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Foreword Before we begin, I would like to thank the ENS Lyon, and particularly Colin Riba,
for taking me in for an internship on such short notice. For the record, this internship took
place during the covid-19 crisis, and as such was conducted almost entirely through telework.
This report summarizes my internship under supervision of Colin Riba, and I will present our
joint work, the main goal of which was to set a robust framework for future works.

1. Introduction

In [PR17] and [Rib20], the authors study a Curry-Howard approach to automaton theory, in
the setting of infinite words and trees. The aim is to have a setting in which existential quantifi-
cation has a computational content, in the sense that witnesses may be extracted from proofs
of existential statements. This relies on constructions from categorical logic and semantics,
presented for instance in Jacob’s book [Jac01], which looks at logics and proofs in a categorical
framework, where morphisms represent proofs or logical implications. When dealing with finite-
state automata in the setting of [PR17, Rib20], we do not know how to define some operations
on automata functorially, typically the simulation of alternating automata by non-deterministic
ones, as in [MS95]. In order to extend the finite setting while still keeping some structure, a
possibility is to consider profinite objects (see e.g. [Alm05]). It is natural to work with algebras,
like semigroups, when dealing with profiniteness, and as such we shall take an algebraic point
of view on automata and recognition. The goal of this report is to set up a framework which
encompasses profiniteness, categorical logic and language recognition in order for future work
to be done on the subject. Although the long-term goal is to work on structures such as infinite
words and trees, we consider finite words as a first step in establishing a framework.

Language recognition by automata, and specifically the study of rational languages, is a field
which is widely developed, and needs no presenting. A field which is generally less known is
algebraic recognition, where languages are studied not through automata but through algebras
such as monoids and semigroups. A known basic result is that the class of languages recognized
by finite semigroups or monoids is precisely the class of rational languages. As such, algebraic
recognition is related to universal algebra, which studies classes of algebraic structures rather
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than algebraic structures themselves. A fundamental result in universal algebra, Birkhoff’s HSP
theorem [BS81], states that classes of algebras defined by sets of identities, are precisely the
classes which are stable by homomorphic image, subalgebra and product (hence the HSP name),
called varieties.

Researchers in algebraic recognition looked for results similar to Birkhoff’s in their field. Reg-
ular languages being recognized by finite semigroups and monoids, Birkhoff’s results are not
directely applicable. One of the first key theorems in that direction is Schiitzenberger’s theorem
(1965), which states a correspondence between a fragment of logic on words and rational lan-
guages. Finite and infinite words may be endowed with a logic, like Monadic Second-Order logic,
where variables range over positions in the word or sets thereof. Straubing’s book [Str94] gives
a good idea of how logic and recognition interact with each other. Schutzenberger’s theorem
states that languages which may be defined using first order logic are precisely regular languages
which are ”star-free”, and equivalently whose syntactic monoid is aperiodic. This result has
motivated a more in-depth study of the links between algebraic recognition and logic. Some
10 years later, Eilenberg proved his Variety Theorem, which exhibits a correspondence between
pseudo-varieties of monoids, which are classes of finite monoids stable by homomorphic image,
submonoid, and finite product, and varieties of rational languages. This powerful result gave
rise to many ” Eilenberg-type theorems”, whose purpose were to give similar correspondences
between specific classes of (finite) algebras and specific classes of (rational) languages. An early
reference on algebraic recognition was Eilenberg’s book [ET76]. See e.g. Straubing’s [Str94] and
Pin’s [Pin86] books for modern accounts.

Eilenberg’s result was extended in 1982 when Reiterman showed that pseudovarieties are
precisely classes of finite algebras which are defined by sets of profinite equations, that is to say
equations with variables ranging over some profinite object related to the studied pseudovariety.

In [AlmO05], J. Almeida gives a survey which recalls in particular a construction of profinite
free semigroups for pseudo-varieties and studies recognition of finite and profinite languages.
Profinite objects are naturally endowed with a very specific topology called Stone topology.
Stone’s duality theorem shows a one-to-one contravariant correspondence between Stone spaces
and Boolean algebras which allows profinite algebras like monoids and semigroups to have a
structure which is simple to use, while still being very rich mathematical objects. A good
reference for the topological and profinite approach to automata and recognition theory is J-E.
Pin’s survey paper [Pin09].

Recent work on the subject was done by M. Gehrke, D. Petrisan and L. Reggio. In [Geh16],
Gehrke shows results on an extended Stone duality, between topological algebras and Boolean
algebras with additional operations, which extend the usual Eilenberg-Reiterman setting. In
[GPR16], the three authors derive a notion of Schiitzenberger product, which reflects quantifi-
cation for languages in algebraic recognition.

Report Outline In a first section, we give some background material on algebraic recognition.
Then, we introduce the categorical concept of fibration, and use it to describe a structure on
algebraic recognizers. In sections 4 and 5, we define profinite objects, as well as a monad on
profinite sets which acts like the powerset does in the finite case. Finally, in section 6 we apply
those results to the fibration introduced in section 3.



2. Preliminaries

On Category Theory A reader already familiar with category theory will recognize some
concepts such as adjunctions and universal properties of limits in this report. By lack of space
we do not include background on category theory, but we advise having a reference like [ML98]
or [Awo06] at hand.

2.1. Algebraic Recognition

Let us begin by recalling the classical notions of finite semigroups and monoids, and language
recognition.

Definition 2.1. Let S be a set, and x a binary internal operation on S. If x is associative then
we say that (S, *) is a semigroup, and when there is no ambiguity that S is a semigroup.

If, moreover, S contains an element e such that for all s € S, sxe =exs = s, e is called the
unit of S (it is necessarily unique), and we say that S is a monoid.

We consider alphabets, usually denoted ¥, I', which are non-empty sets. Elements of X are
called ’letters’, and (finite) sequences of letters are called (finite) words. ¥* denotes the set
of all words over ¥, including the empty word. The set ¥* endowed with concatenation is a
monoid with the empty word as a unit, it is the free monoid over . Similarly, ¥, which
denotes the set of all non-empty words over ¥, is a semigroup (a monoid without unit), and is
the free semigroup over 3. Given a semigroup S, a monoid M, an alphabet ¥ and functions
f:2—=Sg:¥— M, wewrite ft : 7 — S and f*: * — M for the unique morphisms such
that
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In the following, we often simply write f for f* and f*. We work using semigroups, but our
results are mainly also applicable to monoids.

Definition 2.2. Consider
A - (27 S) Ia f)

where X is an alphabet, S is a semigroup, f : 3 — S is a function and I is a subset of S. We
say that A recognizes a language £ C S+ if £ = f+(I).

We may similarly define recognition by monoids, with the unit of ¥* being the empty word e.
As a short example, we may look at how to turn an automaton into a semigroup. Recall that
a finite deterministic automaton is a tuple A = (X, Q, 9, ¢;, F) where @ is a finite set of states,
¢; is the initial state, F' C @ the set of final states, and § : ¥ x ) — @ is a transition function.
An automaton operates on finite words by reading each letter starting from the initial state,
and following the transition function. J extends to Y% x @ in the obvious way, and a word
w € X1 is accepted by A if §(w, ¢;) € F. The language of A is the set of all words accepted by
A. We can see 0 as a function from ¥ to (QQ — @), which is the semigroup of all functions from
@ to itself. The language of A is then the inverse image of {f : Q — Q | f(q:) € F'}.
Conversely, one may easily turn an algebraic recognizer (X, 5,1, f) into a finite determin-
istic automaton recognizing the same language [Str94]. Consequently, the class of languages
recognized by finite semigroups is precisely the class of rational languages. As such it is a



boolean subalgebra of P(X1), and we may give explicit constructions of recognizers for boolean
combinations.

Lemma 2.3. Let
A = (27 S? I’ f)
B = (%T,J,9)

If A recognizes L and B recognizes L', then

(a) A® B recognizes LN L', where

A@B = (Za‘SXT:IX‘]’ <f7.g>)

(b) =A recognizes 3T\ L, where

A = (5,8, 5\ )

2.2. Quantifiers as Adjoints

We now recall some concepts of categorical logic which are expanded upon in this report.
Jacobs’ book [Jac01] is a good general reference for categorical logic and semantics. A key
idea in this area, due to Lawvere, is that universal and existential quantifications come as
respectively left and right adjoint to some weakening functor. On languages, existential and
universal quantification correspond to operations called projection and coprojection.

Consider alphabets > and I'. Write 7 : X x I' — X for the first projection. Let

™ . PEY) — P(ZxD)h)
L — {{u,0)e(ExD)" Juel)

where (u,v) is the pairing of u and v, only defined when the two are of equal lengths, charac-
terized by (u,v); = (u;,v;). Then 7* is a functor from P(X+) — P((X x I')") viewed as posets
with regard to inclusion, called the weakening functor.

Definition 2.4 ((Co)Projection of a Language). Given alphabets > and I, the projection Jx )
and the coprojection V(x. 1y operations on languages are given by

e @ P(ExDT) — PET)
L — {uext | ezl (uv) e L}

Ver @ P(ExID)T) — P(Et)
L — {uext|voexl¥, (uv)ecl}

In the following we often write 3r (resp. Vr) for sy (resp. for V(s ).

Remark 2.5. The word "projection” in this context unfortunately refers to two different objects:
the projection of a language L on 3 x I is the language IpL, and the projection function ™ sends
a word on % x I' to a word on X2, and induces the ©° functor.

As expected with categorical logic, the operations dr and Vr are respectively left and right
adjoints to 7°, as shown by the following property. Recall that two functors F' : C — D and
G : D — C form the respective left and right part of an adjunction if and only if for C € C,D € D
there is an isomorphism



¢ : Homp (FC, D) ~ Homc(C,GD)

that is natural in C' and D [Awo06, Chap. 9]. Since P(X+) and P((X x T')") are posets, the
situation is simple: a functor Jr is left adjoint to 7w® if and only if they form a Galois connection,
i.e. if and only if for £ € P((X x T')") and £’ € P(E1), we have:

LCr(L) < TIr(L)c L

Lemma 2.6. Consider alphabets X, I' and write w : % x I' — X for the projection function.
Then J(sr) is left adjoint to ©°, and V(s 1y is right adjoint to m°.

Proof. We show the adjunction between dr and #w®. The other adjunction may be proven from
that and from the fact that IpL = —Vp(=L).

Assume £ C 7*(L'). Let u € Ir(L). By definition, there is a v € 't such that (u,v) € £ C
7 (L"). So wis in L. Hence 3p(L) C L.

Now assume Ip(L) C L. Let (u,v) € L. Then uw € Ip(L) C L', so (u,v) € 7*(L’). Hence
L Cre(L). O

2.3. Powersets and Quantifications

We now recall how, from a recognizer for a language £ on X x I' we may construct a recognizer
for IrL. This operation reflects the usual powerset operation on automata.

Lemma 2.7. If (S,-) is a semigroup then P(S) is a semigroup for the operation

P(S) x P(S) — P(5)
(X,Y) — {s-t|seX andteY}

Moreover, if S is a monoid with unit I, then P(S) is a monoid with unit {I}.

Definition 2.8. Consider
'A = (E X F? S? I’ f)

where 3, T' are alphabets, S is a finite semigroup f : 3 — S is a function and I is a subset of

S. Let
3(271")./4 = (E, P(S), <>I, TI'(f))
VenA = (8, P(S), Ol, n(f))

where
O == {XeP(S)|XNI#0}
0ol = {XeP(S)|XCI}
and
m(f) : X — P(S)
a +— {f(a,b) | beTl}
Once again, we often write Ir (resp. Vr) for Iy (resp. for V(s ).

Note that V(5 r)A = =3(5,r)7A (see Lem. 2.3). Note also that

()T west — {ff(w)|wer(u)}eP(S)



Lemma 2.9. If A recognizes L C (X x T')" then J=.mA recognizes 3(x r)L and V(5 r)A recog-
nizes V(s r)L.

