
THESE
en vue de l'obtention du grade de Docteur, délivré par

l’ECOLE NORMALE SUPERIEURE DE LYON

Ecole Doctorale N° 512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 27/06/2024, par :

Hugues DÉPRÉS

Twin-width : lower bounds and approximation
algorithms

Twin-width : bornes inférieures et algorithmes d’approximations

Devant le jury composé de :

GAVOILLE, Cyril Professeur LABRI, Université de Bordeaux Rapporteur
THILIKOS, Dimitrios DR CNRS LIRMM Rapporteur
PARREAU, Aline CR CNRS LIRIS Examinatrice
LIEDLOFF, Mathieu Professeur LIFO, Université d'Orléans Examinateur
BONNET, Édouard CR-HDR CNRS LIP, ENS de Lyon Directeur de thèse

Remerciements

Je souhaiterais d’abord remercier Édouard : merci de m’avoir proposé ce sujet sur la twin-
width et merci pour ton accompagnement. C’était très intéressant de pouvoir travailler
sur un sujet suscitant l’engouement. Merci aussi à toi, à Stéphan et à Rémi d’avoir
consacré autant de temps à partager vos connaissances sur la twin-width et sur la théorie
des graphes. Merci Nicolas d’avoir accepté de t’occuper de la partie administrative de ma
thèse malgré tes nombreuses autres responsabilités. Je remercie tous les autres membres
de l’équipe MC2 avec qui j’ai pu discuter de graphes et d’autres choses au quotidien :
Colin, Julien, Pegah, Pierre, Carl et Dibyayan.

Je voudrais remercier Cyril Gavoille et Dimitrios Thilikos pour avoir accepté d’être
rapporteur de cette thèse. Vos remarques et vos conseils m’ont permis d’améliorer le
manuscrit. Merci aussi à Aline Parreau et Mathieu Liedloff d’avoir accepté de faire partie
de mon jury de thèse.

Merci à tous les acteurs de la communauté de la théorie des graphes qui m’ont invité à
travailler avec eux pendant la thèse : Théo Pierron, Marthe Bonamy, Louis Esperet, Eun
Jung Kim, Pierre Aboulker, Claire Hilaire, Alexandra Wesolek, Nicolas Bousquet, Laurent
Feuilloley, Mamadou Moustapha Kanté, Sergei Norin, Paul Seymour, David Wood, Maël
Dumas, Hoang La, Christophe Paul, Pierre Charbit, Reza Naserasr. Je remercie aussi le
personnel administratif du LIP qui a rendu certaines de ces rencontres possibles. Merci à
Russ Harmer pour son soutien administratif. Merci à Guillaume Hanrot pour ses conseils
sur mon projet professionnel.

Merci aux amateurs de la pause café, aux amis des différents clubs de l’ENS et aux
anciens camarades de promo grâce à qui (à cause de qui?) je n’ai pas fait que de la
recherche à Lyon.

Enfin je souhaiterais remercier ma famille et en particulier mes parents qui m’ont aidé
et soutenu durant ces 3 années.

2

Résumé

Cette thèse porte sur l’étude de nouvelles décomposition de graphes, notamment la twin-
width qui est un nouveau paramètre permettant de mesurer la complexité d’un graphe,
défini en 2020 par Eun Jung Kim, Stéphan Thomassé, Rémi Watrigant et Édouard Bonnet.
C’est un paramètre qui s’est révélé être important dans la compréhension de la structure
des graphes et de leurs algorithmes. Dans cette thèse, on montre que, décider si la twin-
width d’un graphe est au plus 4, est un problème NP-complet. On réussit en effet à
contrôler suffisamment la séquence de contraction pour simuler un circuit booléen. Cette
réduction comporte notamment une construction permettant de faire apparaître certain
trigraphes particuliers dans la séquence de contraction d’un graphe. On obtient ainsi
des bornes inférieures sur la difficulté de calculer la twin-width. Dans cette thèse, on
cherche aussi à borner la twin-width de plusieurs classes de graphes. On montre ainsi
que la twin-width des longues subdivisions d’un graphe est au plus 4. On montre aussi
l’optimalité de la borne supérieure sur la twin-width à treewidth borné. Cette construction
se généralise aussi à d’autres paramètres comme la twin-width orienté. Enfin on étudie les
algorithmes d’approximation à twin-width borné. Pour le problème du Stable Maximum
à twin-width borné, on propose un algorithme de O(1)-approximation en temps O(2

√
n).

On construit ensuite un schéma qui permet d’améliorer la complexité de l’algorithme au
prix de diminuer le facteur d’approximation. On obtient une nε-approximation en temps
polynomial. Cette méthode s’applique aussi au problème du Coloriage Minimum et à
celui du Couplage Induit Maximum.

3

Abstract

This thesis focuses on the study of new graph decompositions, in particular twin-width,
which is a new parameter for measuring the complexity of a graph, defined in 2020 by Eun
Jung Kim, Stéphan Thomassé, Rémi Watrigant and Édouard Bonnet. It turns out to be
an important parameter for understanding the structure of graphs and their algorithms.
In this thesis, we show that deciding whether the twin-width of a graph is at most 4 is an
NP-complete problem. Indeed, we succeed in controlling the contraction sequence suffi-
ciently to simulate a Boolean circuit. In particular, this reduction involves a construction
that forces certain particular trigraphs to appear in the contraction sequence of a graph.
This gives lower bounds on the difficulty of computing twin-width. In this thesis, we also
seek to bound the twin-width of several classes of graphs. We show that the twin-width
of the long subdivisions of a graph is at most 4. We also show the optimality of the
upper bound on twin-width when treewidth is bounded. This construction is also gener-
alized to other parameters such as oriented twin-width. Finally, we study approximation
algorithms for bounded twin-width. For the Maximum Independent Set problem on
graphs of bounded twin-width, we propose an O(1)-approximation algorithm in O(2

√
n)

time. We then construct a scheme that improves the complexity of the algorithm at the
cost of reducing the approximation factor. The result is an nε-approximation algorithm in
polynomial-time. This method can also be applied to the Minimum Vertex Coloring
problem and the Maximum Induced Matching problem.

4

Introduction

How to determine if a problem is easy or hard to solve? Is an object simple or complex?
These are fundamental questions in computer science and mathematics. To tackle these
questions, one can look for properties that guarantee the simplicity of an object. But if
we want a more refined, more gradual approach, we need a parameter: a quantity that
varies depending on the object and that characterizes a dimension of the problem. We will
then be able to measure the complexity according to this parameter. For graphs, natural
parameters are the number of vertices and the number of edges, since they represent the
complexity of the standard representation of graphs. But these parameters do not describe
how the vertices are connected, meaning what patterns and properties the layout of the
edges has.

There are many graph parameters describing more precisely these connections. A
simple useful one is the maximum degree. Indeed, take the problem Clique where we are
given a graph G and an integer k, and we want to know if there is a subset of k vertices
such that every pair of these vertices is connected by an edge. This problem is known to be
NP-hard, and in particular there is no known polynomial-time algorithm for solving this
problem. However, if we restrict ourselves to graphs whose maximum degree is bounded
by a constant d, then the problem is much easier to solve. For each vertex, we can try to
make a clique with each subset of its neighbors. There are at most 2d such subsets and
we only need to check d2 edges to know if a given subset forms a clique. Since we do this
once for each vertex, there is a linear algorithm solving Clique when d is bounded.

There has been a fundamental work to improve existing parameters and find new ones
that better describe the structural properties, better measure the algorithmic difficulty of
the graph, and remains easy to compute. One of the most recent step in this line of work
is twin-width, the parameter we study in this thesis.

Before presenting twin-width, let us determine what kind of properties we expect from
such a parameter. For this purpose let us introduce a classical parameter: treewidth.
The treewidth of a graph is a parameter that measures how similar to a tree a graph
is. There are many results about the structure of graphs that involve treewidth, but we
will only focus on two major algorithmic results. The first one is Courcelle’s theorem [1]
which states that on graphs of bounded treewidth, given a MSO2-logic formula, meaning
a formula where one can quantify over vertex sets and edge sets, there is a linear time
algorithm deciding it. For example, the Hamiltonian cycle problem or the 3-colorability
can be expressed as an MSO2-formula. Indeed, for 3-colorability, we want to know if there
exists 3 sets of vertices such that every vertex is in exactly one of the sets and such that
no two vertices of the same set are adjacent. Furthermore, the converse of Courcelle’s
theorem also holds, meaning that treewidth is the most general parameter that has this
property.

A point we left out is that for such algorithms to work, you need to input to these

5

algorithms a tree-decomposition, that is, the object that witnesses an upper bounds of
the treewidth. This tree decomposition is like the schematic or a formula that explains
why the graph is simple. The key now is to find it, and this is where the second result
comes in handy. On graphs of bounded treewidth, Bodlaender’s algorithm output such
a decomposition in linear time [2]. Combining the two, on graphs of bounded treewidth,
there are linear algorithms to solve many hard problems. Although the result of this
theorem is very strong, requiring bounded treewidth is rather restrictive, for example
it excludes grids. So the question now is, can we get similar results for more general
parameters? And which parameter corresponds to first-order formulas? Twin-width is an
important step towards answering these questions.

The idea for this parameter was born in 2014 in a paper from Guillemot and Marx [3].
This work focuses on permutations and in particular on deciding whether a permutation
contains a specific pattern. The authors construct a new width parameter for permuta-
tions, to which is associated a decomposition that allows them to solve their problem.
They had the intuition that it might be interesting to apply this parameter to graphs.
In fact the decomposition is, to quote them : “more properly described as a construction
scheme that maintains a notion of bounded-degreeness through-out the process.”

A few years later, Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé and Rémi
Watrigant adapted the parameter for graphs [4]. This immediately worked very well,
generalizing several known classes of graphs. And the “decomposition”, which we will,
from now on, call the contraction sequence allows, given a first-order formula, to find a
linear time algorithm that takes a graph of bounded twin-width and tells if it satisfies
the formula. There are fewer problems that can be expressed as FO-formula than MSO2-
formula, but there are many more graphs of bounded twin-width than of bounded tree-
width. Contrary to Courcelle’s theorem, the converse is not true, meaning there are classes
of graphs of unbounded twin-width, for which such an algorithm exists. For example the
class of graphs of maximum degree 3 [5]. Note that, for this class, there is no known
construction of graphs of arbitrary twin-width, only a counting argument showes their
existence.

From there, the study of twin-width branches out in several ways. First there have
been several width-measures constructed from twin-width [6, 7]. One of them is the
adaptation of twin-width to ordered graphs, graphs where the vertices are given with an
order. It happens that in this case we have the same situation as in the case of treewidth:
the equivalence between having a fast FO-model checking algorithm and having bounded
ordered twin-width, and moreover an efficient algorithm to compute a contraction sequence
on graphs of bounded ordered twin-width[8].

Another topic is the computation of twin-width. For some classes of graphs, we know
the exact value of twin-width, for other classes we only know bounds. There are many
works trying to improve these bounds. For example there are a series of papers trying to
bound the twin-width of planar graphs [9, 10, 11, 6, 12], which is currently known to be
between 7 and 8. In this thesis, we will contribute by showing the tightness of some upper
bounds on twin-width, in particular the one on graphs of bounded treewidth. There is also
the question of computing twin-width on general graphs. There is no known algorithm
for computing twin-width that is better than the exhaustive search. In Chapter 2 we will
show that the problem is NP-hard ruling out a polynomial-time algorithm to compute
twin-width. The problem is still NP-hard on graphs of bounded twin-width.

A last field of study is efficient algorithms on graphs of bounded twin-width. Apart
from problems that can be expressed as a first-order formula, there may be other problems

6

that twin-width can help to solve. In particular, we can hope for better approximation
algorithms. The only known result before this work is a polynomial approximation al-
gorithm for Minimum Dominating Set. In the following, we will continue the study
of approximation algorithms parameterized by twin-width. More precisely, we will show
that for Maximum Independent Set and Coloring, on graphs of bounded twin-width,
there exist approximation algorithms that run faster than what is possible in the general
case.

Organization of the thesis

This thesis is divided into three parts. The first part introduces the necessary definitions
for twin-width. It also contains a construction showing that long subdivisions of any
graph have twin-width at most 4. Finally we will give classes of graphs whose twin-
width is exponential in the following parameters : treewidth, oriented twin-width and
grid number.

The second part will be devoted to prove the NP-hardness of computing twin-width.
We will do a reduction from 3-SAT and introduce several gadgets. We will also show how
we can construct a graph whose contraction sequence will be forced to contain a given
trigraph.

The last part will study several problems on graphs parameterized by twin width.
While these are known to be hard to approximate in general, we will show that on these
graphs, some of them have faster approximation algorithms while others remain hard.

