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1 Stochastic individual-based processes and rescaling34

In the two following subsections are the proofs for steps 2 and 3 of the construction of the model in35

the first section of Methods in the main text of the article.36

1.1 Reduction of the stochastic model from five to four state variables37

The first model corresponds to the stochastic processes acting at the level of C, D, M , Z, X38

entities (molecules, cells) (Fig. 5a) within a microsite.39

Dynamics of C, D, M , Z, X occur in continuous time. Mt is the number of bacterial cells at40

time t. Zt, Ct, Dt are the numbers of enzyme molecules, SOC molecules, and DOC molecules,41

respectively. Xt is the number of complexes formed by an enzyme molecule binding a DOC42

molecule. DOC enters the microsite at a constant rate. When a cell dies, a fraction p of the43

molecules released are recycled into SOC, while the rest is recycled into DOC. A fraction l of dead44

microbes and deactivated enzymes may be lost due to leaching.45

We denote by α the structural cost of a cell, which is the number of DOC molecules contained46

in one cell, and we denote by α′ the energetic cost of a cell, which is the number of DOC molecules47

consumed to produce the energy needed for the synthesis reactions involved in the production of a48

cell. We denote the structural cost of one SOC molecule by β, and the structural and energetic cost49

of producing one molecule of enzyme by γ and γ′, respectively. We assume that the energetic costs50

are carbon released by bacteria as CO2 that diffuses out of the system instantaneously. We define51

the biomass production fraction and enzyme allocation fraction as52

γ̄M :=
1

α+ α′
, γ̄Z :=

1

γ + γ′
. (S.1)

The event times are given by independent exponential random variables whose parameters are53

defined by event rates (Tables S1 and S2). These event rates give an approximation of the average54

frequency of each event, however any event may occur at any time. The rates of cell growth and55

enzyme production depend on the cell trait ϕ. Cell division is the outcome of storing assimilated56

DOC until a threshold is reached. A parameter N scales the gradual process of consumption and57

storage of DOC. Thus, there can be growth only if there is enough D to cover both the structural58

cost, α/N , and the energetic cost, α′/N of this growth, hence the notation 1{D≥(α+α′)/N} which59

equals 1 if D ≥ (α+ α′)/N , 0 otherwise. Likewise 1{D≥γ+γ′} is used for the production event of an60

enzyme molecule. Growth leads to cell division only if enough D has been consumed and stored.61

Enzyme-substrate complexes form at rate λ̄K as one enzyme molecule (e.g. cellulase) bind one62

SOC molecule (e.g. cellulose). A complex may either dissociate (with no reaction) at rate λ̄ε−1, or63

react at rate µ̄ε and convert the molecule of SOC into a molecule of DOC while the enzyme is64

released and free again to react with new molecules of SOC (Table S2).65

We use K as a scaling parameter for the magnitude of the number of interacting bacteria, which66

by definition have access to the same (local) pool of resources. When K = 1, all parameter values67



correspond to the rates observed for a volume of soil V = 10−9 cm3 that we take as the baseline68

volume expected to contain one cell. Increasing K means that the model treats interactions as69

well-mixed among an increasing number of cells that occupy an increasingly large volume. As a70

consequence, external inputs of SOC or DOC increase with K, and the probability that two enzyme71

and SOC molecules encounter, that is proportional to λ̄K , decreases. We thus assume that there72

are four constant parameters, ĪC , ĪD, λ̄ and K̄mU , such that73

ĪKC = KĪC , Ī
K
D = KĪD, λ̄

K =
λ

K
and K̄K

mU = KK̄mU (S.2)

where ĪC is the external input of C, ĪD is the external input of D, λ̄ is the encountering rate,74

and K̄mU is the uptake half-saturation constant. In our simulations, we will generally assume that75

K is equal to 10, which is a good approximation of the number of cells that interact at each time.76

Let K be fixed and let77

Cε(t), Dε(t),M ε(t), Zε(t), Xε(t)

designate the (stochastic) number of cells, enzymes molecules, SOC molecules, complexes and DOC

molecules at time t in the CDMZX model associated to parameters λ̄ε−1 and µ̄ε. Next theorem

ensures that under the assumption that complex dissociation and the decomposition reaction of the

complex are much faster than complex formation:

λ̄ε−1, µ̄
ε >> λ̄K ,

the stochastic CDMZX model can be simplified into the four-compartment stochastic CDMZ model78

with structure shown in Fig. 5b and events and event rates listed in Table S2 with79

V̄ K
mD = λ̄K

µ̄

µ̄+ λ̄−1
:=

V̄mD
K

, (S.3)

where V̄mD corresponds to the maximum decomposition rate when C is not limiting.80

Precisely, we assume that there are two positive constant λ̄−1 and µ̄ such that81

λ̄ε−1 =
1

ε
λ̄−1 and µ̄ε =

1

ε
µ̄. (S.4)

Let82

Yε := (M ε, Zε +Xε, Cε +Xε, Dε),

then the following result, which is proved in Section 4, holds.83

Theorem 1. Assume that (S.4) holds and that (M ε, Zε, Cε, Xε, Dε)(0) converges in L2 to the84

deterministic vector (M0, Z0, C0, 0, D0), when ε goes to 0, then for any T ≥ 0, the sequence of85

processes (Yε(t), t ∈ [0, T ])ε>0 converges in law, in D([0, T ],N4) endowed with the Skorohod86

topology, to (M,Z,C,D)t∈[0,T ] defined by the 4-boxes model whose rates are described in Table S2,87

initial condition is (M0, Z0, C0, D0) and V̄ K
mD is defined by (S.3).88



Table S1. Events involving enzyme-SOC complexes (X) in the CDMZX model. Individual-level

events and event rates.

Event Event rate

Formation of 1 complex X from 1 Z and 1 C:

(M,Z,C,X,D) 7→ (M,Z − 1, C − 1, X + 1, D) λ̄KZC

Dissociation of 1 complex X into 1 Z and 1 C:

(M,Z,C,X,D) 7→ (M,Z + 1, C + 1, X − 1, D) λ̄ε−1X

Depolymerization of 1 C into β D (decomposition)

from the effect of Z on C in complex X

(M,Z,C,X,D) 7→ (M,Z + 1, C,X − 1, D + β) µ̄εX

Table S2. Events and event rates in both stochastic models (CDMZ and CDMZX). Cells are char-

acterized by their trait value ϕ.