Proof. Write A= (X xT,S,1,f). Given u € ¥T, we have:

u€3IrL <= forsomew € 7 (u), we L
<= for some w € 71 (u), fT(w) €T
= ()T (wnI#0
— 7(f)T(uw) eI

Hence 3(5r)A recognizes 3sr)L. The result for V(5 1) follows from Lem. 2.3 and the fact that
V(E’F)A = ﬁﬂ(g’p)ﬁA. (]

3. Fibrations for Recognizability

3.1. Fibrations

In this section we give an informal presentation of fibration theory and why it is used in cate-
gorical semantics.

Consider a category B, which we call our base category. Think of B as of a category of typed
terms. A fibration over B is a functor p : E — B verifying additional conditions which express
that morphisms in B are reflected in E along p. For an object A in B, we call fibre of p over
A the category E4 of objects sent to A by p and such that morphisms are sent to id4. The
fibre E4 may be thought of as a logic of predicates over A, and the total category E as the
collection of such logics. When A, B are objects of B, and v : A — B a morphism in B, there
is a corresponding functor u® : Eg — E 4 called substitution functor, which lifts objects over B
onto A.

Fibred categories are used in categorical semantics. Essentially, an object A € E over an
object A € B may be thought of as a predicate over A, and a morphism A — B in E represents
a logical implication A = B. Morphisms in B correspond to terms with possibly free variables,
and the substitution functor they induce can indeed be thought of as a substitution (for example
b=f (av a))

A related notion is that of indexed categories, which express that the (—)® operator is itself
functorial. An indexed category is a pseudo-functor A : B — Cat (notice that A is contravari-
ant). In this report, we only focus on what are called strict indexed categories, where A is a
functor, and when we write ”indexed categories”, it is implied that we are talking about strict
indexed categories. Informally, A(A) and E4 represent the same kind of information. In fact,
there is a systematic way to turn an indexed category A : B — Cat into a fibration, called
the Grothendieck construction. We consider the functor p : [ A — B with [ A having couples
(A, X) with A € B and X € A(A) as objects and where arrows (A4, X) — (B,Y) are couples
(u,f) withu: A — BinBand f: X — u*(Y) = A(u)(Y) in A(A). The functor p itself is the
first projection. The Grothendieck construction on A is [ A.

We give a more detailed and formal presentation in App. C.

3.2. Fibrations of Languages

We now give a simple example of fibration involving languages.
As stated in the introduction, an important result of algebraic recognition is Eilenberg’s
theorem. A pseudo-variety is a class of finite semigroups which is stable by homomorphic



image, subsemigroup, and finite product. A variety of languages [ET76] is a collection of sets
¥ (X) of languages for each alphabet 3, which is stable by finite union, complementation and
residuation, and such that ¥ is stable by inverse homomorphic image. Eilenberg’s result states
that there is an exact correspondence between varieties of languages and pseudovarieties. See
Pin’s [Pin86] and Straubing’s [Str94] books for more details.

Consider a variety ¥ of regular languages. Then for each alphabet ¥ we have a set ¥ (X) of
regular languages over ¥ which is closed under Boolean operations and under quotients, and
such that for each semigroup morphism ¢ : ¥+ — I'" the inverse image ¢~! : P(I't) — P(X1)
restricts to a function ¢® : #(I') — 7(¥). Recall that ¢! is automatically a map of Boolean
algebras, and thus in particular preserves inclusion.

Recall that a poset P can be seen as a category with elements of P as objects, and at most
one arrow from p € P to p’ € P, when p < p/. Keeping this in mind, ¥ can be seen as a posetal
fibration over the category Alph of finite non-empty sets and functions, with the fibre over X
being the partial order #(X) seen as a category.

3.3. Fibration of Recognizers

We have seen in §3.2 a fibration of languages. In this section, we discuss several possibilities
for a fibration of the recognizers defined in Def 2.1. The goal is to find a good setting for a
category of recognizers on ¥ where objects are triplets (S, I, f) where S is a semigroup, I is a
subset of S and f is a function > — S. Recall that the language recognized by such an object
is the set £ = f~'I C ©*. We want morphisms (S, I, f) — (T, .J,g) in this category to reflect
language inclusion. A first possibility is to choose semigroup morphisms S — T which send
I to J. However this causes some issues with quantification (see App. C.4.1). Our notion of
morphism is based on the following observation.

Lemma 3.1. Let (S, 1, f) and (T, J, g) be two recognizers on 3. Let L (resp. L') be the language
recognized by (S, 1, f) (resp. (T,J,q)). Then L C L' if and only if Im(f,g) C (I* = J*), where:

o Im(f,g) is the subsemigroup of S x T equal to {(f(w),g(w) | w e X}
o ["=IxT, J=5xJ
e forABCC, A=B={zxeC|(x€e A=z € B)}

Proof. We have

Im(f,g) C (I*=J*) <= forallweXt, f(w)el=gw)eJ
<« foralw,wel=we/l
— Lcr

O]

We may now define the indexed category A which we build upon in the following sections. For
an alphabet X, let the category A(X) be the following:

e Objects are triplets (5, I, f) where S is a semigroup, [ is a subset of S and f is a function
=S

e There is an arrow ¢ from (S, 1, f) to (T, J, g) iff Im(f,g) C (I* = J*).



Notice that as an immediate corollary of Lem. 3.1, we have £ C £’ iff there exists a subsemigroup
R C SXT, also called semigroup relation between S and 7', such that Im(f,g) C R C (I* = J*).
Thus we could have extended arrows and considered all semigroup relations R satisfying this
condition, but once again this causes some issues when doing quantification as seen in App.
C.4.2.

We now check that A is an indexed category, and we then apply the Grothendieck construc-
tion.

Proposition 3.2. The map A : Alph — Cat is a strict indexed category, with the function
u: X — I yielding the functor A(u) = u® : A(T") = A(X) with u*(S, 1, f) = (S,1, fou).

Proof. 1t is clear that u® is functorial, and that the action of A is strictly functorial, as long as
it preserves arrows, namely:

If Im(f,g) C(I*=J*) then Im(fou,gou)C (I*= J¥)
Since Im(f ou,gou) C Im(f,g) C (I* = J*) this is verified. O

Applying the Grothendieck construction on this indexed category gives the following fibration
E — Alph:

e Objects of E: tuples (X, 5,1, f) with ¥ € Alph, S a semigroup, I C S, and f: ¥ — S.
We denote these objects with letters A, B, etc...

e Arrows from (X,S,1, f) to (I',T,J,g) are couples (u,p) with u : ¥ — T" in Alph, and
@ : (S, f) = u(T,J,g) = (T, J,gou) in A(3)

In the rest of this report, we use the notation A for the category E, and A(X) for the fibre on
3. This fibration has a quite simple structure, and in fact it seems that it may be too simple.
We plan to look into a fibration like those that we tested, described in App. C.4.1, making use
of semigroup actions, similar to what is done in [?].

3.4. Quantification for Finite Recognizers

In this section we study existential quantifications as left adjoints to weakening functors. We
consider the fibration A introduced in the previous section. Let us look at the effect of the
projection function 7 : ¥ xI" — 3. This function yields a functor 7® : A(X) — A(XxT") called the
weakening functor. Notice that if £ is recognized by (X, S, I, f), then the language recognized
by 7*(%,S,1, f) is precisely 7°*(L) as in §2.2. As expected in categorical logic, we want to
define an existential quantifier functor dr which is a left adjoint to 7°®. Following the notations
introduced in Def. 2.8, we define 3r on objects by Ip(X x I, S, I, f) = (X, P(S),OI,7(f)),
with OI = {F € P(S) | INF # 0} and 7(f)(u) = {f(w) | w € 71 (u)}. The results of §2.3
ensure that Ip(X x T', S, I, f) recognizes exactly the language Ir(L), where £ is the language
recognized by (X x I', S, I, f).

Following §2.2, since A(X) and A(X x I') are posets, the required condition for an adjunction
is that for A € A(X xT), B € A(X), and L, L' recognized respectively by A and B, we have
L C (L") < Fp(L) C L. The equivalence £ C 7*(L') <= 3Ip(L) C L' is the result of
Lem. 2.6, and so we have proven the following:

Proposition 3.3. The functor 3p : A(X x T') — A(X) is left adjoint to 7 : A(X) — A(X x I).



We may similarly define universal quantification Vr using the O operator, and this yields a right
adjoint to 7w°.

In fibration theory, it is standard to require quantifications to satisfy an additional condi-
tion called the Beck-Chevalley Condition, or BCC. The BCC expresses the following: given
a predicate A(c,z) over ¥’ x I and a function u : ¥ — ¥/, we may construct the predicate
Jz, A(u(w), x) by first quantifying on x and then reindexing along wu, or first reindexing along
(u,idr) and then quantifying on x. We want those two paths to meet up at the end, in other
words, given the following pullback square:

YxI 2= oy

_
(u,idr) \L lu

E,XX/HE/
s

>

we want the functors Iy r o (u, idr)® and u® o dyr 1 to be isomorphic. We now look at the BCC
in A. Let A= (X' xT,S,1I, f) be a recognizer. Then,

Inro(u,idr)*(4) = (5,P(S),0),ms(f o (u,idx)))

U.OHZ/I(.A) = (E,P(S),O(I)’WE’(f)Ou)

The BCC is thus satisfied as soon as the two functions in these recognizers are equal. This is
easily verified: for o € BT,

ms(f o (u,idx))(0) = {f(u(o),x) |z el

= mw(f)ou.

3.5. Sum Fibration

The fibration A of §3.3 has universal and existential quantifiers, however it does not have
witnesses of existential quantification, since arrows do not carry any information. One of the
uses of the Sum construction [Hofl1], besides giving free quantification, is to be able to reflect
the computational content of quantification, as we will see in §3.6. The Sum construction is a
generalization of the simple fibration construction, a standard concept of fibration theory.

The simple fibration is the first projection functor S(B) — B where B has finite products (see
[Jac01] for more details) and S(B) is the following category:

e Objects are couples (A, X) with A, X € B

e Arrows (A, X) — (B,Y) are pairs (h,hg) with h : A — B and hp: Ax X — Y, both h
and hg being in B.

Identity and composition are given in App. C.2.
The Sum construction [Hofl1] turns a fibration p : E — B into a fibration Sum(p) : S(E) — B,
as an extension of the simple fibration.

e Objects of S(E) are triples (A, X, A) with A, X € Band A € Egxx

o Arrows (A, X, A) — (B,Y,B) are triples (h,ho,¢) with h: A — Band hg: Ax X =Y
inBand ¢: A— ((hom, ho))*(B) in Eaxx.



Identity and composition are given in App. C.3.

In an object (A, X, A) of S(E), A is a predicate over A x X, and (A4, X,.A) is seen as the
proposition dx € X, A(a,x). The fibration S(E) is equipped with an existential quantification
functor 3¢ : Eaxc — Ea which maps (A x C, X, A) to (4, X x C, A) and which is left adjoint to
m% : Ea = Eaxc. Moreover, the Beck-Chevalley condition is always true in the Sum fibration
(see [Hof11]).

3.6. Sum Fibration for Recognizers

In this section and the next, we apply the Sum construction to the fibration A that we described
above, and exhibit its benefits regarding quantification and determinization. For an alphabet
Y., we denote 7y, the projections onto ¥, and we make sure that it is always clear what the
domain of the projection is. The category S(A) is defined as follows:

e Objects are tuples (X, X, S, I, f) with ¥ and X alphabets, S a semigroup, I a subset of
S, and f: 3 x X — S a function.

e Arrows from (X, X, S, I, f) to (I, Y, T, J, g) are triples (h, ho, p) with h : ¥ — T" a function,
ho : ¥ x X — Y a function, and ¢ : (¥ x X,S,I,f) - (X x X,T,J,g0 (hom, hp)) an
arrow in Axyx.

We define the language £ C T recognized by (3, X, S, I, f) by:
ceLl <<= Fweng (o), fw)el

Therefore, the object (X, X, S, I, f) acts like the object Ix (X x X, S, I, f) from the previous
fibration.

