as H̃n(X,P) = ExtnR(R+[X]∼,P)
Here ExtR denotes the hyper-ext in the category of R−modules.

One can check that such a definition is independant of the choice of R. As in the standard case,
hypercohomology is represented by Eilenberg-MacLane spaces.

Proposition 2.3.12. Let X be a simplicial sheaf in T , and P an R−module. Then :

HomD(T )(X,K(P, n)) ≅Hn(X,P)
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Proof. We compute :

HomD(T )(X,K(P, n)) = HomD(T )(X,K(P[n])) by definition

≅ HomD(Ch≥0(A))(NX,P[n]) by (derived) adjunction

≅ HomD(Ch≥0(A))(X
∼,P[n]) by 2.2.17

≅ ExtnA(X∼,P) by definition
≅ ExtnR(R[X∼],P) by adjunction
≅Hn(X,P) by definition

The Dold-Kan adjunction descends at the derived level since the morphisms N and K transform simplicial
quasi-isomorphisms into quasi-isomorphisms of complexes and vice-versa (this follows from 2.2.20).

Note that a result that was highly non trivial in the case of topological spaces now follows straightforwardly
from the formalism and the Dold-Kan correspondence. Such a result grants the Eilenberg Maclane spaces
the status of a spectra. While we will not need to use such a concept, this is a very crucial concept in
modern homotopy theory, and we refer the interested reader to [Fra74] for a nice introduction.

Based on this and the analogue result on the punctual topos, points of T induce morphisms in hypercohomology,
and thus on the Eilenberg-MacLane spaces via Yoneda’s lemma.

Definition 2.3.13. For any point t of T , we define a morphism θt ∶Hn(X,M)→ Hn(Xt,Mt) induced by
the morphism defined in 2.3.6.

As announced in 1.2.25, hypercohomology allows us to rephrase the universal coefficient spectral sequence
in a more standard way. This spectral sequence will play a major role in the computation of section 3.

Proposition 2.3.14. Let P and Q be R−modules in T , and n ≥ 0. There is a spectral sequence :

Ep,q
2 = Ext

p
V (Hq(K(P, n),R),Q) Ô⇒ Ep+q

∞ =Hp+q(K(P, n),Q)

Proof. We apply 1.2.24 for X∗ =R[K(P, n)]∼.
This yields Ep,q

2 = Ext
p
V (Hq(R[K(P, n)]∼),Q) Ô⇒ Extp+qV (R[K(P, n)]∼,Q).

The result follows from the definition of cohomology and hypercohomology.

As an example, if T has enough points and Q is a field object, the spectral sequence converges at page 2,
and the standard universal coefficient theorem. Such a result can be proven by passing to stalks.

2.3.3 Suspension and stabilization

In this section, we will define a notion of smash product and stabilization for simplicial sheaves, which
is a simplicial analogue of 2.1.6. This will lead to the definition of stable derived functors, which will be
essential in the construction of the canonical resolution.
We fix A,B and C three R−modules, and µ ∶ A⊗R B → C a pairing of R−modules.

Theorem 2.3.15. It induces a "cup-product" : Hn( ,A)⊗RHm( ,B)→Hn+m( ,C)

Proof. We present an outline of the construction, following [Bre78].
Since hypercohomology is represented by Eilenberg-MacLane spaces, it is equivalent to construct a map

dm,n ∶K(A,m) ×K(B,n)→K(C,n +m) (1)

where the cartesian product of two simplicial sheaves S,T is simply (S × T )[n] = Sn × Tn.
Such a map corresponds, by the Dold-Kan adjunction, to a map N[K(A,m) ×K(B,n)]→ C[m + n].

33



Note that the pairing µ induces a map A[m]⊗B[n]→ C[m+n] since A[m]⊗B[n] ≅ (A⊗B)[m+n] by
definition of the tensor product of chain complexes.
The only step left is to construct a map N[K(A,m) ×K(B,n)]→ N[K(A,m)]⊗N[K(B,n)].
We use the Alexander-Whitney map, as constructed for example in [ML95], corrolary 8.6.

As in the topological case, there is a notion of smash product of pointed simplicial sheaves. This can be
expressed as the the coproduct of the following diagram :

X ∨ Y X × Y

∗ X ∧ Y

where X ∨ Y is defined by the coproduct of :

∗ ⊔ ∗ ÐÐÐ→ X ⊔ Y
×××Ö

×××Ö
∗ ÐÐÐ→ X ∨ Y

One can check that the cup product defined above descends to the smash product

dm,n ∶K(A,m) ∧K(B,n)→K(C,m + n) (2)

By analogy with the standard case where T = Set and R = Z, we define :

Definition 2.3.16. We define the simplicial circle S1 =K(R,1).
For n ≥ 1, let the simplicial n-sphere be the iterated wedge product S1 ∧ ⋅ ⋅ ⋅ ∧ S1.
The suspension of a simplicial sheaf is ΣX =X ∧ S1.

The Freudenthal suspension theorem still holds in that setup.

Theorem 2.3.17. (Simplicial Freudenthal) Suppose that T has enough points.36

Let X be a simplicial R−module and n ≥ 2 such that πk(X) = 0 for 1 ≤ k ≤ n.
Then the map πl(X)→ πl+1(ΣX) is an isomorphism for any l ≤ 2n.
Proof. Since T has enough points, this can be checked on stalks.
This then follows from a Freudenthal theorem in Simp(Set), cf. [GJ09], Theorem 3.10.

As in the standard case, we may define (stable) cohomology operations, and can identify these groups
with (stable) hypercohomology of the associated Eilenberg-MacLane spaces. Everything is analogue to
2.1.3.

Proposition–Definition 2.3.18. Let m,n ≥ 0 and R,S be rings of T .
The group of cohomology operations of type (R,m,S, n) is

Op(R,m;S, n) = {Natural transformations Hm( ,R) Ô⇒ Hn( ,S)}

where Hm( ,R) (resp Hn( ,S)) is functor Simp(T )→ModR (resp Simp(T )→ModS).
By Yoneda’s lemma, Op(R, n;S, n + k) ≅Hn+k(K(R, n),S).
A stable cohomology operations is a family of cohomology operations commuting with suspension.
The group of stable cohomology operations can be identified with

Opst(k,R,S) ≅ lim←Ð
n

Hn+k(K(R, n),R)

The generalized Steenrod algebra is defined as AR ∶=⊕kOpst(k,R,R).
36I don’t know if this hypothesis is necessary
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Note that, contrary to the standard case, this limit needs not stabilize.
For p a prime number, we let Ap ∶= AFp

, where Fp denotes the constant sheaf valuing Fp in T . While
this is formally different from the algebra Ap defined in 2.1.4, the structure is the same, since Steenrod
algebras are purely combinatorial objects. We will allow ourselves to freely identify both them.

2.3.4 Stable homology

This section is inspired by [Bre78] and [FF16].
In this paragraph, we assume that T has enough points.
The structure of the generalized Steenrod algebra is not known on arbitrary topoi. However, we will see
that it admits a natural structure of a co-algebra, which suggest the existence of a dual Steenrod algebra,
and thus of stable homology groups. This will lead to the notion of stable derived functors. Moreover,
these dual objects are, in general, easier to understand.
Let us recall the standard case, as introduced in 2.1.4. For simplicity, we start with the case p = 2.
The standard Steenrod algebra A2 is generated by the Steenrod squares Sqi. On the standard Steenrod
algebra A2, the operation µ∗ ∶ A2 → A2 ⊗A2 defined by :37

µ∗(Sqk) =
k

∑
i=0

Sqi ⊗ Sqk−i

endows A2 with a structure of a commutative coalgebra, which is even a Hopf algebra.
This endows the dual A∗2 ∶= HomF2(A2,F2) with an algebra structure, called the dual Steenrod algebra.
Since A2 can be identified with stable cohomology of Eilenberg-MacLane spaces, its dual corresponds to
stable homology of such spaces - at least in setups where the universal coefficient theorem holds (which is
the case whenever Q is a field, if we use the notations from 2.3.14).
This suggests the existence of maps Hn+i(K(A,n),R) → Hn+i+1(K(A,n),R), and a notion of stable
homology. Let us define such morphisms.
Let A,B be R−modules. By the Künneth morphism and functoriality, there are maps

Hn+i(K(A,n),R)⊗H1(K(B,1),R)→ H̃n+i+1(K(A,n) ×K(B,1),R)→ H̃n+i+1(K(A,n) ∧K(B,1),R)

The morphism dm,n from 2, associated with the trivial pairing A⊗RR→ A induces a morphism

H̃n+i+1(K(A,n) ∧K(R,1),R)→ H̃n+i+1(K(A,n + 1),R)

The composition yields a suspension morphism H̃n+i(K(A,n),R) → H̃n+i+1(K(A,n + 1),R) Moreover,
such a construction is functorial in A.

Definition 2.3.19. Let A and P be R-modules. We define the stable homology of A as :

Hst
i (A,P) ∶= limÐ→

n

H̃n+i(K(A,n),P)

Let us now construct the dual Steenrod algebra.

Proposition 2.3.20. Fix a pairing µ ∶ A⊗R B → C
The morphisms induced by dm,n are compatible with suspension and induce morphisms

H̃st
i (A;R)⊗ H̃st

j (B;R)→ H̃st
i+j(C;R)

37This definition is very ad hoc. A more general approach will be given
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This defines a structure of a commutative algebra on H̃st
∗ (R;R), called the dual Steenrod algebra.

This generalizes, through the universal coefficient theorem, the comultiplication µ defined above.
In general, this is easier to compute than the stabilized Steenrod algebra.

Lemma 2.3.21. The sequence (H̃n+k(K(A,n),P))n≥0 is stationary.

Proof. Homotopy groups of a suspension can be computed as in the standard case. Hence, by the
Freuhental suspension theorem 2.3.17, the map σ ∶ S1 ∧K(m,n) → K(M,n + 1) induces an isomorphism
in homotopy πi(S1 ∧K(m,n))→ πi(K(M,n + 1)) for i < 2n − 1.
By a corrolary of the (relative) Hurewicz theorem, it also induces an isomorphism in homology

H̃i(K(A,n),B) ≅ H̃i+1(K(A,n + 1),B)

for i < 2n − 1. This concludes the proof.

The structure of the dual algebra of Ap is well understood, but will not be needed here. We refer the
reader to [Bre78] for a full description.

2.4 The canonical resolution

This paragraph will contain less details than the rest. The notions developed here will not be used in the
rest of the paper, only the results will. The two important results are Theorem 2.4.2 and Remark ??.
The goal of this section is to present a sketch of the construction of the canonical resolution, essentially
due to Saunders MacLane.
Let us present the result, as stated in [ALB21].

Theorem 2.4.1. Let (T ,R) be a ringed topos, and P a R−module. There exists a complex M ′
(T ,R)(P)

of R−modules such that :
1. M ′

(T ,R)(P)● is a resolution of P as R−modules.

2. Every M ′
(T ,R)(P )i is of the form R+[Pr(i) ×Rs(i)] for some r(i), s(i) ≥ 0.

Moreover, the construction is functorial in P .

While this construction is the one that appears from the standard construction, the use of R+ is quite
unpractical. However, after multiplying every term of the resolution by R[0], one gets the following :

Theorem 2.4.2. Let (T ,R) be a ringed topos, and P a R−module. There exists a complex M(T ,R)(P)
of R−modules such that :

1. M(T ,R)(P)● is a resolution of P as R−modules.

2. Every M(T ,R)(P )i is of the form R[Pr(i) ×Rs(i)].
This resolution will be called the canonical resolution.
Some authors call it "MacLane resolution" instead, but it does not pay respect to the amount of various
resolutions studied by MacLane. The literature on this topic is quite erratic.38 While the idea result is
often attributed to the article [Mac57], the "standard" resolution allowed for infinite sums. Some authors
seem to believe that there exists a resolution with terms of the form R[Ps(i)], but this seems to rely on
an unpublished proof by Deligne and is not fully standard. Such an amelioration is not needed here.

Remark 2.4.3. This resolution is closely related that the Breen-Deligne resolution, that recently rose to
popularity due to its importance in Condensed Mathematics (cf. [Sch19], remark 4.6.). Note that, during
a recent attempt at formalizing the Breen-Deligne resolution (as part of the Liquid Tensor Experiment),
they found that it was sometimes possible to use MacLane’s cubic construction instead, which has the
merit of being somewhat explicit. This is not possible be possible in our setup.

38See [Sch19], remark 4.6, for a discussion on the history of this result
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2.4.1 Stable derived functors

This section is mainly based on [Bre78] and [Ill72].
In this sections, all complexes are chain complexes, and we use natural analogues of the notions introduced
for cochain complexes in section 1.
The Dold-Kan construction allows us to define a derived functor of a non-additive functor.
Let R,S be (real) rings. If a functor F ∶ModR →ModS is not additive, its natural prolongation to chain
complexes needs not preserve homotopies, and thus may not descend at the level of derived category.
It however induces a well-behaved functor Simp(R)→ Simp(S). Let us use this idea.

Proposition–Definition 2.4.4. Let R and S be rings of a topos T , and F ∶ ModR → ModS a functor
such that F (0) = 0. For X● ∈ Ch≥0(R), we define :

F (X) = N ○ F ○K(X)

This functor preserves homotopies, and descends as LF ∶ D(ModR)→ D(ModS)
The derived functors of F are LiF =Hi ○LF ∶ D(ModR)→ModS .

Note that, if F is additive, this coincides with the usual derived functors.
Somewhat surprisingly, homotopy groups of Eilenberg-MacLane spaces naturally appear as derived functors.

Proposition 2.4.5. For P an R−module, the i-th derived functor of R+[ ] ∶ T →ModR satisfies

LiR+(P[n]) = Hi(K(P, n),R)

Proof. The functor R+[⋅] extends as R+[X] = N ○R+ ○K(X).
If X = P[n],R+[X] = N(R+[K(P,n)]). We conclude since NX →X∼ is a homotopy equivalence.

The construction of stable homology may then be extended to arbitrary functors.

Definition 2.4.6. Let S be a ring in T , and F ∶ModS →ModR be a functor such that F (0) = 0.
Its stable derived functor is

Lst
i F (M) = limÐ→

n

Li+nF (K(M,n))

where Li denotes the i-th left derived functor of F , and M is a S−module.

For example, stable homology groups appear as stable derived functor of R+[ ].
As is the case with standard derived functors, one can regroup all of these objects under a single one,
living at the derived level. This involves many technical difficulties, and we refer to [Ill72], 11.4.

Proposition 2.4.7. For any F as above, there exists a functor F st ∶ModS → Simp(ModR) such that

Hi(F st(M)∼) ≅ Lst
i F (M)

Moreover, this construction is compatible with pairings.

If F is of the form R+[ ], we let Rst(M) be the evaluation at M of the functor associated to the
stabilization of F . It is a simplicial R−module.
In particular, Rst(M) is a simplicial non-commutative ring39. Its homology satisfies :

Hi(Rst(M)∼) = Hst
i (M,R)

39It is commutative up to homotopy
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2.4.2 The Bar construction

This section is inspired by [Car54], [EL53] and [Bre78].
We present the bar resolution associated to a differential graded augmented algebra. Historically, this was
introduced in order to explicitely compute some Tor groups. Our main motivation remains the definition
the canonical resolution.
In this section, we fix R a commutative ring. Unless mentioned otherwise, tensor products are over R.

Definition 2.4.8. Let A be an R−algebra with an augmentation morphism A
ηÐ→ R.

The bar resolution is the resolution B(A)●
εÐ→ R of R as A−modules given by :

1. B(A)n = A⊗n+1, with structure of A-module induced by the right-most term.

2. The differential dn ∶ B(A)n → B(A)n−1 is

dn(a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) = (−1)n−1η(a0)a1 ⊗ ⋅ ⋅ ⋅ ⊗ an +
n−1

∑
j=1

(−1)n−j−1a0 ⊗ ⋅ ⋅ ⋅ ⊗ aj ⋅ aj+1 ⊗ ⋅ ⋅ ⋅ ⊗ an

3. The augmentation is ϵ = η.
Disclaimer. The alternating signs throughout this section are notoriously tricky, and may be wrong.

If A admits in addition a structure of a differential graded algebra, the complex B(A)n is naturally
endowed with additional structure.

Definition 2.4.9. A differential graded augmented R-algebra; or R-DGA for short, is an R-algebra
A that admits :

1. A graded structure A ≅⊕n≥0An, with multiplication Ap ×Aq → Ap+q.

2. Differentials dn ∶ An → An−1 such that dn○dn+1 = 0 and dn(xy) = dk(x) ⋅y+(−1)kx ⋅dn−k(y) if x ∈ Ak.
When the indices are clear from the context, we simply write d or dA.

3. An morphism of R−algebras A νÐ→ R, called the augmentation, such that ε ○ d = 0 and ϵ(x) = 0
whenever x ∈ Ak, k ≥ 140

An element a ∈ A is said to be homogeneous if it belongs if Ak for some k. Such a k is known as its
degree, noted deg(a). If a is not homogeneous, we define its degree to be deg(a) ∶=maxi (deg(ai)) where
a = a0 + ⋅ ⋅ ⋅ + ak is the homogeneous decomposition of a.
If A and B are two R−DGA, the tensor product A ⊗B is naturally endowed with an R−DGA structure
given by A⊗B =⊕n=p+qAp ⊗Bq.

Let us now define a R−DGA structure on B(A) ∶=⊕n∈NB(A)n
Define on B(A) the total degree :

deg(a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) ∶= n +∑
k

deg(ak)

Let B(A)n,s be the homogeneous part of degree s of B(A), such that B(A) =⊕n,sB(A)n,s.
The differentials dn defines above lower the degree by 1, since they lower the length by one.41

Define the differential ∂s ∶ B(A)n,s → B(A)n,s−1 induced by the differential on A :

∂s(a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) =
n

∑
j=0

a0 ⊗ ⋅ ⋅ ⋅ ⊗ d(aj)⊗ ⋅ ⋅ ⋅ ⊗ an

The differentials ∂s and dn endow B(A) with a structure of a double chain complex.
Moreover, if M is a differential graded A−module, B(A)⊗AM is a bicomplex of M−modules.

40This is a morphism of DGA algebras A→ R, where we endow R with the trivial structure concentrated in degree 0.
41The left-most term of dn(a0 ⊗ ⋅ ⋅ ⋅ ⊗ an) is of degree 0 whenever deg(a0) ≠ 0.
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Remark 2.4.10. One of the main interest of the bar construction is that the total complex associated to

B(A)● ⊗AM represents the derived tensor product R
L
⊗AM .