Event Event rate

Events relative to M

M grows and accumulates an equivalent

of α/N molecules of DOC, N(1− ϕ)γ̄M V̄mU
D

K̄K
mU+D

1{
D≥α+α′

N

}
gives birth to an offspring if its

stock of carbon is equal to α

D 7→ D − α+α′

N

M dies

C 7→ C + b(1− l)pαβ c, d̄M

D 7→ D + b(1− l)(1− p)αc
M produces 1 Z

D 7→ D − (γ + γ′) ϕγ̄Z V̄mU
D

K̄K
mU+D

1{D≥γ+γ′}

Events specific to Z, C, D

Deactivation of 1 Z:

(M,Z,C,D) 7→ (M,Z − 1, C,D + b(1− l)γc) d̄ZZ

External input of 1 C:

(M,Z,C,D) 7→ (M,Z,C + 1, D) ĪKC

Loss of 1 C due to leaching:

(M,Z,C,D) 7→ (M,Z,C − 1, D) ēCC

External input of 1 D:

(M,Z,C,D) 7→ (M,Z,C,D + 1) ĪKD

Loss of 1 D due to leaching:



(M,Z,C,D) 7→ (M,Z,C,D − 1) ēDD

Event specific to CDMZ model

Depolymerization of 1 C into β D (decomposition)

through enzymatic reaction

(M,Z,C,D) 7→ (M,Z + 1, C − 1, D + β) V̄ K
mDZC

1.2 Derivation of the hybrid stochastic-deterministic model by rescaling the89

stochastic CDMZ model90

As explained in Methods in the main text, the biomass represented by a cell is much larger than91

the carbon mass of a molecule of enzyme, SOC or DOC, whereas the number of cells is much92

smaller than the number of enzyme, SOC and DOC molecules. We took this into account for93

approximating the stochastic CDMZ individual-based model by a hybrid deterministic-stochastic94

model, which allows to accelerate consequently the model simulations.95

To set the approximation rigorously, we introduce a parameter κ that gives the order of96

magnitude of the biomass of a cell and the number of enzymes, SOC and DOC molecules.97

The structural and energetic costs of a bacteria is rewritten

ακ := κα and α′κ = κα′.

We also set ĪκC = κĪC , ĪκD = κĪD, V̄ κ
mD = V̄mD

κ , K̄κ
mU = κK̄mU , and we are interested in the sequence(

Mκ
t , ωZ

Zκt
κ
, ωC

Cκt
κ
, ωD

Dκ
t

κ
, t ≥ 0

)
κ≥0

,

when κ converges to ∞. ωZ is the averaged carbon mass content of one enzyme, and likewise for98

cells (ωM ), SOC (ωC) and DOC (ωD). The ω parameters are related to α, β and γ according to:99

α =
ωM
ωD

, β =
ωC
ωD

, and γ =
ωZ
ωD

. (S.5)

Using these rescaling parameters allows the system of equations to be expressed in biomass and not100

in molecular density, which would be less meaningful and more difficult to interpret.101

With further rescaling (such that all parameters of the system are expressed in biomass) and102

notations:103

IC := ωC ĪC , ID := ωD ĪD, KmU := ωDK̄mU ,

VmD := 1
ωZ
V̄mD, VmU := ωD

ωM
V̄mU , γM := ωM

ωD
γ̄M , γZ := ωZ

ωD
γ̄Z ,

dM := d̄M , dZ := d̄Z , eC := ēC , eD := ēD,

(S.6)

a direct application of Theorem 3.1 of Crudu et al. [2012] gives the following theorem.104



Theorem 2. Assume that
(
Mκ(0), ωZ

Zκ(0)
κ , ωC

Cκ(0)
κ , ωD

Dκ(0)
κ

)
converges to a deterministic vector

(M0, z0, c0, d0), then the sequence of processes(
Mκ
t , ωZ

Zκt
κ
, ωC

Cκt
κ
, ωD

Dκ
t

κ
, t ≥ 0

)
converges in distribution, when κ goes to +∞, to the distribution of a PDMP whose generator is105

Af(M, z, c, d) =

(1− ϕ)γMVmU
d

KmU + d
M1{d≥ωD(α+α′)}

[
f
(
M + 1, z, c, d− ωD(α+ α′)

)
− f(M, z, c, d)

]
+ d̄MM

[
f (M − 1, z, c+ (1− ε)pαωD, d+ (1− ε)(1− p)αωD)− f(M, z, c, d)

]
+

(
ϕηωDVmUγZ

d

KmU + d
M − dZz

)
∂f(M, z, c, d)

∂z

+ (IC − lCc− VmDzc)
∂f(M, z, c, d)

∂c

+

(
ID − lDd+ VmDzc+ (1− ε)dZz − ϕηVmU

d

KmU + d
M

)
∂f(M, z, c, d)

∂d
.

This generator corresponds precisely to the generator of the PDMP described at the end of106

Section 2.1 of the article.107

For the sake of simplicity, the theorem has been written in the case where N = 1 in the CDMZ108

model, however, it can be directly adapted for N > 1. In our context, approximating the109

microscopic model by the limiting PDMP is justified due to the large values of ακ = 1010 and110

α′κ = 2.33 · 1010 compared to β, γ and γ′ (less than 104). Finally, when N is really large, we111

consider that the growth of all cells is also deterministic. However, a rigorous proof of this112

approximation is not given in this paper.113

2 Simulation algorithm114

In this section, we describe the algorithm used to simulate our final model, which is a hybrid115

stochastic-deterministic model on the lattice, and used to perform the figures of the paper. The116

algorithm is adapted from the ones presented for example in Champagnat et al. [2006], Fournier117

and Méléard [2004], also known as Gillepsie algorithm [Kierzek, 2002] and from the ones to simulate118

PDMP.119

The main idea is to couple PDMP models locally among microsites, by accounting for the120

diffusion of products (DOC) and dispersal of cells between adjacent microsites. The DOC diffusion121

between microsites is modelled by approximating a continuous diffusion with a Euler scheme in122

which time is discretized with a fixed time step interval, τdiff. τdiff is chosen sufficiently small to123

have a good discretization of the DOC diffusion.124

Precisely, the simulation starts with a given amount of M , z, c and d in each microsite at time125

t = 0. Two stochastic events (death of a bacteria) can never occur at the same time. Assume that126

the process has been computed until time ti and let us explain how to compute it until time ti+1.127



We first simulate T , an exponential random variable with parameter r(ti) = d̄MM(ti), which128

corresponds to the death rate of the total bacteria population at time ti (M(ti) being the total129

number of bacteria on the entire lattice). And we compute130

ti+1 := ti + min (T, τdiff) .