Quantification As stated before, an advantage of the Sum construction is that it gives free
existential quantification. Indeed, we may define a quantification operator 315 : S(A)sxr —
S(A)x as follows:

W(EXT,X,8,1,f)= (ST x X,S, I, f)

and the definition of recognition in this category gives immediately that when A recognizes L,
J2A recognizes 32L.

The effect of 32 on arrow (hg, ¢) : (ExT, X, S, 1, f) = (SxT,Y,T,J,g) is 32 (ho) = (ho,mr) :
Y xT'x X — Y xI. The resulting functor 32 : S(A)y; — S(A)sxr is left adjoint to the weakening
functor.

Let us explain how the Sum construction encompasses witnesses with regards to existential
quantification. The ”"True” formula on ¥, which describes the universal language X7, is rep-
resented by the object I = (3,1,{1},{1},1), which is terminal in S(A)y. A morphism from
this object to A = (X, X, S, 1, f) is a function hy : ¥ — X along with the knowledge that the
language recognized by A is . This function gives a witness in the sense that for a given
word w € X, it gives a word x € X which is a witness for the formula 3z, f((w,z)) € I. In
proof-theoretical terms, we may extract a witness from the proof of an existential formula.
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3.7. Determinization in Sum

Informally, the X set in (X, X, S, I, f) represents some non-determinism introduced by existen-
tial quantification. In [PR17], the authors adopt a similar approach for a fibration of automata
working on infinite words. In the automaton case, X is a set of "moves” which uniformly rep-
resent non-determinism: when reading a letter, a non-deterministic machine may follow several
paths, which is what X quantifies. When X =1 is a singleton, the object is deterministic. We
now show how to determinize objects by constructing a powerset monad on Sum(A) which elimi-
nates non-determinism by sending an object on ¥, X to an object on X, 1, which is deterministic.
This operation is the analogue of determinization for automata.

Definition 3.4. The powerset monad P on Sum(A) is the functor which acts on objects by
sending (X, X,S,1, f) to (3,1, P(S),oI,mx(f)). For an arrow (hg,¢) : A :A(E,X, S, I, f) —
B=(S,Y,T,7,q), the image by P is (1,¢)) : (5,1, P(8), oI, w5 (f)) — (%, 1, P(T), &, mx(g))

To verify that this operation is well defined, we need to check that ¢’ is an arrow. In other
terms, we need to show the following lemma:

Lemma 3.5. Using the same notations as above, let L and L' be the languages respectively
recognized by A and B. Then IxL C Iy L’

Proof. Let o € IxL. Then mx(f)(c) NI # 0. Let w € (X such that mx(w) = o and
f(w) € I. Then, since there is an arrow ¢ : (X x X,S,I,f) — (¥ x X,T,J,g o (hom, hg)),
f(w) € I implies that g({ms(w), ho(w))) = g({(o, ho(w))) € J. And since mx({o, ho(w))) = o,
then g({o, ho(w))) is in mx(g)(0) as well. Therefore, mx(g)(c) € ¢J, and thus o € Jy L. O

><)Jr

An important property of this determinization operator is that it preserves languages:
Lemma 3.6. The languages recognized by A and P(A) are equal.

Proof. Let (,X,S,1,f) = A. Then P(A) = (X,1,P(S), 01, ms,(f). Let £, L' be respectively
recognized by A and P(A). Let o € ¥*. Then:

cel <<= dxelX flox)el
— ()N £0
= m(f)o) e ol
— dxel,mx(f)(o) el
— oe/l

O]

It remains to show that P is a monad. Recall that a monad T': C — C, is a functor equipped
with two natural transformations, a unit n : 1c — 7" and a multiplication u : T? — T, satisfying
the two following conditions of commutativity:

popr = poln

ponyr = poTn = id
In our case, n and p exist due to Lem. 3.6, and they trivially satisfy the monad axioms due to
the fact that P preserves languages and removes informations from arrows, in the sense that
there is at most one arrow between two deterministic objects.

Since the powerset monad restricts to finite semigroups, we can consider the full subcategory
of S(A) of finite-state recognizers and in this subcategory we can still define quantification and
determinization. We come back to these concepts in §6, once we have given some background
on profinite theory.
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4. Profiniteness

In this section, we recall the notions of profinite topological spaces and algebras, which are
categorical limits of finite objects. Profinite objects are infinite, but, as cofiltered limits of finite
objects they have a specific topology called Stone topology whose structure is highly compatible
with algebraic recognition. See [DP02] for a modern approach to Stone topology.

4.1. Stone Topology

A topological space X is said to be a Stone space, or to have Stone topology, if it is compact
Hausdorff and has a topological basis of clopens. For any topological space, the set of clopens
is a Boolean algebra. But in the case of Stone spaces, this Boolean algebra entirely determines
the space. The map taking a Stone space to its Boolean algebra of clopens induces a cate-
gorical duality between Stones spaces and Boolean algebras, in particular there is a one-to-one
correspondence between the two. A continuous function f : X — Y between two Stone spaces
contravariantly induces a Boolean morphism f~!: KQ(Y) — KQ(X) between the clopens of
those spaces, and conversely a morphism between two Boolean algebras contravariantly induces
a continuous function between the corresponding Stone spaces.

The authors Gehrke, Petrisan and Reggio have done considerable work on Stone duality
and algebraic recognition, like in [Geh16], where Gehrke gives an extension of Stone duality
to general topological algebras and applies the result to recognition, or in [GPR16], where
the authors study quantification in recognizers through Stone duality and derive generalized
versions of Schiitzengerger and Reutenauer’s theorems. The reader may refer to App. B.3 for
some work that we did on the subject but did not include in the final version. In this appendix,
we study the Stone spaces induced by Boolean algebras of languages and give a connection with
free structures on pseudo-varieties.

4.2. Profinite Spaces

We now define profinite spaces, which have a natural Stone space structure. We refer to
e.g. [Wil70] and [Run05] for results on general topology.
For the following notion, we refer to e.g. [Joh86, §1.3.9 & Chap. VIJ.

Definition 4.1 (Cofiltered Category). We say that a small category J is cofiltered if:
e J is non-empty (i.e. it has a least one object),
e for any object i,j of I, there is an object k and arrows k — i and k — j in J,

e for any pair of parallel arrows f,qg:1 — j in J, there is an arrow h : k — ¢ in J such that
fh=gh.

Let F' : J — Top be a functor from a cofiltered category J to the category of topological
spaces, with the F'(i) finite and discrete. We consider the product [, F'(i), that we endow
with the product topology. Recall that in such a product topology, basic opens are of the form
[Licy Si, where S; € F(i) and S; # F(i) for at most finitely many 7. The limit of F' is the
following subset of [ [, ; F(i), with the topology induced by the product topology that we just
described.

Lim(F) = {(xi)ieg € HieJ F(Z) ‘ Vh:i—) Js F(h)(xz) = .%'j}

12



In the following, we write
m o Lim(F) — F(i) (for i € J)

for the projection, and given = € Lim(F’), we write either z; or x(i) for m;(x).

Definition 4.2. A profinite space is a set which is the limit of a cofiltered diagram F : J — Top
with the F(i) finite and discrete.

If we do not restrict the morphisms or the sets that are images by F', then m; : Lim(F') — F'(4)
may not reach all elements of F(i). Conversely if we ask that for each h : i —3 j, F(h) is
surjective, then the projections m; are as well. In fact this does not change the expressivity of
limits:

Lemma 4.3. Let X be a profinite space. Then X is the limit of a cofiltered diagram F : J —
Top with F(i) finite and discrete for i € 3 and F(h) surjective for each morphism h in J.

Proof. We write X = Lim(F'). For i € J, we consider F'(i) the image of m; : Lim(F) — F(i).
For 4, j objects of J and h,h’ : i — j, the morphisms F'(h) and F'(h') are equal when restricted
to F'(i) since mj = hom = h' om;. We therefore define F’(h) to be this restriction. F’(h)
takes values in F’(j), and so F’ is functorial, and it is easy to see that F' and F’ have the same
limit. d

Remark 4.4. In the case when F' is such that morphisms F'(h) are all surjective, all morphisms
from i to j in I are mapped to the same function F(i) — F(j).

We now consider X = Lim(F') with ' : J — FinSet taking morphisms to surjective functions,
and J cofiltered. We write X; = F'(i), and ¢; ; the unique morphism between X; and X; when
it exists. X is a subset of the product [[;.y X;, and as such we may endow it with the product
topology, where each F'(i) is considered w.r.t. discrete topology. Explicitly, basic opens are sets
of the form X N HieJ Si, where S; C X; and S; # X; for at most finitely many i. Let K be the
subset of objects of J such that S; # X;. Then X N[[;c55 = Nicx ﬂi_l(Si).

We may restrict ourselves to K singleton, in the following sense. Since J is cofiltered and
K is finite, there is a i9 € J such that for all ¢« € K, there is an arrow h;,; : 10 — ¢ in J. We
consider the set S;, = {a € F(ig) | Vi € K, ¢3,i(a) € S;. Then:

() 7 '(Si) =73, (Sio)
ieK
Indeed:

€ Niegem (S) = Vie K,z €S8,
= w, €5
-1
= wzem, (i)
As the consequence, we have the following;:

Lemma 4.5. X has the family B = (; 1(S))ica.scx, as a basis of opens. Moreover, B is a
Boolean algebra of clopen subsets of X.

Proof. Since the complement in X of a basic open of the form m; '(S) is 7; ' (F (i) \ S). O

Proposition 4.6. The set Lim(F') equipped with the product topology is a Stone space.
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It is well-known [Joh86] that Stone topology and profinite topology are the same thing. We
nonetheless give the proof that a profinite set has a Stone topology as it is quite simple.

Proof of Prop. 4.6. First, since the F(i)’s are compacts (as finite discrete) spaces, it follows
from Tychonoff’s Theorem (see e.g. [Wil70, Thm. 17.8]) that Lim(F’) is compact. It is moreover
clearly Hausdorff as if o # y, then x; # y; for some i € J, while z € 7, *({2:}), v € 7, ' ({w:}),
and the basic opens m; '({x;}) and 7; ' ({y;}) are obviously disjoint. Finally, it follows from
Lem. 4.5 that lim(F") has a basis of clopen sets. O

We state the following useful fact for the record.
Lemma 4.7. If K is clopen in Lim(F') then K € B.

Proof. Since K is open, it may be written as a union of members of B:

K = UieICi

But since K is a closed subset of a compact space, it is itself compact, so that we may take I
to be finite. It then follows that K € B since B is a Boolean algebra. O

4.3. Profinite Algebras

Consider now an algebraic variety V (i.e. a class of algebras over a fixed signature, and char-
acterized by a given set of equations), One can show (see App. B.1) the following:

Lemma 4.8. Let F : 3 — V be a diagram, with 3 cofiltered. Then Lim(F') is a topological
V-algebra with a Stone topology if the F(i) are finite and discrete.

Then we may use this result to define profinite semigroups, as follows:

Definition 4.9. A profinite semigroup is a topological semigroup which is a cofiltered limit of
finite semigroups each equipped with discrete topology.

A known result due to Almeida is that a topological semigroup is profinite if, and only if, it
has a Stone topology [Alm05, Th. 3.1].

For a given pseudo-variety V and an alphabet X, it is possible to construct the free pro-
V semigroup over ¥ [Alm05], Qx(V), which satisfies the following universal property: There
exists an injection ¢ : ¥ — Qx(V) such that for every pro-V semigroup, and every function
f:¥ = S, f factors as f o uniquely, for a continuous semigroup morphism f : Qs(V) — S.
Free pro-V semigroups are important in the theory of recognition: Reiterman’s theorem states
that pseudo-varieties have equational descriptions in terms of free pro-V semigroups.

