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The decomposition of soil organic matter (SOM) is a critically important process in24

global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that25

cooperate by secreting costly extracellular enzymes. This raises a basic puzzle: the26

stability of microbial decomposition in spite of its evolutionary vulnerability to27

‘cheaters’—mutant strains that reap the benefits of cooperation while paying a lower28

cost. Resolving this puzzle requires a multi-scale eco-evolutionary model that captures29

the spatio-temporal dynamics of molecule-molecule, molecule-cell, and cell-cell30

interactions. The construction and analysis of such a model shows that the31

evolutionary stability of decomposition is determined primarily by a combination of32

soil micro-disturbances, microbial dispersal, and limited soil diffusivity. At the scale of33

whole-ecosystem function, selection acting on extracellular enzyme production shapes34

the average soil decomposition rate and carbon stock. As soil diffusivity varies35

gradually, evolutionary adaptation mediates regime shifts in decomposition. These36

results suggest that microbial adaptive evolution may be an important factor in the37

response of soil carbon fluxes to global environmental change.38



Microorganisms drive critical ecosystem processes, such as nutrient mineralization and the39

decomposition of organic matter [Falkowski et al., 2008]. Many of these processes depend on the40

conversion of complex compounds into smaller products that microbes can assimilate for growth41

and maintenance. Except in environments where simple nutrients are abundant, microbes rely on42

extracellular enzymes (exoenzymes) to perform this conversion [Ratledge, 1994]. By doing so, they43

face a ‘public good spatial dilemma’ [Allen et al., 2013, Driscoll and Pepper, 2010]. The ‘spatial44

dilemma’ over public good production arises because public goods are costly compounds that are45

secreted outside the cell; reaction products may diffuse away from the enzyme-secreting microbe46

and therefore benefit not only the individuals producing them, but also neighboring cells [Velicer,47

2003, West et al., 2006]. Evolutionary theory predicts that producers of public goods are vulnerable48

to cheating by individuals that receive the benefits without paying the cost of production. Without49

some mechanism to support cooperation [Nowak, 2006], public goods production is expected to50

disappear under exploitation from cheaters. Nonetheless, public goods are ubiquitously produced in51

all environments, e.g. siderophores that scavenge iron [Buckling et al., 2007, Cordero et al., 2012,52

Griffin et al., 2004, Julou et al., 2013], polymers that enable biofilm formation [Rainey and Rainey,53

2003], and allelopathic compounds that reduce competition [Le Gac and Doebeli, 2010]. Conditions54

must exist that promote the evolution of exoenzyme production in spite of diffusion.55

Evolutionary game theory provides a powerful framework for investigating conditions that favor56

exoenzyme production [Koch, 1985, Schimel and Weintraub, 2003, Sinsabaugh and Moorhead,57

1994]. Evolutionary game-theoretic models have been developed to address competition between58

exoenzyme-producing and nonproducing (cheating) strains [Allison, 2005, Folse and Allison, 2012,59

Kaiser et al., 2014, 2015]. Considering the diffusivity of products, these models have highlighted the60

importance of habitat spatial heterogeneity for the evolution of the production mechanism. For61

example, organic substrates, microbes, and mineral particles form a three dimensional matrix of62

aggregates and pore spaces of different sizes in soils [Tisdall and Oades, 1982]. For63

enzyme-dependent microbes, these physical properties should influence the movement of substrates,64

enzymes and usable products [Vetter et al., 1998], and the fate of cheating microbes [Allison, 2005,65

Dobay et al., 2014, Folse and Allison, 2012].66

Our understanding of the evolutionary stability of diffusive public goods in general, and of67

degradative enzyme production in particular, remains incomplete. One limitation of previous68

models is their focus on two-way competition between two strains, typically a producing strain and69

a ‘pure cheater’ or non-producing strain. A key issue here is that mechanisms that promote70

stability of producers against pure cheaters might fail to prevent ‘erosion’ of cooperation by mutant71

strains that produce slightly less of the public good than the wild-type, or resident strain [Ferriere72

et al., 2002]. Pure cheaters may go locally extinct when they do not receive enough resource73

produced by cooperators; however, strains that produce less, rather than none, of the public good74

should be less sensitive to the harm they inflict to the community [Lee et al., 2016]. On the other75

hand, producers may be vulnerable to pure cheaters and yet resist invasion by strains that invest76

only slightly less into the common good. We thus expect conditions for the evolutionary stability of77



cooperation to be different when considering the recurrent events of mutation of small effects and78

selection that shape the evolutionary trajectory of exoenzyme production.79

To predict the outcome of selection on small-effect variants, we need to evaluate the population80

growth rate of initially rare mutant types interacting with any given resident type. To achieve this,81

previous models of microbe-enzyme systems need to be revisited and extended, so that invasion82

fitness of small-effect mutants can be computed. To describe the interaction of resident strains with83

mutant cells, which, initially at least, occur in small, spatially localized populations, individual-level84

modeling of microbe-enzyme systems is required. Previous microbe-enzyme ecological models85