Publications

This work led to the following publications :

• Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at most
4 is NP-Complete. In 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022). Leibniz International Proceedings in Informat-
ics (LIPIcs), Volume 229, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik (2022)

• Édouard Bonnet, Hugues Déprés, Twin-width can be exponential in treewidth, Jour-
nal of Combinatorial Theory, Series B, Volume 161, 2023, Pages 1-14

• Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approxi-
mating Highly Inapproximable Problems on Graphs of Bounded Twin-Width. In
40th International Symposium on Theoretical Aspects of Computer Science (STACS
2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp.
10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Unrelated to this work, but still during my thesis, I’ve also contributed to the following
article :

• Marthe Bonamy, Édouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet,
Claire Hilaire, Stéphan Thomassé, Alexandra Wesolek, Sparse graphs with bounded
induced cycle packing number have logarithmic treewidth, Journal of Combinatorial
Theory, Series B, Volume 167, 2024, Pages 215-249,

7

Contents

Contents 8

1 The twin-width of graphs 9
1.1 Definitions and observations . 9

1.1.1 Partitions sequences . 10
1.1.2 Contractions sequences . 10
1.1.3 Graph operations and twin-width sequences 11

1.2 Bounds on twin-width . 12
1.2.1 Long subdivisions have twin-width at most four 12
1.2.2 Twin width can be exponential in treewidth 15

2 Deciding twin-width at most 4 is NP-hard 23
2.1 Introduction . 23

2.1.1 Outline of the proof of theorem 29 25
2.1.2 The Exponential-Time Hypothesis 26
2.1.3 Organization of this chapter . 26

2.2 Encoding a trigraph by a graph . 27
2.3 Hardness of determining if the twin-width is at most four 32

2.3.1 Fence gadget . 33
2.3.2 Propagation, wire, and long chain 37
2.3.3 Binary AND gate . 39
2.3.4 Binary OR gate . 39
2.3.5 Variable gadget . 41
2.3.6 Clause gadget . 43
2.3.7 Overall construction and correctness 44

3 Approximation algorithms parameterized by twin-width 48
3.1 Introduction . 49
3.2 Preliminaries . 53

3.2.1 Handled graph problems . 53
3.2.2 Balanced partition sequences . 54
3.2.3 Subexponential-time constant-approximation algorithm 58
3.2.4 Improving the approximation factor 59
3.2.5 Time-approximation trade-offs . 60

3.3 Finding the suitable generalization: the case of Coloring 63
3.4 Edge-based problems: the case of Max Induced Matching 64
3.5 Technical generalizations . 67

3.5.1 Mutually Induced H-packing 67
3.5.2 Independent induced packing of stars and forests 70

3.6 Limits . 74

Conclusion 77

8

Chapter 1

The twin-width of graphs

Contents
1.1 Definitions and observations . 9

1.1.1 Partitions sequences . 10
1.1.2 Contractions sequences . 10
1.1.3 Graph operations and twin-width sequences 11

1.2 Bounds on twin-width . 12
1.2.1 Long subdivisions have twin-width at most four 12
1.2.2 Twin width can be exponential in treewidth 15

In this chapter we present the necessary definitions for twin-width and some classical
properties. We will also present two constructions that improve the bounds on twin-width
for several classes of graphs.

1.1 Definitions and observations

A trigraph is a graph with some edges colored black, and some colored red. A (vertex)
contraction consists of merging two (non-necessarily adjacent) vertices, say, u, v into a ver-
tex w, and keeping every edge wz black if and only if uz and vz were previously black
edges. The other edges incident to w become red (if not already), and the rest of the
trigraph stays the same. A contraction sequence of an n-vertex graph G is a sequence of
trigraphs G = Gn, . . . , G1 = K1 such that Gi is obtained from Gi+1 by performing one
contraction. A d-sequence is a contraction sequence where all the trigraphs have red degree
at most d. The twin-width of G, denoted by tww(G), is then the minimum integer d such
that G admits a d-sequence. See fig. 1.1 for an example of a graph admitting a 2-sequence.

In the following we will first define partition sequences, which is an alternative approach
to contraction sequences. Then we will detail the definition using contraction sequences.

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1.1: A 2-sequence witnessing that the initial graph has twin-width at most 2.

9

Finally, we will look at how common operations interact with twin-width.
The reason we give two (equivalent) definitions of twin-width is that both viewpoints

are incomparably useful and convenient. The definition using contraction sequences em-
phasizes the fact that twin-width is obtained by a sequence of local changes of the graphs.
To express each transformation we only need to look at the current neighborhood of the
two contracted vertices. While this can simplify the manipulation of twin-width by limit-
ing the number of factors to consider, it “loses” some parts of the information contained
in the original graph; namely the exact adjacencies between non-homogeneous parts, and
the names of the original vertices. Thus, we will define partitions sequences that make it
easier to infer and prove the constraints that the original graph imposes on the sequence.

Note that twin-width can also be extended to matrices over a finite alphabet (in an
unordered [4], or an ordered setting [8]), and hence to any binary structure.

For i and j two integers, we denote by [i, j] the set of integers that are at least i and
at most j. For every integer i, [i] is a shorthand for [1, i]. We use the standard graph-
theoretic notations: V (G) denotes the vertex set of a graph G, E(G) denotes its edge set,
G[S] denotes the subgraph of G induced by S, etc.

1.1.1 Partitions sequences

The twin-width of a graph, introduced in [4], can be defined in the following way (com-
plementary to the one given above). A partition sequence of an n-vertex graph G, is a
sequence Pn, . . . , P1 of partitions of its vertex set V (G), such that Pn is the set of sin-
gletons {{v} : v ∈ V (G)}, P1 is the singleton set {V (G)}, and for every 2 ⩽ i ⩽ n,
Pi−1 is obtained from Pi by merging two of its parts into one. Two parts P, P ′ of a same
partition P of V (G) are said homogeneous if either every pair of vertices u ∈ P, v ∈ P ′ are
non-adjacent, or every pair of vertices u ∈ P, v ∈ P ′ are adjacent. Two non-homogeneous
parts are also said red-adjacent. The red degree of a part P ∈ P is the number of other
parts of P which are red-adjacent to P . Finally the twin-width of G, denoted by tww(G),
is the least integer d such that there is partition sequence Pn, . . . , P1 of G with each part
P of each Pi (1 ⩽ i ⩽ n) being homogeneous to every part of Pi \ {P} but at most d.

Given a graph G and a partition P of V (G), the quotient graph of G with respect to
P is the graph with vertex set P, where PP ′ is an edge if there is u ∈ P and v ∈ P ′ such
that uv ∈ E(G). Given a (tri)graph G and a partition P of V (G), the quotient trigraph
G/P is the trigraph with vertex set P, where PP ′ is a black edge if these two parts are
fully adjacent – for every u ∈ P and every v ∈ P ′, uv ∈ E(G) –, and a red edge if either
there is u ∈ P and v ∈ P ′ such that uv ∈ R(G), or there is u1, u2 ∈ P and v1, v2 ∈ P ′

such that u1v1 ∈ E(G) and u2v2 /∈ E(G).

1.1.2 Contractions sequences

We will start by making the definitions presented at the beginning of the chapter more
formal. For a trigraph G we denote its vertex set by V (G), its black edge set by E(G)
and its red edge set by R(G). A contraction in a trigraph G replaces a pair of (non-
necessarily adjacent) vertices u, v ∈ V (G) by one vertex w that is linked to G − {u, v} in
the following way to form a new trigraph G′. For every z ∈ V (G) \ {u, v}, wz ∈ E(G′)
whenever uz, vz ∈ E(G), wz /∈ E(G′) ∪ R(G′) whenever uz, vz /∈ E(G) ∪ R(G), and
wz ∈ R(G′), otherwise. Its red graph (V (G), R(G)) may be denoted R(G), and total
graph (V (G), E(G) ∪ R(G)), T (G). The red degree of a trigraph is the degree of its red
graph. We say that u ∈ V (G) is a black neighbor (respectively red neighbor) of v ∈ V (G)

10

when (u, v) ∈ E(G) (respectively (u, v) ∈ R(G)). A trigraph G′ is an induced subtrigraph
of trigraph G if V (G′) ⊆ V (G), E(G′) = E(G) ∩

(V (G′)
2

)
, and R(G′) = R(G) ∩

(V (G′)
2

)
.

Then we say that G is a supertrigraph of G′, and we may also denote G′ by G[V (G′)]. A
partial contraction sequence of an n-vertex (tri)graph G (to a trigraph H) is a sequence
of trigraphs G = Gn, · · · , Gt = H for some t ∈ [n] such that Gi is obtained from Gi+1 by
performing one contraction. A (complete) contraction sequence is such that t = 1, that is,
H is the 1-vertex trigraph. A d-sequence S of G is a contraction sequence of G in which
the red graph of every trigraph of S has maximum degree at most d.

We naturally consider the trigraph Gj to come after (resp. before) Gj′ if j < j′

(resp. j > j′). Thus when we write the first trigraph of the sequence S to satisfy X
(or the first time a trigraph of S satisfies X) we mean the trigraph Gj with largest index j
among those satisfying X. The same goes for partition sequences. A (partial) d-sequence is
a (partial) contraction sequence where all the trigraphs have red degree at most d. In the
above definitions of twin-width, nothing prevents the starting structure G to be a trigraph
itself. We may then talk about the twin-width of a trigraph.

The definition using partitions sequences is equivalent to the one given above by con-
sidering the quotient trigraphs. Indeed, going from G/Pi+1 to the one of G/Pi corresponds
to the contraction operation described above. To navigate between these two worlds, and
keep the proofs compact, we use the following notations and vocabulary. We assume that
there is a partial contraction sequence from (tri)graph G to trigraph H. If u is a vertex
of H, then u(G) denotes the set of vertices eventually contracted into u in H. We denote
by P(H) the partition {u(G) : u ∈ V (H)} of V (G). If G is clear from the context, we
may refer to a part of H as any set in {u(G) : u ∈ V (H)}. We may say that two parts
y(G), z(G) of P(H) are in conflict if yz ∈ R(H). We say that a contraction of two vertices
u, u′ ∈ V (H) involves a vertex v ∈ V (G) if v ∈ u(G) or v ∈ u′(G). A contraction involves
a pair of vertices v, v′ if v ∈ u(G) and v′ ∈ u′(G) (or v ∈ u′(G) and v′ ∈ u(G)). Observe
that the two vertices should appear in two distinct parts. By extension, we may say that a
contraction involves a set S, if it involves a vertex of S, or a pair of sets S, T if it involves
a pair in S × T .

1.1.3 Graph operations and twin-width sequences

Twin-width can only decrease when taking induced subtrigraph.

Observation 1. Let G′ be an induced subtrigraph of trigraph G. Then tww(G′) ⩽ tww(G).

A trigraph H is a cleanup of another trigraph G if V (H) = V (G), R(H) ⊆ R(G), and
E(G) ⊆ E(H) ⊆ E(G) ∪ R(G). That is, H is obtained from G by turning some of its red
edges into black edges or non-edges. We further say that H is full cleanup of G if H has
no red edge, and thus, is considered as a graph. Note that the total graph T (G) and the
black graph (V (G), E(G)) of a trigraph G are extreme examples of full cleanups of G.

It can be observed that removing red edges can only decrease the twin-width, since
the contraction sequence for the initial trigraph works at least as well for the resulting
trigraph.

Observation 2. Any d-sequence of any trigraph is a d-sequence for any of its cleanups.

Trees admit a simple 2-sequence, that gives a d-sequence on red trees of degree at
most d.

11

Lemma 3 ([4]). Every (black) tree has twin-width at most 2. Every red tree has twin-width
at most its maximum degree.

Proof. Root the tree arbitrarily. Contract two leaves with the same parent whenever
possible. If not possible, contract a deepest leaf with its parent. Observe that this cannot
result in red degree larger than the maximum of 2 and the initial degree of the tree.

1.2 Bounds on twin-width

Graph classes with bounded twin-width include graphs with bounded treewidth, bounded
clique-width, Kt-minor free graphs, strict subclasses of permutation graphs, map graphs,
bounded-degree string graphs [4], segment graphs with no Kt,t subgraph, visibility graphs
of 1.5D terrains without large half-graphs, visibility graphs of simple polygons without
large independent sets [13], as well as Ω(log n)-subdivisions of n-vertex graphs, classes with
bounded queue number or bounded stack number, and some classes of cubic expanders [5].

Despite their apparent generality, classes of bounded twin-width are small [5], χ-
bounded [14], even quasi-polynomially χ-bounded [15], preserved (albeit with a higher
upper bound) by first-order transductions [4], and by the usual graph products when
one graph has bounded degree [16, 5], have VC density 1 [17, 18], admit, when O(1)-
sequences are given, a fixed-parameter tractable first-order model checking [4], an (almost)
single-exponential parameterized algorithms for various problems that are W[1]-hard in
general [14], as well as a parameterized fully-polynomial linear algorithm for counting
triangles [19], an (almost) linear representation [20], a stronger regularity lemma [18], etc.

In all these applications, the upper bound on twin-width, although somewhat hidden
in the previous paragraph, plays a role. There is then an incentive to obtain as low as
possible upper bounds on particular classes of bounded twin-width. To give one concrete
algorithmic example, an independent set of size k can be found in time O(k2d2kn) in
an n-vertex graph given with a d-sequence [14]. This is relatively practical for moderate
values of k, with the guarantee that d is below 10, but not when d is merely upperbounded
by 1010. Another motivating example: triangle-free graphs of twin-width at most d are
d + 2-colorable [14], a stronger fact in the former case than in the latter.

In that line of work, Balabán and Hlinený show that posets of width k (i.e., with
antichains of size at most k) have twin-width at most 9k [21]. Unit interval graphs have
twin-width at most 2 [14], and proper k-mixed-thin graphs (a recently proposed general-
ization of unit interval graphs) have twin-width O(k) [22]. Schidler and Szeider report the
(exact) twin-width of a collection of graphs [23], obtained via SAT encodings. Hliněný
and Jedelský [9] give an upper bound of 8 on the twin-width of planar graphs that almost
match the lower bound of 7 obtained by Král’ and Lamaison [10]. And graphs with genus g
have twin-width O(√g) [24].

In this section we will present two works about bounds on twin-width. First we will
show that graphs obtained by subdividing at least 2 log n times each edge of an n-vertex
graph have twin-width at most 4. Secondly, we will show that there are graphs whose
twin-width is exponential in treewidth. This matches a result from Jacob and Pilipczuk
showing that for every graph G, tww(G) ⩽ 3 · 2tw(G)−1 [11], where tw(G) denotes the
treewidth of G.

1.2.1 Long subdivisions have twin-width at most four

A subdivision (also known as an edge-subdivision) of a graph G is obtained by replacing
each edge e of G by a new vertex linked by two new edges to both endpoints of the edge e.

12

An (⩾ s)-subdivision (resp. s-subdivision) of a graph G is obtained by subdividing every
edge of G at least s times (resp. exactly s times).

In [5], it is proved that the Ω(log n)-subdivision of any n-vertex graph has bounded
twin-width. The proof is rather involved, relies on a characterization by mixed minors
established in [4], and does not give an explicit constant bound. Here we give an elementary
proof that any (⩾ 2⌈log n⌉ − 1)-subdivision of an n-vertex graph has twin-width at most
4.

This result has been recently matched with a lower bound by Ahn, Chakraborti, Hen-
drey, Oum [25]. They show that there are graphs such that every subdivision of them has
twin-width at least 4. In the same paper, they also show that every grid larger than 7 × 7
has twin width exactly 4. This makes graphs of twin-width at most 3 considerably simpler
than those of twin-width at most 4, especially among sparse graphs.