In order to obtain the quantities of enzymes, SOC and DOC (resp. z(ti+1), c(ti+1), and d(ti+1))

in biomass in each microsite at time ti+1 and the variation in amount of DOC stored within a

bacteria in the corresponding microsite, we use an Euler scheme that solves the dynamical system

z′(t) = ϕαωDVmUγZ
d

KmU + d
M − dZz

c′(t) = IC − lCc− VmDzc

d′(t) = ID − lDd+ VmDzc+ (1− l)dZz − ϕαVmU
d

KmU + d
M

∆′(t) = α(1− ϕ)γMVmU
d

KmU + d
,

in each microsite between ti and ti+1, where M is the number of bacteria in the microsite at time131

ti, ∆ gives the amount variation of DOC stored within a bacteria, ∆(ti) = 0 and the other initial132

conditions are the biomass of z, c, d in the corresponding microsite at time ti.133

Note that, within a microsite, the amount variation of stored DOC is equal for all bacteria and134

corresponds to ∆(ti+1). Hence, this amount is added to the amount of DOC stored within each135

bacteria living in the corresponding microsite. If, for a bacteria k, the resulting amount S̃k(ti+1) is136

over α, a new bacteria appears. The amount of stored DOC within the new cell and the mother cell137

is then updated to be equal to half of S̃k(ti+1)− α. To determine the position of the new bacteria,138

the following steps are followed:139

• A uniform random variable θ1 in [0, 1] is thrown.140

• If θ1 < 1− pdisp, the new bacteria is added to the mother cell microsite.141

• Otherwise, the new bacteria disperses:142

– If empty microsites are available in the four nearest microsites, the new cell is added to143

one of them, drawn randomly.144

– Otherwise, a uniform random variable θ2 in [0, 1] is thrown:145

∗ If θ2 < 1− popen, the new cell is added in the mother cell microsite.146

∗ If θ2 ≥ 1− popen, a micro-disturbance happens. That is, one of the four nearest147

microsites is chosen at random. All bacteria in this microsite dies. These cells are148

removed from the population, an amount of (1− ε)pωDαM is added to variable d149

and an amount of (1− ε)(1− p)ωDαM is added to variable c in this microsite (where150

M is the number of dead cells). Finally, the new bacteria is placed in this microsite.151



Our next step in the algorithm consists in imitating a step of the Euler scheme associated with

the diffusion equation
d

dt
d(x, t) = σdiff∆d(x, t),

in order to mimicking the diffusion of DOC. To this aim, we update the DOC biomass dj,l(ti+1) in152

the microsite of the jth column and the lth line by replacing it with153

dj,l(ti+1) +
σdiff · τ

(V K)2/3

(
dj+1,l(ti+1) + dj−1,l(ti+1) + dj,l+1(ti+1) + dj,l−1(ti+1)− 4 ∗ dj,l(ti+1)

)
.

Once these previous steps of updating are computed, we verify if a bacteria actually dies at time154

ti+1.155

• If ti+1 − ti = T , then a bacteria dies at time ti+1. It is chosen uniformly at random among all156

alive cells and it is removed from the population. At the same time, an amount of157

(1− ε)pωDα is added to variable d and an amount of (1− ε)(1− p)ωDα is added to variable c158

in the corresponding microsite.159

• If ti+1 − ti = τdiff (i.e. T > τdiff), no bacteria dies.160

All steps are then computed again until a chosen time is reached or until all cells are dead.161

3 Parameter values and numerical simulations162

In order to evaluate the parameters of our model and give default values based on literature, we163

compare the stochastic CDMZ individual-based model (which is our default model) to a164

deterministic one. Under the assumption that all entities are in large number, the CDMZ model165

can be rescaled as a dynamical system of ordinary differential equations, similar to Schimel and166

Weintraub [2003] seminal model of litter decomposition (see also Abs and Ferrière [2020], Wieder167

et al. [2015]). We obtain the scaling of the deterministic model parameters relative to the168

individual-level process parameters.169

3.1 Deterministic approximation of the stochastic CDMZ model170

In this subsection we assume that all cells have the same trait value, ϕ, so that there is only one171

type of cells in the system, and we will consider that K is large, where K refers to the scaling172

parameter introduce in Section 1.1. If (S.2) holds, we prove that the stochastic CDMZ model can173

be approximated by the following deterministic model174 

dm

dt
=(1− ϕ)γMVmU

d

KmU + d
m− dMm

dz

dt
=ϕγZVmU

d

KmU + d
m− dZz

dc

dt
=IC − eCc+ (1− l)pdMm− VmDzc

dd

dt
=ID − eDd+ VmDzc+ (1− l) [(1− p)dMm+ dZz]− VmU

d

KmU + d
m,

(S.7)



where m, z, c and d are in carbon mass unit, and all parameters correspond to rescaled parameters175

defined in (S.6).176

Precisely, let us denote by (MK(t), ZK(t), CK(t), DK(t)) the number of bacteria, enzymes177

molecules, SOC molecules and DOC molecules given by the stochastic CDMZ model presented in178

Section 1.1 in the case of K neighborhoods. The following lemma can be deduced from a direct179

application of Chapter 11 in Ethier and Kurtz [2009].180

Lemma 3.1. Assume that (S.2) holds and that181 (
ωM

MK(0)