4.4. Open and Closed Languages

Recall that a recognizer is a tuple (X,S,1, f) with S a semigroup, I C S and f : ¥ — S
a function. We consider profinite recognizers, i.e. recognizers where S is profinite. A known
result (see [AlmO5]) is that when restricting the set I to exclusively clopens of S, profinite
recognizers have the same expressivity as finite ones, in the sense that they recognize exactly
the class of regular languages. However we may also want to study other classes, like open
and closed languages, which are recognized respectively by open and closed subsets I, and even
languages recognized by arbitrary subsets.
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5. Powersets of (Profinite) Semigroups

Now that we have introduced profinite semigroups, we need to describe the effect of the powerset
operation on such objects, as we use this operation for quantification/determinization. Consider
a semigroup S and its powerset P(S) as in Lem. 2.7. If S is finite, then so is P(S). But if
S is profinite, then P(S) has in general no reason to be profinite. We discuss an operation
P on profinite semigroups such that 7/5(5) corresponds to the closed subsets of S. If § is a
finite semigroup, then it is in particular profinite for the discrete topology and we will have

P(S) = P(S).

5.1. On Profinite Monads

In order to extend the finite powerset operation, which is a monad, from finite (discrete) Stone
spaces to all Stone (i.e. profinite) spaces, we recall two concepts of category theory: Kan
extensions and codensity monads.

Consider two small categories B and C, and a complete (having all limits) category £. Let
K :B — & and F : B — C be two functors. Then the right Kan extension of K along F' is
a functor Ranp(K) : C — &, which can be be computed on objects as the following limit (see
e.g. [ML98, Thm. X.3.1)):

Ranp(K)(B) := Lim ((B IF) =B 5)

where the comma category (B | F') is the following:
e Objects are tuples (D,h: FB — FD) with D € B.
e A morphism m: (D,h) — (D', k') is a B-morphism m : D — D’ such that Fmoh = F}/

Intuitively, the right Kan extension operation extends the functor K, which was defined on
B, to the category C. In the case when B = C and K = F, it is possible to endow Rang (K)
with a monad structure, called the codensity monad of K. Once again, it is possible to compute
it as the following limit:

Rang (K)(C) := Lim ((c LK) S c 5)

In [CAMU16], the authors introduce the notion of profinite monad which is based on codensity
monads. It is defined as follows. Let (7,7, 1) be a monad in Set. Write Set” for the category of
(Eilenberg-Moore) T-algebras (see App. D.2), and FinSet” for the category of finite algebras,
i.e. the full subcategory of Set” with objects the algebras (A,a : TA — A) with A a finite set
(note that T'A is in general not finite). We write U for the composite

FinSet” — = FinSet — Stone

where FinSet? — FinSet is the forgetful functor and FinSet — Stone sees a finite set as a
finite (discrete) Stone space. The profinite monad of (T, 7, i), notation (f, 7, 1), is then defined
as the codensity monad of

U : FinSet” — Stone

Let us unfold the definitions to get a good idea of the situation. U : FinSet” — FinSet —
Stone forgets the T'—algebra structure, and then embeds FinSet into Stone via the discrete
topology. We write A again for U(A,a). We consider a fixed Stone space X. The comma
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category (X | U) has objects (4, a, h) with (A,a) € FinSet” and » : X — A in Stone and
morphisms m : (A,a,h) — (B,B,k) T—algebra morphisms between (A, «) and (B, ) such
that Fig. 1 (a) commutes. We consider the diagram:

Px + (X L U) 2L FinSet” —L - Stone
where the cod functor maps (4, a, h) to (A, «). Then T(X) is the limit of Zy.

Remark 5.1 (Stone is complete). It is well-known that the category Stone of Stone spaces
and continuous functions is complete. See e.g. [BGO1, Lem. 3.4.5 & Thm. 3.4.7] or [Joh86,
Thm. VI.1.6, §VI.1.9 & Thm. VI.2.5].

We are interested in giving a more concrete presentation of f, when T' restricts to FinSet,
that is, when T A is finite whenever A is finite.

Remark 5.2. It is well-known that the monads of finite powerset, free semilattices, free dis-
tributive lattices, free Boolean algebras restrict to FinSet (see e.g. [Joh86, §1.4]). On the other
hand, this is not the case of free lattices (see e.g. [Joh86, Cor. 1.4.6]), free semigroups, free
monoids.

5.2. A Pointwise Presentation of T(X)

We fix a monad (7,7, ) on FinSet. Consider a Stone space X. We can assume that X is
presented as a cofiltered limit of finite (discrete) spaces as X = LimF for F' : J — Stone with J
cofiltered and F(i) a finite (discrete) space for each i € Obj(Jd). For i € Obj(J), let X; = F(7).
We can assume wlog that each projection m; : X — X is surjective. Note that this implies that
there is at most one connection morphism m;; : X; — X; from X; to Xj;, which is moreover
necessarily surjective. We shall see that

~

T(X) ~ LimiTXi

One may show moreover that the unit (7y) and multiplication (fix) of the profinite monad T
at X are induced by the unit and multiplication of the monad 7" at the components (X;); of X.

As we will see in §5.3, the presentation of T'(X) as Lim;TX; is quite conventient to work
with.

Proposition 5.3. Let (T,n, 1) be a monad on FinSet and let X = LimF with F' : 3 — Stone
where J is cofiltered, and where for each i € 3, F(i) is a finite (discrete) space and the projection
mi + X — F(i) is surjective. Then

TX ~ LimTF

The proof of Prop. 5.3 is based on the usual fact that limits are preserved by reindexing with
initial functors (see e.g. [MLI8, §IX.3] for the dual notion of final functor).

Definition 5.4. A functor L : A — B is initial if for each object B € B, the comma category
(L | B) is nonempty and connected.

The key property of final functors is that they do not affect limits, in the following sense.
See [ML98, Thm. IX.3.1] for the dual result on final functors and colimits.

Theorem 5.5. Let G : B — C be a functor, and let L : A — B be an initial functor. The
canonical morphism Lim(G) — Lim(G o L) is an isomorphism.
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Figure 1: Commutative Triangles

We shall apply Thm. 5.5 to a functor
L :J — (XU

As seen earlier, the category (X | U) has objects of the form (4, a, h), where (A4, a) € FinSet”
is a finite T-algebra and h : X — A is a continuous function, and morphisms m : (A, a, h) —
(B, 8, k) are T-algebra morphisms from (A, «) and (B, 8) such that Fig. 1 (a) commutes.

We consider the functor L : J — (X | U),

i — (TXi, px,, nx, 0 ™)
(i — ]) — Tmm'
As usual with monads, the naturality of p implies that T'm; ; is indeed a T-algebra morphism
from (T'X;, px,) to (T'Xj,px,;). Moreover, the commutation of Fig. 1 (b) follows from the
naturality of 7 and the commutation of Fig. 1 (¢)
Consider now the composite

L T U
J— (X |} U) — FinSet” —— Stone

It takes m; j : 7 — jin J to T'm,; ; : TX; — T'X; in Stone, so that

L T s U Fo_ A s U
J— (X JU) — FinSet" —— Stone = J —— FinSet —— FinSet" —— Stone

Hence Lim(UrL) = LimUTF. Since f(X) = Lim(Un), it remains to show that L is initial.
This is deferred to App. D.

5.3. Profinite Powerset

We now look at the specific case of the finite powerset monad P. Let X be a profinite Stone
space, limit of (X;);eg, with J a codirected category.

Following from the previous section, we define P as the profinite monad corresponding to P.
Then ﬁ(X) is the limit of (P<Xi))iEJ7 i.€. 75(X) = {(Sz)z e IIX; ‘ Ym : X; — Xj,TfL(Si) =
S;}. One can show that monadic multiplication is computed pointwise by union, and that the
monadic unit sends = = (;)ics € X to ({z;})ics € P(X), but we shall not use these structure
morphisms in this report.

An important observation for P to be well defined as a monad through the pointwise pre-
sentation introduced in the previous section, is that the P operation on finite sets preserves
surjectivity. Indeed, recall that we assumed for Prop. 5.3 that X was presented as the limit of a
diagram with surjective morphisms. Since P preserves surjectivity, ﬁ(X ) is once again the limit
of a diagram with surjective morphisms, and as a consequence (see [CAMU16]) its projections
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are surjective as well. Thus, it is possible to see PP(X) as the limit of (P(P(X;)))ics without
problem. We do not use the monad structure in the rest of the report, but this ensures that it
is compatible with the presentation of P that we use.

Notice also that P(X) is not equal to P(X), but we shall soon see that it represents the
subset of P(X) comprised of the closed subsets of X.

Lemma 5.6. Let closure and pref be the following operators:

closure : P(X) — P(X)

pref : P(X) — P(X)
T +— ({CE, | x ET})Z'
Then closure and pref form a Galois connection with the pointwise order on 73(X) In other
words, for T € P(X) and (S;); € P(X) :
Vi e J,pref(T); CS; <= T C closure((S5;);)

Proof. (=): Assume T C closure((S;);). Let i € J and y € pref(T’);. Let x € T such that
x; =y. Then z is in closure((S;);) and so x; = y is in S;. So pref(T); C S;

(<): Assume pref(T); C S; for all i € 3. Let x € T. Then z; € pref(T); C S, for all i. So
x € closure((S;);), and so T' C closure((5;);). O

We now relate these two operators to the topology of X through the following lemma:
Proposition 5.7. Let T € P(X). The three following conditions are equivalent:

(i) T is closed in X

(i) T is in the image of closure
(i1i) T = closure(pref(T'))

Proof. Let us first recall what it means to be closed in X. In sight of 4.6, a subset K C X is
closed if, and only if, for each = ¢ T there exists i € J and K; C X;, such that TN, '(K;) =0
and z; € K;.

o (i) = (i7i): Assume (7). The Galois connection between pref and closure ensures that
T C closure(pref(T)). Let x ¢ T. Let i, (K;) be as above. Then z; € K;. Let us show
that x; ¢ pref(T);, thus proving that = ¢ closure(pref(T)). Since TN7; ' (K;) = 0, any
y € T is such that y; ¢ K;, and in particular is such that y; # x;, so z; ¢ K;.

o (ii) = (i): Assume (ii). Let S = (S;)ica € P(X) such that T = closure(S). Let = ¢ T.
Then for some i, x; ¢ S;. Since Wi_l(Xi\Si) N closure(S) = () and x; € X;\S;, we have
proven that T is closed.

o (iii) = (d1) is trivial. O

We now show an analogous statement for prefoclosure. For S € 7/5(X ), the Galois connection
ensures that pref(closure(S)) < 5, i.e. that pref(closure(S)); C S; for all i € J.

Proposition 5.8. We have S; C pref(closure(S5)); for alli € J
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Proof. Let i € J and a € S;. We want to show that « is in pref(closure(S));, i.e. that there
is an x € closure(S) such that x; = «. For F finite subset of the set of objects of J, one may
find an ¥ € X such that a:fJ € S for j € F and 2f" = a. (2)pcyis a net in X (see Def. B.2 in
the appendix for recalls on nets), and by compactness has a converging subnet (zf)pc; where
I is a subset of Py, (J), with limit . Let us show that x is in closure(S) and that z; = a.
For j € J, consider the open set 7~!({z;}) in X. It is a neighbourhood of z, and so there
exists Fj € I such that for F containing Fj, 2 € m71({z;}). In particular, for F; U {5}, this
means that x; € S;. Thus, z is in closure(S), and so « € pref(closure(S5));. O

5.4. Vietoris Space

What we have proven is that pref and closure realise a bijection between 7/5(X ) and the set of
closed sets of X. In literature, like in [Kur67], the latter is seen as a topological space ¥ (X),
with a topology called the Vietoris topology or hypertopology. We refer to [GPR16] for more
on the topic, and we simply give some recalls on this topology.

Notation 5.9. For I C X, we introduce the sets CI and OI in P(¥ (X)) as follows:
e OI={Fe¥(X)| FNI#0}
e I/={Fe¥(X)| FCI}

Intuitively, these sets correspond respectively to existential and universal quantification. Notice
that O = 7 (X) \ O(X \ I).

It is easy to see that < preserves arbitrary unions, and that O preserves arbitrary intersections.
The Vietoris space over X has its topology induced by the following subbasis of opens:

{OI'| I open in X} U{OI | I open in X}

Remark 5.10. By definition of the topology, when I is open, so are OI and O, and it is easy
to see that this extends to closed sets, and thus to clopen sets.