(reviewed in Abs and Ferrière [2020], Wieder et al. [2015]) are phenomenological, rather than86

derived by scaling up from microscopic processes acting locally at the level of individual entities.87

The main difficulty here is to address the extremely different scales that characterize the entities88

(cells, enzymes, substrates, products) and processes that affect them. Here we derive a hybrid,89

stochastic-deterministic model that takes this multiplicity of scales into account. By applying the90

hybrid model to a spatially structured habitat, we elucidate conditions that promote the91

evolutionary convergence and stability of exoenzyme production. We show that resource diffusivity92

is a strong control of the selection gradient of exoenzyme production, which determines the average93

soil decomposition rate and carbon stocks of the whole system. These results suggest that the94

evolution of microbial exoenzyme production may be an important factor in the response of soil95

decomposition to environmental change that affect soil properties.96

Results97

In a single, isolated microsite occupied by a large population, ecosystem dynamics can be98

approximated by the deterministic ‘CDMZ model’ (equation S.7 in ESM §3.1), and the selection99

gradient on the exoenzyme allocation trait can easily be derived. At the (non-trivial) ecological100

equilibrium (c, d, m, z) of a resident population with trait value ϕ, the growth rate of a mutant101

strain with trait value ϕ′ is (1− ϕ′)γMVmU d
KmU+d − dM , hence the selection gradient of ϕ102

(derivative of the mutant long term growth rate with respect to the mutant trait, evaluated at the103

resident trait value) equal to −γMVmU d
KmU+d . For any parameter combination and value of the104

DOC resident equilibrium d, this quantity is always negative: investing in exoenzyme production is105

always selected against. Thus, any initial level of microbial cooperation will be gradually eroded by106

the process of mutation-selection, driving the population towards the threshold trait value at which107

extinction occurs – an instance of evolutionary suicide ([Ferriere, 2000, Ferriere and Legendre, 2013,108

Parvinen, 2005]). In finite populations, mutant success or failure becomes probabilistic. Due to109

random genetic drift, cheater phenotypes may fail to invade, and cooperator mutants may110

occasionally go to fixation. Long term adaptive dynamics driven by rare mutation and selection in111

finite populations have been studied in a general framework by Champagnat et al. [2007]. They112

showed that the evolutionary trait dynamics can be described mathematically as a diffusion process113

whereby a Brownian motion (white noise) is added to a trend driven by the deterministic selection114



gradient. To illustrate these general results, Figure 1 shows simulations of a finite microbial115

population in a single microsite, without and with adaptive evolution of exoenzyme production. In116

the absence of evolution, simulated populations tend to persist over the total computation time.117

With evolution, simulated populations generally go extinct within that same time frame. In spite of118

significant fluctuations due to random genetic drift, adaptive evolution drives the exoenzyme119

production trait towards the threshold at which the microbial population becomes non-viable.120

We address the evolution of exoenzyme production in spatially extended ecosystems using the121

spatial version of our hybrid stochastic-deterministic model. In a spatially structured soil matrix,122

exoenzyme producers may resist invasion by non-producer mutants because of the non-uniform123

distribution of cell types that emerges across microsites, due to local cell dispersal. We ran124

simulations of the spatial model to test the consequences of this mechanism for the evolution of125

exoenzyme production as a continuous trait, as opposed to an all-or-nothing character (as in126

previous studies). To circumvent the issue of prohibitive computation time, we parallelized the127

simulations of an ensemble of pairwise contests between slightly different strains, one taken as128

‘resident’ (initially at stationary state) and the other as ‘mutant (initially rare, see Fig. 2 and129