K
,ωZ

ZK(0)

K
,ωC

CK(0)

K
,ωD

DK(0)

K

)
−→

K→+∞
(m(0), z(0), c(0), d(0)) ∈ [0,+∞)4,

then for any T ≥ 0,182

lim
K→+∞

sup
t≤T

∥∥∥∥(ωMMK(t)

K
,ωZ

ZK(t)

K
,ωC

CK(t)

K
,ωD

DK(t)

K

)
− (m(t), z(t), c(t), d(t))

∥∥∥∥
∞

= 0,

where the limit stands in probability, ‖.‖∞ denotes the L∞-norm on R4 and (m, z, c, d) is the unique183

solution to (S.7) with initial condition (m(0), z(0), c(0), d(0)).184

3.2 Default parameter values and initialization of simulations185

Model (S.7) can be compared to models already existing in the literature, which provide us with186

default parameter values (Allison et al. [2010], German et al. [2012], Hagerty et al. [2014], Schimel187

and Weintraub [2003]).188

The structural and energetic costs (αs and γs) are calculated from the masses and production189

fractions of the variables (see Equations (S.1) and (S.5)). They are not inputs of the model, and are190

presented here only for informative purposes.191

Table S3. Parameters of the deterministic model in biomass.

Parameter Unit Description Default value

V cm3 microsite volume 10−9

K scaling parameter of (local) microbial population size 10

ϕ enzyme allocation fraction [0, 1]

γM microbial carbon biomass production fraction 0.3

γZ enzyme carbon mass production fraction 0.4

ωM mg mass of 1 M cell 10−9

ωZ mg mass of 1 Z molecule 10−16

ωC mg mass of 1 C molecule 10−16

ωD mg mass of 1 D molecule 10−19

α structural cost in D of 1 M cell 1010

α′ energetic cost in D of 1 M cell 2.33× 1010



β structural cost in D of 1 C molecule 103

γ structural cost in D of 1 Z molecule 103

γ′ energetic cost in D of 1 Z molecule 1.5× 103

dM h−1 microbial carbon biomass death rate 2× 10−4

dZ h−1 enzyme carbon mass deactivation rate 2× 10−3

VmU h−1 maximum uptake rate (in carbon mass) 0.42

VmD mg−1h−1 maximum decomposition rate

when C is not limiting 7×10−4

V

KmU mg uptake half-saturation constant 0.3× V
IC mgh−1 external input of C 5× 10−4 × V
ID mgh−1 external input of D 0

eC h−1 C leaching rate 10−6

eD h−1 D leaching rate 10−6

l fraction of dead M and deactivated Z

leached instead of recycled 0

p fraction of recycled dead M flowing

into C (remaining fraction flows into D) 0.5

Tmax h maximum simulation time 106

pmut probability of mutation per cell division event between 1/(Kln(K))

and 1/K2

σmut standard deviation of mutation effect [0.01− 0.1]

The decomposition rate VmD has been calculated as vDmax
KD
m

from Allison et al. [2010]’s model.192

Since the stochastic model allows us to look at the behaviour of smaller populations, we reduce the193

soil volume to 10−9cm3 (instead of 1cm3 in most models). Volume affects 3 parameters: VmD,194

KmU , and IC . We ignore the input of D. We assumed leaching of D equal to leaching of C. Dead195

microbes and deactivated enzymes are recycled half into C and the other half into D. The values196

for pmut and σmut have been chosen to respect the assumptions of the adaptive dynamics that197

mutations are rare and small [Geritz et al., 1998].198

Concerning the change of unit from biomass to individuals (ωs), the models for M , Z, C, D are199

Bacillus subtilis ou clausii, cellulase, cellulose and glucose respectively. We estimated the mass of 1200

D with the mass of 1 molecule of glucose, which contains 6 atoms of carbon and201

m6.02×1023atoms of 12C = 12g. We estimated the mass of 1 C from the approximation that 1 molecule202

of cellulose contains about 103 molecules of glucose. We estimated the mass of 1 Z by assuming203

that 1 molecule of cellulase contains about as much carbon as 1 molecule of cellulose. Finally, we204

estimated the mass of 1 M based on the results from biomass estimations of soil samples (with205

various methods: CFI, CFE, SIR...) that there are about 4× 108 active individual bacteria in 1cm3
206

of bulk soil, which weight 0.1mg in carbon [Fierer et al., 2009].207



Finally, microsites are initialized according to the stationary state given by System (S.7) for all208

variables M , Z, C and D. Mutants are initially located at the center of the grid (changing the209

initial location does not modify the final fraction of mutants in the grid). To reduce simulation210

time, we assume that mutants are initially at 5% frequency in the introduction microsite. We ran211

simulations for (resident, mutant) pairs with +/- 0.05 difference in trait value ϕ . From the final212

frequency of mutants we compute the mutant exponential growth rate, and average over 20213

simulation replicates.214

3.3 Numerical comparison of the hybrid stochastic-deterministic model and its215

deterministic approximation216

The deterministic model corresponds to a large (high K) single-microsite version of the final hybrid217

stochastic-deterministic model used for our results. Its ecological dynamics defined in (S.7) can be218

analytically solved, indicating that there are one or three equilibria depending on the value of ϕ. At219

the “trivial” equilibrium, there are no active microbes or enzymes (Meq1 = Zeq1 = 0), SOC and220

DOC are fixed by the balance of external inputs and leaching (Ceq1 = IC/eC and Deq1 = ID/eD).221

This equilibrium is always locally stable. When the other two equilibria exist, one is always222

unstable, and M , Z, C, D at both equilibria are all positive. Existence of the positive equilibria223

depends on ϕ belonging to a certain interval (ϕmin ≤ ϕ ≤ ϕmax). When the non-trivial equilibria224

exist, one is unstable and the other is locally stable for most values of ϕ and unstable (bifurcating225

into a limit cycle) for values of ϕ close to ϕmin. For the default parameters values (Table S3), both226

exist when 0.01212 < ϕ < 0.9984 and the microbial equilibrium is stable for 0.01212 < ϕ < 0.9969.227