Bearing this in mind, we recall the following:

Proposition 5.11. The topology of ¥ (X) has for a subbasis of clopens the following family:
{OI | I clopen in X} U{OI | I clopen in X}

Now, we want to prove that P(X) and % (X), which are in bijection via pref and closure,
are also homeomorphic. Thus, we will prove that pref and closure are continuous. Since they
are inverse of each other, it suffices to show that they are both open, i.e. that they each send
basic or subbasic open sets to open sets.

Lemma 5.12. The functions closure and pref are open.

Proof. See Appendix D. O

We have now proven that the Vietoris space over X and 73(X ) are homeomorphic spaces. In
the following sections, we will prefer using the Vietoris presentation of this space, however the
homeomorphism with ﬁ(X ) ensures, via results on profinite monads, that this space is a Stone
space, and that it has some good properties. Using the bijection between the two spaces, we
may explicit the semigroup operation on the Vietoris space by first applying pref, then taking
the pointwise product in 73(X ), and applying closure.
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6. Profinite Sum Fibration

In this section we combine the results of §3 and §5. We consider the fibred category A, where
objects of A(X) are tuples (X, .5, I, f) with S a profinite semigroup, I a subset of Sand f : ¥ — S
generating a dense subsemigroup of S (see App B.2 for details on this choice). The language
recognized by (3,5, 1, f)is L= f~'I C XT.

On this fibration, we define existential and universal quantification, as follows:

I(EXTS L) = (5P(S), 0L ar(f))
V(X xI,S, I, f) = (X,P(S),0I,nr(f))

To ensure that this is well-defined, we need to check that 7 (f) has values in 73(5 ). For a given
u € X1 the set 7~ !(u) is finite, and therefore so is its image by f. Therefore, since singletons
(and so finite sets) are closed in S, 7(f)(u) is closed. Both quantifications are functors, and
respectively left and right adjoints to the substitution functor 7§,. The proofs are the same as
in the finite case.

Applying the Sum construction on A yields the category S(A) as follows:

e Objects are tuples (X, X, S, I, f) with ¥ and X alphabets, S a profinite semigroup, I a
subset of S, and f: ¥ x X — § a function generating a dense subset of S.

e Arrows from (X, X, S, I, f) to (I,Y, T, J, g) are triples (h, hg, @) with h : ¥ — T" a function,
ho : ¥ x X — Y a function, and ¢ : (¥ x X,S,I,f) - (X x X,T,J,g0 (hom, hp)) an
arrow in Ay x.

As in the finite case, the X set represents existential quantification, in the sense that the
object (3, X, S, I, f) recognizes the language {0 € ©* | Jw € n5'(0), f(w) € I}. On S(A)(T),

we once again define the powerset monad or determinization monad P as:

P, X, 8,1, f) = (2,1,P(S), L mr(f))

It is easy to check that, like in the finite case, this operation is a monad and preserves languages.

As mentioned at the end of §4.3, we may want to study languages which are recognized by
clopen, open, closed, or other classes of subsets I. Assume for instance that we want to study
open languages. We consider the subcategory A© of A of objects (X, S, I, f) with I open. Then
notice that since the ¢ operator sends opens to opens, the dr functor restricts to Agxr — A9,
and so quantification stabilizes open languages. This was a result that we expected, in fact we
thought a priori that our notion of recognizer fibration would work only for open, closed and
clopen sets. A surprising result is that the topology of P does not have any impact on the kind
of subsets that we may consider: the fibration that we construct in this report has arbitrary
subsets 1.

7. Conclusion

We have described a profinite extension P to the powerset monad on semigroups, and used to
define a fibred category A of profinite algebraic recognizers for finite words, which correspond
to profinite-state automata. We have also applied the Sum construction on this fibration in
order to obtain a more complex category where existential quantification comes with witnesses.
What remains to be done is to see whether this setting solves the issues that occurred in the
realm of finite-state automata.
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Using profinite structures in the context of language theory has been done for some time,
by Almeida [Alm05] and Pin [Pin09] for instance. However the idea of studying languages of
profinite words is relatively new. Szymon Torunczyk’s thesis [Torll] studies these languages
and the corresponding notions of recognition and logic. During this internship, we also worked
for some time on the subject of profinite word, as we intended to study recognition of such
words as well. Appendix B.2 contains a more in-depth approach to profinite semigroups, and
a discussion on profinite words and why we did not include them in the final version of this
report.

As stated in the introduction, the motivation for exploring profinite-state automata comes
from the difficulty of defining some operations on alternating automata. Appendix A gives some
insight on the issue, using the notions and notations introduced in this report, along with a
brief account of the role of Linear Logic in this setting.
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A. Linear Logic

In this section we elaborate on what is said at the end of section 3, and exhibit the link between
some issues encountered and linear logic.

The Sum construction gives free existential quantification. There is an analogous construc-
tion, Prod, which gives free universal quantification. By applying Prod and then Sum, we
obtain an operator Dial = Sum o Prod. Consider a fibration p. Dial(p) is a category where
formulas of the sort Ju, Vz, P are freely possible: objects in this category are tuples (A, X, U, A)
with A an object in the fibre over A x X x U, and in the same way that X is a set which is
existentially quantified upon, U is used for universal quantification. The object (A, X, U, A) is
thus interpreted as the formula 3z, Vu, a(a, x, u).

We saw that Sum constructs recognizers which work like non deterministic automata. Anal-
ogously, Prod constructs objects which act like universal automata, in which every run must
be accepting for a word to be valid. In the same way, Dial is related to alternating automata,
which may be seen as games where one player, dloise, is trying to find an accepting run on a
word, and her opponent, Vlexandre, is trying to prevent this from happening. The link between
Sum and non deterministic automata is explored in [PR17], while [PR19] talks about Dial and
alternating automata. For the sake of clarity, we will use Dial as an informal analogy for alter-
nating automata, to explain the motivation behind our work, but keep in mind that the real
situation is a bit more complex.

There is an operation called ”simulation” which transforms an alternating automaton into
a non-deterministic automaton, which translates into an operation from Dial(p) to Sum(p) in
terms of category. This operation maps an object A over (3, X,U) into an object A over
(%,!X,1) by moving the universal part U into the existential part X.

A reader familiar with linear logic may have seen the ! symbol in that context. Let us recall
some notions from this field of research. Linear logic was created from the following observation:
intuitionistic logic differs from classical logic in that the weakening and contraction rules may
only be applied to the left-hand side of sequents (the hypothesis) and not to the right-hand
side. In linear logic, weakening and contraction may only be applied to specific formulas.
Two operators, ! and 7, respectively called ”of course” and ”why not”, quantify this idea: only
formulas of the sort | P may be contracted and weakened on the left-hand side, and only formulas
of the sort 7P on the right-hand side.

In categorical models of linear logic (see [Mel09] for more), conjunction comes in the form of
a tensor product ®, which acts as a parallelization: if we have two objects A = (3, X, U, ...)
and B = (3,Y,V,...), then their tensor product A ® B is (X, X x Y,U x V,...). Although we
would like a categorical model of logic to be able to prove all sequents P = P A P, for an object
A it is in general impossible to find a morphism A — A ® A. Indeed, such a morphism would
require a function 3 x X x U x U — U, in other words, a way to multiply elements of U. The
! operator, which removes the U from objects, has therefore another property: going from ! A
to AR A is possible. Dually, there is a disjunction operator @, and 7, which removes the X
part of objects, makes it possible to go from ?A$H?A to ?A, which is not possible for general
formulas.

When considering infinite automata, or infinite semigroups, ! and 7 are functorial operators.
However, when restricting to finite objects and infinite words, they cause a loss of information
which makes it hard to ensure composition is preserved (in [Rib20] for instance). The question
thus arises of whether or not it is possible to find a setting in which functoriality of these
operators remained, while being somewhat restricted in order to represent faithfully questions
of recognizability. We use profinite objects in order to find a balance between infinite objects,
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in which ! and 7 are functorial, and finite objects, which are naturally studied in the area of
recognizability.

B. On Stone Duality and Free pro-V Semigroups

This appendix gives some additional details on concepts introduced in §2 and §4, some of which
were not used in the final paper, but still provide interesting insights and raise some questions.
We begin with the proof of Lem. 4.8. Then we give some results on the structure of the Pro-V
semigroup for a pseudo-variety V, and finally we discuss Stone duality.

B.1. Lemma 4.8

Lemma B.1. Let V be an algebraic variety. Let F' : 3 — V be a diagram, with 3 cofiltered.
Then Lim(F) is a topological V -algebra with a Stone topology if the F (i) are finite.

Proof. Consider the product [],cy F(i). For each fundamental operation f of arity n of V we
have an n-ary function

foo: (HzeJF(Z))n — Hz‘eJF(i)

(xl,...,xn) — (fl($1(2>,,l'n(’t)) ‘ 1€ J)

where f; is the corresponding n-ary function on F'(i). It is easy to see that [[,.y F (i) is a
V-algebra (since it satisfies any equation satisfied by all the F'(i)’s).
Now, each fi1 restricts to a function

Lim(F)" — Lim(F)

since for h : ¢ —3 j we have

as the connecting maps F'(h) : F(i) — F(j) are morphisms of V-algebras. Moreover each such
S : Lim(F)™ — Lim(F) is continuous since

fa @ 8) = (a . om ) o fi)(S) (in Lim(F)")
As a consequence, Lim(F) is a topological V-algebra with a Stone topology if the F(i) are
finite. d

B.2. Free Pro-V Semigroup

Let V be a pseudo-variety of finite semigroups. In general, it is impossible to find a free object
in V, i.e. an object that generalizes every member of V' at once, as such an object would be
infinite. However, for a given alphabet ¥, it is possible to construct a profinite semigroup called
the free pro-V semigroup over ¥ (see e.g. [Alm05, §3.2] or [RS08, §3.2]), as a cofiltered limit
F:J— V, where V is seen as a category with semigroup maps as morphisms, as follows:
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Consider first the category ¥ |} V whose objects are pairs (M, f) where M € V and f: ¥ —
M is a function which generates a surjective semigroup morphism ¥~ — M. The morphisms
from (¥ — M) to (¥ — N) are semigroup morphisms M — N making the following triangle
commute:

DA

<]
T

Note that by surjectivity of the semigroup morphisms X7 — M and ¥ — N, there is at most
one morphism from (X — M) to (¥ — N), which is moreover necessarily surjective.

Then let J be a full subcategory of 3 || V with one object for each isomorphism class of
Y |} V. The category J is cofiltered since for any (f : ¥ — M) and (g : ¥ — N), we have

M

¥ M and g N
2+/ T 2+/ T
Lo (f, g)(EF) 9l (f, g)(5)

where f: 37 — M is the (surjective) semigroup morphism induced by f (and similarly for g),
where (f, g)(X1) C M x N is the image of pairing, and where (f, g)(X") — M the restriction
of the projection M x N — M (and similarly for (f, g)(X") — N). Note that M x N € V since
M, N € V, and thus (f,g)(X") € V since it is a subsemigroup of M x N.

We then let F : J — V be the first projection and let Qx(V) be the limit of F. It follows
from results of §4.2 that Qx (V) is a topological semigroup endowed with a Stone topology.

In particular, when #(X) is the class of regular languages on ¥, then the corresponding
pseudo variety V is that of all finite 3-generated semigroups, and the corresponding free pro-V
semigroup over X is denoted Pro-3..

We want to study the structure of the free pro-V semigroup. To this end we recall some basic
notions of general topology which we will use immediately. We begin by the definition of nets,
which are a generalization of sequences in metric spaces (see [Wil70] for more).

Definition B.2. Let (D, <) be a preorder. We say that D is directed, or that < is a direction,
if, for all dv,ds € D, there exists d3 € D such that di < dg and ds < d3.

Let S be a topological space, and (xq)gep € SP be a family. If D is directed, Then we say
that (z4)qep is a net.

A subnet of(xq)aep is a family (xya))acpr for some ¢ : D' — D both increasing (dy < da =
o(dy) < @(da)) and cofinal (for d € D, there exists d' € D' such that d < ¢(d')).

We say that a net (xq)gep converges to x if for every open U containing x, there exists dy € D
such that dg < d= x4 € U.