Theorem 4. Let G be a trigraph obtained by subdividing each edge of an n-vertex graph H
at least 2⌈log n⌉ − 1 times, and by turning red any subset of its edges as long as the red
degree of G remains at most 4, and no vertex with red degree 4 has a black neighbor. Then
tww(G) ⩽ 4.

Proof. By no more than doubling the number of vertices of H, we can assume that n is a
power of 2. Indeed, padding H with isolated vertices up to the next power of 2 does not
change the quantity ⌈log |V (H)|⌉.

Let G′ be a supertrigraph of G obtained by arbitrarily arranging the vertices of H
(in G) at the leaves of a “virtual” full binary tree of height log n. So that the red degree
does not exceed 4, we so far omit the edges of the tree incident to a leaf (i.e., a vertex
of H), while we put in red all the other edges of the tree. (The missing edges of the tree
will naturally appear in red.) The internal nodes of the tree are all fresh vertices, not
present in G. See figs. 1.2 and 1.3 for an illustration. We show that tww(G′) ⩽ 4, hence
by Observation 1, tww(G) ⩽ 4 since G is an induced subtrigraph of G′.

We label 1, 2, . . . , n the vertices of H. If there is an edge ij ∈ E(H), it is subdivided into
a path, say, i, s(ij, 1), s(ij, 2), . . . , s(ij, z), j in G with z ⩾ 2 log n − 1. First, we repeatedly
contract adjacent vertices in the middle of this path until it consists of exactly 2 log n
edges. If z > 2 log n − 1, we had to contract at least one pair of adjacent vertices. Thus
the vertex in the middle of the path necessarily has now two red edges incident to it. Note
that the other edges of the path can be black or red indifferently. To avoid cumbersome
notations, we rename the inner vertices of the path s(ij, 1), s(ij, 2), . . . , s(ij, z) with now
z = 2 log n − 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.2: Contracting the pairs of vertices with the same color, from the greenest to the
bluest, is a partial 4-sequence, which acts as a deletion of the subdivided edge (3, 11).

13

▷ Claim 5. There is a partial 4-sequence from G′ to G′ − {s(ij, 1), . . . , s(ij, z)}.

Proof. Intuitively we “zip” the subdivision of ij with the walk made by the union of the
path from leaf i to the root, and the path from the root to leaf j. Let i, v1, v2, . . . , vz, j be
the concatenation of the simple path from i to the root of the tree, and the simple path
from the root to j. Its length is thus 2 log n = z + 1. For h going from 1 to z = 2 log n − 1,
we contract vh and s(ij, h) (see fig. 1.2). After each contraction, the newly formed vertex
has red degree at most 4. The red degree of vertices that are neither the new vertex nor
a leaf of the tree is either unchanged or at most 2. The red degree of a leaf ℓ of the tree
may increase by 1. This may only happen the first time a neighbor of ℓ is involved in a
contraction, and that contraction merges a black neighbor of ℓ with the parent of ℓ in the
tree (like is the case for leaf 3 from fig. 1.2 to fig. 1.3). By assumption, this implies that
ℓ had red degree at most 3, thus its red degree does not exceed 4. Thus, what we defined
is indeed a partial 4-sequence. One can finally notice that after these z contractions, we
indeed reach trigraph G′ − {s(ij, 1), . . . , s(ij, z)}. ◁

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.3: The picture after the first three contractions. The newly formed vertex has
red degree 4.

We apply claim 5 for each edge of H (or rather, subdivided edge in G). We are then
left with a red full binary tree which admits a 3-sequence by lemma 3. Hence there is a
4-sequence for G′, and in particular, for G.

By subdividing each edge two times more, we can simplify the claim. Let’s denote
∆R(G), the maximum red degree of a vertex in G.

Theorem 6. Let G be a trigraph obtained by subdividing each edge of an n-vertex graph H
at least 2⌈log n⌉ + 1 times, and by turning red any subset of its edges. Then tww(G) ⩽
max(4, ∆R(G)).

Proof. As in the previous proof, we add a virtual full binary tree on the vertices of H.
But this time, the virtual edge above each leaf is subdivided once. This means the depth
of the tree is increased by one, and that above each leaf there is a vertex of degree 2 in the
virtual tree. We add a black edge between each such vertex and its corresponding leaf.

We then contract each edge of H on the red tree as in claim 5. As the depth is increased
by 1, it requires each edge to be subdivided two times more, which means 2⌈log n⌉ + 1
times.

Now let us look at the red degree of the vertices of H (the leaves) before all edges of
H are contracted. Let v be a vertex of H, its neighbors will be contracted with the parent

14

of v in the tree. But unlike the previous construction, the parent of v in the tree is only
contracted with neighbors of v, or with red neighbors of v.

By definition, the only two way to increase the red degree of v is to contract v with an
other vertex or to contract one of its neighbor with one of its non-neighbor. The first one
doesn’t happen by construction and the second one is ruled out by the previous paragraph.
Thus the red degree of v can only decreases.

Therefore the red degree of vertices of the contraction sequence is bounded by ∆R(G)
for the vertices of H, and the degree of the other vertices is bounded by 4.

In chapter 2, we will use the following consequence.

Lemma 7. Let G be a trigraph obtained by subdividing at least 2⌈log n⌉ − 1 times each
edge of an n-vertex graph H of degree at most 4, and by turning red all its edges. Then
tww(G) ⩽ 4.

1.2.2 Twin width can be exponential in treewidth

Since the beginning of twin-width, it has been known that it generalizes treewidth. In [4],
using a very general argument, it is showed that twin-width is bounded by a double
exponential of treewidth. More recently, Jacob and Pilipczuk show that for every graph
G, tww(G) ⩽ 3 · 2tw(G)−1 [11].

Conversely, one may ask the following.

▷ Question 1. What is the largest twin-width a graph of treewidth k can have?

A lower bound of Ω(k) comes from the existence of n-vertex graphs with twin-width
Ω(n) (since the treewidth is trivially upperbounded by n − 1). This is almost surely the
case of graphs drawn from G(n, 1/2), or of the n-vertex Paley graph (for a prime n such
that n ≡ 1 mod 4), which has precisely twin-width (n − 1)/2 [26]. Another example to
derive the linear lower bound is the power set graph [11]. Improving on this lower bound
is not obvious, and Θ(k) is indeed the answer to question 1 when replacing ’treewidth’ by
’cliquewidth’ or ’pathwidth,’ or within the class of planar graphs [11].

When switching ’twin-width’ and ’treewidth’ in question 1, the gap is basically as large
as possible: There are examples of n-vertex graphs with treewidth Ω(n) and twin-width
at most 6, in the iterated 2-lifts of K4 [5, 27].

An important characterization of bounded twin-width is via the absence of complex
divisions of an adjacency matrix. A matrix has a k-mixed minor if its row (resp. column)
set can be partitioned into k sets of consecutive rows (resp. columns), such that each of
the k2 cells defined by this k-division contains at least two distinct rows and at least two
distinct columns. The mixed number of a matrix M is the largest integer k such that M
admits a k-mixed minor. The mixed number of a graph G, denoted by mxn(G), is the
minimum, taken among all the adjacency matrices M of G, of the mixed number of M .
The following was shown.

Theorem 8 ([4]). For every graph G, (mxn(G) − 1)/2 ⩽ tww(G) ⩽ 22O(mxn(G)).

In sparse graphs (here, excluding a fixed Kt,t as a subgraph), the previous equivalence
is both simpler to formulate and has a better dependency. A matrix has a k-grid minor
if it has a k-division with at least one 1-entry in each of its k2 cells. The grid number
of a matrix and of a graph G, denoted by gn(G), are defined analogously to the previous
paragraph. We only state the inequality that is useful to bound the twin-width of a sparse
class, but is valid in general.

15

Theorem 9 (follows from [4]). For every graph G, tww(G) ⩽ 2O(gn(G)).

Theorems 8 and 9 allow to bound the twin-width of a class C by exhibiting, for every
G ∈ C, an adjacency matrix of G without large mixed or grid minor. Therefore one merely
has to order V (G) (the vertex set of G) in an appropriate way. The double (resp. simple)
exponential dependency in mixed number (resp. grid number) implies relatively weak twin-
width upper bounds. For several classes whose twin-width was originally upperbounded
via theorem 8, better bounds were later given by avoiding this theorem (see [5, 21, 11,
6, 28]). Still for some geometric graph classes, bypassing theorem 8 seems complicated
(see for instance [13]). And in general (since this theorem is at the basis of several other
applications, see for instance [5, 14, 8]) it would help to have an improved upper bound
of tww(G).

▷ Question 2. Is twin-width sometimes exponential in mixed and grid number?

A variant of twin-width, called oriented twin-width, adds an orientation to the red
edges (see [29]). The red edge (arc) is oriented away from the contracted vertex. The
oriented twin-width d of a graph G, denoted by otww(G), is then defined similarly as
twin-width by tolerating more than d red arcs incident to a vertex, as long as at most d
of them are outgoing. Rather surprisingly twin-width and oriented twin-width are tied.

Theorem 10 ([29]). For every graph G, otww(G) ⩽ tww(G) ⩽ 22O(otww(G)).

It is easy to show that planar graphs have oriented twin-width at most 9. Thus it
would be appreciable to lower the dependency of tww(G) in otww(G).

▷ Question 3. Is twin-width sometimes exponential in oriented twin-width?

An elementary argument shows that when adding an apex (i.e., an additional vertex
with an arbitrary neighborhood) to a graph G, the twin-width of the obtained graph is at
most 2tww(G) + 1. Again it is not clear whether this increase could be made smaller.

▷ Question 4. Does twin-width sometimes essentially double when an apex is added?

Note that question 1 is asked by Jacob and Pilipczuk [11], and question 3 is posed by
Bonnet et al. [29], and is closely related to question 2.

Our contribution. With a single construction, we answer all these questions. The
answer to Questions 2, 3, and 4 is ’yes’, while the answer to question 1 is 2Θ(k), which
confirms the intuition of the authors of [11]. More precisely, we show the following.

Theorem 11. For every real 0 < ε ⩽ 1/2 and positive integer t, there is a graph Gt,ε with
a feedback vertex set of size t and such that tww(Gt,ε) > 2(1−ε)t.

The graph Gt,ε has in particular treewidth at most t + 1, grid number at most t + 2,
and oriented twin-width at most t + 1. Thus

• tww(Gt,ε) > 2(1−ε)(tw(Gt,ε)−1),
• tww(Gt,ε) > 2(1−ε)(gn(Gt,ε)−2), and
• tww(Gt,ε) > 2(1−ε)(otww(Gt,ε)−1).
Hence theorem 11 has the following consequences.

Corollary 12. For every small ε > 0, there is a family F of graphs with unbounded
twin-width such that for every G ∈ F : tww(G) > 2(1−ε)(tw(G)−1).

16

Up to multiplicative factors, this matches the known upper bound [11, 4], and essen-
tially settles question 1.

Corollary 13. For every small ε > 0, there is a family F of graphs with unbounded
twin-width such that for every G ∈ F : tww(G) > 2(1−ε)(gn(G)−2).

This answers question 2.

Corollary 14. For every small ε > 0, there is a family F of graphs with unbounded
twin-width such that for every G ∈ F : tww(G) > 2(1−ε)(otww(G)−1).

This answers question 3.

Corollary 15. For every small ε > 0, there is a family F of graphs with unbounded twin-
width such that for every G ∈ F : tww(G) > (2−ε)tww(G−{v}), where v is a single vertex
of G.

This answers question 4.

Proof of theorem 11

We fix once and for all, 0 < ε ⩽ 1/2, a possibly arbitrarily small positive real. We build
for every integer t > 1/ε, the graph Gt,ε, that we shorten to Gt, as follows. We set

f(t) =
⌈
2 + Ct2(1−ε)t(2+Ct(2(1−ε)t+1))

⌉
where Ct = 2(1−ε)t/ε.

Construction of Gt. Let T be the full 2t-ary tree of depth f(t), i.e., with root-to-leaf
paths on f(t) edges. Let X be a set of t vertices, that we may identify to [t]. The vertex
set of Gt is X ⊎ V (T). The edges of Gt are such that G[X] is an independent set, and
G[V (T)] = T . The edges between V (T) are X are such that

• the root of T has no neighbor in X, and
• the 2t children (in T) of every internal node of T each have a distinct neighborhood

in X.
Note that this defines a single graph up to isomorphism. By a slight abuse of language,
we may utilize the usual vocabulary on trees directly on Gt. By root, internal node, child,
parent, leaf of Gt, we mean the equivalent in T .

We start with this straightforward observation.

Lemma 16. Gt has treewidth at most t + 1.

Proof. The set X is a feedback vertex set of Gt of size t, thus tw(Gt) ⩽ fvs(Gt) + 1 ⩽
t + 1.

The following is the core lemma, which occupies us for the remainder of the section.

Lemma 17. Gt has twin-width greater than 2(1−ε)t.

Proof. We assume, by way of contradiction, that Gt admits a d-sequence with d ⩽ 2(1−ε)t.
We consider the partial d-sequence S, starting at Gt, and ending right before the first
contraction involving a child of the root. We first show that no vertex of X can be
involved in a contraction of S. Note that it implies, in particular, that the root cannot be
involved in a contraction of S.

17

▷ Claim 18. No part of S contains more than one vertex of X.

Proof of the claim. Observe that, for every i ̸= j ∈ [t], there are 2t−1 sets of 2[t] containing
exactly one of i, j: 2t−2 only contains i, and 2t−2 only contains j. Recall now that by
assumption, in every trigraph of S, every child of the root is alone in its part. Thus a part
P of S such that |P ∩ X| ⩾ 2 would have red degree at least 2t−1 > 2(1−ε)t ⩾ d.

▷ Claim 19. No part of S intersects both X and V (T).

Proof of the claim. For the sake of contradiction, consider the first occurrence of a part
P ⊇ {x, v} with x ∈ X and v ∈ V (T). Vertex x is adjacent to half of the children of the
root, whereas v is adjacent to at most one of them, or all of them (if v is itself the root).
In both cases, this entails at least 2t−1 − 1 red edges for P towards children of the root.
If v is not a grandchild of the root, the red degree of P is at least 2t−1. We thus assume
that v is a grandchild of the root.