For viable values of ϕ (between 0.01212 and 0.9969), microbes do not go extinct during the228

simulated time in both the single-microsite hybrid model with large K and the deterministic model229

despite possible strong oscillations around the equilibrium. However as we decrease the system size230

K, the average microbial population size M decreases in the hybrid model, and stochasticity added231

to fluctuations can lead to rapid extinction, resulting in a smaller range of viable ϕ (Fig. S1). We232

can find a minimal value of K under which the range of viable ϕ diverges significantly from233

deterministic predictions. We can lower this minimal value when switching to a multi-microsites234

grid (Fig. S2), because local extinctions do not occur simultaneously, therefore the population at235

the grid scale can survive one microsite population extinction, and dead cells are recycled into236

resource, which feed and help survival of neighbouring microsites’ populations.237

How well does the deterministic CDMZ model capture the behavior of its stochastic238

counterpart? A key difference comes from the fact that a cell can grow only if there is enough D239

available for both the structural and the energetic costs of growth, (α+ α′)/N , and likewise for the240

production of enzyme molecules. If there is not enough D, the event is dropped, which means that241

the cell does not grow and no D is consumed, therefore the numbers of M , Z and D are unchanged.242

This does not happen in the deterministic model, which is a infinite population approximation of243

the stochastic model. In particular, since one cell is much more costly in D than one enzyme244



molecule (Table S3), more events of cell division than enzyme production may be dropped,245

especially when N is small. As a result, a significant difference may arise between the expected246

investment (parameter ϕ) and realized investment of a cell into enzyme production versus biomass247

production. Figure S1 shows that at low system size K, keeping the discrepancy small between the248

deterministic and stochastic models across the range of feasible ϕ, requires outstandingly large N ,249

so that the structural and energetic costs of growth are kept very low.250

A second key difference is fluctuations in the stochastic model, which may drive the population251

to extinction. In contrast, for viable values of ϕ, strong oscillations may occur in the deterministic252

model without compromising the cell population persistence. In the stochastic, spatially extended253

system, the habitat spatial structure induces a metapopulation rescue effect, which strongly254

increases the probability of persistence over any given time horizon (Fig. S2).255

3.4 Resident-mutant interaction in the spatial model256

At each birth event, a daughter cell is a mutant with probability pmut, or has the same ϕ value that257

its mother with probability (1− pmut). Because only one event can occur in any small time interval,258

only one mutant can appear in any small time step but multiple mutants with different ϕ values259

can co-occur. We aim to look at (1) the dynamics of the trait ϕ, (2) the fate of the population with260

vs. without adaptive evolution (fixed pmut = 0).261

We initialize the simulation with a monomorphic population (all cells have the same ϕ value). All 4262

variables c, d, z, M are initialized at the steady state values predicted by the deterministic model263

corresponding to the values of K and ϕ chosen. We run 20 simulations per test (e.g. for each K264

tested, for each initial ϕ tested, for with versus without evolution), which are different due to265

demographic stochasticity. Total time of all parallelized simulations was 107 hours (about 1000266

years).267

4 Rigorous proof of Theorem 1268

In this Section, we prove rigorously Theorem 1. To reduce the CDMZX model, the main difficulty269

arises because we can not have classical Skorohod convergence in distribution of the process270

(M ε, Zε, Cε, Xε, Dε, t ∈ [0, T ])ε>0. Indeed, when ε is small, there will be some really close jumps of271

Xε when a complex is formed and almost immediately dissociated or decomposed. It is why we are272

interested in the process273

Yε := (M ε, Zε +Xε, Cε +Xε, Dε),

and we prove the convergence of the sequence of processes (Yε(t), t ∈ [0, T ])ε>0 in law, in274

D([0, T ],N4) endowed with the Skorohod topology, to (M,Z,C,D)t∈[0,T ] defined by the 4-boxes275

model of Section 1.1.276

Here we take N = 1, but the proof could be generalized N > 1 by introducing multiple cell277

stages describing the state of cell resource reserve.278



Proof. Step 1: The first step is to prove the tightness of sequence (Yε)ε>0 in D([0, T ],N4). To this279

aim, we denote the jumps set of process (Yε(t), t ∈ [0, T ]) by280

{Jεj }j≥1 = {t ∈ [0, T ],Yε(t−) 6= Yε(t)}. (S.8)

Note that Yε is càdlàg, hence the definition (S.8). As any jump of Yε is of size 1, the tightness of281

Yε follows from the two conditions:282

i) lima→+∞ lim supε→0 P(‖Yε‖∞ ≥ a) = 0,283

ii) limδ→0 lim supε→0 P(∃j ≥ 0, Jεj+1 − Jεj ≤ δ) = 0.284

Indeed, these two conditions directly imply the two conditions of Theorem 13.2 in the book of285

Billingsley [2013], which ensures tightness.286

To prove i), we introduce N ε
Tot = αM ε + γZε + βCε + (γ + β)Xε +Dε the total equivalent287

number of DOC molecules in the system at any time. Since the only external sources of carbon are288

inputs of C and D, N ε
Tot is stochastically bounded from above by289

sup
s≤T

N ε
Tot(s) � N ε

Tot(0) + P((ĪD + βĪC)T ) =: N ε
max, (S.9)

where P((ĪD + βĪC)T ) is a Poisson random variable with parameter (ĪD + βĪC)T . From the290

assumption on the initial conditions, we deduce immediately that the random variable N ε
max is291

L2-integrable and that for ε sufficiently small, there exists C0 > 0 such that292

E [N ε
max] + E

[
(N ε

max)2
]
≤ C0. (S.10)

Moreover, since α, β and γ are greater than 1, we obtain from Markov inequality,293

P(‖Yε‖∞ ≥ a) ≤ P(N ε
max ≥ a) ≤ 1

a
C0,

for any ε sufficiently small. This ends the proof of i).294

We now deal with ii). Let us set η > 0. First of all, note that we can focus the study on the set295

{Xε(0) = 0}. Indeed, from the assumption on the initial condition, for any ε small enough,296