As a consequence, H∗(Tot(B(A) ⊗R M)) = TorA∗ (R,M), where TorAk (R, ) denotes the k-left derived
functor of R⊗A , and R is viewed as an A-algebra via η.
The spectral sequences associated to the double complex, as described in 1.2.4, yield somewhat explicit ways
to compute such a complex. We refer to [Bre78] for details and additional differences.

2.4.3 Definition of the canonical resolution

We will define the terms appearing in the canonical resolution. We will not check that they satisfy the
desired properties, and refer to [Mac57] and [Ill72] for details on that matter.
Fix (T ,R) a ringed topos, and let P be an R−module.
Recall the definition of the simplicial R−modules Rst(R) and Rst(P).
The associated alternating complex 2.2.15 Rst(R)∼ is naturally a R−DGA, and Rst(P)∼ is a differential
graded Rst(R)∼-module.

Definition 2.4.11. We define the bicomplex M●,●(P ) = B(Rst(R)∼)⊗Rst(R)∼ Rst(R)∼
Let M ′

●(P ) be the associated total complex

One can check that this satisfies the properties from 2.4.1.
Let us conclude with a more philosophical remark.

Remark 2.4.12. ?? The complexity of the canonical resolution stems from the difficulty of the description
of Rst, which itself comes from the complexity of the homology of the Eilenberg-MacLane spaces.
Note that this difficulty is purely combinatorial, and does not relate to the geometric properties of the
topos, nor of the chosen ring.42

The coefficients r(i) and s(i) are hence in dependant of the topos.

This will be crucial when comparing an algebraic and an analytic topoi in section 5.

42The invariance by change of base ring will be more precisely stated in 3.3.7
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3 Extension of the additive group on the (perfect) étale site

3.1 Introduction

In this section, we specify the notions from the previous sections to the additive group on the étale topos.
Let us start by establishing some notations.

3.1.1 Notations and overview

We fix S = Spec(R) a perfect scheme of characteristic p.
We let Sperf be the perfect étale site, whose objects are perfect schemes over S, and covers are given
by jointly surjective étale maps.43 Let Sét be the (big) étale site over S.
Let Vperf

S (resp. Vét
S ) be the category of sheaves of Fp−vector spaces on Sperf (resp S ét).

Let AbperfS (resp. AbétS ) be the category of sheaves of abelian groups on Sperf (resp S ét).
Let Tét

S be the topos of sheaves of sets over S ét, and Tperf
S the topos of sheaves of sets over Sperf .

Alternatively, Vperf
S (resp Vét

S ) is the category of Fp-modules in Tperf
S (resp Tét

S ).
The additive group, noted Ga, is the sheaf defined by X ↦ OX(X). By abuse of notation, we see it as
an object of T perf

S , T ét
S , V

perf
S and T perf

S . It is also a group scheme over S.

The goal of this section is to prove the following result :

Theorem 3.1.1. The self-extension groups of Ga over Sperf as Fp-vector spaces are :

ExtnSperf ,Fp
(Ga,Ga) =

⎧⎪⎪⎨⎪⎪⎩

R[T,T −1]nc if n = 0
0 if n > 0

where R[T,T −1]nc denotes the non-commutative ring of Laurent polynomials, and T corresponds to the
Frobenius morphism on R.

The self-extension groups of Ga on the étale site were heavily studied by Lawrence Breen in the beginning
of his carreer. He achieved the following full computation in [Bre78], after a series of papers [Bre75],
[Bre69a], [Bre69b].

Theorem 3.1.2. ([Bre78], theorem 1.3.) The self-extension groups of Ga over S ét as Fp-vector spaces
are :

ExtnSét,Fp
(Ga,Ga) =

⎧⎪⎪⎨⎪⎪⎩

R[T,T −1]nc/ (T vp(n/2)+1) if n is even
0 if n is odd

where vp denotes the p−adic valuation.

Note that the result in degree 1 was (essentially) already known by Serre [Ser88].
In the short article [Bre81], he cleans up his arguments and explains how to transfer his result on the
étale site to the computation announced above on the perfect étale site. In fact, in order to deduce the
theorem above, one only needs the following partial result :

Proposition 3.1.3. For any n > 0, ExtnSét,Fp
(Ga,Ga) is killed by some large power of the Frobenius.

Let us conclude by saying a few words about the importance of the hypotheses.

Remark 3.1.4. 1. The result still stands with other usual topologies (Zariski, v, fpqc, ...).
43Some variants appear in the literature. For example, in [BS15], Bhatt and Scholze consider the site of perfect quasi-

compact and quasi-separated objects over X. The results still hold on such a site.
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2. An analogue result still holds when viewing Ga as sheaves of Fq−vector spaces when S is a scheme
over Spec(Fq). This will be useful for section 5, and will be derived from the result above in 5.1.2.

3. The result does not hold when considering extension groups as abelian groups rather than sheaves of
vector spaces. As we will see later (cf. 3.2.12), the extension group does not vanish in degree 1.

4. The method described here does not work over a non-affine base. The computation makes key use of
the fact that higher cohomology of quasi-coherent sheaves on affine basis vanishes.

We shall also note that Breen did not have a good a priori reason to study a perfect site, except for
the fact that it allowed a convenient and nontrivial reformulation of his result on the étale site. The
modern study of perfectoid spaces justifies the setup and allows for new perspectives on this result - see
for example [Mat22].
Let us now outline the proof of 3.1.3.

3.1.2 Outline of the proof

Recall the notations from section 2.
We work in the étale topos (T ,R) = (T ét

S ,Fp).
The proof relies mostly on three ideas. The first one is the use of the canonical resolution, the second one
is the use of the universal coefficient spectral sequence to the adequate simplicial object, and the third
one is a study of the generalized Steenrod algebra in the étale topos.
The canonical resolution 2.4.2 writes as follows :

Definition 3.1.5. There exists a resolution M(Ga)● → Ga where each M(Ga)i is of the form Fp[Xi] for

Xi an étale sheaf of the form G
r(i)
a × Fs(i)

p .

One can check that the sheaves Gr
a × Fs

p are represented by Spec(Rs[X1, . . . ,Xr]). Hence, the extension
groups ExtnSét,Fp

(M(Ga)j ,Ga) can be understood as étale cohomology groups of quasi-coherent sheaves
over an affine base, and thus vanish whenever i > 0.
This allows us to compute ExtiSét,Fp

(Ga,Ga) as the homology of the complex :44

0Ð→ HomSét,Fp
(M(Ga)0,Ga)Ð→ HomSét,Fp

(M(Ga)1,Ga)Ð→ . . .

Unfortunately, since we cannot know the coefficients r(i) and s(i), this cannot be used for a direct
computation. However, the fact that extension groups can be computed as the cohomology of such a
simple complex admits many important consequences, such as the following :

Lemma 3.1.6. ExtnSét,Fp
(Ga,Ga) ≅ ExtnSpec(Fp)ét,Fp

(Ga,Ga)⊗Fp R

Thus we may assume S = Spec(Fp).
Then, one may note that Ga = Hst

0 (K(Ga),Fp). The stabilized version of the universal coefficient spectral
sequence described in 2.3.14 now yields :

Ep,q
2 = Ext

p
V (H

st
q (K(Ga),Fp),Ga) Ô⇒ E∞p,q =H

p+q
st (K(Ga),Ga)

The terms Ep,0
2 are then the desired terms. The limiting term can be described as a generalised Steenrod

algebra. The terms Hom(Hst
n (K(Ga),Fp),Ga) can be described in terms of the dual Steenrod algebra.

By a careful consideration of the structure of the spectral sequence and an explicit description of the
terms and the morphisms, we will prove the desired result inductively on n ≥ 2.
While the case n = 0 is essentially trivial, the case n = 1 is nontrivial and relies on very different tools.
The proof that we present is due to Serre.

44Note that the resolution is not projective, even if it is ’free’.

41



3.2 Computation in low degree

In this section, we compute the extension groups in degree 0 and 1 on the étale site. In section 4, we will
see how to deduce a computation over T perf

S .

3.2.1 In degree 0

In degree 0, since Ga is representable, we can compute directly HomV ét
S
(Ga,Ga) using Yoneda’s lemma.

Lemma 3.2.1. The sheaf Ga is represented by A1
S over S ét and by A1,perf

S over Sperf .

Proof. We do the computation on the perfect étale site. If X is a perfect S−scheme,
HomS−sch(X,A1,perf

S ) ≅ HomS−sch(X,A1
S) = HomS−sch(X,S ×Spec(Z) A1

Z)
≅ HomSch(X,Spec(Z[T ])) ≅ HomZ−Alg(Z[T ],OX(X)) ≅ OX(X)
For the first equality, we used the fact that the perfection functor is right adjoint to the forgetful one.

Proposition 3.2.2. HomV ét
S
(Ga,Ga) ≅ R[T ]nc, which denotes the non-commutative polynomial ring,

where the commutation relation is T ⋅ r = rp ⋅ T .
The element T will be called "the Frobenius morphism" in the following.

Proof. Since Ga is represented by A1
S , by Yoneda’s lemmma, we get :

HomV ét
S
(Ga,Ga) ≅ HomS−sch(A1

S ,A
1
S) ≅ HomR−alg(R[T ],R[T ])

Where the ring structure on HomR−alg(R[T ],R[T ]) is given by composition.
A morphism f ∶ R[T ] → R[T ] are entirely determined by the polynomial P = f(T ), which satisfies
P (X + Y ) = P (X) + P (Y ). In characteristic p, such polynomials are exactly polynomials in Xp.
Hence HomV ét

S
(Ga,Ga) ≅ {g(Xp), g ∈ R[X]} ≅ R[T ]nc where T =Xp.

The computation in degree 1 is due to Serre, in [Ser88], VII-11. We give an outline of the proof below.
Note that the techniques used here are very different from the ones used in higher dimension.

3.2.2 In degree 1 - Extensions groups, à la Serre

This section is based on [Ser88], [Oor66] and [Poo09].
We will establish the following computation of the first extension group on the étale site.

Proposition 3.2.3. Let S = Spec(k) for some field k of characteristic p.
The group Ext1Sét,Ab(Ga,Ga) is isomorphic to HomSét,Ab(Ga,Ga) ≅ R[T ]nc, and a generator is given by

the extension 0→ Ga
VÐ→Wk,2

RÐ→ Ga → 0 (where we used the notations from 1.3.25).

When Serre studied algebraic groups in 1957, schemes did not exist, and sheaves were not completely
standard yet. His notion of extension groups was of a more geometric nature.
Recall the reformulation of the first extension groups in an abelian category as a group of extensions :

Definition 3.2.4. Let A be an abelian category, and A1,A2 be objects of A.
An extension of A1 by A2 is a short exact sequence : 0→ A2 → B → A1 → 0.
Two such sequences with middle terms B and B′ are said to be equivalent if there exists an isomorphism
B → B′ such that the diagram below commutes.
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B

A2 A1

B′

The extension group Ext(A1,A2) is the equivalence class of such extensions.
This is endowed with a group structure with the Baer sum - which is induced by the direct sum.

Proposition 3.2.5. The extension group defined above is isomorphic to Ext1A(A1,A2), the first derived
morphism of HomA.

Proof. This is a standard result - see for example [Wei94], Theorem 3.4.3.

Serre considered such extensions of abelian group schemes over an algebraically closed field.
Note that, over an arbitrary base scheme, the category of abelian group schemes is not abelian (it is over
a field). That said, one can generalize Serre’s definition into an appropriate notion of exact sequence and
extensions groups, and establish results analogue to the one above.
For simplicity, and following [Poo09] we’ll assume everything to be fppf over the base. Over a field, the
flatness condition is automatic, and fppf schemes are exactly the one of finite type.

Definition 3.2.6. Fix S a scheme, and f ∶ G→H a morphism between commutative fppf group schemes
over S.
We let Ker(f) be the group scheme over S defined by Ker(f)(T ) = Ker(f(T ) ∶ G(T )→H(T )).
The morphism f is surjective if for every S−scheme T and every h ∈ H(T ), there is a fppf morphism
T ′ → T such that the image of h in H(T ′) is the image of some g ∈ G(T ′).
A sequence 0→ F

fÐ→ G
pÐ→H → 0 of fppf abelian group schemes over S is said to be exact if :

1. F = Ker(p), p ○ f = 0 and p is surjective.

2. p is faithfully flat and of finite presentation (fppf for short).

Note that the second condition is very important, even if we didn’t assume that F,G,H were fppf, since
it allows the use of descent.
We may now define the adequate extension groups.

Definition 3.2.7. Let H,F be commutative fppf group schemes over S.

A (Serre) extension of H by F is a short exact sequence 0 → F
fÐ→ G

pÐ→ H → 0 in the above sense.
The group of equivalence classes of such extensions will be noted ExtS(H,F ), where two classes G1,G2 ∈
ExtS(H,F ) are said to be equivalent if there exists an isomorphism of commutative group schemes
G1 → G2 such that the diagram below commutes.

G1

F G2

H

The appropriate topology to consider is the fpqc topology, since it allows for the use of some nice descent
results.
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Definition 3.2.8. Let S be a scheme.
The (big) fpqc45 site on S, noted Sfpqc, is the category of all S−schemes, in which covers are exactly the
{fi ∶ Ui → U}i∈I where every fi is flat and, for any affine W ⊂ U , there exists a finite J ⊂ I and affine
subsets (Vj ⊂ Uj)j∈J such that ⋃j∈J fj(Vj) =W .

We may now state the desired result :

Proposition 3.2.9. Assume in addition that F is affine over S. There is an isomorphism :

ExtS(H,F ) ≅ Ext1Sfpqc,Ab(H,F )

where the right hand side is the Ext functor computed in the category of sheaves of abelian groups over
the fpqc site of S, and where we identified group schemes with the sheaf they represent.

Proof. We follow [Oor66], 17.5. We omit some proofs, and refer to [Oor66] for detail. For clarity, we use
curved letters to denote sheaves, and straight one to denote group schemes, seen as geometric objects.
By 3.2.4, the RHS term can be explicited as the group of extensions 0 → F → G → H → 0, where
objects here are abelian group schemes over Sfpqc. An exact sequence of group schemes clearly induces
morphisms on the associated sheaves. The technical assumption that p is fpqc assures that this forms an
exact sequence.
In order to construct an extension of group scheme from an extension of sheaves, one uses the following
key lemma :

Lemma 3.2.10. Let 0→ F → G →H → 0 be an exact sequence of sheaves, such that F ,H are representable
by group schemes of finite type F,H over S, with F → S is affine.
Then G is representable by a group scheme of finite type.

This is essentially a result about the effectivity of some fpqc descent data, that can be seen as a corollary
of theorem 2 of [Gro60]. Moreover, under our technical hypothesis, the associated sequence of group
schemes is exact.
Finally, one can easily check that both notions of equivalence coincide.

There are two main differences between the Serre extension group and the one considered by Breen :

1. We consider the fpqc site rather than the étale site.

2. We consider sheaves of abelian groups rather than Fp−vector spaces.

As will be discussed in 3.3.6, the extension groups are independant of the choice of a (reasonable) topology.
The second point is more important. As we will see, there are non trivial extensions of Ga by itself as
abelian groups, but they are not extensions as Fp−vector spaces.

3.2.3 In degree 1 - Extensions and factor systems

In this section, we follow [Ser88].
We assume that S = Spec(k), where k is a field of characteristic p > 0. This will suffice based on 3.1.6.
Recall that, in that setup, fppf reads as "of finite type".
For short, we note Extk ∶= ExtSpec(k). In this paragraph, every extension group is a Serre extension group,
unless specified otherwise.

45This is french for "faithfully flat and quasi-compact"
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Definition 3.2.11. Fix G ∈ Extk(H,F ) for H,F commutative group schemes of finite type.
For φ ∶ F → F ′ a morphism of group schemes, we define

φ∗(G) ∶= {G × F ′}/⟨φ(f) + f = 0,∀f ∈ F ⟩

such that 0→ F → φ∗(G)→H → 0 is an extension.
This defines a group morphism φ ∈ Homk(F,F ′)↦ φ∗G ∈ Extk(H,F ′).

In our setup, we have the extension :

0→ Ga
VÐ→Wk,2

RÐ→ Ga → 0 (3)

using the notation from 1.3.25.
We claim that this extension is essentially the only non-trivial one.

Proposition 3.2.12. The map φ ∈ Homk(Ga,Ga)↦ φ∗W2 ∈ Extk(Ga,Ga) is a group isomorphism.

In order to prove this statement, we need to study precisely the structure of Extk(Ga,Ga). Let us do this
in a more general setup, in which the arguments remain the same.
Fix A,B two connected abelian group schemes over k. For simplicity, we let + and − denote the group
operations in B.
We will see that Extk(A,B) is essentially controlled by a sheaf cohomology group H1(A,BA) (with the
Zariski topology), and a group of symmetric 2-cocycles H2

reg(A,B).

Definition 3.2.13. A symmetric factor system is a morphism of schemes f ∶ A ×A→ B such that

1. f(y, z) − f(x + y, z) + f(x, y + z) − f(x, y) = 0 for all x, y, z ∈ A.

2. f(x, y) = f(y, x) for all x, y ∈ A.

For any morphism g ∶ A → B, the map δg(x, y) ∶= g(x + y) − g(x) − g(y) is a symmetric factor system,
called trivial.
Define H2(A,B)s = { symmetric factor systems }/{δg ∣ g ∶ A→ B scheme morphism }.

Proposition 3.2.14. H2(A,B)s is isomorphic to the subgroup Extsplitk (A,B) ⊂ Extk(A,B) of extensions
C ∈ Extk(A,B) admitting a section A→ C.

Proof. If s ∶ A → C is such a section, define f(x, y) = s(x + y) − s(x) − s(y) ∶ A → B ≅ ker(C → A). The
difference between two sections can be lifted to a morphism A→ B, and induces a trivial factor system.
This defines a map θ ∶ Extsplitk (A,B)→H2(A,B)s. Let us show that θ is bijective.
If θ(C) = 0, then there exists a section s ∶ A → C that is linear, hence C ≅ A ⊕B as group schemes, and
the extension is equivalent to the trivial one. Thus θ is injective.
For f ∶ A ×A→ B a symmetric factor system, the composition law

(a, b) ⋆ (a′, b′) = (a +A a′, b + b′ + f(a, a′))

on A ×B forms an extension inducing f . Hence θ is surjective.