For example, a sequence in S is in particular a net, since N, the index of sequences, is an
order and thus a preorder. In a few lines, we will consider nets where the index is of the form
P(X) for some set X, seen as a poset.

We may now recall some fundamental properties of nets:
Proposition B.3. o If S is Hausdorff, then each net has at most one limit.

e S is compact iff every net (zq4)dep has a subnet (v,(q))acp’ that has a limit in S.
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o Letwu:S — T be a function between topological spaces. Then, u is continuous in x € S
iff for every net (xq)qep converging to x, We have (u(xq))qep that converges to u(x)

We now give two useful lemmas on the structure of free pro-V semigroups. We consider a
pseudovariety V, and its pro-V free semigroup over 3, Q5(V)

Lemma B.4. Let ¢ be the natural embedding of X7 into Qs(V). Explicitly, for every (M, f) in
(X | V), the component of L(w) on (M, f) is f(w). Then {t(w) | w € X7} is dense in Qx(V)

Proof. Let U be an open subset of Qx (V). Then U may be written as a union U = Ur; '(K;).
Since for each (M, f) in (X |} V), f is surjective, we may pick any w € ¥+ such that for some
i=(M,f), f(w) € K;, and this yields the announced result that ((w) € U. O

Lemma B.5. Let S be a pro-V semigroup, and f : X2 — S a function. We also denote f its
extension to a morphism X — S. Let G : Qx(V) — S be the unique continuous morphism
such that Gov = f. The following conditions are equivalent:

(a) The direct image of f is dense in S
(b) G is surjective.

Proof. Assume (b). Let U be an open subset of S. By continuity and surjectivity of G, G=(U)
is a nonempty open, and therefore meets Im(1). Let w € ¥+ such that «(w) € G™1(U). Then
Go(w) = f(w) € U. So f has a dense image in S.

Assume (a). We write S as a cofiltered limit of elements of V: S = lim(S;)icy C [[;c55i -
Let s = (s;); € S. We want to exhibit a § € Qx(V) such that G(8) = s. We exhibit a net
whose limit verifies this.

For F finite subset of the set of objects of J, which we denote J, we consider the open subset
Ur = Nicr ™ - ({si}) of S. It is the set of elements of S whose components on objects of F' are
equal to those of s. It is nonempty since it contains s, and it is indeed open since F' is finite.
By density of f there exists a up € £ such that f(up) € Up. The family (¢(up))pcy is a net,
such that G(t(up)); = s; for i € F.

Notice that since opens of S are unions of finite intersections of inverse projections, any open
neighbourhood of s contains a Up.

The net (t(up))rcy takes values in Qx(V), which is a compact space. As such, this family
has a converging subnet (.(ur))rer, where I is some (infinite) subset of Ppi,(J). Let 8 be the
limit of this subnet, which is unique in a Hausdorff space. By finality of subnets, for every
subset Fj of J, there is a F' in I containing Fy (and in particular Up, C Up.

By the two previous remark, for every open neighbourhood U of s, there exists a F' C J such
that Up C U, and we may in fact pick F' in I. The subnet (G(t(up)))per thus converges to s,
and by continuity of G, G(8) = s O

In particular, applying this proof to S = Qx(V) and f = idg yields the interesting obser-
vation that elements of Q25 (V), which we call profinite words, may be constructed as limits of
nets of finite words.
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Profinite Recognition We studied profinite words during our work, and in particular we were
hoping to be able to do recognition on profinite words directly, rather than finite words. However
we encountered some difficulties in doing so, when dealing with quantification. Consider X, T°
two alphabets. The projection 7 : 3 x I' — ¥ lifts to 7 : Pro-(X x I') — Pro-X by embedding
Y into Pro-Y and taking the lift as defined in the previous section. Consider a recognizer
(X xT,8, 1, f). When studying finite words, we may define 7(f)(c) = {f(w) | w € 77 1(0)}
quite simply, however in the profinite case, things are not so easy, as we require the function of
a recognizer to generate a dense image, or equivalently to lift to a surlcftive morphism, rather
than to be surjective. As such, we must find an adequate candidate m(f) which extends (f),

but is also a semigroup morphism and continuous. Intuitively, we want to pick 7(f)(c) =
{f(w) | w € #7Y(o)}. It is easy to see that this extends 7(f), but we were unsuccessful in
proving that it is continuous and a morphism. The problem reduces to proving that 7 is an

open function, which we are for now unable to do.

B.3. Stone Duality

We follow the presentation of [GPR16, GPR17]. Given a set A we write 8(A) for the Stone-Cech
compactification of A, seen as a discrete space. Explicitly, 5(A) consists of the ultrafilters on
the Boolean algebra P(A) endowed with the Stone topology induced by the basis of clopens

ext(S) = {F € Uf(P(A))| S e F} (for S € P(A))

It is well-known that 5 extends to a faithful functor. The inverse image of a function f: A - B
is a morphism of Boolean algebras f~! : P(B) — P(A), which, by Stone’s Representation
Theorem (see e.g. [Joh86, Cor. I1.4.4]), induces a continuous function

Bf) = B(A) — B(B)
F — {SePB)|fYS) eF}

Note that for f,g: A — B, we have f~! = ¢! if and only if f = g, so that 3 is indeed faithful.
Moreover,
acA — a:={SeP(A)|acS}teifi(P(A))

embeds the discrete space A as a dense subspace of 5(A) (since ext()) = @ while for any
non-empty S € P(A) we have a € ext(S) for every a € S).
Note that the elements of 5(A) can be seen as maps of Boolean algebras

F : PA) — 2

where 2 is the two-element Boolean algebra {0,1}. Hence, each sub Boolean algebra B of P(A)
induces a quotient X of 3(A). The elements of X can be described as composites

B> P(A) L2

For an alphabet X, following §B.3 (and [GPR16, GPR17]) we write 3(X1) for the Stone dual
of P(X1), namely the space of ultrafilters over the Boolean algebra P(XV).
The functoriality of 3 (see §B.3) implies that each function f : ¥+ — I'* induces a continuous

function
B(f) + B(EY) — B(ITY)
F — {SeP@h)| 1S eF}
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Note that the elements of 3(XT) are maps of Boolean algebras
F : PEH) — 2

Each sub Boolean algebra B of P(X%) induces a quotient X of 3(XT). The elements of X can
be described as composites

B P(xt) L2

Free Pro-V Semigroup. Consider a pseudo variety V of semigroups and let ¥ be the corre-
sponding variety of regular languages, with fibre over ¥ denoted #(X). Then ¥/ (X) is a sub
Boolean algebra of P(X7):

7 (E)——=P(E7)

and thus induces a quotient B(X1)/¥ of B(XT):
BET) —=B(E")/ 7V

Proposition B.6. The space S(X7)/V is homeomorphic to the free pro-V semigroup over .

Proof of Proposition B.6. By Stone’s Representation Theorem (see e.g. [Joh86, Cor. 11.4.4]), it
suffices to show that the Boolean algebra ¥ (%) is isomorphic to the Boolean algebra of clopens
of ﬁz (V)

If K is a clopen of Qx(V), then since J is cofiltered we can assume K = 7
(M, f) € J and some I C M. Then f=1(I) € ¥ (2).

This defines a function from the clopens of Qs (V) to #(X). Indeed, consider a clopen K
which is the inverse image (under projection) of two distinct I, J with I C M and J C N for
some (M, f),(N,g) € 3. Then since J is cofiltered we can find (L,h) € J with (surjective)
morphisms to (M, f) and (N, g). Write I (resp. J) for the inverse image of I (resp. J) in L.

Note that the languages recognized by (M, f,I) and (L, h,I) (vesp. (N,g,J) and (L, h,J)) are
the same. Moreover, K is the inverse image (under projection) of both I and J. But since
the connecting morphisms of J are surjective, it follows that I = J. Hence (M, f,I), (L, h,I),
(N,g,J) and (L, h,J) all recognize the same language.

This function is injective, as if K,L are two distinct clopens of Qx(V), then since J is

cofiltered we can assume K = ﬂ(_]\}L f) (I) and L = 7r(_]\2 f)(J) for some (M, f) € J and some

-1

M f)(I) for some

distinct I,.J C M. Since f induces a surjective morphism ¥ — M, the inverse images f~1(I)
and f~1(J) are distinct.

This function is moreover surjective. Given £ € ¥/ (X)), by definition there are some f : ¥ — M
and I C M such that M € V and £ = f~1(I). Note that we can assume f to induce a surjective
morphsim ¥ —» M since the image of ¥7 is a subsemigroup of M and V is a pseudo-variety.
Hence we can assume (M, f) to be an object of J and it follows from the results of §4.2 that
77(7]\}[7]0)([) is a clopen of Qg (V).

We thus have a bijective correspondence between 7 (%) and the clopens of Qx(V).

This bijection is an isomorphism of Boolean algebras. Indeed, consider £, £’ € ¥ (X). Since
J is cofiltered, we can assume £ and L’ to be recognized by (M, f,I) and (M, f,J) for some
(M, f) € J and some I,J C M. But then LU L' (resp. £ N L') is the inverse image of I U J
(resp. INJ). O
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The two spaces are homeomorphic as topological spaces, however 3(X7) does not seem to
have a natural product. An interesting observation is that as a Stone space, S(X71) is profinite,
and therefore pro-V for V the pseudovariety of all finite semigroups. This result seems to
indicate that S(X1) and Pro-(X) may be isomorphic, or in other words that ultrafilters on
languages are entirely determined by their image on regular languages, but we do not know
that to be true.

C. Fibrations

In this appendix we give a more formal and detailed presentation of fibrations as introduced in
83, and give some details on the structure of the Sum fibration and its application to recognition.
Refer to e.g. [Jac01, §1] for a more in-depth presentation of fibration theory.

C.1. Introduction to Fibrations

Definition C.1. Let p: E — B be a functor.

(a) Let u : I — J be a morphism in B and u : X — Y be a morphism in E. We say that
f is Cartesian over u if pf = uw and if for each g : Z — X such that pg = wu for some
w:pZ —Y there is a unique h : Z — X such that ph = w and g = fh.

(b) We say that p is a fibration if for every Y in E and w : I — pY in B there is a morphism
f: X =Y such that pf = u. When this f is universal among all possible choices, i.e. when
any f': X' =Y factors uniquely through f, we say that f is a Cartesian lifting of u.

When p is a fibration, we say that E is fibred over B. We call E the total category, and B the
base category.

The category Er of objects of E whose image by p is I, and whose morphisms are above
identities only (i.e. a morphism f in Ey is such that p(f) =idy), is called the fibre over I.

The fibre category E; may be constructed as the following pullback:

Efr———E

1—8B
1

where [ is the constant functor which sends the only object of 1 to I € B.

Notice that there may be several choices for the Cartesian morphism f over u, however one
may show that all Cartesian liftings of u are isomorphic. Assume that we now have made a
choice, for each u, of a Cartesian lifting u(Y") : u*(Y) — Y. Then the operation u® thus defined
is a functor from E; to E; (contravariant to u), with u®(f : X — Y') defined as the unique
morphism making the following diagram commute:

w(x) 20 x
|
|
ut (f), f
|
¥ a
wv) 2y
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The existence and uniqueness of u®(f) come directly from the universal property of w(Y) as a
Cartesian lifting of u with codomain Y.

Such a family of choices of liftings is called a cleavage, and we say that a fibration is cloven
when it has a cleavage. When in addition we have id® = id and (vowu)® = u®v®, we say that the
fibration is split. Even when a fibration is cloven but not split, the two previous equalities are
always natural isomorphisms.

Definition C.2 (Indexed Category). A B-indexed category is a pseudo-functor F : B°? — Cat,
that is to say a mapping that associates to each I in B a category F(I), and to each arrow
u:l — Jin B a functor u® = F(u) : F(J) — F(I) in the reverse direction, and which is
equipped with natural isomorphisms

(idg)®

(vo )"

nr : id

. e, .0
Hup UV

~
~

such that the following two diagrams commute:

L]
uttw® — u®(wowv)®

u.
nru® u®ng .
Hu,oW Hu,wov
u.