As t ⩾ 2, there is a y ∈ X \ {x}. Let v′ be the child of v whose neighborhood in X
is exactly {y}. This vertex exists since f(t) ⩾ 3. If P contains v′, P is also red-adjacent
to {y} (indeed a part, by claim 18). If instead, P does not contain v′, then P is also
red-adjacent to the part containing v′.

Thus, in any case, the red degree of P is at least 2t−1 > 2(1−ε)t ⩾ d.

From Claims 18 and 19, we immediately obtain:

▷ Claim 20. Every part of S intersecting X is a singleton.

Crucial to the proof, we introduce two properties P, and later Q, on internal nodes
v ∈ V (T) in trigraphs H ∈ S. Property P is defined by

P(v, H) = “At least 2εt children of v are in the same part of P(H).”

We first remark that any internal node in a non-singleton part verifies P.

▷ Claim 21. Let H be any trigraph of S and v be any internal node of T whose part in
P(H) is not a singleton. Then P(v, H) holds.

Proof of the claim. Let P be the part of v in P(H), and u ∈ P \ {v}. At least 2t − 1
children of v are not adjacent to u. Thus these 2t − 1 vertices have to be in at most
d + 1 ⩽ 2(1−ε)t + 1 parts. These parts are part P , plus at most d parts linked to P by
a red edge. Since (2εt − 1)(2(1−ε)t + 1) < 2t − 1 (recall that ε < 1/2), one of these parts
(possibly P) contains at least 2εt children of v.

As the merge of a singleton part {v} with any other part does not change the inter-
sections of parts with the set of children of v, we get a slightly stronger claim.

▷ Claim 22. Let v be an internal node of T , and H be the last trigraph of S for which v
is in a singleton part of P(H). Then P(v, H) holds.

A preleaf is an internal node of T adjacent to a leaf, i.e., the parent of some leaves.
We obtain the following as a direct consequence of claim 21.

▷ Claim 23. In any trigraph H ∈ S, any non-preleaf internal node v ∈ V (T) that verifies
P(v, H) has at least 2εt children u verifying P(u, H).

18

We define the property Q on internal nodes v of T and trigraphs H ∈ S by induction:

Q(v, H) =
{

P(v, H) if v is a preleaf, and otherwise
Q(u1, H) ∧ Q(u2, H) for some pair u1 ̸= u2 of children of v.

That is, Q is defined as P for preleaves, and otherwise, Q holds when it holds for at
least two of its children. Observe that P and Q are monotone in the following sense: If
P(v, H) (resp. Q(v, H)) holds, then P(v, H ′) (resp. Q(v, H ′)) holds for every subsequent
trigraph H ′ of the partial d-sequence S. We may write that v satisfies P (resp. Q) in H
when P(v, H) (resp. Q(v, H)) holds, and may add for the first time if no trigraph H ′ ∈ S
before H is such that P(v, H ′) (resp. Q(v, H ′)) holds.

▷ Claim 24. For any trigraph H ∈ S and internal node v of T , P(v, H) implies Q(v, H).

Proof of the claim. This is a tautology if v is a preleaf. The induction step is ensured
by claim 23, since 2εt ⩾ 2.

At the end of the partial d-sequence S, we know, by claim 22, that at least one child
of the root satisfies P, hence satisfies Q, by claim 24. Thus the first time in the partial
d-sequence S that Q(v, H) holds, for a trigraph H ∈ S and a child v of the root, is
well-defined. We call F this trigraph, and v0 a child of the root satisfying Q(v0, F).

We now find many nodes satisfying Q in F , whose parents form a vertical path of
singleton parts.

▷ Claim 25. There is a set Q ⊂ V (T) of at least f(t) − 2 internal nodes such that
• for every v ∈ Q, Q(v, F) holds,
• the parent of any v ∈ Q is in a singleton part of P(F), and
• and no two distinct nodes of Q are in an ancestor-descendant relationship.

Proof of the claim. We construct by recurrence two sequences (vi)i∈[f(t)−2], (qi)i∈[0,f(t)−3]
of internal nodes of T such that for all i ∈ [f(t) − 2], vi is a child of vi−1, vi−1 is in a
singleton part of P(F), and vi−1 has a child qi−1 ̸= vi satisfying Q(qi−1, F).

Assume that the sequence is defined up to vi, for some i < f(t) − 2. We will maintain
the additional invariant that vi satisfies Q for the first time in F . This is the case for
i = 0.

As vi is not a preleaf, it satisfies Q for the first time when a second child satisfies Q.
Let vi+1 be this second child, and qi be the first child to satisfy Q (breaking ties arbitrarily
if both children satisfy Q for the first time in F). The vertex vi+1 satisfies Q for the first
time in F . Thus our invariant is preserved.

For every i ∈ [f(t) − 2], vi is in a singleton part of P(F). Indeed, by claim 22, if vi was
not in a singleton part of P(F), vi would satisfy P, hence Q, in the trigraph preceding
F ; a contradiction.

The set Q can thus be defined as {qi : i ∈ [0, f(t) − 3]}. We already checked that the
first two requirements of the lemma are fulfilled. No pair in Q is in an ancestor-descendant
relationship since the nodes of Q are all children of a root-to-leaf path made by the vis
(see fig. 1.4).

Let B the vertices w ∈ V (F) such that w(G) contains at least 2εt children of the same
node of T . Each vertex of B is red-adjacent to at least log(2εt) = εt (singleton) parts of
X. Therefore, since the red degree of (singleton) parts of X is at most 2(1−ε)t:

|B| ⩽ 2(1−ε)t

ε
.

19

root

v0

q0v1

q1v2

q2

vhpreleaf

leaves

non-preleaf internal nodes

Figure 1.4: The nodes (vi)i∈[0,h] and (qi)[0,h−1] (h = f(t) − 2) satisfy P and Q in F . The
vis and the root (nodes circled in blue) are in singleton parts of F . The other represented
nodes can be in larger parts (shaded areas).

Next we show that there is relatively large set of vertices of F each corresponding to
a non-singleton part and containing an internal node of T .

▷ Claim 26. There is a set B′ ⊆ V (F) of size at least

1
(1 − ε)t log

(
f(t) − 2

|B|

)
− 1

such that for every b ∈ B′ there is an internal node v of T with v ∈ b(Gt) and |b(Gt)| ⩾ 2.

Proof of the claim. Let s := 1
(1−ε)t log(f(t)−2

|B|) − 1. Our goal is to construct a sequence
(bi)i∈[0,s] of distinct vertices of F such that for every i ∈ [s],

part bi(Gt) is not a singleton and contains an internal node of T. (1.1)

We first focus on finding b0. Note that b0 need not satisfy Invariant (1.1), but will be
chosen to force the existence of b1 itself satisfying (1.1) and starting the induction.

Let Q := {qj : 0 ⩽ j ⩽ f(t) − 3} ⊂ V (T) be as described in claim 25. Every qj ∈ Q
has (at least) one descendant q′

j that is a preleaf and satisfies Q, hence P, in F . The q′
js

are pairwise distinct because no two nodes of Q are in an ancestor-descendant relationship.
We set Q′ := {q′

j : 0 ⩽ j ⩽ f(t) − 3}.
Now for every q′

j , at least 2εt of its children are in the same part of P(F); hence, this
part corresponds to a vertex in B. By the pigeonhole principle, there is a b0 ∈ B that
contains at least 2εt children of at least (f(t) − 2)/|B| nodes of Q′.

For each bi, we define Qi ⊂ Q as the set of vertices qj such that
• bi(Gt) contains a (not necessarily strict) descendant z of qj , and
• no part bi′(Gt) with i′ < i contains a node on the path between qj and z in T .

Thus |Q0| ⩾ (f(t) − 2)/|B|.
We now assume that bi ∈ V (F), for some 0 ⩽ i < s, has been found with

|Qi| ⩾
f(t) − 2

|B| · 2i(1−ε)t . (1.2)

Observe that Q0 satisfies (1.2). We construct bi+1, Qi+1 satisfying the invariants (1.1) and
(1.2).

20

For each qj ∈ Qi, consider the highest descendant zj of qj in bi(Gt), and z′
j the parent

of zj in T . By construction, the part Pj of P(F) containing z′
j is not a bk(Gt) for any

k ⩽ i. Part Pj is linked to bi(Gt) by a red edge. Therefore there are at most 2(1−ε)t such
parts Pj . In particular, there is a bi+1 ∈ V (F) such that bi+1(Gt) contains at least

|Qi|
d

⩾
f(t) − 2

|B| · 2i(1−ε)t · 1
2(1−ε)t = f(t) − 2

|B| · 2(i+1)(1−ε)t

parents z′
j of highest descendants zj .

Remark that bi+1(Gt) has size at least two while (f(t) − 2)/(|B| · 2(i+1)(1−ε)t) > 1,
which holds since i < s. Thus bi+1(Gt) does not contain any parent vj of a qj (since
the vjs are in singleton parts). In particular, |Qi+1| ⩾ (f(t) − 2)/(|B| · 2(i+1)(1−ε)t), and
bi+1, Qi+1 satisfy (1.1) and (1.2).

Finally, the set B′ := {bi : 1 ⩽ i ⩽ s} has the required properties.

We can now finish the proof of the lemma.
For every bi ∈ B′, let ui ∈ bi(Gt) be an internal node of T . As bi(Gt) ⩾ 2, ui satisfies

P in F . This implies that bi or a red neighbor of bi is in B. Therefore, the total number
of red edges incident to a vertex of B is at least |B′| − |B|. Thus there is a vertex in B
with red degree at least (|B′| − |B|)/|B|. This is a contradiction since

|B′| − |B|
|B|

= |B′|
|B|

− 1 ⩾
(1

(1 − ε)t log
(

f(t) − 2
|B|

)
− 1

)
· 1

|B|
− 1

⩾
(1

(1 − ε)t log
(
2(1−ε)t(2+Ct·(2(1−ε)t+1))

)
− 1

)
· 1

|B|
− 1

=
(
(2 + Ct · (2(1−ε)t + 1)) − 1

)
· 1

|B|
− 1 > 2(1−ε)t + 1 − 1 = 2(1−ε)t ⩾ d.

since, we recall, f(t) =
⌈
2 + Ct · 2(1−ε)t(2+Ct·(2(1−ε)t+1))

⌉
and Ct = 2(1−ε)t

ε
⩾ |B|.

Since X is a feedback vertex set of size t of Gt, lemma 17 implies theorem 11, and
hence corollary 12.

As the twin-width of T is 2, adding the t apices in X, multiplies the twin-width by at
least 2t(1−ε− 1

t
). Thus one apex in X multiplies the twin-width by at least 21−ε− 1

t , which
can be made arbitrarily close to 2. This establishes corollary 15.

Oriented twin-width and grid number

In this section, we check that Gt has oriented twin-width at most t + 1, and grid number
at most t + 2.

A (partial) oriented contraction sequence is defined similarly as a (partial) contraction
sequence with every red edge replaced by a red arc leaving the newly contracted vertex.
Then a (partial) oriented d-sequence is such that all the vertices of all its trigraphs have
at most d out-going red arcs. The oriented twin-width of a graph G, denoted by otww(G),
is the minimum integer d such that G admits an oriented d-sequence.

Lemma 27. The oriented twin-width of Gt is at most t + 1.

Proof. We observe that the 2-sequence for trees [4] is an oriented 1-sequence. We contract
T to a single vertex (without touching X) in that manner. This yields a partial oriented
t + 1-sequence for Gt ending on a t + 1-vertex trigraph, which can be contracted in any
way. This contraction sequence witnesses that otww(Gt) ⩽ t + 1.

21

Thus corollary 14 holds.

We finish by establishing corollary 13.

Lemma 28. The grid number of Gt is at most t + 2.

Proof. Recall that V (Gt) = X ⊎ V (T). Let ≺ be the total order on V (Gt) that puts first
all the vertices of X in any order, then from left to right, all the leaves of T , followed by
the preleaves, the nodes at depth f(t) − 2, the nodes at depth f(t) − 3, and so on, up to
the root. We denote by M the adjacency matrix of Gt ordered by ≺.

Let MT be the submatrix of M obtained by deleting the t rows and t columns corre-
sponding to X. Note that the grid number of M is at most gn(MT) + t. We claim that
there is no 3-grid minor in MT .

Indeed, in the order ≺, above the diagonal of MT there is no pair of 1-entries in strictly
decreasing positions. Thus overall there is no triple of 1-entries in strictly decreasing
positions. Thus no 3-grid minor is possible.

22

Chapter 2

Deciding twin-width at most 4 is
NP-hard

Contents
2.1 Introduction . 23

2.1.1 Outline of the proof of theorem 29 25
2.1.2 The Exponential-Time Hypothesis 26
2.1.3 Organization of this chapter . 26

2.2 Encoding a trigraph by a graph . 27
2.3 Hardness of determining if the twin-width is at most four 32

2.3.1 Fence gadget . 33
2.3.2 Propagation, wire, and long chain 37
2.3.3 Binary AND gate . 39
2.3.4 Binary OR gate . 39
2.3.5 Variable gadget . 41
2.3.6 Clause gadget . 43
2.3.7 Overall construction and correctness 44

In this chapter, we show that determining if an n-vertex graph has twin-width at most 4
is NP-complete, and requires time 2Ω(n/ log n) unless the Exponential-Time Hypothesis fails.
Along the way, we also show how to encode trigraphs H (2-edge colored graphs involved in
the definition of twin-width) into graphs G, in the sense that every d-sequence (sequence
of vertex contractions witnessing that the twin-width is at most d) of G inevitably creates
H as an induced subtrigraph, whereas there exists a partial d-sequence that actually goes
from G to H.

2.1 Introduction

One of the main algorithmic interests with twin-width is that first-order (FO) model
checking, that is, deciding if a first-order sentence φ holds in a graph G, can be decided
in fixed-parameter time (FPT) f(|φ|, d) · |V (G)| for some computable function f , when
given a d-sequence of G [4]. As for most classes known to have bounded twin-width,
one can compute O(1)-sequences in polynomial time for members of the class, the latter
result unifies and extends several known results [30, 31, 32, 33, 3] for hereditary (but not
necessarily monotone) classes.