Since Ga is representable by a very convenient scheme, one can explicitely compute H2
reg(Ga,Ga)s.

Proposition 3.2.15. If k is of characteristic p > 0, H2(Ga,Ga)s is a k−vector space of countable
dimension. A basis is given by the classes of (F pi)i≥0, where F (x, y) = 1

p (x
p + yp − (x + y)p).

45



Proof. Regular symmetric factor systems Ga × Ga → Ga coincide, by Yoneda’s lemma, with functions
F ∶ k[T ]→ k[X,Y ] such that the polynomial f = F (T ) satisfies f(x, y) = f(y, x) and

f(y, z) − f(x + y, z) + f(x, y + z) − f(x, y) = 0

It is clear that the F pi are such factors, and linear combinations of them are as well. One can check that
those are the only one. This is for example done in [Laz55], section III.

The only question left is to understand which extensions admit regular sections. A corollary of a result
of Rosenlicht [Ros56] is as follows :

Lemma 3.2.16. If C ∈ Extk(A,B) for A and B products of Ga and Gm, then C → A admits a rational
section. (i.e. there exists a covering C = ⋃iUi with morphisms Ui → A that form local sections, and
coincide on the intersections).

Proof. (Sketch) By the general theory of principal homogeneous spaces (cf. [LT58]), this is equivalent to
the vanishing of the Galois cohomology groups H1(Gal(ksep/k), k) and H1(Gal(ksep/k), ksep).
This follows from the additive and multiplicative version of Hilbert 90’s.

The last step is showing that a rational section can be glued to a morphism. This is essentially a result
of vanishing of Čech cohomology.

Proposition 3.2.17. If C ∈ Extk(Ga,Ga), then C → Ga admits a scheme-theoretic section.

Proof. We apply the above lemma. Consider the covering Ga = ⋃iUi together with sections si ∶ Ui → C.
Each one induces a local trivialisation s−1i (Ui) ≅ Ga ⊕ Ui, and thus, by the splitting lemma, we can view
si ∶ Ui → Ga.
Those section form a 1-cocycle on A1

k valued in OGa . Since Ȟ1(A1
k,OGa) = 0 as higher cohomology of a

quasi-coherent sheaf of an affine scheme is zero, the cocycle is a coboundary. Hence, they are induced by
a global section Ga → C.

Remark 3.2.18. In general, if C ∈ Extk(A,B), one can define the sheaf BA of germs of rational maps
B → A. The first cohomology group H1(B,BA) can be interpreted as the group of classes of fiber spaces
with base A and structure group B. We refer the reader to [Ser88] for more detail about this approach.

We have proven that Extk(Ga,Ga) ≅H2(Ga,Ga)s ≅ Vectk(F i)i≥1. From there, we can prove 3.2.12.

Proof. The addition in vector Witt rings of length 2 is given by

(X0,X1) + (Y0, Y1) = (X0 +X0,X1 + Y1 −
1

p
((X0 + Y0)p −Xp

0 − Y
p
0 ))

Hence, by the reciprocal process described in the proof of 3.2.14, we see that the extension α described
by 3 corresponds to the factor system F .
Every element φ ∈ Homk(Ga,Ga) can be written as φ(t) = ∑ bitp

i
, and every element f ∈ Extk(Ga,Ga)

corresponds to a factor system of the form ∑aiF pi

One can check that the map φ↦ φ∗Wk,2 (as defined in 3.2.11) corresponds to ∑ bitp
i ↦ ∑ biF pi .

Hence the group morphism is a bijection, and thus a group isomorphism.

We have shown that Ext1Spec(k)fpqc,Ab(Ga,Ga) ≅ k[T ]nc. As explained earlier, the result still holds when
replacing the fpqc site by the étale site. However, there is no such extension as Fp−vector spaces.

Proposition 3.2.19. For any perfect field k of characteristic p, Ext1Spec(k)ét,Fp
(Ga,Ga) = 0
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Proof. Any extension as sheaves Fp−vector spaces is an extension sheaves of abelian groups. Since such
extensions are generated by W2, it suffices to show that the extension 0→ Ga →W2 → Ga → 0 defined in
3 is not an extension of sheaves of Fp-vector spaces.
By general theory of sheaves, exact sequences of sheaves are sequences that are exact at every stalks.
Points of the étale topos are given by geometric points, i.e. morphisms coming from the spectrum of
algebraically closed fields.
Hence, the extension 0→ Ga →W2 → Ga → 0 induces 0→ k̄ →W2(k̄)→ k̄ → 0.
This is not an exact sequence of Fp−vector spaces, since since exact sequence of vector spaces are split,
and the additive structure on k̄ ⊕ k̄ and W2(k̄) does not match.

This establishes the desired result in degree 1.

3.3 In higher degree

In this section, we follow the structure of [Bre81] and use many arguments from [Bre78].
Let’s go back to our previous setup. Ext groups are now computed in the category of sheaves of Fp−vector
spaces on the étale site of S, rather then as group schemes, and S = Spec(R) is a perfect affine scheme of
characteristic p.
Starting from now, and when there is no confusion, we’ll simply denote by Fp the constant sheaf Fp.
Let us start by discussing important consequences of the existence of the canonical resolution.

3.3.1 Consequences of the canonical resolution

Note the canonical resolution be M(Ga)● → Ga, where each M(Ga)i is of the form Fp[Gr(i)
a × Fs(i)

p ], as
given in 2.4.2. Let us start with some crucial lemmas.

Definition 3.3.1. For G a group, let GS be the group scheme over S defined by

GS(T ) = { locally constant f ∶ ∣T ∣→ G}

for any T−scheme S. We call it the constant group scheme associated to G.

It can be seen as the sheafification of the constant presheaf valuing G on the topos of all S−schemes,
endowed with the Zariski topology.

Lemma 3.3.2. The sheaf Gr
a × (Fs

p)S is representable by the affine S−scheme Spec(RFs
p[X1, . . . ,Xr]).

Proof. Let T be an S−scheme. We compute :

HomS−sch(T,Spec(Rs[X1, . . . ,Xr])) ≅HomR−alg(RFs
p[X1, . . . ,Xr],OT (T ))

≅ HomR−alg(R[X1, . . . ,Xr]⊗R RFs
p ,OT (T ))

≅ HomR−alg(R[X1, . . . ,Xr],OT (T )) ×HomR−alg(RFs
p ,OT (T ))

≅ Gr
a(T ) ×HomS−Sch(T, ⊔

i∈Fs
p

S)

Note G = Fs
p, and let (Sg)g∈G be copies of S. We conclude using the following lemma :

Lemma 3.3.3. Let X be a scheme and G a group. Then XS is represented by ⊔g∈GXg.

Proof. Morphisms T → ⊔g∈Fs
p
Xg are determined by the reciprocal images Ug = f−1(Sg), which form an

open disjoint cover of T . Clearly, f ↾ Ui is necessarily the unique morphism of X−schemes Ui →Xg ≅X.
Such a function is then uniquely determined by the choice of the Xg. It determines and is determined by
the map valuing g on Xg, which is a locally constant function ∣T ∣→ G.
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Hence HomS−sch(T,⊔i∈Fs
p
Si) ≅ (Fs

p)S(T ).

The following observation is essentially trivial, but is absolutely crucial. It is due to L.Breen in [Bre69a].

Lemma 3.3.4. Let X be an S−scheme, and F an element of V Sét. Then

Extn
V ét

S
(Fp[hX],F) ≅ Hn

ét(X,F)

where the right term denotes the étale cohomology of the sheaf F on X.

Proof. The left hand term is the n-th right derived functor of HomV ét
S
(Fp[hX], ) applied at F .

The right hand term is the n-th right derived functor of Γ(X, ) applied at F .
Hence, it suffices to show that the two functors coincide in degree 0.
By adjunction and Yoneda’s lemma,

HomV ét
S
(Fp[hX],F) ≅ HomT ét

S
(hX ,F) ≅ F(X) ≅ Γ(X,F)

since morphisms of sheaves are simply natural transforms of the underlying presheaves.

Note that the adequately modified result above holds in other topologies (fpqc, v, Zariski, ...) on S.
The combination of both lemmas above yields the announced way to compute extension groups.

Proposition 3.3.5. The groups Extn
V ét
S
(Ga,Ga) can be computed as the cohomology of the complex

0Ð→ HomV ét
S
(M(Ga)0,Ga)Ð→ HomV ét

S
(M(Ga)1,Ga)Ð→ . . .

Moreover, for all i > 0, HomV ét
S
(M(Ga)0,Ga) ≅ OXi(Xi).

Proof. By the reformulation of Ext groups as morphisms in the derived category, they are invariant by
quasi-isomorphisms, so that Extn

V ét
S
(Ga,Ga) = Extn

V ét
S
(M(Ga)●,Ga).

Pick I● an injective resolution of Ga. The spectral sequence IE
p,q established in 1.2.4 associated to the

double complex Hom(M(Ga)●, I●) yields

IE
p,q
1 = Ext

q

V ét
S

(M(Ga)p,Ga) Ô⇒ IE
p,q
∞ = Extp+q

V ét
S

(M(Ga)●,Ga)

By the lemma above, Extq
V ét

S

(M(Ga)p,Ga) = Hq
ét(Xi,Ga).

We recall a fundamental result of étale cohomology ([Mil80], III.3.8) :

Proposition. Let G a quasi-coherent OX−module on a scheme X. There is a canonical isomorphism
H i

Zar(X,G) ≅H i
ét(X,W (G)) where W (G) is defined as W (G)(U) ∶= Γ(U,G⊗OX

OU) for U an X−scheme.

We compute W (OX)(U) = Γ(U,OX ⊗OX
OU) = OU(U), hence W (OX) = Ga.

Thus, Hq
ét(Xi,Ga) = Hq

Zar(Xi,OXi).
It is well known (cf. [Sta22, Section 01X8]) that cohomology of quasi-coherent sheaves on the Zariski
topology can be computed as Čech cohomology, where open covers are taken with affine subsets. Hence,
the higher cohomology of quasi-coherent sheaves on affine schemes is zero (cf. [Gro61], Theorem I.3.1).
Finally, the only nonzero terms of the first page are IE

p,0
1 = HomV ét

S
(M(Ga)p,Ga), and the differentials

of a cohomological spectral sequence in degree 1 match the horizontal ones of the complex.

This result is not very usable in practice since the construction of the Xi is remarkably non constructive.
However, the existence of such a construction yields many important consequences, such as :

1. Invariance of the choice of the topology.
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2. Invariance via flat base change.

Remark 3.3.6. (Independence of the topology)
We compute everything on the étale topos. However, the result still holds for any subcanonical topology on
S satisfying the adequate analogue of the proposition used in the proof above.
For example, it works with the flat cohomology (cf. [Mil80], III.3.7), and justifies the computation in
degree 1.
In the section 5, one will be interested in the algebraic v-topology, for which the result still holds.

Remark 3.3.7. (Commutation with flat base change)
Let T → S be a flat morphism from an affine scheme T = Spec(R′). From the description of the schemes
representing the sheaves appearing in the canonical resolution (cf. 3.3.2), it is clear that the complex
introduced in 3.3.5 commutes with the flat base change.
Since homology commutes with flat rings extensions, it follows that, for all n ≥ 0,

Extn
V ét

T
(Ga,Ga) ≅ ExtnV ét

S
(M(Ga)i,Ga)⊗R R′

In particular, since the morphism S → Spec(Fp) is flat46, it suffices to show the vanishing result when
S = Spec(Fp).

In what follows, we’ll assume that S = Spec(Fp).

3.3.2 The universal coefficient spectral sequence

To simplify the notations, we let V ∶= V ét
S . The proof of Breen relies on the following :

Lemma 3.3.8. We have Hst
0 (K(Ga),Fp) = Ga

Proof. Since the étale topos has enough points and Fp is a field object, we can use the universal coefficient
theorem to show that Hst

0 (K(Ga),Fp) = Hst
0 (K(Ga),Z)⊗Z Fp.

Now, Hst
0 (K(Ga),Z) = limÐ→Hn(K(Ga, n),Z) = limÐ→πn(K(Ga, n)) = limÐ→Ga = Ga by Hurewicz 2.3.4.

We conclude since Ga ⊗Z Fp ≅ Ga.

We may then apply the universal coefficient spectral sequence, as established in 2.3.14. The other terms
in the spectral sequence will then be interpreted as a generalized Steenrod algebra and its dual.

The universal coefficient spectral sequence yields, for any n ∈ N :

Ep,q
2 = Ext

p
V (Hq+n(K(Ga, n),Fp),Ga) Ô⇒ E∞p,q =Hp+q+n(K(Ga, n),Ga)

Every term in this sequence is a Fp−vector space, and admits a natural left action by the Frobenius
morphism F ∈ HomT (Ga,Ga), by Yoneda’s product. It is hence a sequence of left Fp[F ]nc−modules.
Let n→∞, such that the spectral sequence becomes :47

Ep,q
2 = Ext

p
V (H

st
q (K(Ga),Fp),Ga) Ô⇒ E∞p,q =H

p+q
st (K(Ga),Ga) (4)

We see that Ep,0
2 = ExtpV (Ga,Ga). Hence, the theorem 3.1.3 can be rewritten as :

Theorem 3.3.9. For any n > 0, En,0
2 is killed by some power of the Frobenius.

It is quite unpractical to deal with terms modulo powers of the Frobenius. Thankfully, using Serre classes
allows a convenient reformulation.

46Everything is flat over a field
47Note that the notation is unfortunate, since the index p is used both as the index of spectral sequences, and as a fixed

prime number. The notation should be clear from the context.
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Definition 3.3.10. Let A be an abelian category.
A Serre subcategory of A is a full subcategory C ⊂ A, such that for every exact sequence A→ B → C in
A with A,C objects of C, B is also an object of A.

One can easily check that the full subcategory of left Fp[F ]nc−modules killed by some large enough power
of the Frobenius is a Serre category.

Proposition 3.3.11. Let A be an abelian category and C ⊂ A be a Serre subcategory. There exists an
abelian category A/C and an exact functor F ∶ A→ A/C which is essentially surjective and whose kernel is
C, such that exact functors H ∶ A/C → B between abelian categories are exactly exact functors G ∶ A → B
such that C ⊂ Ker(G).

Proof. cf. [Sta22, Lemma 02MS]

In what follows, we will implicitely work in the quotient category of left Fp[F ]nc-modules, modulo large
enough powers of the Frobenius.

We have already seen that 3.3.9 is true when n = 1. We will prove that the result follows by induction.
The spectral sequence becomes especially useful because of the following observation :

Lemma 3.3.12. If Ep,0
2 for some p, then Ep,q

2 = 0 for any q ≥ 0.

Proof. Assume that Extp(Ga,Ga) = 0, and pick any q ≥ 0.
Let us first establish the following, which will be useful on its own.

Proposition 3.3.13. We have Hst
n (K(Ga),Fp) ≅ Hst

n (K(Fp),Fp)⊗Fp Ga.

Proof. For a (slightly) more general statement, see [Bre81], lemma 2.5.
Since the étale topos admits enough points, it suffices to show that the isomorphism stands at stalks. Let
t = Spec(k) be a geometric point, where k is an algebraically closed field of characteristic p.
We know that stalks commutes with (stable) homology, such that :

Hst
n (K(Ga),Fp)t = Hst

n (K((Ga)t), (Fp)t) = Hst
n (K(k),Fp)

The lemma clearly holds when replacing Ga by Fp. Since the morphism Hst
n (K( ),Fp) is additive, it holds

for finite modules. We conclude by writing k as a projective limit of the finite subextensions.

As we will see in 3.3.23, Hst
n (K(Fp),Fp) is a Fp-vector space of finite dimension. Hence, by the proposition

above, we may write Hst
n (K(Ga),Fp) = Gr

a for some r ≥ 0.
Hence Ep,q

2 = Ext
p
V (Gr

a,Ga) =⊕r
k=1Ext

p
V (Ga,Ga) = 0.

3.3.3 A fundamental long exact sequence

We fix n > 1 such that the result holds for any 1 ≤ k ≤ n. Our goal is to establish the following :

Proposition 3.3.14. There is a long exact sequence :

0 Hn
st(K(Ga),Ga) HomV (Hst

n (K(Ga),Fp),Ga)

Extn+1V (Ga,Ga) Hn+1
st (K(Ga),Ga) HomV (Hst

n+1(K(Ga),Fp),Ga)

α

d
β

Remark 3.3.15. Contrary to what the presentation somewhat suggests, at this stage of the induction, the
exact sequence cannot be prolonged in the obvious way.
It can be, if we already know that all the ExtkV (Ga,Ga) are trivial.
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Proof. In what follows, the homology groups Hn are implicitely computed with coefficients in Fp.
The second page of the spectral sequence, reduced modulo CF , can then be written as :

q = n + 1 HomV (Hst
n+1(K(Ga)),Ga) 0 ⋯ 0 Extn+1V (Hst

n+1(K(Ga)),Ga) ⋯

q = n HomV (Hst
n (K(Ga)),Ga) 0 ⋯ 0 Extn+1V (Hst

n (K(Ga)),Ga) ⋯

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯

q = 1 HomV (Hst
1 (K(Ga)),Ga) 0 ⋯ 0 Extn+1V (Hst

1 (K(Ga)),Ga) ⋯

q = 0 HomV (Ga,Ga) 0 ⋯ 0 Extn+1V (Ga,Ga) ⋯

Ep,q
2 p = 0 p = 1 ⋯ p = n p = n + 1 ⋯

Remember that the differentials at page r are given by dp,qr ∶ Ep,q
r → Ep+r,q+r−1

r . Hence, every dr starting
from the first column or from the the term at coordinates (p, q) = (n + 1,0) vanishes for 2 ≤ r ≤ n.
The differential dn+1 goes from (0, q) to (n + 1, q − n). Therefore, the page En+2 is of the form :

q = n + 1 Ker(d0,n+1n+1 ) 0 ⋯ 0 ∗ ⋯

q = n Ker(d0,nn+1) 0 ⋯ 0 ∗ ⋯

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯

q = 1 HomV (Hst
1 (K(Ga)),Ga) 0 ⋯ 0 ∗ ⋯

q = 0 HomV (Ga,Ga) 0 ⋯ 0 Coker(d0,nn+1) ⋯

Ep,q
n+2 p = 0 p = 1 ⋯ p = n p = n + 1 ⋯

where ∗ denotes arbitrary (a priori nonzero) terms.
Finally, all the terms explicited in the picture are unchanged in the subsequent page.
We will now use the process from ?? to compute the limiting term given the terms at finite rank.
By applying ?? to the n−th diagonal, we get :

Ker(d0,nn+1) ≅ H
n
st(K(Ga),Ga) (5)

Reading the n + 1−th diagonal gives the short exact sequence :

0→ Coker(d0,n+1n+1 )→ Hn+1
st (K(Ga),Ga)→ Ker(d0,n+1n+1 )→ 0 (6)

Since d0,n+1n+1 is a morphism HomV (Hst
n+1(K(Ga),Ga))→ Extn+1V (Ga,Ga), we get :

0→ Ker(d0,nn+1)→ HomV (Hn+1(K(Ga),Ga))→ Extn+1V (Ga,Ga)→ Coker(d0,nn+1)→ 0 (7)

The substitution of (7) into (6) yields :

0→ Hn
st(K(Ga),Ga)→ HomV (Hst

n (K(Ga)),Ga)→ Extn+1V (Ga,Ga)→ Hn+1
st (K(Ga),Ga)→ Ker(d0,n+1n+1 )→ 0

This concludes since Ker(d0,n+1n+1 ) ⊂ HomV (Hst
n+1(K(Ga),Ga)).
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The only step left is to understand the morphisms α and β. We will see that β = 0 and that α is surjective
(modulo CF ), which concludes the proof.