P(Xε(0) ≥ 1) ≤ η. Hence297

P(∃j ≥ 0, Jεj+1 − Jεj ≤ δ) ≤ η + P0(∃j ≥ 0, Jεj+1 − Jεj ≤ δ), (S.11)

where for any set A, P0(A) = P(A|Xε(0) = 0). In what follows, we restrict our focus on298

{Xε(0) = 0}.299

Then, we count the number of jumps of Yε. Note that any jump of Yε is also a jump of300

(M ε, Zε, Cε, Xε, Dε). Thus, we count the jumps number of the latter. As originally done by301

Fournier and Méléard [2004], it is convenient to represent a trajectory of individual-based processes302

as the unique solution of a system of stochastic differential equations driven by Poisson point303

measures. To this aim, we introduce a collection of 11 independent Poisson Point Processes304



(N i(ds, dθ))i=1,..,11 on [0,∞)2 with intensity dsdθ and independent of ε, which will be used to305

encode the 11 different types of events of the process (M ε, Zε, Cε, Xε, Dε). We also denote all rates306

of this process by (rεi (t), t ∈ [0, T ])i=1,..,11, i.e. these rates are respectively307

(1− ϕ)γ̄M V̄mU
Dε

K̄mU+Dε
M ε1{Dε≥α+α′} (birth of a M), d̄MM

ε (death of a M),308

ϕγ̄Z V̄mU
Dε

K̄mU+Dε
M ε1{Dε≥γ+γ′} (production of a Z), d̄ZZ

ε (deactivation of a Z), ĪC (appearance of309

a C), ēCC
ε (disappearance of a C), ĪD (appearance of a D), ēDD

ε (disappearance of a D), λ̄ZεCε310

(formation of a X), λ̄ε−1X
ε (dissociation of a X), and µ̄εXε (decomposition of a X). Note that only311

the events of type 1 to 8 and 11 correspond to jumps of Yε. Hence, the jumps number of Yε can be312

bounded stochastically by313

]{Jεj } �
∑

i∈{1,..,8,11}

∫ T

0

∫
R+

1{θ≤rεi (s−)}N
i(ds, dθ). (S.12)

The only problem comes from the last rate µ̄εXε, which is unbounded when ε goes to 0. However

µ̄εXε = 0 as soon as there is no complex X in the system, and complexes are created with the

encounter of a Z and a C (9-th rate). Thus, we immediately conclude that∫ T

0

∫
R+

1{θ≤µ̄εXε(s−)}N
11(ds, dθ) ≤

∫ T

0

∫
R+

1{θ≤λ̄Zε(s−)Cε(s−)}N
9(ds, dθ).

In addition with (S.12), (S.9) and (S.10), we deduce, if ε is small enough that314

P0(]{Jεj } > n) ≤
9∑
i=1

P0

(∫ T

0

∫
R+

1{θ≤rεi (s−)}N
i(ds, dθ) ≥ n

9

)

≤ 9

n
T

9∑
i=1

E0

[
sup
s∈[0,T ]

rεi (s)

]

≤ 9T

n

(
ĪC + ĪD + C1E0 [N ε

max] + λ̄E0

[
(N ε

max)2
] )

≤ 9T

n
C2 −→

n→+∞
0,

(S.13)

with C1 := γ̄M V̄mU + d̄M + γ̄Z V̄mU + d̄Z + ēC + ēD and C2 := ĪC + ĪD + C1C0 + λ̄C0. We fix315

n := b9TC2/ηc+ 1 such that the last r.h.s. is smaller than η. Thus,316

P0(∃j ≥ 0, Jεj+1 − Jεj ≤ δ) ≤ P0(]{Jεj } > n) + P0

(
∃j ∈ {1, .., n− 1} Jεj+1 − Jεj ≤ δ, ]{Jεj } ≤ n

)
≤ η +

n−1∑
j=1

P0(Jεj+1 − Jεj ≤ δ)

(S.14)

Moreover, for any j ∈ {1, .., n− 1},317

P0(Jεj+1 − Jεj ≤ δ) ≤ P0(Jεj+1 − Jεj ≤ δ|Xε(Jεj ) = 0) + P0(Xε(Jεj ) ≥ 1) (S.15)

The first term of the r.h.s of (S.15) can be bounding using the Markov property of318

(M ε, Zε, Cε, Xε, Dε). Indeed, the two last types of events (10 and 11) can not occur after time Jεj319



and before any other jumps, since Xε(Jεj ) = 0. Hence320

P0(Jεj+1 − Jεj ≤ δ|Xε(Jεj ) = 0) ≤ P0

(
∃i ∈ {1, .., 9},

∫ δ

0

∫
R+

1{θ≤rεi (s−)}N
i(ds, dθ) ≥ 1

)
≤ δ

9∑
i=1

E0

[
sup
s∈[0,T ]

rεi (s)

]
≤ δC2 ≤

η

n
,

as soon as δ ≤ η/(nC2). Hence, with (S.14) and (S.15),321

P0(∃j ≥ 0, Jεj+1 − Jεj ≤ δ) ≤ 2η +
n−1∑
j=1

P0(Xε(Jεj ) ≥ 1). (S.16)

To bound the second term of the r.h.s of (S.16), recall that the positive jumps of Xε are not322

jumps of Yε and note that Xε(Jεj ) may be greater than 1 only if there exists a positive jump of Xε
323

whose next event is of type 1 to 9 (and not of type 10 or 11). We denote the set of positive jumps324

of Xε by325

{Sε`}`≥1 = {t ∈ [0, T ], Xε(t)−Xε(t−) = 1}.

The second term of the r.h.s of (S.16) can thus be bounded by326

n−1∑
j=1

P0(Xε(Jεj ) ≥ 1) ≤ P0

(
∃` ≥ 1, min

1≤i≤9
τ εi (Sε` ) ≤ min{τ ε10(Sε` ), τ

ε
11(Sε` )}

)
, (S.17)

where for any i = 1, .., 10, τ εi (Sε` ) is the first time event of type i after Sε` , that is327

τ εi (Sε` ) := inf

{
t ≥ Sε` ,

∫ t

Sε`

∫
R+

1{θ≤rεi (s−)}N
i(ds, dθ) ≥ 1

}
.