Supplementary Material § 3.4). Spatial segregation of resident and mutant strains across microsites130

is key to the evolutionary stability of exoenzyme production. In the absence of micro-disturbances131

that empty sites out, different strains will be mixed by dispersal. When that is the case, a slightly132

cheating mutant strain always invades and spreads across the lattice. This is because the diffusion133

of DOC creates local conditions (within microsites) that are even more unfavorable to the resident134

strain than in the case of a single, isolated microsite. The long-term consequence is evolutionary135

suicide, as in the case of a well-mixed population. When micro-disturbances are taken into account,136

the dispersal process will – provided it is fast enough – drive the spatial segregation of resident and137

mutant strains among microsites. The local resource pool (DOC) to which cells of a given strain138

have access is determined by their own exoenzyme production, and the diffusion of DOC from139

nearby microsites. The local growth of a strain then determines its chance of colonizing nearby140

empty microsites and spreading across the lattice. Depending on the DOC diffusion rate, spatial141

segregation of strains at micro-scale can promote resistance of exoenzyme producing strains against142

invasion by cheater strains that produce slightly less exoenzyme (negative selection against143

cheating); and favor invasion of exoenzyme producing strains by strains that produce exoenzyme at144

larger rates (positive selection for cooperation). Figure 2 shows an example of the latter. To further145

evaluate the effect of diffusion on the selection gradient of exoenzyme production, we measured the146

invasion fitness of mutant strains in pairwise competition with slightly different resident strains,147

across a range of soil diffusion rates, σdiff. Based on the formal analysis of adaptive evolutionary148

dynamics in finite populations [Champagnat et al., 2007], a proxy for invasion fitness is given by149

the product of the mutant probability of survival with the long-term population growth rate of150

surviving mutant populations. The rationale is that deleterious mutants may experience positive151

growth due to genetic drift, but their overal probability of survival is low; in contrast, advantageous152

mutants that differ only slightly from the resident strain tend to grow slowly, but their survival153



probability is high. In Figure 3, pairwise competition simulations run across the trait range154

0.05− 0.25, under different values of the soil diffusion rate, show a clear pattern of directional155

selection for increasing exoenzyme production when soil diffusion is low (cooperator mutants have156

positive fitness), and directional selection for decreasing ϕ towards zero when soil diffusion is high157

(cheater mutants have positive fitness). For intermerdiate soil diffusion rates, there is stabilizing158

selection around an intermediate value of ϕ (evolutionarily stable strategy, or ESS), which tends to159

increase as soil diffusion decreases. Thus, for intermediate diffusion, the spatial model predicts (i)160

existence of an exoenzyme production ESS that resists invasion by cheating strains, and (ii)161

evolutionary convergence to the ESS from ancestral strains with minimal exoenzyme production.162

In nature, parameters such as the diffusion rate are expected to depend on environmental163

features such as soil properties and precipitation, that can vary widely across ecosystems. We find164

that resource diffusion has a major influence on the selection gradient of exoenzyme production165

(Fig. 3). To further characterize this influence and investigate its ecosystem-level, functional166

consequences, we extracted the pattern of variation of the exoenzyme production ESS along a167

gradient of diffusion rates (Fig. 4a) and computed the corresponding decomposition rate (Fig. 4b)168

and soil C stock (Fig. 4c) at lattice scale. The diffusion gradient could represent spatial variation169

across ecosystems, or a temporal sequence driven by some external environmental factor, e.g. a170

gradual change in precipitation. Figure 4a shows that decreasing diffusion from 10−5 to 10−7 drives171

a significant evolutionary change in exoenzyme production, from 0.05 to 0.25. The evolutionary172

response of exoenzyme production to varying diffusion feeds back to the ecological state of the173

whole lattice and alters ecosystem-level function: the average, lattice-scale decomposition rate rises174

three-fold as exoenzyme production adapts to reduced diffusion (Fig. 4b), driving an 80% drop in175

the soil C stock (Fig. 4c). Note that the patterns in Figures 4b and 4c closely match the response176

of the exoenzyme allocation ESS to varying diffusion (Fig. 4a), and that the error bars reflecting177

differences in the average values among simulations are very small compared to the differences178

induced by the change in ϕ. This shows that the process of evolutionary microbial adaptation can179

induce much stronger variation in the lattice-scale ecosystem properties (decomposition rate, soil C180

stock) than stochasticity.181

Discussion182

Soil microbial decomposition involves the production of exoenzymes and uptake of the products of183

enzyme-driven depolymerization of dead organic matter. These products form a diffusive public184

good, which is vulnerable to exploitation by cheaters. To elucidate conditions under which185

decomposition, as an outcome of microbial cooperation, is evolutionarily stable against mutations of186

small effects, we constructed a spatial model of soil microbe-enzyme decomposition which accounts187

for the finite size of microbial populations at the microscopic scale of microbial interactions.188