3.3.4 The morphism β and behaviour with stalks

Let us start with β.

Proposition 3.3.16. β = 0
Proof. The gist of the proof lies in the following lemma, which is a variant of [Bre81], lemma 2.12.

Lemma 3.3.17. The stalk morphism defined in 2.3.13 and applied to the algebraic closure Fp :

Hn
st(K(Ga),Ga)→Hn

st(K(Fp),Fp)

is an isomorphism.

Proof. The argument is a variation from the one in the proof of [Bre75], proposition 2
For any k ≥ 0, hypercohomology can be computed as the limiting term of the spectral sequence :

Ep,q
1 = H

p(K(Ga, k)q,Ga) Ô⇒ Ep+q
∞ =Hp+q(K(Ga, k),Ga)

Indeed, fix Ga → I● an injective resolution, and let Kp,q = Hom(Fp[K(Ga, k)p], Iq). The first spectral
sequence given in 1.2.4 gives

IE
p,q
1 = Ext

q
V (Fp[K(Ga, k)p],Ga) Ô⇒ Extp+qV (Fp[K(Ga, k)]∼,Ga)

Note that Hp(K(Ga, k)q,Ga) = 0 whenever p > 0. Indeed, every every K(Ga, k)q is finite power of Ga, and
hence representable by an affine scheme. Since the sheaf Ga is quasi-coherent for the Zariski topology,
higher cohomology terms vanish, and we conclude by an argument similar to 3.3.1.
Hence, Hn(K(Ga, k),Ga) can be computed as the homology of (H0(K(Ga, k)p,Ga))p≥0.
By construction, K(Ga, k)p = Gr(p,k)

a for some r(p, k). Hence, we have

H0(K(Ga, k)p,Ga) = H0(Gr(p,k)
a ,Ga) ≅ H0

ét(A
r(p,k)
Fp

,Ga) ≅ Fp[X1, . . . ,Xr(p,k)]

with differentials being morphisms of Fp−vector spaces.
Likewise, Hn(K(Fp, k),Fp) can be computed as the limiting term of a spectral sequence :

IE
p,q
1 = ExtqFp

(Fp [Fp
r(p,k)] ,Fp) Ô⇒ Hn (K(Fp, k),Fp)

Clearly, all the higher extension terms Extq for q > 0, vanish ; hence the hypercohomology can be computed
as the cohomology of a complex whose elements are of the form :

HomV ét
S
(Fp [Fp

r(p,k)] ,Fp) ≅ HomT ét
S
(Fp

r(p,k)
,Fp) by adjunction

≅ HomSpec(Fp) (Spec(F
Fp

r(p,k)

p ) ,Spec(FFp
p )) by 3.3.3 and Yoneda

≅ ∏
Fp

r(p,k)

HomSpec(Fp)

⎛
⎜
⎝
Spec(Fp),⊔

Fp

Spec(Fp)
⎞
⎟
⎠

Since Spec(∏ ⋅) =⊔Spec(⋅)

≅ ∏
Fp

r(p,k)

{Locally constant ∣Spec(Fp)∣→ Fp} by 3.3.3

≅ ∏
Fp

r(p,k)

Fp
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Moreover, one can check that, throught these identifications, the map iFp
can then be interpreted by the

mapping that maps a polynomial to the associated polynomial function on Fp :

iFp
∶ P ∈ Fp[X1, . . . ,Xr(p,k)]↦ ∏

(x1,...,xr(p,k))∈Fp

P (x1, . . . , xr(p,k))

It is bijective since Fp is infinite, and respects the differential of the complex.
Thus, the stalk morphism induced on the spectral sequences induces an isomorphism in the first page,
and thus the limiting terms are isomorphic.
We have shown that, for every n, k ≥ 0, the morphism Hn(K(Ga, k),Ga) → Hn(K(Fp, k),Fp) is an
isomorphism. The desired result is obtained by stabilization.

Remark 3.3.18. In [Bre81], Breen mentions an argument that is conceptual more difficult, but is too
nice to be omitted.
Since the computation of the spectral sequence IE above does not depend on the choice of the, one can
compute it on the chaotic topos, for which every presheaf is a sheaf. In that topos, the morphisms from
Spec(Fq) induce points for any q = pf .
If one chooses f large enough, one can carry the same argument as above by replacing Fp by Fq.

Now that we proved the lemma, let us go back to the main proof. One can check that the universal
coefficient spectral sequence is compatible with stalks, in the sense that, for t = Spec(Fp), the stalk
morphisms defined in 2.3.7 and 2.3.13 can be inserted in a commutative diagram :

Extn+1V (Ga,Ga) Hn+1
st (K(Ga),Ga)

Extn+1Fp
(Fp,Fp) Hn+1

st (K(Fp),Fp)

β

θt θt

βt

Clear, Extn+1Fp
(Fp,Fp) = 0, since the Fp are free as Fp-modules.

By the lemma above, β = 0.

We now turn our attention to α. We will show the following :

Proposition 3.3.19. α is surjective modulo CF .

First, let us present some structure results regarding the Steenrod algebra in the étale topos.

3.3.5 The morphism α - Structure of the generalized Steenrod algebras

Let us explain the structure of the generalized Steenrod algebra Hn
st(K(Ga),Ga). This section should be

read with 2.1.4 in mind.
This section only contains statements. We will give some elements of the proofs in the appendix 6. Note
that these results are very specific to the sheaf of Ga, and does not hold for other standard étale sheaves.
As in the topological case, the algebra Hn

st(K(Ga),Ga) can be understood as a ring of cohomology
operations. The following is a variant of 2.1.23.

Proposition 3.3.20. Let p = 2. As in the topological case, we might define Steenrod squares Sqi(X) for
any simplicial étale sheaf X as :

(Sqi(X))n≥0 ∶Hn(X,Ga)→Hn+i(X,Ga)

They form stable cohomology operations of type (Ga, n;Ga, n+i), which correspond to Sqi ∈Hi(K(Ga),Ga).
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The algebra H∗(K(Ga),Ga) is isomorphic to the free Fp-algebra generated multiplicatively by the Sqi such
that, for any 0 < a < 2b,

Sqa Sqb =
⌊a/2⌋

∑
j=0

(b − 1 − j
a − 2j )Sq

a+b−j Sqj

Remark 3.3.21. When there is no ambiguity, we denote the same way the Steenrod squares in H∗(K(Ga),Ga)
and in H∗(K(Fp),Fp). Note that these objects are conceptually very different.

The only difference with the topological case is that Sq0 ≠ Id. In fact, Sq0 corresponds to the Frobenius
endomorphism on Ga.
When p ≠ 2, the structure is a bit more complicated. Compare the following to 2.1.27.

Proposition 3.3.22. Let p > 2. As in the topological case, we might define the p-th power operations
and the Bockstein morphism as stable cohomological operations of type (Ga,m;Ga,m + 2i(p − 1)) and
(Ga,m;Ga,m + 1) respectively, which correspond to P i ∈Hi

st(K(Ga),Ga) and β ∈Hi
st(K(Ga),Ga)

The algebra H∗st(K(Ga),Ga) is isomorphic to the free Fp-algebra multiplicatively generated by β and the
P i such that :

• If a < p ⋅ b, P aP b =∑
i

(−1)a+i((p − 1)(b − i) − 1
a − pi )P a+b−iP i

• If a ≤ p ⋅ b, P aβP b =∑
i

(−1)a+i((p − 1)(b − i)
a − pi )βP a+b−iP i +∑

i

(−1)a+i+1((p − 1)(b − i) − 1
a − pi − 1 )P a+b−iβP i

Note that we do not assume that P 0 = 1.

Let us now turn our attention to the dual algebra Hst
n (K(Ga),Fp). As shown in 3.3.13, it is enough to

understand Hst
n (K(Fp),Fp).

The precise structure is well understood, but will be needed. We refer the reader to [Bre78] for a statement
in the general case, and to [Mil58] for a proof of such results. We will simply need :

Proposition 3.3.23. For any n ≥ 0, Hst
n (K(Fp),Fp) is a free Fp-algebra of finite type.

which follows from the universal coefficient theorem (since Fp is a field object and T has enough points).

3.3.6 The morphism α

Recall that α ∶Hn(K(Ga),Ga)→ HomV (Hst
n (K(Ga),Fp),Ga). Let us rewrite the image of α. We get :

HomV (Hst
n (K(Ga),Fp),Ga) ≅ HomV (Hst

n (K(Fp),Fp)⊗Hst
0 (K(Ga),Fp),Ga) by 3.3.13

≅ HomV (Hst
n (K(Fp),Fp))⊗HomV (Hst

0 (K(Ga),Fp),Ga) by 3.3.23
≅Hn

st(K(Fp),Fp)⊗R[F ]nc

where the last isomorphism relies on the universal coefficient theorem, 3.2.2 and 3.3.8.
Moreover, this identification maps the action of the Frobenius on Hom(Hst

n (K(Ga),Fp),Ga) to the multiplication
by 1⊗ F on An ⊗R[F ]nc.
Hence α can be seen as a morphism Hn

st(K(Ga),Ga)→ Hn
st(K(Fp),Fp)⊗R[F ]nc

Lemma 3.3.24. Via those identifications, the morphism α is identified with the composition

Hn
st(K(Ga),Ga)

µÐ→ (H∗st(K(Fp),Fp)⊗H∗st(K(Ga),Ga))n
πÐ→ Hn

st(K(Fp),Fp)⊗H0
st(K(Fp),Fp)

where the second morphism is the projection in bidegree (n,0) and the first one is the restriction in degree
n of the "coproduct" defined on the generators by :48

48Recall that the notation does not distinguish between the "standard" Steenrod squares and the ones associated to Ga
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• When p = 2, µ(Sqi) = ∑j Sq
j ⊗ Sqi−j

• When p ≠ 2,
1. µ(P i) = ∑j P

j ⊗ P i−j

2. µ(Qi) = ∑jQ
j ⊗ P i−j + P j ⊗Qi−j, where Qi ∶= βP i.

The morphism µ induced by the morphisms K(Fp,m) ∧K(Ga, n)→ K(Ga,m + n) associated to the trivial
pairing Ga ⊗Fp Fp → Ga via 1.

Proof. By a careful rewriting of the objects, one can check that the morphism α factors through the map

Hn
st(K(Ga),Ga)

µ∗Ð→Hn
st(K(Fp) ∧K(Ga),Ga)→ Hn

st(K(Fp),Fp)⊗H0(K(Ga),Ga)

where the second morphism is the projection in degree n of the Künneth isomorphism

Hn
st(K(Fp) ∧K(Ga),Ga) ≅ ⊕

i+j=n

Hi
st(K(Fp),Fp)⊗Hj

st(K(Ga),Ga)

This is essentially a formal verification - see [Bre81], lemma 3.4. for details.

From there, one can fully explicit the morphism α. By 3.3.22, an additive basis of Hn
st(K(Ga),Ga) is

given by elements of the form βε1P s1βε2 . . . βεn−1P snβεn+1 for some εi ∈ {0,1} and si ≥ 0.
Proposition 3.3.25. For any such sequence I = (ε1, s1, . . . , sn, εn+1),

α(βε1P s1βε2 . . . βεnP snβεn+1) = βε1P s1
βε2 . . . β

εn
P

sn
β
εn+1 ⊗ F l(I)

where the β and P are the corresponding elements in Hn
st(K(Fp),Fp) and l(I) ∶= n + εn+1.

Proof. This is a straightforward computation.

We may now conclude.

Proposition 3.3.26. Coker(α) is killed by large enough powers of the Frobenius.

Proof. Pick a base element y = βε1P s1
βε2 . . . β

εn
P

sn
β
εn+1 ⊗ Fm in Hn

st(K(Fp), Fp)⊗H0
st(K(Fp),Fp).

Recall that P 0 ≠ 0, while P
0 = Id. Let xk = P 0 ⋅ β ⋅ P 0 ⋅ ⋅ ⋅ ⋅ ⋅ β, with k iterations of P 0 ⋅ β.

Then, if k is large enough,

α (βε1P s1βε2 . . . βεnP sn ⋅ xk) ≅ β
ε1
P

s1
βε2 . . . β

εn
P

sn
β
εn+1 ⊗ Fn+k ≅ y modulo large powers of F

Thus α is (essentially) surjective

Remark 3.3.27. Note that, before taking quotients, α is a priori not surjective.

We finally established that Extn+1V (Ga,Ga) = 0 modulo large powers of the Frobenius.

3.4 From the étale site to the perfect site

This section follows [Bre81].
Recall the notations of 3.1.1. Now that we have established the partial computation on the étale site
3.1.3, we will deduce the result on the perfect étale site, as given in 3.1.1.
More precisely, we’ll establish the following, for any n ≥ 0.
Proposition 3.4.1. Extn

V perf
S

(Ga,Ga) = limÐ→F
Extn

V ét
S
(Ga,Ga), where F denotes the Frobenius map.

This relies essentially on the canonical resolution, and the fact that étale cohomology groups commutes
with directed colimits over quasi-compact, quasi-separated schemes. To illustrate that this is the right
setup, we will only assume that our base S is perfect and qcqs, but not necessarily affine.
Fix S a perfect quasi-compact, quasi-separated scheme, and n ≥ 0.
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3.4.1 The perfection morphism

Let us define a geometric morphism of topos between the étale and the perfect sites.

Definition 3.4.2. Let i∗, i∗ be the morphisms given by :

• i∗ ∶ TS → T perf
S is the restriction to the subcategory of perfect schemes.

• i∗ ∶ T perf
S → TS is defined by i∗F(T ) = F(T perf)

We will also denote by (i∗, i∗) the similarly defined maps V perf
S ⇄ V ét

S and AbperfS ⇄ AbétS .

Proposition 3.4.3. The pair i = (i∗, i∗) is a geometric morphism of topoi T perf
S → T ét

S .
Moreover, i∗ is exact.

Proof. We will check every condition needed to apply 1.1.21.
We let the perfection u ∶ S ét → Sparf , and the forgetful functor v ∶ Sperf → S ét.
We will show that u is continuous and cocontinuous, and v is continuous.

Step 1. u is continuous, in the sense of 1.1.5

The first point in the definition of continuity was proved in 1.3.12, while the second one was follows from
1.3.11.

Step 2. u is cocontinuous, in the sense of 1.1.6

This essentially results on the following standard result. (cf. [Gro66], 8.8.2.ii.)

Proposition 3.4.4. Let (Sn)n∈N, with morphisms Sn → Sn+1 be an inductive system of schemes with
affine transition maps such that S0 is quasi-compact and quasi-separated, and whose limit is S.
Let X → S be a scheme of finite presentation.
Then, there exists n ∈ N and a scheme Xn → Sn such that X ≅Xn ×Sn S as S−schemes.

Let U be an S−scheme and {fj ∶ Vj → Uperf} be an étale covering of Uperf by perfect S−schemes. We
want to find an étale covering {Wj → U} whose perfection refines {Vj → Uperf}. This property is local on
the target, we might consider an affine covering Uperf

i of Uperf induced by an affine covering (Ui)i∈I of U .
Up to replacing Uperf by Uperf

i and Vj by f−1j (U
perf
i )perf , we can assume Uperf to be affine.

By general theory of étale covers (cf. [Sta22, Lemma 03XA]), we can refine Vj → Uperf to a finite étale
covering Wj → Uperf where each Wj is affine, and perfect by universal property. Those morphisms are
of finite presentation since every morphism between affine schemes is qcqs, and they are locally of finite
presentation since they are étale. Moreover, U is qcqs since it’s affine.

By 3.4.4, the morphism Wj → Uperf comes from a finite level, i.e. there exists Wj
gjÐ→ U of finite

presentation such that ∀j, Vj ≅Wj ×U Uperf via gj .
Such a morphism is étale by invariance by base change. Hence u is cocontinuous.

Step 3. Conclude

The morphism v is clearly continuous (as is every reasonable forgetful functor). We now conclude by
applying 1.1.21.

The announced result will follow from the following computation :

Extn
V perf

S

(Ga,Ga) = ExtnV ét
S
(Ga, i∗Ga) = ExtnV ét

S
(Ga, limÐ→

F

Ga) = limÐ→
F

Extn
V ét

S
(Ga,Ga)

We will now prove that every equality holds, one lemma after another.

56

https://stacks.math.columbia.edu/tag/03XA


3.4.2 Commutation of Ext with directed colimits

The following is less trivial then it may seem.

Lemma 3.4.5. Let {Ga}n≥0 be the system with all elements equal to Ga and the transitions being given
by the Frobenius morphism. Then i∗Ga = limÐ→F

Ga.