23

For monotone (i.e., subgraph-closed) classes, the FPT algorithm of Grohe, Kreutzer,
and Siebertz [34] for FO model checking on nowhere dense classes, is complemented by
W[1]-hardness on classes that are somewhere dense (i.e., not nowhere dense) [35], and even
AW[∗]-hardness on classes that are effectively somewhere dense [36]. The latter results
mean that, for monotone classes, FO model checking is unlikely to be FPT beyond nowhere
dense classes.

The missing piece for an FO model-checking algorithm in FPT time on any class of
bounded twin-width is a polynomial-time algorithm and a computable function f , that
given a constant integer bound c and a graph G, either finds an f(c)-sequence for G,
or correctly reports that the twin-width of G is greater than c. The running time of
the algorithm could be ng(c), for some function g. However to get an FPT algorithm
in the combined parameter size of the sentence + bound on the twin-width, one would
further require that the approximation algorithm takes FPT time in c (now seen as a
parameter), i.e., g(c)nO(1). We know such an algorithm for instance on ordered graphs
(more generally, ordered binary structures) [8], graphs of bounded clique-width, proper
minor-closed classes [4], but not in general graphs.

On the other hand, prior to this work, no algorithmic lower bound was known for
computing the twin-width. Our main result rules out an (exact) XP algorithm to decide
tww(G) ⩽ k, that is, an algorithm running in time nf(k) for some computable function
f . Indeed we show that deciding if the twin-width of a graph is at most 4 is intractable.
We refer the reader to section 2.1.2 for some context on the Exponential-Time Hypothesis
(ETH), which implies that n-variable 3-SAT cannot be solved in time 2o(n).

Theorem 29. Deciding if a graph has twin-width at most 4 is NP-complete. Furthermore,
no algorithm running in time 2o(n/ log n) can decide if an n-vertex graph has twin-width at
most 4, unless the ETH fails.

As far as approximation algorithms are concerned, our result only rules out a ratio
better than 5/4 for determining the twin-width. This still leaves plenty of room for
an f(OPT)-approximation, which would be good enough for most of the (theoretical)
algorithmic applications. Note that such algorithms exist for treewidth in polytime [37]
and FPT time [38], for pathwidth [37], and for clique-width via rank-width [39].

Is theorem 29 surprising? On the one hand, it had to be expected that deciding, given
a graph G and an integer k, whether tww(G) ⩽ k would be NP-complete. This is the case
for example of treewidth [40], pathwidth [41, 42, 43], clique-width [44], rank-width [45],
mim-width [46], and bandwidth [47]. On the other hand, the parameterized complexity
of these width parameters is more diverse and harder to predict. Famously, Bodlaender’s
algorithm is a linear FPT algorithm to exactly compute treewidth [2] (and a non-uniform
FPT algorithm came from the Graph Minor series [48]). In contrast, while there is an
XP algorithm to compute bandwidth [49], an FPT algorithm is highly unlikely [50]. It
is a long-standing open whether an FPT or a mere XP algorithm exist for computing
clique-width exactly, or even simply if one can recognize graphs of clique-width at most 4
in polynomial time (deciding clique-width at most 3 is indeed tractable [51]).

Theorem 29 almost completely resolves the parameterized complexity of exactly com-
puting twin-width on general graphs. Two questions remain: can graphs of twin-width at
most 2, respectively at most 3, be recognized in polynomial time. Graphs of twin-width 0
are cographs, which can be recognized in linear time [52], while it was recently shown that
graphs of twin-width at most 1 can be recognized in polynomial time [17].

Contrary to the hardness proof for treewidth [40], which involves some structural
characterizations by chordal completions, and the intermediate problems Minimum Cut

24

Linear Arrangement, Max Cut, and Max 2-SAT [47], our reduction is “direct” from
3-SAT. This makes the proven hardness of twin-width more robust, and easier to extend to
restricted classes of graphs, especially sparse ones. Theorem 29 holds for bounded-degree
input graphs. For instance, performing our reduction from Planar 3-SAT produces sub-
graphs of constant powers of the planar grid (while admittedly weakening the ETH lower
bound from 2Ω(n/ log n) to 2Ω(

√
n/ log n)). Hence, while the complexity status of computing

treewidth on planar graphs is a famous long-standing open question, one can probably ex-
tend the NP-hardness of twin-width at most 4 to planar graphs, by tuning and/or replacing
the few non-planar gadgets of our reduction.

Let us point out that, in contrast to subset problems, there is no 2O(n)-time algorithm
known to compute twin-width. The exhaustive search takes time n2n+O(1) by considering
all sequences of n − 1 pairs of vertices. We leave as an open question whether the ETH
lower bound of computing twin-width can be brought from 2Ω(n/ log n) to 2Ω(n), or even
2Ω(n log n). The latter lower bound is known to hold for Subgraph Isomorphism [53]
(precisely, given a graph H and an n-vertex graph G, deciding if H is isomorphic to a
subgraph of G requires time 2Ω(n log n), unless the ETH fails), or computing the Hadwiger
number [54] (i.e., the size of the largest clique minor).

2.1.1 Outline of the proof of theorem 29

We propose a quasilinear reduction from 3-SAT. Given an n-variable instance I of 3-SAT,
we shall construct an O(n log n)-vertex graph G = G(I) which has twin-width at most 4
if and only if I is satisfiable.

Half of our task is to ensure that no 4-sequence will exist if I is unsatisfiable. This is
challenging since many contraction strategies are to be considered and addressed. We make
this task more tractable by attaching fence gadgets to some chosen vertex subsets. The
effect of the fence enclosing S is that no contraction can involve vertices in S with vertices
outside of S, while S is not contracted into a single vertex. The maximal or outermost
fences (we may nest two or more fence gadgets) partition the rest of the vertices. This
significantly tames the potential 4-sequences of G.

Our basic building block, the vertical set, consists of a pair of vertices (vertical pair)
enclosed by a fence. It can be thought of as a bit set to 0 as long as the pair is not
contracted, and to 1 when the pair gets contracted. It is easy to assemble vertical sets
as prescribed by an auxiliary digraph D (of maximum degree 3), in such a way that, to
contract (by a partial 4-sequence) the pair of a vertical set V , one first has to contract all
the vertical sets that can reach V in D. This allows to propagate and duplicate a bit in
a so-called wire (corresponding to an out-tree in D), and to perform the logical AND of
two bits.

The bit propagation originates from a variable gadget (we naturally have one per
variable appearing in I) that offers two alternatives. One can contract the “top half” of
the gadget of variable xi, which then lets one contract the vertical sets in the wire of literal
xi, or one can contract instead the “bottom half” of the gadget, as well as the vertical
sets in the wire of literal ¬xi. Concretely, these two contraction schemes represent the
two possible assignments for variable xi. A special “lock” on the variable gadget (called
half-guards) prevents its complete contraction, and in particular, performing contractions
in both the wires of a literal and its negation.

The leaves of the literal wires serve as inputs for 3-clause gadgets. One can contract
the output (also a vertical set) of a clause gadget if and only if one of its input is previously
contracted. We then progressively make the AND of the clauses via a “path” of binary
AND gadgets fed by the clause outputs. We eventually get a vertical set, called global

25

output, which can be contracted by a partial 4-sequence only if I is satisfiable. Indeed
at this point, the variable gadgets are still locked so at most one of their literals can be
propagated. This ticks one of our objective off. We should now ensure that a 4-sequence
is possible from there, when I is satisfiable.

For that purpose, we add a wire from the global output back to the half-guards (or
locks) of the variable gadgets. One can contract the vertical sets of that wire, and in
particular the half-guards. Once the variable gadgets are “unlocked,” they can be fully
contracted. As a consequence, one can next contract the wires of literals set to false, and
all the remaining vertical sets involved in clause gadgets.

At this point, the current trigraph H roughly has one vertex per outermost fence with
red edges linking two adjacent gadgets (and no black edge). We will guarantee that the
(red) degree of H is at most 4, its number of vertices of degree at least 3 is at most βn, for
some constant β. Besides we will separate gadgets by degree-2 wires of length 2 log(βn)
beforehand. This is crucial so that the red graph of H is a (2 log n′)-subdivision of an
n′-vertex graph. We have indeed showed that such trigraphs have twin-width at most 4.

This finishes to describe our overall plan for the reduction and its correctness. It
happens that fence gadgets are easier to build as trigraphs, while the rest of the gadgetry
can be directly encoded by graphs. We thus show how to encode trigraphs by graphs, as
follows. For any trigraph J whose red graph has degree at most d, and component size at
most h, there is a graph G on at most f(d, h) · |V (J)| vertices such that J has twin-width
at most 2d if and only if G has twin-width at most 2d. This uses some local replacements
and confluence properties of certain partial contraction sequences.

2.1.2 The Exponential-Time Hypothesis

The Exponential-Time Hypothesis (ETH, for short) was proposed by Impagliazzo and
Paturi [55] and asserts that there is no subexponential-time algorithm solving 3-SAT.
More precisely, there is an ε > 0 such that n-variable 3-SAT cannot be solved in time 2εn.
Impagliazzo et al. [56] present a subexponential-time Turing-reduction parameterized by
a positive real ε > 0 that, given an n-variable m-clause k-SAT-instance I, produces at
most 2εn k-SAT-instances I1, . . . , It such that I is satisfiable if and only if at least one of
I1, . . . , It is satisfiable, each Ii having no more than n variables and Cεn clauses for some
constant Cε depending only on ε. This crucial reduction is known as the Sparsification
Lemma. Due to it, there is an ε′ > 0 such that there is no algorithm solving m-clause
3-SAT in time 2ε′m, unless the ETH fails.

A classic reduction from Tovey [57], linear in the number of clauses, then shows the
following.

Theorem 30 ([57, 56]). The n-variable 3-SAT problem where each variable appears at
most twice positively, and at most twice negatively, is NP-complete, and cannot be solved
in time 2o(n), unless the ETH fails.

2.1.3 Organization of this chapter

The rest of the chapter is organized as follows. In section 2.2 we present how to encode
trigraphs into graphs. In section 2.3, we start by quickly recapping the overall plan.
The following subsections go through the various gadgets. Finally section 2.3.7 details
the quasilinear reduction from 3-SAT to the problem of deciding if the twin-width is at
most 4, and its correctness.

26

2.2 Encoding a trigraph by a graph

In this subsection, we present a construction allowing to encode trigraphs into (plain)
graphs. Our objective is, given a trigraph H with red degree at most d, to produce a
graph G such that H admits a 2d-sequence iff G admits a 2d-sequence.

Formally, we build a graph G for which every 2d-sequence S inevitably creates H as an
induced subtrigraph of a trigraph of S. By Observation 1, the existence of a 2d-sequence
for G implies the existence of one for H. Moreover, this construction is such that there is
a partial 2d-sequence which, from G, exactly reaches H. Therefore, any 2d-sequence for
H can be augmented to become a 2d-sequence for G.

At first sight, our construction works only for trigraphs H with a connected red graph.
We could show the following.

Lemma 31. For every trigraph H such that R(H) is connected and of degree at most d,
there is a graph G such that:

• every 2d-sequence of G goes through a supertrigraph of H, and
• there is a partial 2d-sequence from G to H.

However, we will need a stronger version, allowing to simulate trigraphs with discon-
nected red graphs. First we show how to turn the trigraph induced by one connected
component of the red graph into a plain graph (this is lemma 32). Later we loop through
all connected components of the red graph with size at least 2, and apply lemma 32 (that
is done in lemma 36).

Lemma 32. Let H be a trigraph, and S ⊆ V (H) be the vertex set of a connected component
of R(H) with degree at most d. There is a trigraph G and a set T ⊆ V (G) satisfying the
following statements:

1. |T | is bounded by a function of d and |S| only,
2. no red edge touches T (in particular, G[T] has no red edge),
3. G − T is isomorphic to H − S,
4. there is a partial 2d-sequence from G to H, and
5. every 2d-sequence of G goes through a supertrigraph of some trigraph H̃, where H̃

can be obtained from H by performing contractions not involving vertices of S, nor
creating red edges incident to S.

Proof. We begin with the construction of G. The vertex set of G can be split into two
sets: on one hand V (H) \ S, and on the other hand T , which will be defined in function
of H[S]. Let {v1, v2, . . . , v|S|} be the set S. To build set T , we blow up every vertex vi of
S into a copy Li of the biclique Kt,t with t = 2(2d + 2) · (2d)|S|−1 + 1. The two sides of
each biclique Li are denoted by Ai = {ai,j}j∈[t] and Bi = {bi,j}j∈[t], and are respectively
called A-side and B-side. The vertex set T ⊆ V (G) is:

T =
⋃

vi∈S

V (Li) =
⋃

vi∈S,j∈[t]
{ai,j , bi,j}.

In addition to the edges forming each biclique, we replace every black edge of H[S] by
a complete bipartite graph between the two corresponding bicliques. Furthermore, every
red edge of H[S] becomes a black canonical matching, with edges ai,jai′,j and bi,jbi′,j .
Formally,

E(G[T]) =
⋃

vi∈S

Ai × Bi ∪
⋃

vivi′ ∈E(H)
Li × Li′ ∪

⋃
vivi′ ∈R(H)

j∈[t]

{ai,jai′,j , bi,jbi′,j}.

27

We finish the construction by considering the black edges initially connecting S and
V (H) \ S in the trigraph H. For any edge viz ∈ E(H) with vi ∈ S and z ∈ V (H) \ S, we
add a black edge between any vertex of the biclique Li and z ∈ V (G) \ T . In summary,

E(G) = E(G[T]) ∪ E(H − S) ∪
⋃

vi∈S
z∈V (H)\S
viz∈E(H)

Li × {z}.

S

v1

v2

V (H)\S

(a) An example of trigraph H. Set
S consists of two vertices v1 and v2,
linked by a red edge. Vertices of H −S
adjacent to S are also represented.

T

L1

L2

A1 B1

A2 B2

V (G)\T

(b) Graph G obtained from H. Thick black edges link
every vertex of one endpoint to every vertex of the other
endpoint. Set T contains two bicliques L1 and L2, in-
herited from S = {v1, v2}.

Figure 2.1: An example of encoding: induced trigraph S (left) and the plain graph T
(right).

Statements 1-3. The first three statements are satisfied by this construction. In
particular the size of T is 2t|S|, and t was defined as a function of d and |S|. Moreover, no
vertex of V (H) \ S was modified by this construction, so G − T is isomorphic to H − S.