After time Sε` and before any other event, Xε is obviously greater than 1. The rates rε10 and rε11 can

thus be bounded from below by λ̄ε−1 and µ̄ε respectively, other rates can be bounded from above

using the r.v. N ε
max. Thus, using again (S.13), together with (S.17) and the Markov property

satisfied by (M ε, Zε, Cε, Xε, Dε), we obtain

n−1∑
j=1

P0(Xε(Jεj ) ≥ 1) ≤
n∑
`=1

P0

(
min

1≤i≤9
τ εi (Sε` ) ≤ min{τ ε10(Sε` ), τ

ε
11(Sε` )}

)
+ P0(]{Sε`} > n)

≤ nP0

(
τ ≤ Eλ̄ε−1+µ̄ε

)
+ η,

where Eλ̄ε−1+µ̄ε is an exponential r.v. with parameter λ̄ε−1 + µ̄ε, and,328

τ = inf

{
t ≥ 0,

∫ t

0

∫
R+

1{θ≤ĪC+ĪD+C1Nε
max+λ̄(Nε

max)2}N
1(ds, dθ) ≥ 1

}
.

Hence329
n−1∑
j=1

P0(Xε(Jεj ) ≥ 1) ≤ n
∫ ∞

0
P0 (τ ≤ s) (λ̄ε−1 + µ̄ε)e−(λ̄ε−1+µ̄ε)sds+ η

≤ nε C2

λ̄−1 + µ̄
+ η.

(S.18)



Finally, with (S.11), (S.16) and (S.18), we obtain330

lim sup
ε→0

P(∃j ≥ 0, Jεj+1 − Jεj ≤ δ) ≤ 4η,

as soon as δ ≤ η2/(18TC2
2 ) (as this implies that δ ≤ η/(nC2)). This ends the proof of ii), and the331

one of the tightness of process Yε.332

Step 2: The second step is to identify the limit. As the sequence of processes (Yε)ε>0 is tight,333

it is sufficient to prove that any accumulation point has the same law. Let us take334

(M,Z,C,D) ∈ D([0, T ],N4) the limit (in law) of a sub-sequence of (Yε)ε>0, that we denote also by335

(Yε)ε>0 for the sake of readability and we will denote (M,Z,C,D) by Y. We first prove that Y is a336

Markov process and then characterize it by describing its jump rates. Note that {Yε}ε>0 are not337

Markov processes, however {(Yε, Xε)}ε>0 are Markov processes.338

To prove that Y is a Markov process, let us set t > 0, a sequence of m+m′ times

0 ≤ t1 ≤ ... ≤ tm ≤ t ≤ s1 ≤ .. ≤ sm′ and m+m′ + 1 vectors, y1, .., ym, yt, y
′
1, .., y

′
m′ ∈ N4. From

Dynkin’s theorem, it is sufficient to prove that

P
(
Y(sm′) = y′m′ , ..,Y(s1) = y′1|Y(t) = yt,Y(tm) = ym, ..,Y(t1) = y1

)
= P

(
Y(sm′) = y′m′ , ..,Y(s1) = y′1|Y(t) = yt

)
. (S.19)

From the convergence in law and assumptions on Xε(0), we have, for any ε > 0,339

P
(
Y(sm′) = y′m′ ,..,Y(s1) = y′1|Y(t) = yt, ..,Y(t1) = y1

)
= lim

ε→0
P0

(
Yε(sm′) = y′m′ , ..,Y

ε(s1) = y′1|Yε(t) = yt, ..,Yε(t1) = y1

)
= lim

ε→0

∑
k≥0 P0

(
Yε(sm′) = y′m′ , .., (Y

ε, Xε)(t) = (yt, k), ..,Yε(t1) = y1

)
∑

k≥0 P0

(
(Yε, Xε)(t) = (yt, k), ..,Yε(t1) = y1

) .

(S.20)

Then we prove that, for ε small enough, Xε(t) is equal to 0 with a large probability. Indeed,

(Xε(u))u≤t has little chance to reach 2:

P0(sup
u≤t

Xε(u) ≥ 2) ≤ P0

(
∃` ≥ 1, min

1≤i≤9
τ εi (Sε` ) ≤ min{τ ε10(Sε` ), τ

ε
11(Sε` )}

)
,

where all terms have been defined in (S.17), and the r.h.s term has been proved to converge to 0

when ε goes to 0. It remains to prove that Xε(t) has little chance to be equal to 1 on

{supu≤tX
ε(u) ≤ 1}

P0

(
Xε(t) = 1, sup

u≤t
Xε(u) ≤ 1

)
≤ P0

(
∃` ≥ 1, Sε` ≤ t < Sε` + min{τ ε10(Sε` ), τ

ε
11(Sε` )}, sup

u≤t
Xε(u) ≤ 1

)
.

As previously, note that there is not an infinite number of events Sε` in [0, T ] and that {Sε`}`>0 are

directly correlated to the events of type 9. As min{τ ε10(Sε` ), τ
ε
11(Sε` )} is an exponential random



variable Eλ̄ε−1+µ̄ε , we deduce,

P0(Xε(t) = 1,{sup
u≤t

Xε(u) ≤ 1})

≤
n∑
`≥1

∫ ∞
0

P0

(
Sε` ∈]t− h, t]

)
(λ̄ε−1 + µ̄ε)e−h(λ̄ε−1+µ̄ε)dh+ P0

(
]{Sεj} > n

)
≤ n

∫ ∞
0

P0

(∫ t

t−h∨0

∫
R+

1{θ≤rε9(s−)}N
9(ds, dθ) ≥ 1

)
(λ̄ε−1 + µ̄ε)e−h(λ̄ε−1+µ̄ε)dh+ η

≤ n
∫ ∞

0
hλ̄C0(λ̄ε−1 + µ̄ε)e−h(λ̄ε−1+µ̄ε)dh+ η

≤ nλ̄C0

λ̄ε−1 + µ̄ε
+ η ≤ 2η,

as soon as ε is sufficiently small. In other words, P0(Xε(t) ≥ 1) converges to 0 with ε. (S.20)340

becomes341

P
(
Y(sm′) = y′m′ ,..,Y(s1) = y′1|Y(t) = yt, ..,Y(t1) = y1

)
= lim

ε→0

P0

(
Yε(sm′) = y′m′ , .., (Y

ε, Xε)(t) = (yt, 0), ..,Yε(t1) = y1

)
P0

(
(Yε, Xε)(t) = (yt, 0), ..,Yε(t1) = y1

)
= lim

ε→0
P0

(
Yε(sm′) = y′m′ , ..|(Yε, Xε)(t) = (yt, 0), ..,Yε(t1) = y1

)
= lim

ε→0
P0

(
Yε(sm′) = y′m′ , ..|(Yε, Xε)(t) = (yt, 0)