Proof. If U = Spec(B) is affine, i∗Ga(U) = Ga(Spec(B)perf) = Bperf = limÐ→(Ga(U)).
The sheaf limÐ→F

Ga is a priori defined as the sheafification of Y ↦ limÐ→F
(Ga(Y )) = OY (Y )perf . We then

need to show there is no need to sheafify, i.e. the presheaf is actually a sheaf.
Let X be a S−scheme, and consider an étale covering {Ui

fiÐ→ X}. Since perfection induces the identity
on the underlying topological spaces, it behaves well with union, so we can assume X to be affine. By
[Sta22, Lemma 03XA], it can be raffined to some afinite étale covering {Vi

giÐ→X}i∈J for some finite J . By
[Sta22, Lemma 0G1L], it suffices to check the sheaf condition for Vi. Let Vi = Spec(Bi) and U = Spec(A).
We need to show that the following sequence of A−modules is exact :

0→ Aperf giÐ→∏
i

Bperf
i

(si)i↦(si⊗1−1⊗si)ÐÐÐÐÐÐÐÐÐÐ→∏
i,j

(Bi ⊗A Bj)perf

as a map of A−algebras.
It follows from the fact that perfection is exact (cf. 1.3.6), that perfection commutes with finite products
(cf 1.3.7) and that the structure presheaf is a sheaf on the étale topology.

Let us now establish the following commutation result.

Lemma 3.4.6. limÐ→F
Extn

V ét
S
(Ga,Ga) = ExtnV ét

S
(Ga, limÐ→F

Ga)

Note that, in general, there is no reason for an Ext functor to commute with colimits. This relies heavily
on existence of canonical resolutions, and a standard commutation result for the cohomology of qcqs
objects. Note that a similar argument will be used in section 5, in an analytic setup.
Let M(Ga)● → Ga be the canonical resolution given by 2.4.2, and write M(Ga)i = Fp[hXi].
The lemma relies on the following key fact :

Proposition 3.4.7. If X is a quasi-compact, quasi-separated scheme, then the functor Hq
ét(X, ) commutes

with directed colimits.

Proof. cf. [GV72], Expose VI, Corollaire 5.2 ; or [Sta22, Lemma 073E]

Note that the ’qcqs’ condition, which can be understood as a finiteness condition, is essential.
Let us now deduce the proposition.

Proof. Let Ga → I● be an injective resolution.
By general theory of injective resolutions (cf. [Wei94], 2.3.7), there exists maps Iq → Iq lifting the
Frobenius morphism Ga → Ga. They induce mappings HomV ét

S
(M(Ga)p, Iq)→ HomV ét

S
(M(Ga)p, Iq)

Note that Ext is invariant by quasi-isomorphism, so that Extn
V ét

S
(Ga,F) ≅ ExtnV ét

S
(M(Ga)●,F). Consider

the double complexes :

C●,● = limÐ→
F

HomV ét
S
(M(Ga)●, I●) and D●,● = HomV ét

S
(M(Ga)●, (limÐ→

F

I)●)

Look at the induced spectral sequences of type IE. We note them E and F .
Since homology commutes with filtered colimits (cf. [Sta22, Lemma 00DB]), the spectral sequences are :

• IE
p,q
1 = limÐ→ Extq

V ét
S

(M(Ga)p,Ga) Ô⇒ IE
p,q
∞ = limÐ→ Extp+q

V ét
S

(Ga,Ga)
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• IF
p,q
1 = Extq

V ét
S

(M(Ga)p, limÐ→Ga) Ô⇒ IE
p,q
∞ = Extp+qV ét

S

(Ga, limÐ→Ga)

The morphisms Iq
fiÐ→ limÐ→ I

q induce a morphism of double complexes C● → D●, which in turn induce a
morphism of spectral sequences E → F .
By 3.3.2, the sheaves Xi are representable by qcqs schemes and, by 3.3.4, the extension groups correspond
to cohomology groups on said schemes. Hence, by the commutation result above, this morphism induces
an isomorphism on the first page. Hence (cf. [Wei94], 5.24), it induces an isomorphism on the limit.
This is the desired result.

3.4.3 Computing on the perfect site

We may now conclude.

Proposition 3.4.8. Extn
V perf

S

(Ga,Ga) = limÐ→F
Extn

V ét
S
(Ga,Ga)

Proof. We apply the Grothendieck spectral sequence (as described in 1.2.5), with A = V perf
S , B = V ét

S ,
C = Ab, G = HomSét(Ga, ) and F = i∗.
The morphism i∗ maps injectives objects in A to injective (and hence acyclic) objects in B since it admits
an exact left-adjoint i∗ (by [Sta22, Lemma 015Z]).
This yields :

Ep,q
2 = Ext

p
VS
(Ga,R

qi∗Ga) Ô⇒ Ep+q
∞ = Extp+q

V perf
S

(Ga,Ga)

Since i∗ is exact, then for all q ≠ 0,Rqi∗ = 0, and the sequence degenerates at page 2.
Hence

limÐ→
F

Extn
V ét

S
(Ga,Ga) = ExtnV ét

S
(Ga, limÐ→Ga) ≅ ExtnV ét

S
(Ga, i∗Ga) ≅ ExtnV perf

S

(Ga,Ga)

Where we used 3.4.6, 3.4.5 and the adjunction property (together with the notation i∗Ga = Ga).

Note that this result also gives us the Ext group in degree 0 :

Corollary 3.4.9. If V = Spec(R) for R a perfect ring of characteristic p, Hom
V perf
S
(Ga,Ga) = R[T,T −1]

the non-commutative ring of polynomial, characterised by T ⋅x = xpT .

Proof. We know that HomVS
(Ga,Ga) ≅ R[F±1]nc. By the above result,

Hom
V perf
S
(Ga,Ga) = limÐ→HomV (Ga,Ga) = limÐ→R[F ]

nc = R[F,F−1]nc

since the transition morphism is the multiplication by F .

One could also compute this directly since Ga is represented by Spec(R[X]perf). This then relies on the
fact that additive polynomials in R[T 1/p∞] are exactly polynomials in T p and T 1/p.
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4 Perfectoid geometry and period sheaves

Good general references include [Wed15], [Sch12], [SW20] and [Mat18a].
As previously explained, the result obtained by Arthur-César Le Bras and Johannes Anschütz is a
computation of extension groups of analytic sheaves, that ultimately allows for a deeper understanding
of (some) sheaves on the Fargues-Fontaine curve - motivated by the classification of untilts of perfectoid
objects.
First of all, we will explain the historical motivation between the study of perfectoid objects and untilts.
We will then develop the necessary technical tools, and, in section 5, we directly tackle the computation.

4.1 Why study perfectoid spaces ?

This section is inspired by [Sch12] and [Mat18a].
The results of local class field theory showed that it was sometimes possible to study simultaneously finite
extensions of complete valued fields of positive characteristic, such as Fp((t)), and complete valued fields
of mixed characteristic, such as finite extensions of Qp.
In fact, the situations are similar after taking wildly ramified extensions.

Theorem 4.1.1. (Fontaine-Wittenberg, [FW79])
The absolute Galois groups of Qp (p1/p

∞) and Fp((t)) (t1/p
∞) are canonically isomorphic.

Scholze generalized this result by introducing a general operation of tilting, from the mixed characteristic
world to the p-adic one, that respects finite extensions.
The right notion to study this operation is the one of a perfectoid field, of which the p-adic completion of
Qp (p1/p

∞) and Fp((t)) (t1/p
∞) are amongst the simplest examples.

Definition 4.1.2. A perfectoid field is a complete topological field K whose topology is induced by a
non-discrete valuation of rank 1, such that the Frobenius is surjective on K○/p, where K○ denotes the ring
of power-bounded elements.

There is a natural functor K ↦K♭, called the tilt :

{Perfectoid fields of mixed characteristic (0, p)}→ {Perfectoid fields of characteristic p}

Scholze’s result now writes :

Theorem 4.1.3. (Scholze, 2011 [Sch12]) For K a perfectoid field, the absolute Galois groups of K and
K♭ are canonically isomorphic.

However, this notion appears to be more geometric than it is algebraic.
Recall that there is an interpretation of finite extensions of K as finite étale covers of Spec(K), and hence
a reformulation of an absolute Galois group as an étale fundamental group of Spec(K), i.e. an information
about étale cohomology in degree 1.
Scholze defined the notion of a perfectoid space, that is essentially constructed by gluing together the
spectrum of perfectoid objects. In this setup, one can construct an étale topology, and establish the
following :

Theorem 4.1.4. (Scholze, 2011 [Sch12]) Let X be a perfectoid space, with tilt X♭.
The tilting operation induces an equivalence of étale sites Xét ≅X♭ét.

The generalisation is twofold : It and explores spaces that are more complex than the spectrum of a point,
and gives information about higher-rank étale cohomology.
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We should mention at this point that the introduction of perfectoid spaces comes at the cost of some
technical difficulties. Perfectoid objects carry some non-trivial topological information that we do not
want to lose when taking the spectrum. Because of that, the study of prime ideals is not enough, and we
need some additional analytical information. It turns out that the right formalism is Huber’s notion of
adic spectrum, in which one looks at continuous valuations instead.49

Moreover, in order to have an interesting notion of perfectoid spaces, one needs to glue spaces that do not
come from fields, but rather more general classes of rings. Scholze’s initial approach was to fix a perfectoid
field K and study perfectoid algebras over K, but it was later deemed better to work without a base.

Given the importance of the tilting morphism, it should interesting to understand its behaviour. It is far
from being injective, and the question of the classification of untilts of a given perfectoid field rose to the
attention. This justifies the introduction of one of Fontaine’s period ring Ainf .
Moreover, the space of equivalence classes of untilts is endowed with an additional geometric structure,
which is now known as the Fargues-Fontaine curve :

Theorem 4.1.5. (Fargues-Fontaine, 2018, [FF18], theorem 6.5.20).
Let K be an algebraically closed50 perfectoid field with residual characteristic p.
There exists a Dedekind scheme of rank 1 over Qp, noted XK , whose closed points are in bijection with
isomorphism classes of untilts of K. The residual fields at a closed point is the desired untilt.

The result above can be generalized when K is not algebraically closed, in which case closed points of XK

characterize finite extensions of K.
This result can be extended when K is any perfectoid space. In this setup, the curve XK is no longer a
scheme, but rather an adic space, that can still be thought of as a moduli space of untilts.

4.2 Adic geometry

As explained earlier, we need to develop a theory of p-adic geometry that carries nontrivial topological
information. The approach used is a p-adic variant of the construction of complex analytic geometry from
complex algebraic geometry.
Let us give a few guidelines of what we should expect of a good theory of p-adic analytic geometry.

If k is an complete non-archimedean field of characteristic p (such as Qp or Cp), we should be able to
construct a theory of p-adic analytic varieties over k, which are a p-adic version of complex analytic
varieties. On such spaces, we should be able to work with converging power series in addition to simply
polynomials, and such approach should allow the use of analytic and topological methods to understand
algebraic objects.
For more concrete examples, in [Bos14], one can find a construction of a p-adic analogue of the equivalence
between complex elliptic curves and complex tori. In his lectures notes, P.Achinger [Ach15] explains how
to understand the genus of an elliptic curve over k as a number of "p-adic handles". Moreover, there is
an analytification functor X →Xan, that satisfies a p-adic GAGA theorem.
Historically, different definitions have been considered due, for example, to Tate [Tat71], Raynaud [Ray74],
Berkovitch [Ber93], Fujiwara-Kato ‘[FK06] and Huber [Hub96]. They essentially allowed more and more
general classes of objects to appear in their theory. For technical reasons - and following Scholze, we will
use Huber’s theory of adic spaces. We refer to [Ach15] for a short historical overview of the different
points of view.

Let us now introduce some technical notions needed to properly define the objects.
49Since the support of any valuation is a prime ideal, this can be seen as a generalization of the usual spectrum
50This assumption only serves the simplicity of the present exposition
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4.2.1 Valuations and Huber pairs

This section mostly follows [Ach15].
Huber’s theory is based on continuous valuations on topological rings, rather than prime ideals.

Definition 4.2.1. A valuation on a ring R is a surjective map ∣ ⋅ ∣ ∶ R → Γ ⊔ {0}, where Γ is a totally
ordered abelian group, written multiplicatively, such that :

• ∣0∣ = 0, ∣1∣ = 1.
• ∣a ⋅ b∣ = ∣a∣ ⋅ ∣b∣ for any a, b ∈ R.

• ∣a + b∣ ≤max(∣a∣, ∣b∣) for any a, b ∈ R.

If R is a topological ring, a valuation ∣ ⋅ ∣ is continuous if, for every γ ∈ Γ, {x ∈ R, ∣x∣ < γ} is open.

A valuation is said to be trivial if Γ = {1}, and nontrivial otherwise. It is discrete if Γ is isomorphic
(as an ordered abelian group) to (Z,+), and nondiscrete otherwise. It is of rank 1 if one can embed Γ
into R≥0, and of higher rank otherwise.

Two valuations ∣ ⋅ ∣1, ∣ ⋅ ∣2 are equivalent if ∀x, y ∈ A, ∣x∣1 ≤ ∣y∣1 ⇐⇒ ∣x∣2 ≤ ∣y∣2.
The support of a valuation ∣ ⋅ ∣ is supp(∣ ⋅ ∣) ∶= {x ∈ R, ∣x∣ = 1}. It is a prime ideal of R.

Remark 4.2.2. The use of the term valuation is unfortunate, as valuations of rank one should more
naturally be called seminorms. However, for higher ranks, which are a essential in Huber’s theory, the
term valuation is more appropriate.
The vocabulary used here is standard in the literature.

Note that any valuation ∣ ⋅ ∣ on a ring R induces a topology spanned by the open balls B(x, r), for x ∈ R
and r ∈ Γ, where B(x, r) = {y ∈ R, ∣x − y∣ < r}.

Definition 4.2.3. A complete nonarchimedean field is a complete topological field k whose topology
is induced by a nontrivial valuation ∣ ⋅ ∣ of rank 1. Its ring of integers is Ok ∶= {x ∈ k, ∣x∣ ≤ 1}.
If K is a complete non-archimedean field, a pseudo-uniformizer of K is an element ϖ ∈ K such that
0 < ∣ϖ∣K < 1 (equivalently, ϖn → 0).

Example 4.2.4. Qp is a complete nonarchimedean field with respect to the p-adic valuation ∣ ⋅ ∣p ∶ Qp → R≥0
given by ∣x∣ = p−vp(x). Its ring of integers is Zp.
The element p−1 is a pseudo-uniformizer of Qp.

We now work on topological rings, with no fixed valuation.

Definition 4.2.5. A subset S of a topological ring A is bounded if, for any neighboorhood U of 0, there
exists a neighborhood V of 0 such that V ⋅ S ⊂ U .
An element a ∈ A is power-bounded if {an}n≥0 is bounded, and topologically nilpotent if an → 0
We let A○ be the set of power-bounded elements, and A○○ the set of topologically nilpotent elements.

Definition 4.2.6. A Huber ring is a topological ring A which admits an open subring A0 ⊂ A and a
finitely generated ideal I ⊂ A0 such that the family (In)n≥0 form a fondamental system of neighboorhoods
of 0 in A0

51. The pair (A0, I) is called a pair of definition.
A Tate ring is a Huber ring which admits a topologically nilpotent unit. Such an element is called a
pseudo-uniformizer.
A Huber ring is said to be uniform if A○ is bounded.

Example 4.2.7. • Discrete rings are Huber (take I = {0} and any A0), but have no pseudo-uniformizer.
51We say that A0 is I−adic
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• If A is a Tate ring with ring of definition A0 that admits a pseudo-uniformizer unit ϖ, then there
exists n ≥ 1 such that ϖn ∈ A0 and A = A0[ϖ−n]. Moreover, a subset S ⊂ A is bounded iff there
exists m ≥ 1 such that S ⊂ϖ−mA0.

Definition 4.2.8. A Huber pair is a pair (A,A+) where A is a Huber ring and A+ ⊂ A○ is an integrally
closed open subring.
A morphism of Huber pair φ ∶ (A,A+) → (B,B+) is a continuous ring homeomorphism φ ∶ A → B such
that φ(A+) ⊂ B+.
We say that a Huber pair (A,A+) is complete if both A and A+ are complete as topological spaces.

Very important classes of Huber pairs are given by quotients of Tate Algebras :

Example 4.2.9. If A is a complete topological ring whose topology is induced by a valuation of rank 1
and ϖ is a pseudo-uniformizer of A, we define the ring of restricted power series over A as :

A⟨x1, . . . , xn⟩ = lim←Ð
n

A/(ϖn)[X1, . . . ,Xn]

If k is a complete nonarchimedean field, we define the Tate algebra :

Tn,k ∶= k⟨X1, . . . ,Xn⟩ =
⎧⎪⎪⎨⎪⎪⎩

∑
I=(i1,...,in)

aIX
i1
1 . . .Xin

n such that aI → 0 for ∑
k

ik →∞
⎫⎪⎪⎬⎪⎪⎭

endowed with the multiplicative Gauss norm : ∣∣∑aIXi1
1 . . .Xin

n ∣∣ ∶=maxk∣aI ∣. Geometrically, this corresponds
to the set of power series converging on the closed unit disk of k.
For any n ≥ 0, the pair (k⟨x1, . . . , xn⟩,Ok⟨x1, . . . , xn⟩) is a Huber pair.
Moreover, if A is any quotient of a Tate algebra, then (A,A○) is a Huber pair.

Quotients of Tate algebra are the building block of Raynaud’s theory of adic spaces. In Huber’s theory,
the building block is spaces of valuations on Huber pairs.

4.2.2 Adic spaces

This section is based on [SW20].
Let us now define (adic) spectras of Huber pair, and a way to glue them to geometric objects.

Definition 4.2.10. The adic spectrum of a Huber pair (A,A+) is defined as

Spa(A,A+) = {valuations ∣ ⋅ ∣ on A such that ,∀f ∈ A+, ∣f ∣ ≤ 1}/ ∼

where ∼ denotes the equivalence of valuations, as defined in 4.2.1.

Notation 4.2.11. For psychological reasons, if x ∈ Spa(A,A+) is a valuation and f in A, the evaluation
x(f) is often noted ∣f(x)∣.

We endow Spa(A,A+) with the topology generated by the rational open sets :

U (T
g
) = {x ∈ Spa(A,A+),∀i, ∣fi(x)∣ ≤ g(x) ≠ 0}

for g ∈ A and T ⊂ A a finite subset such that T ⋅A is open. Such a family is stable under finite intersections.