Deterministic models of microbe-enzyme driven decomposition were first introduced by Schimel189

and Weintraub [2003] for ‘well-mixed’ systems. Our work shows in a rigorous mathematical190



framework that Schimel and Weintraub [2003]’s model and subsequent variants (reviewed in Abs191

and Ferrière [2020]) are consistent with microscopic processes acting at the level of individual192

entities (cells, molecules). Starting from a five-compartment model including SOC and DOC193

molecules, microbial cells, enzyme molecules, and enzyme-SOC molecular complexes, we found that194

the population size of cells and molecules and some of the stochastic process rates could be rescaled195

to yield Schimel and Weintraub [2003] four-compartment deterministic CDMZ model. As a side196

note, we could not find further or alternate rescaling to reduce the dimension of the system to three197

compartments (CDM or CMZ or DMZ). One can also prove that in all two-compartment models198

the equilibrium with positive cell population size is always unstable, which means that the cell199

population either goes extinct or grows unboundedly. Thus, the four-compartment CDMZ200

structure seems to be the simplest that is consistent with the individual-level processes under201

consideration.202

The deterministic CDMZ model, however, cannot be used to capture the dynamics of a203

spatially explicit system in which a finite number of cells and molecules interact within their local204

neighborhood. From the stochastic CDMZ model we obtained a hybrid stochastic-deterministic205

model for local populations and interactions by assuming that the size of the molecular populations206

(C, D, Z) is typically much larger than the size of the cellular population (M). A spatially explicit207

model can then be assembled by coupling hybrid models to form a lattice of microsites. Microsite208

and lattice-level parameters can be specified to capture the millimeter and centimeter scale,209

respectively, which distinguishes this model from previous individual-based simulation models of210

decomposition [Allison, 2005, Folse and Allison, 2012, Kaiser et al., 2014, 2015]. In particular, the211

model can accommodate changes in the strength of competition within a colony (individuals of the212

same strain) by modifying the size of microsites, and between colonies of different strains by213

modifying the size of the lattice. By modeling the dynamics of cell populations and decomposition214

within and between microsites, we can take an evolutionary stance and address the effect of215

spatially heterogeneous population size and growth on the dynamics of invasion of a mutant216

genotype in the established population of the wild-type (resident) strain.217

It has long been known that environmental spatial structure can promote cooperation by218

facilitating benefit-sharing among cooperators. This was shown originally for pairwise interactions219

and later in the case of diffusive public goods. However, early models of diffusive public goods220

[Driscoll and Pepper, 2010, Ross-Gillespie et al., 2007, West and Buckling, 2003] represented space221

only implicitly and were therefore limited in their ability to identify conditions for the evolutionary222

stability of cooperation. Allison [2005] spatially explicit, individual-based simulation model of223

enzymatic litter decomposition backed up the expectation that the rate of products diffusion was224

key to the stability of cooperation. This and subsequent related models [Allison, 2012, Dobay et al.,225

2014, Folse and Allison, 2012, Kaiser et al., 2014, 2015], however, focused on competition between226

two or a small set of exoenzyme production genotypes, e.g. a producing strain and a non-producing227

(‘pure cheater’) strain. Our analysis goes further by predicting the evolutionary dynamics of228

exoenzyme production as a quantitative trait, varying continuously due to random mutation of229



small effect.230

Just like soil diffusion was identified as a critical factor for the stability of a producing strain231

against invasion by pure cheaters [Allison, 2005, Dobay et al., 2014], our model shows that the232

diffusion rate determines the evolutionarily stable investment in exoenzyme production. We did not233

observe evolutionary branching and coexistence in our simulations, but they might occur in regions234

of the parameter space that we have not yet explored. Otherwise, instances of coexistence reported235

by Allison [2005] and Kaiser et al. [2014, 2015] would likely be evolutionarily unstable and/or236

inaccessible to evolution by mutation of small effects.237

Finally, our model shows how variation in evolutionarily stable exoenzyme production feeds238

back to ecosystem macroscopic properties such as the decomposition rate and soil C stock at lattice239

scale. The model predicts that if environmental change, such as variation in soil physical properties240

or precipitation, drives changes in soil diffusion, then the microbial community may respond241

evolutionarily, and in return, the microorganisms’ evolutionary, adaptive response may242

substantially impact ecosystem function. Previous models investigated how soil functional243