(idr)®u® u®(idy)® (vou)®w® ——— (wowvou)®

Hvou,w

Hid[,u Hu,idJ

In the particular case where the n’s and p’s are identities, we say that the indexed category is
strict.

Both indexed and fibered categories allow us to represent ”global” objects that are indexed
by a base category B such that the structure in B is reflected above. One may easily go from a
cloven fibration to an indexed category by assigning to I € B the category Ey and tow : [ — J
the functor u®. If the fibration is moreover split, then the resulting indexed category is strict.

Reciprocally, it is also possible to construct a fibration from an indexed category, using the
following construction.

Definition C.3 (Grothendieck Construction). Let A : B%? — Cat be an indexed category. The
Grothendieck construction [(A) is the following category:

o Objects: couples (I,X) where I € B and X € A(I)

o Arrows (I,X) — (J,Y) are couples (u, f) withw : I — J inB and f : X = u*(Y) =
A(u)(Y) in A(I).

e Composition of
(u,f) (v,9)

(I,X) (J,Y) (K, Z)

is defined as:

X
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The Grothendieck construction does indeed yield a fibration, in the following way:

Proposition C.4. The functor p: [ A — B defined by:

p(I,X) = I
p((u, f): (I, X) = (JY)) = u

is a cloven fibration, with w : I — J lifting to (u,id) : (I,u*(Y)) — (J,Y). If moreover A is a

strict indexed category, then p is a split fibration.

C.2. Simple Fibration

In this paragraph we detail the composition and identities in the simple fibration.
Let (A, X),(B,Y),(C, Z) be objects of S(B) and (g, g0) : (A,X) = (B,Y), (h,ho) : (B,Y) —
(C, 2).

e Identity on (A, X) is (ida, 7x)

e Composition (h, hg)o(g,go) is (¢, to), where t = hog and tg = hpo(goma,go) : AxX — Z

C.3. Sum Fibration

In this paragraph we do the same for Sum. To simplify notations, we write A(h(i), ho(i,z)) for
((hom, ho))*(A), even though h and hy may not be functions. Similarly, for ¢(b,y) a morphism
in Epxy we use the notation ¢(h(a), ho(z,a)) for ((hom, ho))®*(¢).

Let (A, X, A), (B,Y,B) and (C,Z,C) be objects of Sum(E), and (g,g0,%) : (A, X, A) —
(B,Y,B), (h,ho,p) : (B,Y,B) — (C, Z,C) two arrows. The identity on (A, X, A) is (idA, mx,id 4).
The composition (g, go, 1) o (h, ho, @) is (t, to,0) with:

et=hog
b tO(CL’x) = ho(h((l),go((l,ﬂT))
o 9<a7x) = ‘P(g(a)mgO(av‘T)) o w(aﬂ {E) : -A(av x) - C(h(g(a))v ho(g(a),go(a,x)))

Notice that the t and ¢y components behave like in the simple fibration.

C.4. Fibration Attemps

This appendix summarizes our first attempts at introducing a suitable fibration. It shows
the different problems that arose each time, and thus gives some insight on the final version
presented in the report. The main difference is the nature of the arrows.

C.4.1. Semigroup Morphisms

When studying language recognition, one may consider the following category.
e Objects: tuples (X,5,1 C S, f:3 — S) where S is an object of a subcategory S of Sg.

e An arrow from (%, 5,1, f) to (I, T, J,g) is a tuple (u,h) withu: ¥ —T and h: S — T a
morphism such that ho f = gowu and h(f(w)) € J when f(w) € I .

e The composition (u',h') o (u,h) is (v ou,h’ o h)
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e Identity morphisms are couples (idy+,idg)

This category is a fibration. This can be seen by applying the Grothendieck construction to
the following. Let S be a category of semigroups, and consider the following indexed category

A(S) : Alph — Cat:

e Objects of A(S)(X): tuples (S, I C S, f:3—S)
Arrows from (S, 1, f) to (T, J,g) : semigroup morphisms h : S — T such that ho f =g
and h(f(w)) € J when f(w) eI .

e A function u : ¥ — I' gives a functor u® : A(S)(I") — A(X) by u*(S,I,f) = (S,I, fou)
and u®(h) = h

Then the Grothendieck construction [ A(S) is, following the definition, the following category:
e Objects: tuples (X,S5,1 C S, f: ¥ —9)

e An arrow from (%, 5,1, f) to (I, T, J,g) is a tuple (u,h) withu: ¥ —-T and h: S — T a
morphism such that ho f = gowu and h(f(w)) € J when f(w) € I .

Let us call E the previous fibration. Notice that in a given fibre Ex, the u part of an arrow
(u, h) is the identity function. When working inside a fibre, we will simply denote h for arrows
(id, h).s Let us instantiate S by the category of finite semigroups. For ¥ and I' two alphabets,
we have the first projection 7 : ¥ x I' — ¥. This gives the functor 7°® between Ex, and Ex«r by:

(5,8, 1, f)=(XxT,S,1,fom)

w*(h: (%,8,1,f) = (X,T,J,9)) =h: (ExT,S,I,for) > (X xT,T,J,gom)

Like in Lem. 2.6, we would like to show that the existential quantification is left adjoint to
m®. Following [ML98, Th. IV.1.2], we need only to provide a map Jr between objects of Ex, and
Esxr, and for each (X,5, 1, f) a universal arrow

ng - (EXF,S,Iaf) — W.EF(EXF>Sal7f)

with the universal property being the following:

| N

A <7 m*3rX
We pick as our adjoint candidate the various operations introduced in § 5, namely:
(xS, 1,f) = (2,08,01,0f)
with:
o OS =Ppin(S) with, for A BC S, AB={ab|acAbec B}
e OI={AcOS|INA#0}
o Of(w) = {f({w,v) | veT]}
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What is an arrow (X x ', S, I, f) — 7*3p(X x ', S, I, f)? It is an arrow h: (X x I, S| I, f) —
(X xT,08,01,0 f o), d.e. a morphism 7y : S — &S such that:
ngo f=<fomand ny(f(w)) € OI when f(w) € 1.

i.e. such that

n(f(w) = {f({ws,v)) | v e T}

Unfortunately this is not achievable, as the value of f(w) does not provide enough information
to recover all values f({wy,v)). The following is a counter-example:

o ¥ ={a,b}

o I'={cd}

o S=Fy=1{0,1}

o f(2)=0, f(%) =1 otherwise

Then, < f is the function that sends w to {0, 1} if w contains a b, and {|w| mod 2} otherwise.
In this case, the existence of 1y implies that:

{1} =np(f (£) =ns(f (})) ={0,1}

which is absurd.
However, the dr operator is indeed a functor. To prove this without adjunction, we now need
to define its effect on morphisms:

ar(h) : (B,08,01,0f) — (X,0T,0J,<g) is the morphism between ¢S and ©T defined by:
Ir(h)(A) ={h(a) | a € A}
Lemma C.5. dr : Exxr — Ex is a functor.

Proof. Let P = (X xI',S,1,f),Q = (X xI',T,J,9),R = (¥ x I',U, K,l) be three objects of
Exxr,and h: P — Q,and ' : Q — R. For AC S:

e Ir(1p)(A) ={ids(a) |ac S} =A
o dr(h' o h)(A) ={N(h(a)) | a € A} = 3r(K)({h(a) | a € A}) = Tp(') o Ir(h)(A)
So dr is indeed a functor. ]

To make the adjunction between dr and 7® happen, we want to extend our fibration by
making the morphisms inside a fibre more powerful. We introduce the revised fibration E' — B:

e Objects: tuples (X,5,1 C S, f:3 — S) where S is an object of a subcategory S of Sg.

e Anarrow from (X, 5,1, f) to (I, T, J, g) isa tuple (u,h) withu : ¥ - Tand h : SxXT =T
a morphism such that ho (f,idy+) = gow and h(f(w),w) € J when f(w) € I .

e the composition (v, ') o (u, h) is (v’ o u, h”) with h”(s,w) = b’ (h(s, u(w)), w)

e Identity morphism on (X, S, 1, f) is (ids+,7s)
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Like previously, this fibration occurs as a Grothendieck construction.
A function w : ¥ — T" induces a functor u® : E. — E§; by v*(T, S, I, f) = (£, 5,1, f ou) and
u®(h) = ho (idg,u)

Lemma C.6. We claim that this is indeed an extension of the first fibration, in the sense that
for each morphism h in a fibre of E gives a morphism in the corresponding fibre of E’.

Proof. Let h: (3,S,1,f) — (X,T,J,g) in Ex. Define i/ : S x ¥+ — T by:
h'(s,w) = h(s)

Then I/ is a semigroup morphism, and 7' o (f,id) = ho f = g, and I(f(w),w) € J when
fw)yel,soh':(3,8,1,f)— (X,T,J,g) is a morphism in E’
O

We now denote E for E'.
Let m : ¥ x I' = X be the first projection. Like previously, we introduce the map dr from
objects of Exx1 to objects of Ex; defined by:

(XTSI, f) =(2,05,01,0f)
with:
o OS =Psin(S) with, for ABC S, AB={ab|acAbec B}
e OI={AcOS|INA#0}
o Of(w) = {f({w,v) | veTl}
To prove the adjunction with 7®, remains to find a universal arrow
ng: (B xT,8,1,f) = n*3Ip(ExT,5,1, f)

Such an arrow is a morphism 7, : S x (3 x T)* — S such that n;(f(w),w) = O f o m(w).
We may then take 7¢(s,w) to be precisely this, i.e. ny(s,w) = O f(w(w)) = {f((ws,v)) | v €
I}, This function is constant in s
Now to check the universal property of 7y. We take an arrow h : (¥ xTI',S,1,f) —
(X xT,T,J,gom). We need to show that there exists a unique arrow b’ : (X, 0S5, 01,0 f) —
(X,T,J,g) such that h = 7*(h’) o ny.

Such an arrow would need to satisfy the following:
B(s,w) = 7* () o ny(s,0)

- h(s,w) = K (1 (s, w), ws)

If we relax the universal property by only requiring it to work for arrows h : X — n*A, then
we want to satisfy the following diagram:

(xT,08,0I,0f)

|

(X X T, 0T, 0 J,Og oﬂzrh)/< - —7m*drX
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It seems that this does not add new information to the situation, since the hypotheses on h and
n¢ only affect inputs of the form (f(w),w). In fact, more generally a morphism h : (£, 5,1, f) —
(I',T,J,g) only needs to satisfy h(f(w),w) = g(w), which does not give info on the behaviour
of h over S

C.4.2. Relational Morphisms

In a second attempt, we looked at another form of morphism for objects of our fibration:
relational morphisms.

The study of language recognition motivates the study of a category A(3), with ¥ an alphabet,
where objects are tuples (S, I, f) where:

e S is a semigroup
e [ is a subset of §

e fis a function ¥ — S such that the induced semigroup morphism X% — S, also denoted
f, spans all of S.

The language recognized by such an object is the subset £ = f~1I C X+,

For the morphisms in this category, we choose the following:

Morphisms R : (S, I, f) — (T, J,g) are semigroup relations on S x T, i.e. subsemigroups of
S x T, satisfyfing the following property:

Im{f,g) SRC (I" = J")

where:
e Im(f,g) is the subsemigroup equal to {(f(w),g(w) | w € ¥t}
o *"=IxT,J =85x%xJ
e for ABCC,A=B={zxeC|(r€cA=x€B)}
The motivation for this choice of arrows comes from the following lemma:

Lemma C.7. Let (S, 1, f) and (T, J,g) be two objects of A(X). Let L (resp. L' be the language
recognized by (S, 1, f) (resp. (T,J,g9)). Then Lang C L' < Im(f,g) C (I* = J*)

Proof.
Im(f,g) C (I* = J*) <= forallweXt, f(w)el=glw)eJ
— foralw,wel=we/l
— LC[L

O]

As an immediate corollary, £ C £’ if and only if there is an arrow from (S, I, f) to (T, J,g) ,
since Im(f, g) is a semigroup relation on S x T. In other words, arrows in A(X) exactly reflect
language inclusions.