As topological spaces, adic spectra look like schemes :

Proposition 4.2.12. Let (A,A+) be an Huber pair. Then Spa(A,A+) is spectral, i.e. there exists a ring
B and a homeomorphism Spa(A,A+) ≅ Spec(B).
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Proof. cf. [Hub93], Theorem 3.5. The proof is not constructive.

We will now briefly explain how to endow some X = Spa(A,A+) with two sheaves of complete topological
rings : OX ,O+X . The construction is quite technical and can be skipped in first reading. We refer the
interested reader to [Hub94].

Let (A,A+) be a Huber pair. We will first define the presheaves on standard open sets, and then extend
the definition to arbitrary open sets.
Fix g ∈ A and T = {f1, . . . , fn} ⊂ A such that U (Tg ) is a standard open set.

Choose any pair of definition (A0, I) of A. Let D = A0 [f1g , . . . ,
fn
g ] ⊂ A[g

−1], endowed with the unique
structure of a topological ring such that the (In ⋅D)n≥1 form a basis of neighborhood of 0.

The ring B is a Huber ring, and we note A ⟨f1g , . . . ,
fn
g ⟩ its topological completion.

We then define A ⟨f1g , . . . ,
fn
g ⟩
+

as the completion of the integral closure of A+ [f1g , . . . ,
fn
g ] in B.

We finally set : OX (U (Tg )) = A⟨
f1
g . . . ,

fn
g ⟩ ; O+X (U (Tg )) = A⟨

f1
g . . . ,

fn
g ⟩
+.

This definition can be extended to arbitrary open subset by defining

F(U) = lim←Ð
U⊂V rational

F(V )

for F = OX or F = O+X .

The construction behaves as expected, as justified by the following results :

Proposition 4.2.13. The definition above does not depend on the choice of the pair of definition.

Proposition 4.2.14. If (A,A+) is a Huber pair and X = Spa(A,A+), then OX(X) = Â and O+X(X) = Â+,
where Â denotes the topological completion of A.

Proposition 4.2.15. For any open U ⊂ Spa(A,A+), O+X(U) = {f ∈ OX(U),∀x ∈ U, ∣f(x)∣ ≤ 1}.

Beware that those presheaves need not be sheaves in general. However, it will be the case in particular
case, such as perfectoid spaces.

Definition 4.2.16. A Huber pair (A,A+) is said to be sheafy if the structure presheaf OX is a sheaf.

As a corollary of 4.2.15, O+X is a sheaf whenever OX is.

Proposition 4.2.17. If (A,A+) is a Huber pair, and x ∈ X = Spa(A,A+), the stalk OX,x, taken in the
category of sheaves of (non-topological) rings, is naturally endowed with a valuation ∣ ⋅ ∣x ∶ OX,x → Γx⊔{0}.
OX,x is a local ring, whose maximal ideal is given by the support of ∣ ⋅ ∣x.

We may now define general adic spaces.

Definition 4.2.18. An affioid adic space is some Spa(A,A+) for some sheafy Huber pair (A,A+), seen
as a topological space endowed with a sheaf of rings.
An adic space is the data of (X,OX , (∣ ⋅ ∣x)x∈X), where

• X is topological space

• OX is a sheaf of topological rings such that every stalk OX,x is a local ring

• For each x ∈X, ∣ ⋅ ∣x is an equivalence class of valuations on OX,x whose support is the maximal ideal

that admits a covering by affinoid open sets X = ⋃i∈I Ui.
A morphism of adic spaces is a continuous map f ∶ X → Y together with a sheaf morphism OX → f∗OY

preserving the above structure.
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Proposition 4.2.19. The functor (A,A+)↦ Spa(A,A+) restricted to

{Sheafy complete Huber pairs}↦ {Adic spaces}

is fully faithful.

Moreover, for any adic space Y and sheafy Huber pair (A,A+), there is an isomorphism :

HomAdSp(Y,Spa(A,A+)) ≅ HomHuPr((A,A+), (OX(X),OX(X)+))

Proof. cf. [Hub94], proposition 2.1.(ii).

Example 4.2.20. If we endow Z and Z[T ] with the discrete topology, then

Hom(X,Spa(Z[t],Z)) = OX(X) and Hom(X,Spa(Z[t],Z[t])) = O+X(X)

When first introduced, Huber’s theory of analytic geometry aimed to generalize simultaneously the theory
of Berkovich spaces and the one of formal schemes - which itself encompasses the theory of schemes.
There are, in fact, many ways to analytify a scheme. The one we will care about is pretty naïve, and we
refer to [MC17] for a discussion about more geometric ideas. Recall that, if R is a ring endowed with the
discrete topology, (R,R) is automatically a Huber pair.

Definition 4.2.21. The functor Spec(R)↦ Spa(R,R) glues to a fully faithful functor

{Schemes}→ {Adic Spaces}

It is called the analytification functor.

Remark 4.2.22. Here are a few alternative notions:

1. In [Sch17], section 27, Scholze considers Spec(R) ↦ Spa(R, clR(Fp)) where cl(Fp) denotes the
integral closure of Fp in R. This notions maps Ga to the sheaf O, rather then O+.

2. The notions defined above do not behave well with pairs, since, if Spec(R) → Spec(K) is a scheme
over a nonarchimedean field, there may not exist a map Spa(R,∗) → Spec(K,K), since that would
need a continuous map K → R (which does not exist if R is discrete).
The notion explored by [MC17] solves this problem.

4.3 Perfectoid geometry

As explained earlier, Scholze’s motivation for introducing perfectoid spaces (and using adic geometry)
was the study of perfectoid fields. Perfectoid spaces are a kind of adic spaces constructed by gluing the
spectrum of perfectoid objects - they can be seen as some analogue of perfect schemes.
In order to define perfectoid spaces, one needs to glue the adic spectrum of perfectoid rings. The theory of
perfectoid rings is essentially the same than the one of perfectoid rings. For simplicity of the exposition,
we focus on perfectoid fields.

4.3.1 Perfectoid fields

This section is inspired by [SW20] and [Sch12].
Let us start with the definition and main properties of perfectoid fields.

Definition 4.3.1. A perfectoid field of residual characteristic p is a field K equipped with a rank-one
valuation ∣ ⋅ ∣K ∶K → R+ such that :

1. K is complete with respect to the topology induced by ∣ ⋅ ∣K

64



2. OK is a local ring, of maximal ideal mK , and OK/mK is of characteristic p.

3. The Frobenius map φ ∶ OK/pOK
x↦xp

ÐÐÐ→ OK/pOK is surjective

4. p does not generate mK , i.e. there is x such that ∣p∣K < ∣x∣K < 1.
Note that, by the last point, the valuation of a perfectoid field is necessarily non-discrete. In particular,
Qp and its finite extensions are not perfectoid fields.

Example 4.3.2. 1. The (p)-adic completion of Qp (p1/p
∞), Qalg

p
52 and of Qp (µp∞) are perfectoid fields

of characteristic 0.

2. The (t)-adic completion of Fp((t)) (t1/p
∞) and of Fp((t))sep are perfectoid fields.

3. Perfectoid fields of characteristic p are exactly complete perfect valued field of characteristic p.

Let us now define the tilt operation. As explained earlier, the tilt transforms objects of mixed characteristic
(0, p) into objects living in characteristic p.

Definition 4.3.3. If K is a field of residual characteristic p, we define its tilt as :

K♭ = lim←Ð(⋅ ⋅ ⋅→K
x↦xp

ÐÐÐ→K
x↦xp

ÐÐÐ→K) = {xn ∈KN, xn = xpn+1}

We endow it with the ring structure given by the following addition

{xn}n≥0 + {yn}n≥0 = limÐ→{xn+m + yn+m}
pm

n≥0

and the term by term multiplication.
It comes equipped with a multiplicative (but not additive) map ♯ ∶ (xn)n ∈ K♭ ↦ x0 ∈ K, which defines a
norm ∣x∣K♭ ∶= ∣x♯∣K .
If K is a perfectoid field, then K♭ is a perfectoid field of characteristic p.

Note that the definition above is very ad hoc, and may seem arbitrary, since the ring structure is not given
by the limit in the category of rings. It has the advantage to clearly show that the tilt is automatically
perfect. The more standard definition will me given in 4.3.17.

Example 4.3.4. If K is a perfectoid field of characteristic p, then K♭ ≅K.
The tilt of Qp (p1/p

∞)∧p is Fp((t)) (t1/p
∞)∧t.

Many important algebraic properties are preserved under tilting. Here are some of them.

Proposition 4.3.5. Let K be a perfectoid field with tilt K♭.

1. Continuous valuations coincide : Spa(K,K) ≅ Spa(K♭,K♭).
2. There is an equivalence of category between finite extensions and K and finite extensions of K♭.

Note that perfectoid spaces have a posteriori proven to be useful in "standard" adic geometry. Indeed,
every adic space X admits a pro-étale cover by a perfectoid space X̃ ; and hence one apply results about
perfectoid spaces to arbitrary adic spaces using pro-étale descent. Informally, perfectoid spaces live on
top of towers.
We will not discuss this approach, and redirect the interested reader to [SW20], 7.2, and to the notion of
diamond developed in [Sch17].

52i.e. Cp
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4.3.2 Classifying untilts

This section is based on the lecture notes by J.Lurie [Lur18]. and J.Anschütz [Ans20].
We fix C♭ a perfectoid field of characteristic p (that is not necessarily the tilt of some C).

Definition 4.3.6. An untilt of C♭ is a pair (K, ι), where K is a perfectoid field and ι is a continuous
isomorphism ι ∶ C♭ ≅K♭.

Our goal is to classify untilts of C♭. As we will see, they can be characterized as some distinguished
elements of a period ring Ainf .
Let us start by establishing a few properties.

Lemma 4.3.7. Let K be a perfectoid field.

1. If x ∈ OK , there is x′ ∈K♭ such that x′ ♯ ≡ x mod p

2. If x ∈K, there is y ∈K♭ such that ∣x∣K = ∣y∣K♭

Proof. We refer to [Lur18], 2-13 for a proof. 2-14 shows that the definition of a perfectoid fields is
essentially constructed so that this lemma holds.

Corollary 4.3.8. Let K be a perfectoid field and π ∈K♭ nonzero such that ∣p∣K ≤ ∣π∣K♭ < 1.
Then ♯ ∶K♭ →K induces an isomorphism O♭K/(π) ≅ OK/(π♯)

Proof. Since ∣p∣K ≤ ∣π∣K♭ = ∣π♯∣K , ∣p/π♯∣K ≤ 1, so that p/π♯ ∈ OK , and π♯ divides p.
The surjectivity then follows from the first point of 4.3.7.
If y ∈ (π♯), ∣y∣K♭ = ∣y♯∣K ≤ ∣π♯∣K = ∣π∣K♭ , so π divides y. This shows injectivity.

Proposition 4.3.9. Fix ι ∶ C♭ ≅K♭ an untilt of C♭, and π ∈K♭, π′ ∈ C♭ such that ι(π) = π′ and π′ ♯ = p.
Then ι induces an isomorphism OC♭/(π) ≅ O♭K/(π′) ≅ OK/(p)
Reciprocally, any isomorphism of such a quotient can be to lifted to C♭ ≅K, and corresponds to an untilt.

Proof. The first part follows from 4.3.2. The second part holds since

O♭C ≅ lim←ÐOC♭/(π′) and O♭K ≅ lim←ÐOK/(p)

with transitions given by the Frobenius.

Let us now define our first period ring, due to Fontaine.

Definition 4.3.10. Let Ainf =W (O♭C).

Recall that, by 1.3.20, every element x ∈ Ainf writes uniquely as :

x = [c0] + [c1]p + [c2]p2 + . . .

where [⋅] ∶ OC♭ →W (OC♭) denotes the Teichmüller map. This writing is called the Teichmüller expansion.
Hence, Ainf can be seen as a ring of formal power series in the variable p. Heuristically, Ainf ≈ OC♭JpK.
For every untilt (K, i) of C♭, the map ♯ ∶K♭ →K induces a morphism θ ∶ Ainf → OK given by

θ ∶∑[cn]pn ↦∑ ι(cn)♯pn

The map θ evaluates the power series in a given untilt.

Lemma 4.3.11. The morphism θ is surjective

Proof. Apply recursively the second point of 4.3.7
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The morphism θ hence induces an isomorphism Ainf /ker(θ) ≅ OK .
Hence, every untilt can be exhibited as a quotient of Ainf . We will that the reciprocal is also true.
The first step is to identify which ideals are of the form ker(θ).

Definition 4.3.12. An element ξ ∈ Ainf is distinguished if, its Teichmüller expansion

ξ = [c0] + [c1]p + [c2]p2 + . . .

satisfies ∣c0∣C♭ < 1 and ∣c1∣C♭ = 1.

Proposition 4.3.13. Let (K, ι) be an untilt and θ ∶ Ainf → OK the associated morphism. Then ker(θ)
contains a distinguished element ξ. Moreover, any such ξ generates the ideal ker(θ).

Proof. By 4.3.7, there exists π ∈ O♭C such that ∣π∣C♭ = ∣p∣K . Hence there exists some invertible u ∈ OK

such that π♯ = up. Write u = θ(u).
Since π♯ = up, we have θ([π] − up) = 0. One can check that [π] − up is distinguished.

Proposition 4.3.14. For any distinguished element ξ ∈ Ainf , the quotient Ainf /(ξ) can be identified with
the valuation ring OK of a perfectoid field K.
Moreover, the natural map O♭C = Ainf /(p)→ Ainf /(ξ) ≅ OK/(p) exhibits K as an untilt of C♭ via 4.3.9.

Proof. We note OK = Ainf /(ξ), and K = Frac(OK).
Define the norm ∣ ⋅ ∣K on K by ∣y∣K ∶= ∣x∣C♭ for any x ∈ O♭C such that y = x♯ ⋅ u, for u a unit.
One can prove that this norm is well-defined, and satisfied the desired properties. We refer to [Lur18],
3.16 for details.

We have hence proven :

Theorem 4.3.15. There exists a natural bijection :

{Untilts of C♭}/iso ≅ {Distinguished elements of Ainf}/unit

This set is noted ∣YFF ∣.

If (K, ι) is an untilt, the Frobenius automorphism ϕ ∶ x ↦ xp of C♭ induces a family of other untilts
(K, ι○ϕn)n∈Z, that are not very interesting. The space ∣XFF ∣ ∶= ∣YFF ∣/φZ will be the space of closed points
of the Fargues-Fontaine curve. We refer to [Mor18] for a very nice introduction.

4.3.3 Perfectoid rings and spaces

This section is inspired by [Bej17] and [SW20].

Definition 4.3.16. A complete Tate ring R is perfectoid if it is uniform and there exists a pseudo-
uniformizer ϖ ∈ R such that ϖp∣p in R○, and such that the p-th power Frobenius map Φ ∶ R0/ϖ → R0/ϖp

is an isomorphism.
A perfectoid field is a perfectoid Tate ring that is also a field.53

A perfectoid Huber pair is a Huber pair (R,R+) where R is perfectoid.

The tilting process can be expressed similarily.
53This is not trivial, see [Ked16]
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Definition 4.3.17. Let R be a perfectoid ring. Its tilt is defined as :

R♭ = lim←Ð
x↦xp

R/p

where the ring structure and the topology are given by the limit.
It comes equipped with a continuous multiplicative (but not additive) map x ∈ R♭ ↦ x♯ ∈ R given by the
projection on the first coordinate.

Example 4.3.18. For every perfectoid field K, OK♭ ≅ (OK)♭
If R is a perfectoid ring of characteristic p, then R♭ ≅ R.
Perfectoid rings of characteristic p are exactly complete perfect Tate rings.

A good algebraic motivation for the tilting functor is that it is adjoint to the Witt vector construction.

Proposition 4.3.19. If R is a perfect ring of characteristic p, and S is a p-adically complete ring, there
is an isomorphism

HomRing(W (R), S) ≅ HomRing(R,S♭)

Note that, if R is not perfectoid, the tilt tends to be small. This appears on the following examples.

Example 4.3.20. Here are a few algebraically natural but geometrically useless computations :
1. F♭p ≅ Fp and Fp[T ]♭ ≅ Fp

2. Z♭p ≅ Fp

As explained earlier, the main idea behind the tilting operation is that it preserves many algebraic
properties of perfectoid rings, but changes the characteristic.

Proposition 4.3.21. Fix R a perfectoid ring, and ϖ a pseudo-uniformizer of R such that ϖp∣p. Let
ϖ♭ = (ϖ,ϖ1/p,ϖ1/p2 , . . . ) ∈ R♭.

1. The map f ↦ f ♯ induces an isomorphism R♭ ○/ϖ♭ ≅ R♭/ϖ
2. R♭ is a perfect complete Tate ring (i.e. a perfectoid ring in characteristic p).

As we will see, the tilting morphism can be made geometric. Conveniently, perfectoid rings induce well-
behaved adic spaces.

Proposition 4.3.22. Let (R,R+) be a perfectoid Huber pair. Then for all rational U ⊂X = Spa(R,R+),
OX(U) is perfectoid. In particular, (R,R+) is sheafy.

Proof. cf [SW20], theorem 6.1.10.

Thus, in what follows, we never need to assume that our local spaces are sheafy.

Definition 4.3.23. A perfectoid space is an adic space X covered by affinoid adic spaces of the form
Spa(R,R+) where R is perfectoid.

Note that, in the original definition [Sch12], Scholze fixed a perfectoid field K and worked with spectras
of perfectoid K−algebras. The modern approach does not fix a base space. This is somewhat analogue to
the conceptual difference between algebraic varieties and schemes.
The tilting equivalence can be made geometric.

Theorem 4.3.24. ([SW20], Theorem 7.1.4).
Let (R,R+) be a perfectoid Huber pair. Write X = Spa(R,R+) and X♭ = Spa(R♭,R+,♭).
If ∣ ⋅ ∣x ∈X, we define ∣ ⋅ ∣♭x by declaring ∣f ∣♭x = ∣f ♯∣x.
This induces a functorial morphism φ ∶ Spa(R,R+)→ Spa(R♭,R+,♭), such that :

68



1. φ is a homeomorphism on the underlying topological spaces. It preserves rational subsets.

2. If U ⊂X is a rational subset, then OX(U)♭ = OX♭(U ♭).

Fix S a perfectoid ring. The above morphism can be glued to a functor :

{Perfectoid spaces /S}→ {Perfectoid spaces /S♭}

This functor is an equivalence of categories.