properties such as decomposition, heterotrophic respiration, and carbon stock, respond to variation244

in soil moisture due to variable precipitation [Homyak et al., 2018, Zhang et al., 2014]. Focusing on245

experimental data from semi-arid savannah-type ecosystem subject to contrasted precipitation246

regimes, Zhang et al. [2014] used model-data assimilation to demonstrate the importance of water247

saturation as a control of enzyme activity and DOC uptake, and of the accumulation and storage of248

enzymes and DOC (that is temporarily inaccessible to microbes) in the dry soil pores during dry249

periods. Our results show that microbial evolution of exoenzyme production, in and of itself, can250

drive strong ecosystem responses to the effect of soil moisture variation on soil diffusion. Droughts251

that affect soil diffusion may also elicit microbial physiological responses ([Allison and Goulden,252

2017]) such as higher investment in osmolyte production, potentially at the expense of exoenzyme253

production ([Malik et al., 2019]); extensions of our model could evaluate the consequences for soil254

carbon loss. Additionally, one could explore the relative effect on decomposition and heterotrophic255

respiration of microbial physiological ([Homyak et al., 2018, Zhang et al., 2014]) and evolutionary256

responses to the spatial heterogeneity of soil water distribution. Using Melbourne and Chesson257

[2006]’s theory of scale transition, recent work by Chakrawal et al. [2019] establishes a powerful258

framework to incorporate soil heterogeneity in models of decomposition.259

We conclude that large ecosystem effects may result from the evolutionary adaptive response of260

microbial populations to changes in soil abiotic properties like diffusion. This calls for a more261

general investigation of the large-scale ecosystem consequences of soil microbial evolution in262

response to global environmental change, such as climate warming. The thermal dependence of263

microbe-enzyme biochemical processes involved in decomposition can radically change the global264

projections of soil C in response to climate warming [Wieder et al., 2013]. Future research is265

warranted to evaluate how microbial evolutionary adaptation to warming may further alter global266

projections of terrestrial carbon cycling.267



Methods268

To construct a spatially explicit model of microbe-enzyme decomposition, we focus on bacterial269

cells and unprotected soil organic carbon [Davidson and Janssens, 2006] and we assume nitrogen270

and phosphorus to be non limiting. Space is modelled as a two-dimensional lattice of microsites,271

with each microsite potentially occupied by a cell colony. Decomposition is seen as a microbial272

public good game, whereby individual microorganisms invest resources into the production of273

degradative exoenzymes. Exoenzyme molecules bind soil organic carbon (SOC) molecules and274

catalyse the depolymerization of SOC into dissolved organic carbon (DOC) molecules. DOC275

molecules occurring in a microsite may be uptaken and metabolized by cells present in the276

microsite, resulting in cell growth and exoenzyme production. The fraction of uptaken DOC that is277

invested by a cell in exoenzyme production, as opposed to cell biomass production, is denoted by ϕ.278

This is the focal trait that characterizes the microbial phenotype, for which we assume heritable279

variation, originating in mutation [Alster et al., 2016, Trivedi et al., 2016].280

Ecosystem dynamics at microsite scale. We assume that cells, enzymes, substrates (SOC) and281

products (DOC) are well-mixed within each microsite. We assume that only dissolved products282

(DOC) can diffuse and offspring cells can disperse between neighboring microsites. Additional283

processes operating at the level of individual entities are: cell respiration, parametrized by the284

energetic cost of cell tissue and the energetic cost of enzyme molecules; cell death and enzyme285

degradation, at constant rates; cell division, determined by accrued and stored resources reaching a286

threshold within the cell; formation and reaction or dissociation of SOC-enzyme complexes.287

Additional processes operating at the level of microsites are: external inputs of SOC and DOC,288

losses of SOC and DOC (leaching), diffusion of DOC, random disturbances causing cell colony289

death and microsite ‘opening’ to cell dispersal. We measure the abundance of all entities in units of290

carbon mass. The ‘local’ dynamics of decomposition within a microsite involves fluxes in and out of291

five local compartments: microbial cells (biomass M), enzymes (Z), SOC (C), SOC-enzyme292

complexes (X), and DOC (D) (Fig. 5a). To scale up the dynamics of decomposition from293

microscopic, stochastic processes, we take the following steps:294

1. We define the stochastic processes acting at the level of C, D, M , Z, X entities (molecules,295

cells) (Fig. 5a).296

2. We apply appropriate rescaling on the rates of complex (X) formation, reaction or297

dissociation, to express that complex dissociation and complex decomposition are much faster298

than complex formation. By doing so, we reduce the stochastic model to four state variables299