We now introduce the operations 7® and 3 which will reflect those introduced in Lem. 2.6.
To this end, we will exhibit the indexed structure behind the A(X) categories, and use the
Grothendieck construction to build an indexed category, where 7® and Jr will form an adjunc-
tion.
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Proposition C.8. The map A : Alph — Cat is a strict indexed category, with the function
u: X — Gamma yielding the following functor u® : A(T') — A(X):

o u*(S, 1, f)= (5,1, fou)
e u'(R: (S, I,f)— (T,J,9))=R:(S,I,fou)— (T,J,gou)

Proof. 1t is clear that u® is functorial, and that the action of A is strictly functorial, as long as
u®(R) satisfies the required property of arrows, namely:

Im(fou,gou) CRC (I"= J")

But since Im(f ou,gou) CIm(f,g) C R C (I* = J*) this is verified.
0

Applying the Grothendieck construction on this indexed category gives the following fibration
E — Alph:

e objects of E: tuples (X, 5,1, f) with ¥ € Alph, S a semigroup, I C S, and f: ¥ — S.

e arrows from (3, 5,1, f) to (I',T,J, g) are couples (u,h) with v : ¥ — Gamma in Alph,
and h: (S, 1, f) = u*(T,J,9) = (T,J,gou) in A(X)

Let us look at the effect of the projection function 7 : ¥ x I' — X. This function yields a
functor 7 : A(X) - A(X x T)

Notice that if £ is recognized by (X, S, I, f), then the language recognized by 7*(X%, S, I, f) is
precisely 7®(L) as introduced in Lem. 2.6. As is commonly done in categorical logic, we want to
exhibit an adjunction between this projection functor and some existential quantifier functor.

Following [ML98, Th. IV.1.2], we need only to provide a map Jr between objects of Ex, and
Esxr, and for each X = (X, 5,1, f) a universal arrow

nx : (ZXF,S,I,f)%W.HF(EXF,S,I,JC)

with the universal property being the following;:

I

A<~ *7T°E|[‘X
w*H

We pick as our adjoint candidate the various operations introduced in § 5, namely:
(xS, 1, f) = (8,08,01,0f)
with:
o OS =Ppin(S) with, for A, BC S, AB={ab|ac Abe B}
e OI={AcOS|INA#0}
o Of(w) = {f((w,v) | veTl}
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Following sections 3.2 and 5, Ip(X x I', S, I, f) recognizes exactly the language Ir(L)

However, the universal property does not seem realizable. Assuming we take nx to be
Im(f,Of), then for each arrow R : (X x IS, I, f) — (X x I',T,J,g o m) we need a unique
arrow H : (3,08, 01,0f) — (X,T, J, g) such that R = 7*H o nx.

An analysis of the unfolding of definitions leads to the conclusion that H C &S x T needs to
be defined as FHt <= ds s.t. sRt and snx E, however such an H is not necessarily a subset
of OI* = J°.

D. Recalls and Proofs for §5 (Powersets of (Profinite) Semigroups)

In this appendix we give some categorical recalls useful for §5.1, as well as the proofs of §5 which
were on the more technical and long side, and which were not included in the main report in
order to streamline it as much as possible.

D.1. Categorical Limits

We recall the notion of limits in category theory. Let D : 3 — C be a functor. Intuitively, J is
an ”simple” category used to index C through D. We call such a functor a diagram of type J
in C. A cone to D is an object C' € C and a family of arrows (¢;j); € J in C such that for each
arrow « : ¢ — j in J, we have ¢; = Da o ¢;. We consider the category Cone(D) of such cones.
In this category, a morphism of cones m : (C, (c;);) — (C’,(c});) is an arrow in C such that for
each j € J, the following commutes:

c s

!

Dj

A limit of D is a terminal object in Cone(D), i.e. an object Cy € C along with morphisms
(mj : C = Dj)jey, called projections, such that for any other cone (C, (c;);), there is a unique
arrow ¢ : C — Cp such that ¢; = 7 o u for each j € J.

Limits are a key concept of category theory, and many basic notions, like pullbacks, products,
equalizers, may be expressed as limits. We refer to [Awo06] for a detailed and clear presentation
of the subject.

D.2. Eilenberg-Moore Algebras

We recall the well-known categorical concept of Eilenberg-Moore algebras (once again, refer
to e.g. [Awo06] for a more detailed approach). Let (T,n,u) be a monad on a category C.
Eilenberg-Moore algebras for T' are couples (A4,a) with A € C and o : TA — A such that
aong =14 and aopug = aoTa as in the following diagrams:

A TA TTA-T2>TA
N I
A TA—2 = A

The category CT of Eilenberg-Moore algebras for T has for morphisms arrows h : (A, a) —
(B, ) in C such that hoa = 0 Th, as in the following diagram:
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TA-Th. TR

S

A— B
h

For example, if T is the free monoid monad, that sends a set A to the set of finite words over
A, A*, then Eilenberg-Moore algebras for T" are exactly monoids.

D.3. Lemma 5.3

Let (A,a: TA —- Ah: X — A) € (X | U), that we will simply denote A. Recall that we
consider the functor L : J — (X | U),

i — (T'X;, px;, nx; 0 T)
(Z—)]) — Tmm

We need to prove that the category (L | A) is nonempty and connected, in order to show that
L is an initial functor.

Let us first give an explicit description of (L | A). Objects are couples (i,h; : (T'X;,m; o
mis i) — (A, h,a)) with h; an arrow of (X | U), and n;, u; the components of 7, u on X;.
Unfolding definitions, h; needs to satisfy the two following commutative diagrams:

TTX, T A

TX; A

h;

X

772‘7 V\\

TX; A

h;

Similarly, a morphism m : (4, h;) — (4, h;) is a function m : X; — X; making the following
commute:

Non-emptiness follows from [CAMU16, Rem. 2.5]: any morphism h : X — A with A finite
factors through some m; : X — X; as h = h} o m;, which yields the following commutative
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diagram by naturality of n:

X; " TX,

lh; lTh;

A——=TA
na

Post-composing by «, we get that oo Thl on;om = aonaohlom = hlom = h, which is
the triangle identity needed for (L, A), with h; = o Th].
The square identity comes by checking that the outer rectangle of the following diagram

commutes:
TTX; TEL A T 74
1223 l HA l la
TX,; T, TA > A

This follows from the naturality of u and the T-algebra structure of (A, «), which make the
two smaller squares commute.

Thus, (4, ;) is in (L, A), which is non-empty. To prove connectedness, we take (i, h;), (4, h;)
in (L, A), and exhibit a (k, hy) with arrows m : (k, hy) — (i, h;) and n : (k, h,) = (4, hj).

Since X is a directed limit, there exists Xj and : X, — X;,n : X, — X; with m; = mom,
and 7m; = n o m,. Consider the following diagram:

lm 5 l
TX; TX;
N
A

The paths from X to A are all equal to h, and so by surjectivity of 7, the two arrows from
X to A, namely h; on; om and hj onj; on, are equal. We call h} this arrow. Then applying T’
we get Th) : TX), — TA, and we set hy = oo Th,

The previous diagram shows that hy satisfies the triangle identity of (L | A).

To check the square identity, we consider the following diagram:

71X, T rrx, 2 prrx, T pra T T A
Mkl Ml MTXi\L MA\L ai
TX, L rx, M prx, M TA A
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The three leftmost innersquares commute due to naturality of i, and the last square commutes
by T-algebra properties of (A, «). Thus the outer rectangle commutes, ending the proof that
(k, hi) is an object of (L | A).

Finally, it remains to show that T'm, T'n are arrows of (L | A), i.e. that hy, = h;oTm = h;oTn.
We show the result for m, the reasoning is identical for n. By monadic properties, we have:

hi =h;op;oTn;

Then, since h; is a morphism of T-algebra,

hi=aoTh;oTn;

Post-composing by T'm, we get the announced result:

hiOT’I’)’L:OéOThiOTT]i:hk

Finally, (L | A) is non-empty and connected, and so L is initial.

D.4. Lemma 5.12

Lemma D.1. The function pref is open.

Proof. We show that pref sends basic opens of ¥ (X) to opens of ﬁ(X ). Let I be an open of
X. As we have seen in the preliminary section, we may write I as a union of inverse projections:
I =U;eym '(S;) with S; € X;. We prove the following;

(a) pref(OI) = ;cym; 1 (OS)
(b) pref(0) = Ueym ' (OS)
Let U = (U;)iea € 73(X)

(a) Assume that U € (J,;c, 7, 1(©S;). Then there exists i such that U; € ©S;, i.e. such that
U; N S; # 0. We choose some a € U; N'S; and, using nets like in §B.2, we may construct z € X
such that z; € U; for each j, and x; = a. Then z is in closure(U) and in 7; *(S;), and so
closure(U) € O(Ujeam; *(Si)) = ©I. Applying pref, we find that U € pref(<T).

Conversely, if U € pref(<¢I), then U = pref(T) with T € ¢I. Then T NJ,cym; '(S:) # 0,
and so there is an i such that TN 7; *(S;) # 0. Let x € TN, '(S;). Since pref(T) = U,
z; € Us, and x; € S, s0 U € O(5;), 50 U € ey 7ri_1(<>Si).

Therefore, pref(OI) = J;cym H(OS)).

(b) Assume that U € |J;c5m; ' (OS;). There exists i such that U € m; '(0S;). Thus, U; C S;.
We show that closure(U) € OI, which, by applying pref, will proves that U € pref(0OI). Let
z € closure(U), we want to show that x € I = (J,cy7; '(S;). By definition of closure, we
have z; € U; C §;, and so x € I = J;; Wi_l(SZ-).

Conversely, if U € pref(0I), then U = pref(T) with T' € ¢I. Then T C |J;cy 7 (Sh).
T is a closed subset of X, which is compact, so T is compact, and therefore there is a finite
subset F' of objects of J such that T' C J,cpm; 1(S;). And since J is codirected, we may even
restrict F' to a singleton. Thus, there exists ¢ € J such that T C 77;1(&). Now we show that
pref(T) C m; 1(0S;), i.e. that pref(T); C S;. If a € pref(T);, then there is 2 € T such that
z;=a € T;, and since T C m; 1(S;), 7, = a € S;. So, U = pref(T) € ey ' (OS;).
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Therefore, pref(0I) = J,;c, 7 H(O8S)).

Lemma D.2. The function closure is open.

Proof. Similarly, we show that closure sends basic opens of P(X) to opens of ¥ (X). Let i € J
and K; C P(X;). We may decompose K; as function of & and O as follows:

K= |J () ¢{a}noD)

IeK; a€l

We now show that the following holds:

closure(w; *( U ﬂ O(my Ha}) NO(x; 1))

IeK; a€l

which implies that closure send basic opens to opens.

Let U € P(X).

Assume U € closure(r; *(K;)). Then U = closure(T) for some T € 7; ' (K;). Let us show
that U € Nyep, O(m; H{a}) N O(x; ' TY).

For a € T;, we must show that U N7, ' ({a}) is nonempty, i.e. that there exists = € U such
that 2; = a. U = closure(T'), and for such sets we have already shown how to construct a net
converging to such an z. Now we must show that U C 7; 1(T;). If 2 € U = closure(T), then
x; € T;, and so x € 771-_1(Ti).

Thus, U € Ureg, (Naer @ (i H{a}) N O(x; 1)),

Now assume U € Uy, (Naer (7 1{a})ﬁD( '7)). Then forsome I € K;, U € (,c; (7 H{a})N
O(m; ' I). We will show that pref(U) € ;! (K;), and applying closure to both sides will yield
that U € closure(r; *(K;).

In fact, we will show that pref(U) = I, by proving that it is a subset of I and contains every
element of I.

Let a € pref(U);. There exists 2 € U such that x; = a. Since U € O(r; *(I), we have
zem; Y(I)andsox; =a €.

Let a € I. We must show that a € pref(U);. Since U € O(m; '({a}), there exists 2 € U such
that x; = a. Therefore a is in pref(U);.

Thus, U € closure(r; '(K;)). O
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