Statement 4. We focus now on the fourth statement: We exhibit a partial 2d-
sequence S∗ from G to H. Let us begin with a short description of S∗. This particular
sequence never contracts two vertices of T lying in different bicliques. Moreover, after a
contraction of two vertices belonging to the same biclique, it forces the same contraction
in all other bicliques of T . We now describe S∗ in detail.

We start by contracting ai,1 and ai,2 for each vi ∈ S. Then, we contract {ai,1, ai,2}
with ai,3 for each vi ∈ S, and so on. When the A-side of each biclique Li is contracted
into a single vertex {ai,1, ai,2, . . . , ai,t}, we proceed similarly with the B-side. Finally, each
biclique Li contains exactly two contracted vertices, which are respectively Ai and Bi. We
contract all these pairs in each Li: every biclique is now contracted into a single vertex.

The obtained trigraph is isomorphic to H. Indeed, if vivi′ is a black edge (resp. a non-
edge) in H[S], then Li and Li′ are homogeneous and, as contracted vertices, they are
connected with a black edge (resp. a non-edge). However, if vivi′ is a red edge in H[S],
then there is a semi-induced matching connecting bicliques Li and Li′ in G[T], so the
contracted vertices Li and Li′ are linked by a red edge. Finally, the black edges between
S and V (H) \ S are preserved because the contractions of S∗ occur inside bicliques of
T which are homogeneous (i.e., fully adjacent or fully non-adjacent) with every vertex
z ∈ V (H) \ S.

Let us check that the partial sequence S∗ only goes through trigraphs with red degree
at most 2d. As we only contract vertices within the same side of each biclique first, no

28

red edge appears between two vertices of the same biclique. Moreover, if vivi′ /∈ R(H),
then bicliques Li and Li′ are homogeneous, so no red edge appears between two vertices
belonging respectively to Li and Li′ . Thus, the red edges may only bridge two different
bicliques Li, Li′ such that vivi′ ∈ R(H). The way we progressively contract the matching
between Li and Li′ , a contracted vertex within Li is the endpoint of at most two red
edges towards Li′ . Assume without loss of generality that u(G) = {ai,1, ai,2, . . . , ai,j+1}
is contracted in Ai while only u′(G) = {ai′,1, ai′,2, . . . , ai′,j} is contracted in Ai′ for some
j ∈ [t − 1]. There are two red edges between bicliques Li and Li′ which are uu′ and uu′′,
where u′′(G) = {ai′,j+1}. As the red degree of H[S] is at most d, we indeed have that S∗

is a partial 2d-sequence.
Statement 5. We terminate by showing that any 2d-sequence S from graph G neces-

sarily produces at some moment a supertrigraph of H̃, where H̃ is obtained from H with
contractions not involving set S. As this part of the proof is more intricate than the previ-
ous ones, two intermediate claims are stated. We fix g(d, t) = (t−1)/(2d+2) = 2(2d)|S|−1.

▷ Claim 33. Let Gh be any trigraph of S = G, . . . , Gh, . . . , K1. If a vertex u of Gh is such
that u(G) intersects two distinct bicliques Li and Li′ , then there is a vertex w (possibly u)
of Gh intersecting one side of Li in at least g(d, t) elements: |w(G) ∩ Ai| ⩾ g(d, t) or
|w(G) ∩ Bi| ⩾ g(d, t).

Proof. Let a ∈ u(G) ∩ V (Li) and z ∈ u(G) ∩ V (Li′). We assume w.l.o.g. that the partite
set of the biclique Li in which a lies is Ai. We identify a set X ⊂ V (G) of size at least
t − 1 such that, for any vertex u′ ∈ V (Gh) \ {u} such that u′(G) ∩ X ̸= ∅, there is a red
edge uu′. The composition of set X depends on the adjacency between vi and vi′ in H.

• If vivi′ is a non-edge in H, then we fix X = Bi. Indeed, any element of Bi is adjacent
to a but not to z, so there is a red edge between u and any contracted vertex u′

intersecting Bi. Moreover, |Bi| = t.
• If vivi′ is a black edge in H, then we fix X = Ai \{a}. Any element of Ai \{a} is not

adjacent to a but adjacent to z. Thus, any contracted vertex u intersecting Ai \ {a}
is connected to u in red. Moreover, |Ai \ {a}| = t − 1.

• If vivi′ is a red edge in H, then we fix X = Bi \ {z′}, where z′ is the matching
neighbor of z in Li. Observe that z′ may belong to Ai and, in this case, X = Bi.
Any element of X is adjacent to a but not to z. Moreover, |X| ∈ {t − 1, t}.

In summary, there is a set X of at least t − 1 vertices such that any contracted vertex
u′ ∈ Gh intersecting X is linked by a red edge to u. Consequently, there cannot be more
than 2d + 1 contracted vertices w ∈ Gh intersecting X, otherwise the red degree of u is
necessarily larger than 2d. For this reason, at least one vertex w ∈ Gh which intersects X
has size at least ⌈(t − 1)/(2d + 1)⌉ ⩾ g(d, t). In each case, either X ⊊ Ai or X ⊆ Bi, so
either |w(G) ∩ Ai| ⩾ g(d, t) or |w(G) ∩ Bi| ⩾ g(d, t). ◁

Let G′ be the first trigraph of sequence S having a vertex u such that |u(G) ∩ T | ⩾
g(d, t). We denote by G′′ the trigraph preceding G′ in S. We show that every contracted
vertex w ∈ G′ is either fully contained in some biclique Li or contained in V (G) \ T .

▷ Claim 34. Every contracted vertex u ∈ V (G′) satisfies:
• either u(G) ⊆ Ai or u(G) ⊆ Bi for some Li of T ,
• or u(G) ⊆ V (G) \ T .

Furthermore, there is no red edge between a contracted vertex inside a biclique of T and
a contracted vertex in G − T .

Proof. We begin by proving that if a contracted vertex w ∈ V (G′) intersects T , then it
intersects at most one of its bicliques, that is, w(G) ∩ T ⊆ Li for some index i. According

29

w(G)

T

Li

Ai

Bi

V (G)\T

(a) Case when vi is adjacent to some vertex of
w(G) \ Ai in H.

w(G)

T

Li

Ai

Bi

V (G)\T

(b) Case when vi is not adjacent to any vertex
of w(G) \ Ai in H

Figure 2.2: How contractions intersecting both T and V (G) \ T would imply large red
degree in G′. The green boxes represent contracted vertices in G′.

to claim 33, all the contracted vertices of G′′ intersect T within a single biclique. This holds
in particular for the two vertices, say x, y ∈ V (G′′), whose contraction yields u. Assume
that x and y are both contained within different bicliques, say, Li and Li′ , respectively.
By claim 33, there is a vertex of G′ intersecting Li in at least g(d, t) elements. By definition
of trigraph G′, this vertex is necessarily u. This yields a contradiction, as the cardinality
of x(G) = u(G) ∩ V (Li) would be at least g(d, t). Therefore, vertex u intersects at most
one biclique. In brief, from now on, every set w(G) with w ∈ V (G′) can be written as the
union of elements of some biclique Li with vertices of G − T .

Each side, Ai or Bi, of a biclique Li satisfies the following property: There are at least
2d+2 contracted vertices of G′ intersecting every Ai (or Bi). Any contracted vertex in G′′

covers less than g(d, t) elements of T , by definition. So, at least 2d + 3 contracted vertices
of G′′ must intersect Ai as |Ai| = t. In G′, this property holds except for vertex u, which
is the contraction of two vertices x, y ∈ V (G′′). Therefore, as announced, at least 2d + 2
contracted vertices w of G′ satisfy w(G) ∩ Ai ̸= ∅ (resp. w(G) ∩ Bi ̸= ∅) for every side Ai

(resp. Bi).
Based on this property, we show that, for any w ∈ V (G′), set w(G) cannot contain

both vertices of T and of V (G) \ T . Assume it is the case and w.l.o.g. that w(G) ∩ Ai ̸= ∅.
All vertices of Li play the same role regarding the adjacencies between T and G−T : either
they are all connected to some z ∈ G − T (if viz ∈ E(H)) or none of them is connected
to z (if viz /∈ E(H)). Consequently, we can distinguish only two cases. First, assume that
at least one vertex of w(G) \ Ai is adjacent (black or red) to Li in G (Figure 2.2a). In
that case, w admits at least 2d + 1 red neighbors in G′ which are the other contracted
vertices intersecting Ai. Indeed, these vertices contain elements of Ai which are adjacent
to w(G) \ Ai but not to w(G) ∩ Ai. Second, assume that no edge of G connects w(G) \ Ai

with Li (Figure 2.2b). We can identify 2d + 1 red neighbors of w: among the at least
2d + 2 contracted vertices of G′ intersecting Bi, at least 2d + 1 of them are different from
w. These contracted vertices contain elements of Bi which are adjacent to w(G) ∩ Ai but
not to w(G) \ Ai. In summary, for any w ∈ G′, either w(G) ⊆ Li or w(G) ⊆ V (G) \ T .

We now prove that there is no red edge ww′ ∈ R(G′) such that w(G) ⊆ Li and
w′(G) ⊆ V (G) \ T . Suppose by way of contradiction that such an edge exists. As all
vertices of Li play the same role in the adjacencies between T and G − T , there is a red
edge between w′ and any vertex of G′ intersecting Li. As at least 2d + 2 of these vertices
intersect Ai, the red degree of w′ is at least 2d + 2, a contradiction.

30

To end the proof, we show that any contracted vertex w(G) ⊆ Li verifies either w(G) ⊆
Ai or w(G) ⊆ Bi. Consider the at least 2d + 1 vertices of G′ intersecting Ai different from
w. They contain elements of Ai which are adjacent to w(G) ∩ Ai but not to w(G) ∩ Bi.
Therefore, the red degree of w is at least 2d + 1, a contradiction. ◁

In brief, the partial sequence from G to G′ does not use contractions mixing vertices
of T and vertices of V (G) \ T . As a consequence, G′ can be split in two parts: its induced
subtrigraph G′

T obtained from contractions on the bicliques and its induced subtrigraph
G′

G−T obtained from the contractions on G − T . Our objective is to prove that H appears
in the first part.

We now focus more specifically on the vertex u. W.l.o.g., we assume that u(G) in-
tersects Ai ⊂ Li. We denote by J0 a set of exactly g(d, t) distinct indices j such that
ai,j ∈ u(G). For every J ⊆ [t], we denote by Ai,J the set {ai,j : j ∈ J}. It holds that
|J0| = |Ai,J0 | = g(d, t).

▷ Claim 35. H[S] is an induced subtrigraph of G′
T .

Proof. We initialize a subset Y ⊆ S to {vi}, an injective mapping ρ : Y ↪→ V (G′) to
vi 7→ u, and a subset J ⊆ [t] to J0. We maintain the following invariant:

(∗) Ah,J ⊆ ρ(vh)(G) for every vh ∈ Y, and 2 ⩽ |J | = t − 1
(2d + 2) · (2d)|Y |−1 .

The invariant initially holds by construction of J0. While Y ̸= S, we pick a pair
vh ∈ Y, vh′ ∈ S \ Y such that vhvh′ ∈ R(H). Since vh(G) ⊇ Ah,J and there is an induced
matching between Ah,J and Ah′,J , the set Ah′,J can be spanned by at most 2d parts of
P(G′). Thus we select of vertex wh′ ∈ V (G′) and a subset J ′ ⊆ J of size |J |

2d such that
wh′(G) ⊇ Ah′,J ′ . We set the new J to J ′, and we augment ρ with vh′ 7→ wh′ . Finally, we
add vh′ to Y .

The invariant (∗) is preserved by construction. Since the graph R(H) is connected,
this process ends when Y = S and |J | = g(d,t)

(2d)|S|−1 = 2. We claim that trigraph G′[ρ(S)],
which is an induced subtrigraph of G′

T , is isomorphic to H[S]. Indeed, let vh, vh′ ∈ S be
any pair of vertices, and let wh = ρ(vh) and wh′ = ρ(vh′). Assume first that vhvh′ ∈ R(H).
As wh(G) ⊇ Ah,J , wh′(G) ⊇ Ah′,J , |J | = 2, and there is an induced matching between
Ah,J and Ah′,J , there is a red edge in G′ between wh and wh′ . If vhvh′ is a black edge
in H[S], then any pair of vertices in wh(G) × wh′(G) is a black edge in G. Hence, sets
wh(G) and wh′(G) are homogeneous and whwh′ is a black edge in G′. Eventually, if vhvh′

is a non-edge in H[S], both wh(G) and wh′(G) are homogeneous in the sense that they
are not adjacent at all. So, whwh′ is a non-edge in G′. In brief, G′[ρ(S)] is isomorphic to
H[S]. ◁

This concludes the proof of lemma 32. Indeed, consider the subtrigraph of G′ induced
on vertices of both sets ρ(S) and G′

G−T . The subtrigraph G′[ρ(S)] is isomorphic to H[S]
(claim 35) and the second part G′

G−T is obtained from contractions on G − T which do
not make red edges appear towards S (claim 34).

If the red graph R(H) is not connected, one can apply lemma 32 for each of its
connected components.

Lemma 36. Given any trigraph H whose red graph has degree at most d and connected
components of size at most h, one can compute in time Od,h(|V (H)|) a graph G on
Od,h(|V (H)|) vertices such that H has a 2d-sequence if and only if G has a 2d-sequence.

31

Proof. Let S1, . . . , Sr be the connected components of R(H) of size at least 2. We define
a collection of trigraphs H0 = H, H1, . . . , Hr, where Hr is a plain graph isomorphic to G.
Each trigraph Hℓ+1 will be built from Hℓ by applying lemma 32 on Sℓ+1. We proceed by
induction and prove, for any 0 ⩽ ℓ ⩽ r, that:

• |V (Hℓ)| is linear in |V (H)| if d, h = O(1): |V (Hℓ)| = fℓ(d, h)|V (H)|,
• the connected components of R(Hℓ) of size at least 2 have vertex sets Sℓ+1, . . . , Sr,
• Hℓ has a 2d-sequence iff H has a 2d-sequence.
The base case is trivial, as H0 = H. Let us assume, for the induction step, that

Hℓ satisfies these three properties. We consider the red component Sℓ+1 in Hℓ to build
trigraph Hℓ+1. We apply lemma 32 with trigraph Hℓ and vertex set Sℓ+1. The trigraph
Hℓ+1 substitutes Hℓ[Sℓ+1] with a plain graph Hℓ+1[T] not touched by a red edge. Thus
the vertex sets of connected components of R(Hℓ+1) of size at least 2 are those of R(Hℓ)
minus Sℓ+1.