(C, D, M , Z) (Fig. 5b).300

3. We rescale the reduced stochastic model into a hybrid, stochastic-deterministic model, in301

which only M is treated as a integer-valued variable. This is achieved by considering that a302

cell is of the order of 107 times larger than one enzyme or substrate (SOC) molecule, and 1010
303

times larger than one product (DOC) molecule. Within a given volume, the number of cells is304



between 10−5 to 10−10 times smaller than the number of molecules of enzyme, SOC or DOC.305

As a consequence, the dynamics of cells and the dynamics of enzyme, SOC and DOC do not306

unfold on the same scales. The events affecting Z, C and D are much faster and more307

numerous than events affecting M . As a consequence, we can treat the dynamics of Z, C and308

D as deterministic over time bouts of constant cell population. Mathematically, the resulting309

hybrid, stochastic-deterministic model is a Piecewise Deterministic Markovian Process, or310

PDMP.311

4. Finally, we further simplify the hybrid model by noting that the growth of individual cells is312

driven by events (resource uptake) that occur on the same timescale as the events affecting Z,313

C, and D in the stochastic CDMZ model defined at Step 2. Then the consumption of D by314

cells is no longer a stochastic process but instead depends deterministically on M . Cell315

production thus becomes nearly deterministic, and the only remaining stochastic process is316

cell death. Even though the rigorous proof of step 4 is beyond the scope of the paper, we will317

adopt this approximation as we develop the spatially explicit extension of the model.318

We refer to the electronic supplementary material (ESM) §1, for mathematical derivations involved319

in each step. In ESM §1.1 and Tables S1 and S2 we rigorously define the five-variable stochastic320

process (Step 1). In ESM §1.1 and Table S2, we prove the reduction to the four-variable CDMZ321

stochastic model (Step 2). In ESM §1.2, we construct and thereby prove the existence of the322

PDMP model.323

According to the PDMP model, the ecosystem dynamics are driven by jumps of the finite cell324

number M (corresponding to cell birth and death events), interspersed with periods of continuous325

change in the abundance of enzyme, SOC, and DOC. Cell deaths occur at random times, at rate326

dM . When a cell dies, it is removed from the system and its carbon content is recycled into SOC327

and DOC. Birth events occur deterministically once the cell has experienced enough resource328

uptake events to assimilate and store the amount of DOC corresponding to one cell. Step 4 allows329

us to model the amount Si of DOC stored within cell i as governed by330

dSi(t)

dt
= α(1− ϕ)γMVmU

d

KmU + d
,

where d measures the rescaled, continuously-varying amount of DOC, in carbon mass unit, and α is331

the structural cost of one cell in unit of number of DOC molecules. Thus, α sets the threshold on332

Si at which the cell divides and both mother and daugther cells’ reserve is set back to 0. The other333

parameters are ϕ, the fraction of investment in exoenzyme production vs. cell growth; γM , the334

microbial carbon mass production fraction, or microbial growth efficiency (MGE); VmU and KmU ,335

the maximum uptake rate and uptake half-saturation constant, respectively, of the336

Michaelis-Menten uptake function.337

For a given number of cells, M, the change in enzyme, SOC and DOC are governed by338




z′(t) = ϕαωDVmUγZ

d

KmU + d
M − dZz

c′(t) = IC − lCc− VmDzc

d′(t) = ID − lDd+ VmDzc+ (1− l)dZz − ϕαVmU
d

KmU + d
M,

where z and c measure the rescaled, continuously-varying amount of enzymes and SOC in carbon339

mass unit; ωD is the carbon mass of a DOC molecule, γZ is the enzyme carbon mass production340

fraction, dZ is the enzyme carbon mass deactivation rate, IC and ID are the external inputs of C341

and D respectively, lC and lD are the leaching rates of C and D, VmD is the maximum342

decomposition rate when C is not limiting, and l is the fraction of deactivated z that is leached343

instead of recycled. Finally, the capacity of the system is fixed by a parameter K, which calibrates344

the number of interacting cells at any time in one microsite, empirically estimated to be of the345

order of 10 to 100 [Raynaud and Nunan, 2014]. See ESM §1.2 for more detail about model rescaling346

and ESM §1.1 for further discussion of parameter K. With very large K, the model hybrid347

stochastic-deterministic model can be approximated by a fully deterministic model which takes the348

form of a system of four ordinary differential equations, similar to the CDMZ microbial349

decomposition model first introduced by Allison et al. [2010].350

Spatial extension of ecosystem dynamics to lattice scale. In order to model the process of351

mutant invasion in a resident population of cells, we extend the simplified PDMP model to a352

spatially explicit, spatially homogeneous lattice of microsites. Spatial homogeneity means that all353

sites have the same capacity, K, and the same abiotic parameters, IC , ID, lC , lD and l. To this end,354

we couple PDMP models locally among microsites, by accounting for the diffusion of products355