)
,

(S.21)

where we used the Markov property of (Yε, Xε). Using same ideas, it is straightforward to prove342

that P
(
Y(sm′) = y′m′ , ..|Y(t) = yt

)
is also equal to the last term of (S.21), hence (S.19) and the343

Markov property of Y.344

It remains to describe the transition rate matrix of Y. To this aim, for any y, y′ ∈ N4, we study

the limits

lim
t→0

P
(
Y(t) = y′|Y(0) = y

)
.

From what we have seen before (notably that the events of type 1 to 8 are not really affected by the

presence of the fast species Xε), it is straightforward that, in the limiting process Y, there exist 8

types of events with rates (1− ϕ)γ̄M V̄mU
Dε

K̄mU+D
M1{D≥α+α′} (birth of a M), d̄MM (death of a M),

ϕγ̄Z V̄mU
D

K̄mU+D
M1{D≥γ+γ′} (production of a Z), d̄ZZ (deactivation of a Z), ĪC (appearance of a

C), ēCC (disappearance of a C), ĪD (appearance of a D), ēDD (disappearance of a D). It remains

to deal with the three last types of events. However, we have seen that when a event of type 9

occurs, an event of type 10 or 11 occurs immediately after (such that the formed complex

disappears or dissociates). In the limit, both events are simultaneous and

P
(
Y(t) = (m0, z0, c0 − 1, d0 + β)|Y(0) = (m0, z0, c0, d0)

)
= lim

ε→0
P
(
Yε(t) = (m0, z0, c0 − 1, d0 + β)|Yε(0) = (m0, z0, c0, d0)

)
= lim

ε→0
P
(
Yε(t) = (m0, z0, c0 − 1, d0 + β)|Yε(0) = (m0, z0, c0, d0)

)



It remains to characterize the jumps rate of Y. Let us start with a birth of a M . As done

previously (see (S.20)-(S.21)), we have

P
(
Y(t+ h) = (m+ 1, z, c, d− (α+ α′))

∣∣∣Y(t) = (m, z, c, d)
)

= lim
ε→0

P0

(
(Yε, Xε)(t+ h) = (m+ 1, z, c, d, 0)

∣∣∣(Yε, Xε)(t) = (m, z, c, d, 0)
)
.

Using the jumps rate of (Yε, Xε), we deduce directly

P
(
Y(t+h) = (m+1, z, c, d−(α+α′))

∣∣∣Y(t) = (m, z, c, d)
)

= (1−ϕ)γ̄M V̄mU
d

K̄mU + d
m1{d≥α+α′}h+o(h).

The same can be done with the death of a M , the production of a Z, the deactivation of a Z, the

(dis)appearance of a C and the (dis)appearance of a D, where the actions of the complexes do not

intervene. And we find the rate given by Theorem (1) The only problem may come from the

decomposition of a C into β D:

P
(
Y(t+ h) = (m+ 1, z, c− 1, d+ β)

∣∣∣Y(t) = (m, z, c, d)
)

= lim
ε→0

P0

(
(Yε, Xε)(t+ h) = (m, z, c− 1, d+ β, 0)

∣∣∣(Yε, Xε)(t) = (m, z, c, d, 0)
)

= lim
ε→0

P0

(
(Yε, Xε)(h) = (m, z, c− 1, d+ β, 0)

∣∣∣(Yε, Xε)(0) = (m, z, c, d, 0)
)

= lim
ε→0

P0

(
Sε1 ≤ h, τ ε11(Sε1) ≤ min

1≤i≤10
τ εi (Sε1))

)
.

As we proved before that P0 (min1≤i≤9 τ
ε
i (Sε1) ≤ τ ε10(Sε1)) converges to 0 with ε (see (S.18)), we have

P
(
Y(t+ h) = (m+ 1, z, c− 1, d+ β)

∣∣∣Y(t) = (m, z, c, d)
)

= lim
ε→0

P0

(
Sε1 ≤ h, τ ε11(Sε1) ≤ τ ε10(Sε1))

)
= lim

ε→0

(
λ̄zc× µ̄ε

µ̄ε + λ̄ε−1

h+ o(h)

)
= V̄mDzch+ o(h).

345



5 Supplementary figures346

5.1 Figure S1. Effect of K on the dynamics of the total cell population M .347

(a) K=10 (b) K=12 (c) K=15

(d) K=20 (e) K=1000

Figure S1. Effect of K on the dynamics of the total cell population M . The model used is the single-

microsite hybrid stochastic-deterministic model. Five values of K are used between 10 and 1000. For

each value of K, twenty simulation runs are reported; each run is colored differently. Simulations

stop when the cell population reaches zero. Parameter values: All constant parameters are set to

their default values (Table S3), initial conditions are adjusted to ϕ = 0.5, and Tmax = 108.



5.2 Figure S2. Effect of exoenzyme production ϕ on the dynamics of total cell348

population M and total mass of z, c, and d.349

Figure S2. Effect of exoenzyme production ϕ on the dynamics of total cell population M and total

mass of z, c, and d. The model used is a 100-microsites hybrid stochastic-deterministic model with

K = 10 for all microsites. Parameter values: All constant parameters are set to the default values

(Table S3). Initial conditions are set to the steady state of the corresponding ϕ in the central

microsites occupied by microbes, and M = Z = D = 0 and C = 5× 10−5 in the empty microsites.
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