Moreover, the size of T is bounded by d and |Sℓ+1| only. As a consequence,

|V (Hℓ+1)| = |T | + |V (Hℓ) \ Sℓ+1| ⩽ h(d, |Sℓ+1|) + fℓ(d, h)|V (H)| ⩽ fℓ+1(d, h)|V (H)|,

where h is the function defined accordingly to lemma 32.
We finally show that Hℓ+1 has a 2d-sequence iff Hℓ has a 2d-sequence. This is a direct

consequence of lemma 32. On one hand, there is a 2d-partial sequence from Hℓ+1 to Hℓ,
so if Hℓ has a 2d-sequence, then Hℓ+1 has one, too. On the other hand, if Hℓ+1 has a
2d-sequence, then one trigraph of the sequence is a supertrigraph of H̃ℓ, where H̃ℓ is a
trigraph which can be obtained from Hℓ by performing contractions preserving Sℓ as a red
connected component of the trigraph. One can deduce from this statement a 2d-sequence
of Hℓ: first contract Hℓ to obtain H̃ℓ, then conclude by Observation 1.

As a conclusion, trigraph G = Hr satisfies the induction hypotheses: its red graph is
edgeless and it has a 2d-sequence if and only if H admits one, too.

In the sequel, we will use lemma 36 with d = 2 and h = 12. In particular, the size of
the encoding graph will be linear in the trigraph. As paths are connected graphs of degree
at most 2, we will invoke this scaled-down version.

Lemma 37. Given any trigraph H whose red graph is a disjoint union of 12-vertex paths
and isolated vertices, one can compute in polynomial time a graph G on O(|V (H)|) vertices
such that H has twin-width at most 4 if and only if G has twin-width at most 4.

2.3 Hardness of determining if the twin-width is at most
four

Here we show the main result of the chapter.

Theorem 29. Deciding if a graph has twin-width at most 4 is NP-complete. Furthermore,
no algorithm running in time 2o(n/ log n) can decide if an n-vertex graph has twin-width at
most 4, unless the ETH fails.

The membership to NP is ensured by the d-sequence: a polynomial-sized certificate
that a graph has twin-width at most d, checkable in polynomial time. We thus focus on
the hardness part of the statement, and design a quasilinear reduction from 3-SAT.

Using the result of section 2.2, our task is now slightly simpler. Given a 3-SAT instance
I, we may design a trigraph satisfying the requirements of lemma 37 with twin-width at
most 4 if and only if I is satisfiable.

32

As already mentioned, given an instance I of 3-SAT we will create an equivalent
instance of the problem: is trigraph G of twin-width at most 4? We now present the
various gadgets used in our reduction. The only building block featuring red edges is the
fence gadget. Its red graph is a 12-vertex path that is a connected component in the red
graph of the overall construction G. Hence G can be turned into a graph with only a
constant multiplicative blow-up, by lemma 37.

The correctness of the reduction naturally splits into two implications:
• (i) If G admits a 4-sequence, then I is satisfiable.
• (ii) If I is satisfiable, then G admits a 4-sequence.

We will motivate all the gadgets along the way, by exhibiting key properties that they
impose on a potential 4-sequence. These properties readily lead to a satisfying assignment
for I. So the proof of (i) will mostly consist of aggregating lemmas specific to individual
gadgets.

We also describe partial 4-sequences to reduce most of the gadgets. However some
preconditions (specifying the context in which a particular gadget stands) tend to be
technical, and make more sense after the construction of G. In those cases, to avoid un-
necessarily lengthy lemmas, we only give an informal strategy, and postpone the adequate
contraction sequence to the final proof of (ii).

2.3.1 Fence gadget

We now design a gadget F partitioned into two vertex sets A, B. The gadget is attached
to a non-empty subset S ⊆ V (G) \ (A ∪ B) by making A and S fully adjacent, and B and
S fully non-adjacent. Our intent is that, in a 4-sequence, a vertex of F can be contracted
with another vertex of the graph only when S has been contracted into a single vertex.
We will ensure that every vertex outside S ∪ V (F) is fully adjacent to B or fully non-
adjacent to A. As |A| = |B| = 6 > 4 will hold, the effect is that vertices of S have to be
contracted to a single vertex before any vertex of S (or subset of vertices within S) can
be contracted with a vertex or subset of vertices in G − S. To summarize, F encloses S
into an “unbreakable unit:” the inside of S cannot be contracted with the outside as long
as S is not a single vertex. Hence we call F a fence gadget.

The fence gadget is defined as a trigraph whose red graph is a simple path on 12
vertices, in particular, a connected graph of maximum degree 2. In the overall trigraph
G, no red edge will link a vertex in the gadget to a vertex outside of it. Thus the fence
gadget can be replaced by a graph by lemma 37.

We now define the fence gadget. Its vertex set is A ∪ B with A = {a1, a2, a3, a4, a5, a6}
and B = {b1, b2, b3, b4, b5, b6}. Its black edge set consists of 13 edges: the cycles a1a2a3a4a5a6a1
and b1b2b3b4b5b6b1, plus the edge b1a6. Its red edge set consists of 11 edges: aibi for each
i ∈ [6], and aibi+1 for each i ∈ [5]. Finally A is made fully adjacent to S. See fig. 2.3 for
an illustration.

We will later nest fence gadgets. Thus we have to tolerate that F has other neighbors
than S in G. Actually we even allow V (F) to have neighbors outside of S and the fence
gadgets surrounding F . We however always observe the following rule.

Definition 38 (Attachment rule). A fence gadget F with vertex bipartition (A, B), and
attached to S, satisfies the attachment rule in a trigraph H if F is a connected component
of R(H), and there is a set X ⊆ V (H) \ (A ∪ B ∪ S) such that:

• ∀x ∈ A, N(x) \ V (F) = X ∪ S,
• ∀x ∈ B, N(x) \ V (F) = X, and
• ∀x ∈ X, S ⊂ N(x).

33

b1

a1

b2

a2

b3a3

b4

a4

b5

a5

b6 a6

e

Figure 2.3: The fence gadget F , with A = {ai | 1 ⩽ i ⩽ 6} and B = {Bi | 1 ⩽ i ⩽ 6}.

Initially in G, we make sure that all the fence gadgets satisfy the attachment rule.
This will remain so until we decide to contract them.

We denote by Y the set V (G) \ (V (F) ∪ S ∪ X), when X is defined in the attachment
rule. We make the following observations on the three possible neighborhoods that vertices
outside of F have within V (F).

Observation 39. The fence gadget definition and the attachment rule implies:
• ∀x ∈ S, it holds N(x) ∩ V (F) = A,
• ∀x ∈ X, it holds N(x) ∩ V (F) = V (F) = A ∪ B, and
• ∀x ∈ Y , it holds N(x) ∩ V (F) = ∅.

Henceforth we will represent every fence gadget as a brown rectangle surrounding the
set S it is attached to. The vertices of X are linked to the brown rectangle, as they are
fully adjacent to S ∪ V (F). See fig. 2.4 for an illustration of the attachment rule, and a
compact representation of fence gadgets, and fig. 2.5 for two nested fence gadgets and how
the attachment rule is satisfied for both.

A

B

S

X

Y

V (F)

X

Y ∩ N(S)

S

Figure 2.4: Left: The forced adjacencies (solid lines, all edges between the two sets)
and non-adjacencies (dashed lines, no edge between the two sets), as specified by the
attachment rule. Right: Symbolic representation of the fence gadget attached to S by
a brown rectangle; the vertices in X are linked to the brown box, while the potential
neighbors of S in Y are only linked individually to their neighbors in S, and are fully
non-adjacent to the vertices of the fence V (F). Possible edges between X and Y are not
represented.

Constraints of the fence gadget on a 4-sequence. The following lemmas are
preparatory steps for the milestone that no part in a 4-sequence of G can overlap S (that
is, intersects S without containing it).

Lemma 40. The first contraction involving two vertices of F results in a vertex of red
degree at least 5, except if it is a contraction of some ai ∈ A with some bj ∈ B.

34

x

x1 x2

A

B

A′

B′

V (F) S

S′

V (F ′)

x

S

x1 x2

S′

Figure 2.5: Left: Two nested fences, where the set X of the innermost fence is
{x, x1, x2}∪V (F ′), while the set X ′ of the outermost fence is {x1, x2}. Right: Its compact
representation.

Proof. We consider a pair of distinct vertices u, v of A × A or B × B. If u and v are non-
adjacent in F , they both have at least three private neighbors in the total graph T (F).
Thus their contraction results in a vertex of red degree at least 6, since by assumption
these at least 6 vertices lie in distinct parts.

If u and v are adjacent in F , they both have at least two private neighbors in T (F),
and a common neighbor w such that at least one of uw and vw is red in F . Hence their
contraction results in a vertex with red degree at least 5.

Lemma 41. If the first contraction involving two vertices of F is of some ai ∈ A with
some bj ∈ B, the red degree within F of the created vertex is at least 3.

Proof. Let u ∈ A and v ∈ B. Then, in the total graph T (F), either u and v both have
at least two private neighbors, or they both have at least one private neighbor and a
common neighbor linked to u or v in red in the trigraph F . By assumption, these at
least 4 neighbors or at least 3 neighbors are in distinct parts. Hence, in both cases, the
contraction of u and v results in a vertex of red degree at least 3 within F .

The last preparatory step is this easy lemma.

Lemma 42. Before a contraction involves two vertices of V (F), the following holds in a
partial 4-sequence:

• no part intersects both X and S,
• no part intersects both Y and S, and
• no part intersects both X and Y .

Proof. By Observation 39, such a part would have red degree |B| = 6, |A| = 6, and
|A ∪ B| = 12, respectively.

As a consequence we obtain the following.

Lemma 43. In a partial 4-sequence of G, the first contraction involving a vertex in V (F)
and a vertex in V (F) ∪ S has to be done after S is contracted into a single vertex.

Proof. We consider the first time a vertex u ∈ V (F) is involved in a contraction with
a vertex of V (F) ∪ S. Either (case 1) the part of u, Pu, is contracted with a part Pv

containing v ∈ V (F), or (case 2) Pu is contracted with a part P intersecting S but not
V (F).

35

In case 1, by lemma 40, u and v hit both A and B. Thus, by lemma 41, the red degree
within F of the resulting vertex z is at least 3. Moreover z is linked by a red edge to every
part within S, since S is fully adjacent to A, and fully non-adjacent to B. Thus S should
at this point consist of a single part.

We now argue that case 2 is impossible in a partial 4-sequence. By lemma 42, part P
cannot intersect X ∪ Y (nor V (F), by construction). Thus P ⊆ S. If u ∈ A, then the
contraction of Pu and P has incident red edges toward at least 5 vertices: three vertices
of A non-adjacent to u and two private neighbors of u (in the total graph) within B. If
instead u ∈ B, the red degree of the contracted part is at least 6, as witnessed by two
neighbors of u in B, and four non-neighbors of u in A.

We can now establish the main lemma on how a fence gadget constrains a 4-sequence.
lemmas 42 and 43 have the following announced consequence: While S is not contracted
into a single vertex, no part within S can be contracted with a part outside of S, and
similarly vertices of X cannot be contracted with vertices of Y .

Lemma 44. In a partial 4-sequence, while S is not contracted to a single vertex,
• (i) no part intersects both S and V (G) \ S, nor
• (ii) both X and Y .

Proof. Let H be a trigraph obtained by a partial 4-sequence from G, such that S is not
contained in a part of P(H). By lemma 43, no pair of vertices in V (F) × (S ∪ V (F)) are
in the same part of P(H) (since S is not contracted to a single vertex). Thus we conclude
by lemma 42.

Contracting the fence gadget. The previous lemmas establish some constraints
that the fence gadget imposes on a supposed (partial) 4-sequence. We now see how a
partial 4-sequence actually contracts a fence gadget.

Every time we are about to contract a fence gadget F attached to S, we will ensure
that the following properties hold:

• no prior contraction has involved a vertex of V (F),
• no red edge has one endpoint in V (F) and one endpoint outside V (F), and
• S is contracted into a single vertex with red degree at most 3.

In particular, the fence gadget F still satisfies the attachment rule.

Lemma 45. Let H be a trigraph containing a fence gadget F attached to a single vertex
s of red degree at most 3. We assume that F respects the attachment rule in H.

Then there is a partial 4-sequence from H to H ′, where H ′ is the trigraph obtained
from H by contracting V (F) into a single vertex.

Proof. As F respects the attachment rule in H, every vertex of F has the same (fully
black) neighborhood in V (H) \ (V (F) ∪ {s}). Thus, contractions within V (F) will only
create red edges within V (F) ∪ {s}. We can therefore focus on the trigraph induced by
V (F) ∪ {s}.

Recall the vertex labels of fig. 2.3. We first contract a1 and b1. This creates a vertex c1
of red degree 4, and in particular it adds one to the red degree of s, which has now red
degree at most 4 (see left-hand side of fig. 2.6). Now we will contract within A, and within
B, not to increase more the red degree of s.

Vertices b2 and b3 now have only 4 neighbors in total in the fence gadget. Thus we
can contract them into b23 and keep red degree at most 4 (see middle of fig. 2.6). In turn,
a2 and a3 can be contracted into a23 for the same reason (see right of fig. 2.6). Then we

36

b2

a2

b3a3

b4

a4

b5

a5

b6 a6

c1

s

e

a2

a3

a4 a5

a6

b4 b5

b6

b23

c1

s

e

a4

b4

a5

b5

a6b6

a23

b23

c1

s

e

Figure 2.6: The first three contractions of the fence gadget.

contract b4 with b23, forming b234, and a4 with a23, forming a234. We contract b5 and b234
into b2345, and a5 and a234 into a2345. We finally contract b6 and b2345 into b, and a6 and
a2345 into a. We contract a and c1, then we contract the resulting vertex and b.