(DOC) and dispersal of cells between adjacent microsites. The DOC diffusion between microsites is356

modelled by approximating a continuous diffusion with a Euler scheme in which time is discretized357

with a fixed time step interval, τdiff. At each time, a step of the Euler scheme associated with the358

diffusion equation359

d

dt
d(x, t) = σdiff∆d(x, t)

is realized for the variable d, where x is the spatial position and σdiff is the DOC diffusion360

coefficient. Space discretization in the Euler scheme is chosen to match the habitat lattice361

structure. Cell dispersal may occur following birth events. The daughter cell is added to the mother362

cell colony with probability 1− pdisp, or the cell disperses (with probability pdisp) to one of the four363

neighbouring microsites. If empty microsites (one at least) are available in the neighborhood, the364

dispersing cell moves to one of them, drawn randomly. If all neighboring microsites are occupied,365

there is a probability popen that a micro-disturbance of the soil strikes and opens one of them, which366

then becomes occupied by the dispersing cell, while c and d released by the dead cells are recycled367

locally. If no microsite opens (with probability 1− popen), the dispersal event is unsuccessful and368

the daughter cell remains in its maternal microsite. The dynamics of each microsite is recalculated369



between two diffusion steps and after each cell birth or death event. See ESM §2 for further detail.370

Mutant invasion and selection. Adaptive evolution of the exoenzyme allocation fraction trait,371

ϕ, is modelled by considering trait mutation that cause the trait of daughter cells to differ from the372

maternal trait value. There is a constant probability of mutation at each birth event, and the value373

of a mutated trait is assumed to be normally distributed around the maternal value, with small374

variance to represent mutations of small effect. Cells that have the same ϕ value belong to the375

same “strain”. Any new mutant strain arises in a system where the abundance of SOC, DOC and376

exoenzymes has been controlled by the already established, ‘resident’ strains. Selection occurs377

because strains with different ϕ will differentially succeed at acquiring the DOC resource for which378

they compete. The direction and strength of selection on the evolving trait is measured by the379

selection gradient of the trait, which can be derived from the probability of invasion of an initially380

rare mutant strain arising in the population stationary state of a resident strain ([Ferriere and381

Gatto, 1995, Metz et al., 1992], see Champagnat et al. [2007] for the extension to finite populations).382

Relative to a given strain, we call “cheaters” mutants that invest less in exoenzyme production383

(smaller ϕ) and “cooperators” mutants that invest more in exoenzyme production (larger ϕ).384

Data availability385

The simulations and figures that support the findings of this study were coded with C++ and R.386

The code files have been deposited in “IBMAbsLemFer”387

(https://github.com/elsaabs/IBMAbsLemFer).388
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(a) (b)

(c)

Figure 1. Dynamics of the cell population size and microbial trait ϕ, with and without mutation. The ancestral cell trait value

is ϕ = 0.5. (a) Cell population dynamics without mutation. Due to demographic stochasticity, the populations fluctuate around

the deterministically predicted steady state of 10 individuals. (b) Cell population dynamics with mutation, with probability

pmut = 0.1. Ten simulation runs are shown. As populations evolve, they reach the minimum viable value of the enzyme

production trait, ϕ, and go extinct in most of the 10 runs. (c) Evolution of enzyme allocation fraction, ϕ in one of the simulations

from (b). In (a) and (b), 10 simulation runs are shown. All simulations were initialized with a monomorphic M population

with trait ϕ = 0.5. In all simulations, the four variables c, d, z, M were initialized at the steady state values predicted by

the deterministic model with ϕ = 0.5. All constant parameters are set to the default values (Table S3 in ESM §3.2), except

Tmax = 108.