4.3.4 Topologies

As is the case with schemes, we’d like to endow the category of perfectoid spaces (eventually over a fixed
base) with a topology. As is the case with schemes, there are many interesting possibilities.
Since every perfectoid space is a topological space, one can consider this topology, called the analytic
topology. As is the case for the Zariski topology, this carry little information, and we need other notions.
As previously announced, their is a notion of an étale site of perfectoid.

Definition 4.3.25. A morphism of f ∶ Y →X of perfectoid spaces is called :

1. finite étale if for all open affinoids U = Spa(A,A+) ⊂X, f−1(U) is also affinoid, and one can write
f−1(U) ≅ Spa(B,B+) for some B finite étale over A and B+ the integral closure of A+ in B.

2. étale if for every y ∈ Y , there exists open neighborhoods y ∈ U ⊂ Y and f(x) ∈ V ⊂ f(U) such that
f ∣U factorizes as p ○ j, where p is finite étale and j is an open embedding.

The étale site of a perfectoid space X is the category of perfectoid spaces étale over X, endowed with the
analytic topology.54

One can show that a morphism f ∶X → Y of perfectoid spaces is étale iff f ♭ ∶X♭ → Y ♭ is étale.
An important result is as follows :

Theorem 4.3.26. If X is a perfectoid space, the tilting morphism induces an equivalence of the small
étale sites f ∶Xét →X♭ét.

Proof. cf [Sch12], theorem 7.12.

As is the case with schemes, the étale cohomology of the adic spectrum of a point Spa(K,K○) (for K is
a perfectoid field) characterises the absolute Galois group of K.
We hence deduce the announced generalization of Fontaine-Wittenberg’s theorem.
As explained earlier, perfectoid spaces often appear as projective limits of towers of spaces. For this
reason, it is useful to work with the pro-étale topology, which is a recent refinement of the étale topology
- introduced for schemes in [BS13].

Definition 4.3.27. A morphism f ∶ Spa(B,B+) → Spa(A,A+) of affinoid perfectoid spaces is affinoid
pro-étale if we can write (B,B+) = ̂limÐ→i

(Ai,A+i ) as the completion of a filtered colimit of pairs (Ai,A
+
i ),

where Ai is perfectoid, such that Spa(Ai,A
+
i )→ Spa(A,A+) is étale.

A morphism f ∶ X → Y of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid
pro-étale.
The pro-étale site of a perfectoid X is the category of all perfectoid spaces that are pro-étale over X, in
which covers are of the form {fi ∶ Yi → Y }i∈I where all fi are pro-étale, and for any quasi-compact U ⊂ Y ,
there exists a finite J ⊂ I and quasi-compact (Vj ⊂ Yj)j∈J such that U = ⋃j∈J fj(Uj).

54Note the difference with the étale site of a scheme
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Note that the ’finiteness’ condition is the same as the ’qc’ part of the fpqc site, cf. 3.2.8.
Surprisingely, in many setups (related to diamonds), it is very useful to consider the a topology that
simply forgets the algebraic condition.

Definition 4.3.28. Some {fi ∶ Xi → Y }i∈I is a v-cover if and only for any quasi-compact U ⊂ Y , there
exists a finite J ⊂ I and quasi-compact (Vj ⊂ Yj)j∈J such that U = ⋃j∈J fj(Uj).

This implies the topology that will mainly be used below.

4.3.5 v-sheaves

In what follows, we let Perfd denote the category of perfectoid spaces, endowed with the v-topology.
We let Perf be the full subcategory formed by perfectoid spaces of characteristic p.
If S is a perfectoid space, we let PerfS of Sv denote the site of all perfectoid spaces over S, where covers
are given by v−covers.

Proposition 4.3.29. The v−topology on the sites defined above is subcanonical.

Note that this result is nontrivial and surprised many authors.
In fact, most of the theory regarding perfectoid spaces can be extended to the case of non-necessarily
representable v-sheaves, under a smallness condition. Indeed, Scholze’s theory of diamonds associates to
any small v-sheaf a quotient of a perfectoid space by some equivalence relation. We will not use these
notions, and refer the reader to [Sch17].

Definition 4.3.30. A v-sheaf F ∶ Perfop → Set is said to be small if there exists a perfectoid space X
together with a surjection hX ↠ F .

In particular, every adic space X admits a functor of points hX ∶ Perfop → Set, which is automatically
small. This allows to view arbitrary adic spaces as (weak forms of) perfectoid spaces, even if there is no
good perfection functor in the analytic setup.

Remark 4.3.31. The more modern approach is to generalize the notion of v-sheaf to the one of v-stack,
which mimics the extension from schemes to algebraic stacks. This generality is not needed here, and we
refer to [Sch17] for more information.

The construction of Fontaine’s period ring Ainf and a few variants can be globalized as v-sheaves. Since
those sheaves are defined as the globalization of period rings, they are usually known as period sheaves.
They were first introduced in [Sch13], with the pro-étale topology. As explained earlier, the goal of what
follows will be to compute extension groups of such period sheaves over Sv
In what follows, we fix E a local field of residual characteristic q = pf and of uniformizer π.

Definition 4.3.32. Let R be a perfect Fq−algebra.55

The ramified Witt vectors of R over E is the OE-algebra WOE
(R) =W (R)⊗W (Fq) OE.

If E = Qp, this is simply the standard Witt vector ring.
Let us say a few words about this definition. It is known that W (Fq) = OK , where K = Qp(µq−1) is the
unique ramified extension of degree n. Since E is of residual characteristic q, it can be seen as an extension
of K (using the Galois correspondence). Hence there is a ring morphism OK ↪ OE , which endows OE

with a structure of W (Fq)-algebra. The map Fq → R induces a ring morphism W (Fq) →W (R). Hence,
the tensor product can be realised as W (Fq)-algebras.
Moreover,

WOE
(R)/πWOE

(R) ≅W (R)⊗W (Fq) OE/π ≅W (R)⊗W (Fq) Fq ≅ R
Let us globalize the construction of Ainf as a v-sheaf.

55For a more general definition, we refer to [FF18].
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Definition 4.3.33. Let S be an adic space of characteristic p. If (R,R+) is a perfectoid Tate algebra of
characteristic p with pseudo-uniformizer ϖ, we let ∶

Ainf(R,R+) ∶=WOE
(R+)

We endow it with the (π, [ϖ])−adic topology.
This defines a v-sheaf of rings Ainf on Sv via Ainf(Spa(R,R+)) =WOE

(R+).

One of the main purposes of the ring Ainf is that it allows for the choice of simultaneous untilts. Let us
give a more precise statement.

Proposition 4.3.34. Let S be an affinoid perfectoid space over Fq.
The choice of a primitive element ξ ∈ Ainf(S) corresponds to an untilt S♯ of S, and induces, through the
tilting equivalence PerfS ≅ PerfS♯ the simultaneous choice of an untilt of every perfectoid space T over S.

Note that the classification of untilts of perfectoid rings is very similar to the one of perfectoid fields
Before we conclude this section, we’ll need some very basic elements in the theory of almost mathematics.

4.3.6 Interlude : Some almost mathematics

A short introduction is given in [Sch12]. A good extensive reference is [GR03].
In the next section, we will often need to say that, while a module is nonzero, it is almost zero, in the
sense that it is killed by some ideal. The language of almost mathematics, introduced by G.Faltings, has
become standard in perfectoid geometry.

Definition 4.3.35. Let K be a perfectoid field, and m = K○○ = {x ∈ K, ∣x∣ < 1} the subset of topologically
nilpotent elements. Let M,N be K−modules.
We say that M is almost zero if, for every m ∈M , there exists an element x ∈ m such that mx = 0. We
note M a= 0 if this is the case.
If f ∶M → N is a morphism of K−modules, we say that it is an almost isomorphism if ker(f) a= 0 and
coker(f) a= 0.

More generally, these notions are interesting whenever V is a local integral domain, with maximal ideal
m such that m2 = m, and K = Frac(V ).

71



5 Extension groups of period sheaves

In this section, we derive the extension groups of some of the period sheaves introduced above. For
example, we will establish the following :

Proposition 5.0.1. Let S = Spa(R,R+) be an affinoid perfectoid space over Spa(Fq), and E a local field
of residual characteristic q. The extension groups, computed as sheaves of OE−vector spaces over Sv, are
(almost) :

ExtnSv ,OE
(Ainf ,Ainf) a=

⎧⎪⎪⎨⎪⎪⎩

WOE
(R+)⟨T±1⟩nc if n = 0

0 if n > 0

where WOE
(R+)⟨T±1⟩nc is the ϖ−adic completion of WOE

(R+) [T ±1]nc, for ϖ a pseudo-uniformizer of R

As we will see, the first step is to transfer the result established by Breen to a result between analytic
sheaves. The analytic analogue of the étale sheaf Ga will be the v-sheaf O+.
From there, we will establish results for other period sheaves using straightforward arguments, some of
them looking a lot like the ones used in section 3.

5.1 Extension groups of analytic sheaves

Let us first establish the following :

Proposition 5.1.1. Let S = Spa(R,R+) be an affinoid perfectoid space over Spa(Fq).
Then extension groups of sheaves of Fq−vector spaces on the v−site Sv of S are (almost) ∶

ExtnSv ,Fq
(O+,O+) a=

⎧⎪⎪⎨⎪⎪⎩

R+⟨T,T −1⟩nc if n = 0
0 if n > 0

where R⟨T,T −1⟩nc ∶= R⊗R+R+⟨T,T −1⟩nc, with R+⟨T,T −1⟩nc denoting the ϖ−adic completion of R+[T,T −1]nc,
for ϖ any pseudo-uniformizer of R.

We already established a way to analytify schemes into adic spaces. However, the étale topology has no
reason to correspond to the v-topology via this process. We will need to define a notion of an algebraic
v-topology for schemes, on which Breen’s result still holds, and whose analytification naturally leads to
the v-topology.
Also note that this result is described over Fq rather than over Fp. A straightforward but insightful
computation will allows us to transfer Breen’s result from Fp to Fq.
Throughout this section, we fix S = Spa(R,R+) an affinoid perfectoid space over Fq, and ϖ a pseudo-
uniformizer of R.

5.1.1 The algebraic v-site

The following is mostly based on [BS15] and [Gle20].
Let us start by defining the algebraic v-site of a scheme.

Definition 5.1.2. A morphism f ∶ X → Y between qcqs schemes is an (algebraic) v-cover56 if, for any
map Spec(V ) → Y from a valuation ring V , there exists an extension of valuation rings V ⊂ W 57 and a
map Spec(W )→ S such that the following diagram commutes :

56This was previously known as a "universally subtrusive" morphism, as introduced and studied in [Ryd10] (the equivalent
definition is established in 2.10)

57in the sense of [Sta22, Definition 0ASG]
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Spec(W ) X

Spec(V ) Y

A family {Xi → Y }i∈I is an (algebraic) v-cover if there is a finite subset J ⊂ I such that ⊔j∈J Xj → Y is
a v-cover.

The letter v denotes "surjectivity at the level of valuations" (and the notion of v-covers is closely related
with the notion of h-covers, defined by V.Voevodsky in [Voe96]), as justified by the following :

Proposition 5.1.3. A morphism Spec(B) → Spec(A) of affine schemes is a v-cover iff the map of
topological spaces f◇ ∶ ∣Spa(B,B)∣→ ∣Spa(A,A)∣ is surjective.

The analytification functor ◇ ∶ Spec(A)↦ Spa(A,A) hence maps algebraic v-covers to analytic v-covers.
Let us start by establishing clear notations.

Definition 5.1.4. We let T v
S denote the topos of sheaves on Sv, and P̃erfS denote the category of small

v-sheaves on S.
We let PASchFq denote the category of perfect affine schemes over Spec(Fq), and P̃ASchFq the associated
topos. If S is a scheme, we let Salg

v denote the site of perfect S-schemes, endowed with the algebraic
v-topology. We let T v,alg

S denote the associated topos.
If S = Spec(A) is a perfect scheme over Fq, we let associate a v−sheaf over Spa(Fq), via :

(Spa(R,R+))◇ = HomRing(A,R+)

This induces a covariant functor ◇ ∶ PASchFq → P̃erfFq .

Note that the sheaf Spec(R)◇ is the sheaf represented by Spa(R,R) as an adic space, restricted to the
category of perfectoid spaces.

Remark 5.1.5. In reality, one cannot really consider P̃erfFq as a topos, since the definition given here
quickly leads to set-theoretical issues. One should, for any cutoff cardinal κ, define the category P̃erfκ of
κ−small v-sheaves58, and pass to limits when κ increases.
As usual, we’ll blindly ignore such issues. We refer to [Gle20] for a more careful approach.

In order to define the desired geometric morphisms of topos, we will rely on 1.1.20. It then suffices to
establish the following :

Proposition 5.1.6. The functor ◇ is left-exact and that maps covering families to covering families.
It is also fully faithful.

Proof. The continuity follows from 5.1.3, and the commutation with finite limits is clear.
For the full faithfullness, we refer to [Gle20], theorem 2.29.

Hence, by 1.1.20, we have defined a geometric morphism of topos

(f∗, f∗) ∶ P̃erfFq → ̃SchPerfFq

which satisfies our purpose of analytification.
58i.e. sheaves that admit a surjection from a perfectoid space of size < κ
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5.1.2 Extension groups of Ga over Fq-schemes

As explained earlier, we take some time to discuss the extension of 3.1.1 when replacing Fp by Fq. While
this was not considered by Breen, this is used in [ALB21], and this generality comes at very little cost.

Theorem 5.1.7. Let S = Spec(R) be an affine scheme over Fq, and Ga the additive group scheme over
S, seen as a sheaf of Fq-vector spaces over Sperf . Then the extension groups are :

ExtnSperf ,Fq
(Ga,Ga) =

⎧⎪⎪⎨⎪⎪⎩

R[T,T −1]nc if n = 0
0 if n > 0

In degree zero, the result can be derived directly, or one can check step by step that 3.4.1 still holds in
our modified setup. In higher degree, the computation relies on the following lemma :

Lemma 5.1.8. Let E be a Fq−vector space of finite dimension.
There are isomorphisms of Fq-vector spaces :

Fq ⊗Fp E ≅
f−1

⊕
i=0

E and E ⊗Fp Fq ≅
f−1

⊕
i=0

E(i)

where the tensor product is of Fp-vector spaces, the Fq-structure is induced by the term on the right, and,
for 0 ≤ i < f , E(i) denotes the Fq-vector space that is isomorphic to E as an Fp-vector space, but with the
Fq action twisted by the i-th power of the Frobenius, i.e. given by x ⋅ e = xpi ⋅ e.

Proof. We define the morphisms :

x⊗ e ∈ Fq ⊗Fp E ↦⊕ (xp
i ⋅ e) and e⊗ x ∈ E ⊗Fp Fq ↦⊕ (xp

i ⋅ e)

We want to show that they are isomorphisms. They are morphisms of Fq−vector spaces with the announced
structure. Since both sides are of the same dimension, it suffices to show that the morphisms are injective.
Let us do the verification for the second one.
Let ∑r

k=0 ek ⊗ xk ∈ E ⊗Fp Fq such that, for all i, ∑r
k=0 x

pi

k ⋅ ek = 0. We will show that the ei are all zero.
Without loss of generality, we can assume that r ≤ f − 1, and that the xk are Fp-linearly independant.
Define the Moore matrix M by Mi,j = xp

i

j , and X the column vector Xi = si, such that M ⋅ S = 0.
It is a classical result that M is of full rank whenever the xj are linearly independant. Hence S = 0.

Remark 5.1.9. This lemma is a very particular case of useful results in Galois descent theory.59

For example, the isomorphisms also holds as Fq−algebras when E admits a structure of an Fq-algebra ;
and can even be generalized when replacing Fq/Fp by any finite Galois extension (the sum now ranges over
the Galois group). We refer to [Sta22, Section 0CDQ] for a related discussion.

Note that the construction above is functorial, and can hence be globalized as a decomposition of sheaves.
The tensor product Ga ⊗Fp Fq can hence be decomposed as Ga ⊗Fp Fq =⊕f−1

i=0 G
(i)
a , where Ga is the sheaf

induced by X ↦ OX(X)(i).
We may now easily deduce the proposition 5.1.7.

Proof. In higher degree, the adjunction yields

0 = ExtnSperf ,Fp
(Ga,Ga) ≅ ExtnSperf ,Fq

(Ga ⊗Fp Fq,Ga)

≅⊕
n
ExtnSperf ,Fq

(G(n)a ,Ga)

We conclude since G(0)a = Ga.
59Thanks to Nataniel Marquis for suggesting this remark
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5.1.3 Extension groups of analytic sheaves

The goal of this paragraph is to establish the following :

Proposition 5.1.10. Then extension groups of sheaves of Fq−vector spaces over Sv of O+ are :

ExtnSv ,Fq
(O+,O) a=

⎧⎪⎪⎨⎪⎪⎩

R+⟨T,T −1⟩nc if n = 0
0 if n > 0

with R+⟨T,T −1⟩nc denoting the ϖ−adic completion of R+[T,T −1]nc.
This comes from a family of almost isomorphisms :

(Extn
Spec(Fq)

alg
v ,Fq

(Ga,Ga)⊗Fq R
+)

ϖ

→ ExtnSv ,Fq
(O+,O+)

Note that, by 3.3.7, Ext
Spec(Fq)

alg
v ,Fq

(Ga,Ga)⊗Fq R
+ = Ext

Spec(R+)algv
(Ga,Ga)

In 3.3.6, we established that Breen’s computation does not depend on the chosen topology, given that :

1. The topology is subcanonical

2. The cohomology of sheaves on an affine base is concentrated in degree 0, and coincides with global
sections.

Both of those results hold on the algebraic v-topology, as a corrolary of a result by Bhatt-Scholze (cf.
[BS15], Theorem 4.1 (for n = 1)).60

Let us now construct the almost-isomorphism.
By definition of a geometric morphism of topos, the functor f∗ ∶ ̃SchPerfFq → P̃erfFq is exact.
Hence, it descends at the derived level to a functor D( ̃SchPerf)→ D(P̃erf), and induces a morphism

Extn
Spec(Fq)

alg
v ,Fq

(Ga,Ga)→ ExtnSpa(Fq)v ,Fq
(f∗Ga, f

∗Ga)

for any n ≥ 0. Firstly, let us make f∗Ga explicit.