Figure 2. Spatio-temporal dynamics of invasion of a mutant cooperator (ϕmut = 0.8) into the ecosystem established by a resident

strain investing slightly less in exoenzyme production (ϕres = 0.75). From top to bottom: temporal dynamics of the mutant cell

population (Mmut), resident cell population (Mres), enzyme (Z), DOC (D), SOC (C). Columns 1-4: example simulation run of

the spatial hybrid stochastic-deterministic model over a 10 x 10 lattice of microsites, snapshots from time t = 0 to t = 5 × 105.

Column 5: Aggregated dynamics of the simulation run across the lattice. Column 6: Mean trajectories, averaged over 20 replicated

simulation runs. All constant parameters are set to the default values (Table S3 in ESM §3.2). The lattice was initialized with

all microsites occupied by residents, except for five microsites occupied by mutants at the center of the lattice. All ecosystem

variables z, c, d and M were fixed at the steady state determined by the established resident strain. See ESM §2 for simulation

detail.



(a) σdiff = 10−7 (b) σdiff = 5× 10−7 (c) σdiff = 10−6

(d) σdiff = 1.5× 10−6 (e) σdiff = 2× 10−6 (f) σdiff = 2.5× 10−6

(g) σdiff = 3× 10−6 (h) σdiff = 4× 10−6 (i) σdiff = 5× 10−6

(j) σdiff = 7.5× 10−6 (k) σdiff = 10−5 (l) σdiff = 5× 10−5

Figure 3. Patterns of selection on exoenzyme production at different soil diffusion rates. Each graph shows the mutant invasion

fitness across pairwise resident-mutant competing strains. Invasion fitness is measured as the product of the mutant survival

probability and the average long-term growth rate of growing mutant populations among stochastic simulation replicates. The

survival probability is estimated as the fraction of simulations with a non-extinct mutant population at Tmax. The long-term

growth is calculated as the average of (1/Tmax) log final mutant population size
initial mutant population size

among all survival runs for each pairwise competition

test, with Tmax = 106. Red bars show invasion fitness of the cheater strain taken as mutant (with the lower ϕ value in the

competing pair); blue bars show invasion fitness of the cooperator strain taken as mutant (with the higher ϕ value in the

competing pair). Positive invasion fitness of cheater mutants (red bars) indicate selection against exoenzyme production. Positive

invasion fitness of cooperator mutants (blue bars) indicate selection in favor of exoenzyme production. All constant parameters

are set to the default values (Table S3 in ESM §3.2). Mutant initial population size is set to 5% of the abundance of the resident

population in the central microsites. We tested values of σdiff between 10−8 and 10−4 and report results for σdiff between 10−7

and 5× 10−5 as variation of σdiff outside this range had no effect.



(a)

(b)

(c)

Figure 4. Effect of soil diffusion on the evolution of exoenzyme production and lattice-scale feedback on ecosystem function

(decomposition rate and soil carbon stock), predicted by the spatial hybrid stochastic-deterministic model. (a) Red, Enxoenzyme

allocation ESS as a function of diffusion. Blue, Exoenzyme allocation without evolutionary adaptation to variation in soil diffusion

(fixed at ESS predicted for σdiff = 10−5). (b) Red, Feedback of exoenzyme allocation adaptation to lattice-scale decomposition.

Blue, Lattice-scale decomposition as a function of diffusion, without microbial evolutionary adaptation. (c) Red, Feedback of

exoenzyme allocation adaptation to lattice-scale carbon stock. Blue, Lattice-scale carbon stock as a function of diffusion, without

microbial evolutionary adaptation. In (a), for each diffusion rate the ESS is approximated by the resident phenotype with minimum

mutant invasion fitness extracted from Fig. 3. In (b) and (c), for each diffusion rate the exoenzyme allocation fraction is fixed

at its corresponding ESS from (a). We then ran simulations of a monomorphic microbial population at ESS and calculated the

decomposition rate (maximal decomposition rate times total enzyme mass) averaged across the lattice and the total SOC mass

over the lattice, averaged over time (between time 2× 105 and Tmax = 106, to remove the initial transient). Error bars measure

variation of the mean among simulations due to process stochasticity. All constant parameters are set to the default values (Table

S3 in ESM §3.2). See ESM §2 for further simulation detail.



(a) (b)

Figure 5. Microbe-enzyme driven decomposition of soil organic matter: Modelled entities and processes. (a), Five-compartment

model. (b), Four-compartment model. SOC, soil organic carbon. DOC, dissolved organic carbon. Plain arrows indicate carbon

fluxes among compartments and in and out of the system. Dotted arrows indicate the exoenzyme concentration dependence of

the decomposition rate.