Lemma 5.1.11. f∗Ga ≅ O+.

Proof. We know that Ga is represented over PASchFq by the perfect affine line A1,perf
Fq

= Spec(Fq[X]perf).
Its image via ◇ is the v-sheaf Spa(R,R+) ↦ HomRing(Fp[X]perf ,R+). If (R,R+) is a perfectoid Huber
pair, R+ is necessarily perfect since it is an integrally closed subring of a perfect ring, and hence admits
all roots of Xp − a.
Hence, HomRing(Fp[X]perf ,R+) = HomRing(Fp[X],R+) ≅ R+ = O+(Spa(R,R+)). Thus, f∗Ga = O+.

A similar computation yields the following.

Lemma 5.1.12. In PerfS, the sheaf O+,n is represented by the perfectoid unit ball :

Bn
S = Spa (R⟨T

1/p∞

1 . . . , T 1/p∞

n ⟩,R+⟨T 1/p∞

1 . . . , T 1/p∞

n ⟩)

Note that fiber products of adic spaces do not exist in general, but fiber products of perfectoid spaces
exist and are perfectoid, since the associated rings are Tate. We refer to the lecture notes [Mor19].
Here, we have

Bn
S = Bn

Fq
×Spa(Z,Z) S = Spa (Fq[T 1/p∞

1 , . . . , T 1/p∞

n ],Fq[T 1/p∞

1 , . . . , T 1/p∞

n ]) ×Spa(Z,Z) S
60The algebraic v-site, as considered by Bhatt-Scholze, involves only perfect qcqs schemes. By [Sta22, Lemma 0ETM], the

sheaf condition can be checked on finite affine coverings. Since every morphism between affine schemes is qcqs, the topoi
associated to both sites are equivalent
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Proof. Let X be a perfectoid space over S. We compute

HomPerfS(X,Bn
S) ≅ HomPerfS (X,Spa (Fq[T 1/p∞

1 , . . . , T 1/p∞

n ],Fq[T 1/p∞

1 , . . . , T 1/p∞

n ]) ×Spa(Fq ,Fq) S)

≅ HomAdSp (X,Spa(Fq[T 1/p∞

1 , . . . , T 1/p∞

n ],Fq[T 1/p∞

1 , . . . , T 1/p∞

n ]))

≅ HomTopRing (Fq[T 1/p∞

1 , . . . , T 1/p∞

n ],O+(X)) ≅ O+,n(X)

The second equality follows the universal property of fiber products, since the morphism X → S is fixed.
The third one follows from 4.2.19. The last one follows from the fact that O+(X) is perfect and 1.3.5.

The fiber products of perfectoid spaces is compatible with the v-topology. One can easily check that the
base extension and the forgetful functor induce a geometric morphism of topos (f∗, f∗) ∶ P̃erfS → P̃erfFq .
Since f∗ is exact (as is every pullback in a geometric morphism), it induces a morphism :

ExtnSpa(Fq)v ,Fq
(O+,O+)→ ExtnSv ,Fq

(O+,O+)

The composition of both morphisms defined above gives a map :

Extn
Spec(Fq)

alg
v ,Fq

(Ga,Ga)→ ExtnSv ,Fq
(O+,O+)

Lemma 5.1.13. HomSv ,Fq(O+,O+) = R+⟨T ±1⟩nc

Proof. We proved that O+ is represented by Spa(R⟨T 1/p∞⟩,R+⟨T 1/p∞⟩). By Yoneda’s lemma,

HomSv ,Fq(O+,O+) = HomPerfS (B1
S ,B

1
Fq
×Spa(Z,Z) S)

= HomPerf (B1
S ,B

1
Fq
)

= HomHuPr ((Fq[T 1/p∞],Fq[T 1/p∞]), (R⟨T 1/p∞⟩,R+⟨T 1/p∞⟩))

= HomRing(Fq[T 1/p∞],R+⟨T 1/p∞⟩)
= HomRing(Fq[T ],R+⟨T 1/p∞⟩)

Such a morphism is determined by the image of T , which is some P ∈ R+⟨T 1/p∞⟩ such that P (x + y) =
P (x) + P (y). Such polynomials are exactly polynomials in T p and T 1/p. Hence the result.

This establishes the result in degree zero. Let us now go to higher degree.

Proof. We use the canonical resolution, as defined in 2.4.2, in the topoi P̃erfS and ̃SchPerfFq , with the
ring Fq. This defines two canonical resolutions M(Ga)● → Ga and M(O+)● → O+.
We write M(Ga)i = Fq [Gr(i)

a × Fs(i)
q ] and M(O+)i = Fq [O+,r(i) × Fs(i)

q ].
Since the construction of the canonical resolution is purely combinatorial and does not depend on properties
of the topos, the coefficients r(i) and s(i) are the same on both sides.
We now use the same method as in 3.3.5. Let us briefly recall the important ideas.
We can compute both extension groups as the limiting term of the spectral sequence :

IE
p,q
1 = Ext

q(M(F)p,F) Ô⇒ Extp+q(F ,F)

The sheaf Gr
a is represented by the perfect affine space Ar,perf

Fp
, while the sheaf O+,n is represented by the

perfectoid unit ball Bn
S .

Moreover, the constant sheaf Fs
p is represented by ⊔Fs

p
Spec(Fq) on the étale site, and by ⊔Fs

p
Spa(R,R+)

on the analytic one (using similar arguments).
By Yoneda’s lemma, the extension groups of a representable sheaf Ext(hX ,F) correspond to the v-
cohomology groups Hn(X,F) with the corresponding topology.
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By [Sch17], theorem 8.8 ; Hi
v(Bn

S ×⊔Fs
q
Spa(R,R+),O+) a= 0 whenever i > 0, since the space is affinoid.

By [BS15], theorem 4.1 ; Hi
v(A

n,perf
Fq

×⊔Fs
q
Spec(Fq),Ga) = 0 whenever i > 0, since the scheme is affine.

Hence, the extension groups can (almost61) be computed as the cohomology of the associated cochain
complex whose terms are of the form Hom(M(F)p,F). We conclude with the following computation :

Lemma 5.1.14. For any n ≥ 0,

(Hom
Spec(Fq)

alg
v ,Fq

(M(Ga)i,Ga)⊗R+)
ϖ
≅ HomSpa(Sv),Fq

(M(O+)i,O+)

Proof. By Yoneda’s lemma, those hom groups are sheaf cohomology in degree zero. We have :

HomSpec(Fq)v ,Fq
(M(Ga)i,Ga)⊗R+ = H0

v

⎛
⎜
⎝
Ar(i),perf
Fq

× ⊔
Fs(i)
q

Spec(Fq),Ga

⎞
⎟
⎠
⊗FqR

+ = FFs
q

q [T 1/p∞

1 , . . . , T
1/p∞

r(i)
]⊗R+

HomSpa(Sv),Fq
(M(O+)i,O+) = H0

v(B
r(i)
S × ⊔

Fs(i)
q

Spa(R,R+),O+) ≅ (R+)F
s(i)
q ⟨T 1/p∞

1 , . . . , T
1/p∞

r(i)
⟩

This yields the desired result

This concludes the proof

5.1.4 Extension groups of Ainf

We may finally establish the announced result.

Proposition 5.1.15.

ExtnSv ,OE
(Ainf ,Ainf) a=

⎧⎪⎪⎨⎪⎪⎩

WOE
(R+)⟨T±1⟩nc if n = 0

0 if n > 0

Recall that, as was shown in 4.3.5, Ainf /π ≅ O+. We start with the following :

Lemma 5.1.16. The OE-modules ExtnSv ,OE
(Ainf ,Ainf) are π−adically complete.

Proof. Recall that ExtnSv ,OE
(Ainf ,Ainf) = HomD(Sv ,OE)

(Ainf ,Ainf [n]) where D(Sv,OE) denotes the
derived category of sheaves of OE-modules on Sv.
By construction of the Witt vector ring, for any affinoid perfectoid space S = Spa(R,R+), Ainf(R,R+) is
π-adically complete. Since the OE-linear structure is induced by the term on the right, this concludes.

Likewise, WOE
(R+) is clearly π-adically complete. It then suffices to prove that the isomorphism holds

modulo π. We compute :

ExtnSv ,OE
(Ainf ,Ainf)/π = HomD(Sv ,OE)

(Ainf ,Ainf [n])⊗OE
Fq since OE/mE = Fq

= HomD(Sv ,OE)
(Ainf ,Ainf /(π)[n])

= HomD(Sv ,OE)
(Ainf ,O+[n]) since Ainf /(π) = O+

= HomD(Sv ,Fq)(Ainf ⊗LOE
Fq,O+[n]) by (derived) adjunction

= ExtnSv ,Fq
(O+,O+) since Ainf ⊗LOE

Fq = O+

a=
⎧⎪⎪⎨⎪⎪⎩

R+⟨T ±1⟩nc if n = 0
0 if n > 0

by 5.1.10

And WOE
(R+)⟨T±1⟩nc/(π) = R+⟨T±1⟩. This concludes.

61In the rigorous sense
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5.2 To go further

We hope that this document inspired the reader to read the article [ALB21] by Le Bras and Anschütz, of
which we just proved the proposition 3.6. Let us briefly explain what happens in the following pages - and
ultimately motivates this paper.
This paragraph contains no proof and very little detail.
First of all, note that the authors present their statements using the functor RHomSpa(Fq),OE

, that is
obtained by right derivation of the internal HomSpa(Fq)v ,OE

functors in the category of sheaves of OE

vector spaces over Spa(Fq)v. This simplifies the statements, and gives some information over non-affine
bases, but really conveys the same information. For the purpose of this paper, we preferred to limit the
technical complexity by staying with standard Ext groups.
In [ALB21], the authors are interested in the self-extensions groups of Binf ∶= Ainf [ 1π ]. This follows
from the result on Ainf by the same arguments than the ones used to go from the étale site to the
perfect étale site, since, essentially, inverting π can be established as taking the colimit with respect to
the multiplication by π.
From there, one can compute the extension groups of the sheaf O♯ defined by O♯(T ) ∶= O(T ♯), where T ♯

is the untilt of T given by 4.3.34, once a primitive element of Ainf(S) is fixed. One can construct the
following exact sequence :

0→ Binf
×ξÐ→ Binf → O♯ → 0

which is essentially a rewriting of the tilting equivalence, as used in 4.3.34.62 By a careful study the
induced distinguished triangle at the derived level, one may compute the groups RHomn

Sv ,OE
(O♯,O♯).

Note that, for once, Ext1Sv ,OE
(O♯,O♯) ≠ 0.

Let XS,E denote the relative Fargues-Fontaine curve associated to S over E. In [ALB21], the authors are
interested are about the groups RHomXS ,E(E ,F) for E ,F two vector bundles on XS,E .
Amongst many other things, the XS,E is an adic space over S. The structure map τ ∶XS,E → S induces a
morphism over the associated sites, and then to the associated topoi. The authors prove the following :

Theorem 5.2.1. ([ALB21], 3.10). When restricted to a nice enough full subcategory, the functor :

C ⊂ {Complexes of vector bundles over XS,E }
Rτ∗ÐÐ→ D(Sheaves of E-vector spaces over Sv)

is fully faithful.

By recent results due to Bhatt and Scholze ([FS21], Corollary II.2.20 and Proposition II.3.1), arbitrary
vector bundles on the Fargues-Fontaine curve can essentially be presented by powers of line bundles.
It is well-known that line bundles over XS,E are exactly of the form OXS,E

(λ) for some integer λ. By
adequate variants of the Euler sequence, the sheaves OXS,E

(λ) for any integer λ can understood in term
of OXS,E

(1) and other known sheaves. Finally, the the sheaf OXS,E
(1) can be written as the extension :

0→ OXS,E
→ OXS,E

(1)→ OS♯ → 0

Thus, by combining all of the above, understanding the groups RHomXS ,E(E ,F) for E ,F ∈ {OXS,E
,OS♯}

allows to understand the extension groups of arbitrary sheaves on the Fargues-Fontaine curve.
The push forward of those sheaves via Rτ∗ are respectively E and O♯, seen as sheaves over Sv. On the
right hand side of 5.2.1, it then suffices to compute RHomSv ,E(E ,F) for E ,F ∈ {E,O♯}
We explained how to compute RHomS,E(O♯,O♯), and we claim that the other three groups can be
computed similarly. In fact, we trivially have RHomSv ,E(E,G) ≅ G. Finally, RHomSv ,E(O♯,E) can be
deduced from RHomSv ,E(Binf ,Binf) with some careful, but elementary analysis (cf. [ALB21], Theorem
3.8 and Lemma 3.9).

62We refer the reader to [Sch13], lemma 6.3. for more detail
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6 Appendix : On the (generalized) Steenrod Algebra of Ga

This section follows [Bre78] and [FF16].
In this appendix, we present an outline of the computation of the étale Steenrod algebra Hn

st(K(Ga),Ga).
We present two approaches ; the first one relies on a theorem of Borel regarding transgression in spectral
sequences, while the second one identifies Hn

st(K(Ga),Ga) with stable derived functors of the symmetric
functor.
This section contains very little detail, and uses many notions not introduced before.
We work in the étale topos (T ét

S ,Fp) over a fixed scheme S = Spec(R) of characteristic p.

6.1 Via Borel’s theorem

This is a direct generalization of the standard computation of the topological Steenrod algebra.

Proposition 6.1.1. There exists a fibration

K(Ga, n)→ PK(Ga, n + 1)→K(Ga, n + 1)

where PK(Ga, n + 1) denotes the space of paths with fixed origin in K(Ga, n + 1).

One then looks at the associated Leray-Serre spectral sequence, and apply the following theorem of Borel
in [Bor53].

Theorem 6.1.2. Let (E,B,F, p) be a fibration between simplicial objects of T such that B is simply
connected and :

1. H̃∗(E,R) = 0
2. The algebra H∗(F,R) has a system of additive generators ai in the domain of the partially defined

transgression morphism τ ∶H∗(F,R)⇢H∗+1(B,R).
Then the choice of any family of representatives bi ∈H∗+1(B,R) of the τ(ai) forms an additive generator
of H∗(B,R).

The morphisms β and P I ∈ H∗(K(Ga, n),Ga) are in the domain of the transgression. This way, one
can explicitely construct generators of H∗(K(Ga, n + 1),Ga) based on generators of H∗(K(Ga, n),Ga),
whenever n ≥ 1. This allows to compute the structure of the Steenrod algebra by induction.
It then suffices to understand Hn(K(Ga,1),Ga) ; this was done independently by M.Lazard in [Law55].

6.2 The algebraic method

We’ll show that there is a completely algebraic way of computing such objects. This approach has the
advantage to show precisely what about the structure of Ga allows for a computation of the generalized
Steenrod algebras.
The key properties are captured by the axioms A1 and A2 of [Bre78], which imply the following.

Theorem 6.2.1. There is an isomorphism :

H∗(K(Ga, k),Ga) ≅ R∗ Sym(R[−k])

where R∗ denote right-derived functors of a non-additive functor (which are a dual variant of the theory
developed in 2.4.4) ; and Sym(R[−k]) denotes the complex valuing the symmetric algebra

Sym(R) ∶=⊕
n≥0

(R)⊗n/x⊗ y = y ⊗ x

in degree k, and zero elsewhere.
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Proof. We start by proving that the axioms A1 and A2 hold.

Lemma 6.2.2. For any Fp-module M of finite type,

SymR(M∗) ≅ Hom
T ét

S
(M ⊗Fp

Ga,Ga)

where SymR(M∗) is the symmetric algebra SymR(M∗) = ⊕n≥0(M∗)⊗Rn/x ⊗ y = y ⊗ x, associated to the
R−dual M∗ = HomFp(M,R).

Proof. Let M̃R denote the Zariski sheaf associated to the R-module R ⊗Fp M , and W (M̃R) be the
associated étale sheaf via the process described in 3.3.1. By construction, W (M̃R) ≅M ⊗Fp

Ga.

By [Dem70], Corrolaire 4.6.5, W (M̃R) is represented by Spec(SymR(M∗)).
Then Hom

T ét
S
(M ⊗Fp

Ga,Ga) = HomT ét
S
(W (M̃R),Ga) ≅ Γ(Spec(SymR(M∗)),Ga) ≅ SymR(M∗).

Lemma 6.2.3. For any Fp-module M of finite type and X =M ⊗Fp Ga, Hq(X,Ga) = 0 whenever q > 0.

Proof. By the proof of the above lemma, any such X is represented by an affine scheme, and we may
apply 3.3.4. We conclude using 3.3.1 and the fact that higher cohomology of quasi-coherent sheaves on
an affine basis vanishes.

We may now go back to the main result. By definition, H∗(K(Ga, k),Ga) = Ext∗(Fp[K(Ga, k)]∼,Ga)
We know that ExtnFp

(Fp[K(Ga, k)]r,Ga) vanishes for any n > 0, since every K(Ga, k)r is of the form

G
s(r,k)
a , which is representable by an affine scheme.

Hence, the spectral sequence ExtpFp
(Fp[K(Ga, k)]q,Ga) Ô⇒ Hp+q(K(Ga, k),Ga) is degenerated after

the first page, so that the hypercohomology groups can be computed as the cohomology of the cochain
complex HomFp(Fp[K(Ga, k)]∼,Ga).
By construction, HomFp(Fp[K(Ga, k)]q,Ga) is an object of the form D(M ⊗ Ga) for M = K(Fp, k)q a
Fp−module of finite type. Hence, by adjunction and 6.2.2, one has

HomFp(Fp[K(Ga, k)]q,Ga) ≅ HomT ét
S
(K(Fp, k)q ⊗Fp Ga,Ga) ≅ SymR(K(Fp, k)∗q) ≅ Sym(K(R,−k)q)

where K(R,−k) is the cosimplicial object given by reversing the direction of every arrow in K(R,k).
The extension via 2.4.4 of SymR to chain complexes is given by SymR(X) ∶= N ○ SymR ○K(X). Hence,
the i-th right derived functor of Sym, applied at R[−k], is given by the i-th cohomology group of the
complex Sym(K(Fp,−k)). Hence the result.

Remark 6.2.4. Note that H∗(K(Fp, k),R) is realised as derived functors of ν(R) ∶= Sym(R)/xp = x.

Historically, the derived functors of Sym were understood before the geometric interpretation as a Steenrod
algebra, by S.Priddy in [Pri73], in 1973.
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