Crucially the edge e stays black until the contraction of a6 and a2345, so c1 maintains
a red degree of at most 4. Also importantly, the only contractions involving a vertex of A
and a vertex of B are the first and last two contractions. Thus s is incident in red to at
most one vertex of the fence gadget.

2.3.2 Propagation, wire, and long chain

A vertical set V consists of two vertices x, y combined with a fence gadget F attached to
{x, y}. Thus V = {x, y}∪V (F). We call vertical pair the vertices x and y. We will usually
add a superscript to identify the different copies of vertical sets: Every vertex whose label
is of the form uj belongs to the vertical set V j .

The propagation gadget from V j to V k puts all the edges between V j and xk (and no
other edge). We call these edges an arc from V j to V k. We also say that the vertical set
V k is guarded by V j . The pair V j , V k is said adjacent. Here, singleton {xk} plays the role
of X (Definition 38) for the attachment rule of vertical set Vj .

The propagation digraph of G, denoted by D(G), has one vertex per vertical set and
an arc between two vertical sets linked by an arc (in the previous sense). A (maximal)
wire W is an induced subgraph of G corresponding in D(G) to a (maximal) out-tree on at
least two vertices. See fig. 2.7 for an illustration of a wire made by simply concatenating
propagation gadgets. Eventually D(G) will have out-degree at most 2, in-degree at most 2,
and total degree at most 3.

x1

y1

x2

y2

x3

y3

x4

y4

Figure 2.7: Left: A non-branching wire made of 4 vertical sets and 3 propagation gadgets.
Every vertical set is guarded by the vertical set just to its left. Center: A more compact
representation, which corresponds to the propagation digraph. Right: Symbolic represen-
tation of the long chain, that is, of the represented wire if L = 4.

The children of a vertical set V are the vertical sets that V guards. The root of wire
W is the unique vertical set of in-degree 0 in D(W). The leaves of wire W are the vertical
sets of out-degree 0 in D(W). A wire is said primed when the vertical pair of its root has
been contracted.

37

A wire W is non-branching if every vertex of D(W) has out-degree at most 1; hence,
D(W) is a directed path. A long chain is a wire W such that D(W) is a directed path
on L vertices, where integer L will be specified later (and can be thought as logarithmic
in the total number of fences which do not belong to vertical sets). Otherwise, if D(W)
has at least one vertex with out-degree at least 2, wire W is said branching. A vertical set
with two children is also said branching. See fig. 2.8 for an example of a branching wire
with exactly one branching vertical set.

Constraints of the propagation gadget on a 4-sequence. We provide the proof
that a contraction in a vertical set V is only possible when the vertical pair of all the
vertical sets V ′ with a directed path to V in D(G) has been contracted.

Lemma 46. Let V j and V k be two vertical sets with an arc from V j to V k. In a partial
4-sequence from G, any contraction involving two vertices of V k has to be preceded by the
contraction of xj and yj.

Proof. We recall the notations of section 2.3.1. Let F be the fence gadget attached to
S = {xj , yj}, X the neighborhood of V (F) outside of S ∪ V (F), and Y the vertices that
are not in S ∪ V (F) ∪ X. (We always assume that the attachment rule is satisfied.) We
have xj′ ∈ X and yk ∈ Y , therefore by the second item of lemma 44, their contraction has
to be preceded by the contraction of xj and yj . Now applying the first item of lemma 44
to the fence gadget F ′ attached to S′ = {xk, yk}, and lemma 43, any contraction involving
a pair of V k distinct from S′ has to be preceded by the contraction of xk and yk.

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

Figure 2.8: An example of a branching wire with its corresponding propagation digraph.

Henceforth, when we say that a contraction is preceded by another contraction, it
includes the case that the two contractions are in fact the same. By a straightforward
induction, we obtain the following from lemma 46 (and lemma 43).

Lemma 47. In a partial 4-sequence from G, any contraction involving a pair of vertices
in a vertical set V has to be preceded by the contraction of the vertical pair of every vertical
set V ′ such that there is a directed path from V ′ to V in D(G).

Contracting wires. As the roots and leaves of wires will be connected to other
gadgets, we postpone the description of how to contract wires until after building the
overall construction G. Intuitively though, contracting a wire (in the vacuum) consists of
contracting the vertical pair of its root, then its fence gadget by applying lemma 45, and
finally recursively contracting the subtrees rooted at its children. Since D(G) has total
degree at most 3, every vertex has red degree at most 4 (for the at most 3 adjacent vertical
sets, plus the pendant vertex of the fence gadget).

38

2.3.3 Binary AND gate

The binary AND gate (AND gadget, for short) simply consists of three vertical sets
V 1, V 2, V 3 with an arc from V 1 to V 3, and an arc from V 2 to V 3. As usual, the ver-
tical pairs of V 1, V 2, and V 3, are {x1, y1}, {x2, y2}, and {x3, y3}, respectively. We call
the vertical sets V 1, V 2 the inputs of the AND gadget, and the vertical set V 3 the output
of the AND gadget. See fig. 2.9 for an illustration.

x1

y1

x2

y2

x3

y3

Figure 2.9: An AND gadget, and the corresponding propagation digraph.

Constraint of the AND gadget on a 4-sequence. By lemma 46, we readily derive:
Lemma 48. Assume G contains an AND gadget with inputs V 1, V 2, and output V 3. In
a partial 4-sequence from G, any contraction involving two vertices of V 3 has to be preceded
by the contraction of x1 and y1, and the contraction of x2 and y2.

Contraction of an AND gadget. Once V 1 and V 2 are contracted into single
vertices, one can contract the vertical pair x3, y3. This results in a vertex of red degree 2.
Thus one can contract the fence gadget of V 3 by applying lemma 45.

2.3.4 Binary OR gate

The binary OR gate (OR gadget) is connected to three vertical sets: two inputs V 1, V 2,
and one output V 3. We start by building two vertical sets V, V ′ whose vertical pairs are
{a, b} and {c, d}, respectively. The edges ac and bd are added, as well as a vertex e adjacent
to a and to c. Finally a fence is attached to {e} ∪ V ∪ V ′.

The OR gadget is connected to its inputs and output, in the following way. Vertex
a is made adjacent to x1 and to y1 (but not to their fence gadget). Similarly vertex b is
linked to x2 and y2. Finally x3 is adjacent to all the vertices of the OR gadget, that is,
{e} ∪ V ∪ V ′ plus the vertices of the outermost fence. See fig. 2.10 for a representation of
the OR gadget.

Constraint of the OR gadget on a 4-sequence. By design, one can only start
contracting the OR gadget after the vertical pair of at least one of its two inputs has been
contracted. This implies that no contraction can involve V 3 before at least one the vertical
pairs {x1, y1} and {x2, y2} is contracted.
Lemma 49. Assume G contains an OR gadget attached to inputs V 1 and V 2. In a partial
4-sequence from G, the contractions of a, b and of c, d have to be preceded by the contraction
of x1, y1 or the contraction of x2, y2.

Proof. Assume none of the pairs {a, b}, {c, d}, {x1, y1}, {x2, y2} have been contracted. Be-
cause of the fences, by lemma 44, all the vertices x1, y1, a, b, c, d, x2, y2 and e are in distinct
parts. Therefore contracting a and b would create a vertex of red degree at least 5, con-
sidering the (singleton) parts of x1, y1, c, d, e. Symmetrically contracting c and d yields at
least five red neighbors, considering the (singleton) parts of x2, y2, a, b, e.

39

x1

y1 a

b

x2

y2c

d

e

x3

y3

OR

Figure 2.10: An OR gadget attached to inputs V 1, V 2 and output V 3, and its symbolic
representation. These vertical sets are technically not part of the OR gate, so we represent
them slightly dimmer. The outermost fence of the OR gadget can only be contracted when
at least one the pairs x1, y1 and x2, y2 have been contracted. Only after that, can x3 and
y3 be contracted together.

From lemma 49 we get the following.

Lemma 50. Assume G contains an OR gadget attached to inputs V 1 and V 2. In a partial
4-sequence from G, no contraction involving a vertex of V 3 can happen before either the
pair x1, y1 or the pair x2, y2 is contracted.

Proof. Suppose neither x1, y1 nor x2, y2 is contracted. By lemma 49, the pairs {a, b} and
{c, d} cannot be contracted. By the first item of lemma 44, no contraction can involve
a vertex of {a, b, c, d, e}. As x3 is adjacent to all these vertices but not y3, one cannot
contract the vertical pair {x3, y3}. Hence by lemma 43 no contraction can involve a vertex
of V 3.

Contraction of the OR gadget. We now show how to contract the OR gate when
the vertical pair of one of its inputs has been contracted.

Lemma 51. Assume that x1 and y1 have been contracted into z1, and that z1, x2, and y2

all have red degree at most 3. Then there is a partial 4-sequence that contracts the whole
OR gadget to a single vertex with only three red neighbors: z1, x2, and y2. (The same
holds symmetrically if x2 and y2 have been contracted into a single vertex.)

Proof. First contract a and b into vertex α of red degree 4. At this point the fence of
{a, b} cannot be contracted yet, as this would make the red degree of α go above 4. Hence
we next contract c and d into γ, decreasing the red degree of α to 3. Note that γ has only
4 red neighbors: α, e, x2, y2.

By lemma 45, we can now contract the fence gadget of {a, b} to a single vertex. Next we
contract this latter vertex with α, and the resulting vertex with t; we call α′ the obtained
vertex. Now γ has only red degree 3, so we can contract the fence gadget of {c, d} to a
single vertex that we further contract with γ; we call γ′ the obtained vertex. We contract
α′ and γ′ in a vertex ε of red degree 3; its three red neighbors are z1, x2, and y2. Again
by lemma 45, the outermost fence of the OR gadget can be contracted into a single vertex,
that we finally contract with ε. This results in a vertex with three red neighbors: z1, x2,
and y2.

Throughout this process the red degree of z1, x2, and y2 never goes above 4. Indeed
the red degree of these vertices is initially at most 3, while they have exactly one black
neighbor in the entire OR gadget (so at most one part to be in conflict with).

40

2.3.5 Variable gadget

We first describe the variable gadget for, say, a variable x. We start by attaching a fence on
a set formed by three vertices: x, ⊤, ⊥. We add two disjoint copies of an OR gadget, with
vertices a⊤, b⊤, c⊤, d⊤, e⊤ (resp. {a⊥, b⊥, c⊥, d⊥, e⊥}) plus the vertices in the fence gadgets;
see section 2.3.4 and fig. 2.10. We call T ′, respectively U ′, the vertex sets of the two OR
gadgets. We link a⊤ to x and to ⊤, and we link a⊥ to x and to ⊥. We then add a vertex
f⊤ (resp. f⊥), make it adjacent to c⊤ (resp. c⊥), and add a fence F ′⊤ (resp. F ′⊥) attached
to T ′ ∪ {f⊤} (resp. U ′ ∪ {f⊥}). We add another vertex g⊤ (resp. g⊥), make it adjacent
to c⊤ (resp. c⊥), and add a fence F ⊤ (resp. F ⊥) attached to T = T ′ ∪ V (F ′⊤) ∪ {f⊤, g⊤}
(resp. U = U ′ ∪ V (F ′⊥) ∪ {f⊥, g⊥}).

The variable gadget is half-guarded by two vertical sets V 1, V 2 (with vertical pairs
x1, y1 and x2, y2): We make ⊤ adjacent to x1 and y1, and we make ⊥ adjacent to x2 and
y2. Finally T guards a vertical set V 3 (with vertical pair x3, y3), and U guards a vertical
set V 4 (with vertical pair x4, y4), that is, x3 is fully adjacent to T , and x4 is fully adjacent
to U . Vertical set V 3 is the root of what we call the wire of literal +x, which is the
maximal wire containing V 3. We add the + to differentiate the literal from the variable
x. Similarly, V 4 is the root of the wire of literal ¬x, that is, the maximal wire containing
V 4.

This finishes the construction of the variable gadget; see fig. 2.11 for an illustration.

x1

y1

x2

y2

⊥

x

⊤

a⊥

b⊥

g⊥

f⊥

c⊥

d⊥

e⊥

a⊤

b⊤

g⊤

f⊤

c⊤

d⊤

e⊤

x3

y3

x4

y4

U

T

⊤

⊥

Figure 2.11: Top: A variable gadget half-guarded by V 1, V 2, and with outputs V 3, V 4.
Bottom: Its compact representation.

Constraints of the variable gadget on a 4-sequence. Because of the fence gadget
attached to {⊤, x, ⊥}, one has at some point to contract ⊤ and ⊥ (be it with or without x).
A first observation is that this has to wait that the vertical pair of V 1 or V 2 is contracted.

Lemma 52. Assume G has a variable gadget half-guarded by vertical sets V 1 and V 2.

41

In a partial 4-sequence from G, the contraction of ⊤ and ⊥ has to be preceded by the
contraction of the pair x1, y1 or of the pair x2, y2.

Proof. The pairs {x1, y1}, {x2, y2}, and {⊤, ⊥} are contained in three disjoint sets S1, S2, S,
respectively, to which a fence is attached. Thus before any of these pairs are contracted,
by lemma 44, a vertex outside S1 ∪ S2 ∪ S, like a⊥, is in a different part than the six
vertices x1, y1, x2, y2, ⊤, ⊥. Therefore contracting ⊤ and ⊥ would create a vertex with five
red neighbors, considering the parts of x1, y1, x2, y2, a⊥.

We next show that no contraction is possible in U (resp. in T), while x and ⊥ (resp. x
and ⊤) are not contracted.

Lemma 53. In a partial 4-sequence, the contractions of a⊥ and b⊥ (resp. a⊤ and b⊤) and
of c⊥ and d⊥ (resp. c⊤ and d⊤) have to be preceded by the contraction of x and ⊥ (resp. x
and ⊤). Therefore no contraction is possible in U (resp. T) before x and ⊥ (resp. x and
⊤) are contracted.

Proof. Since the two statements are symmetric, we only show it with ⊥. Assume none
of the pairs {x, ⊥}, {a⊥, b⊥}, {c⊥, d⊥} are contracted. Because of the fence gadgets, by
the first item of lemma 44, the vertices x, ⊥, a⊥, b⊥, c⊥, d⊥, e⊥, f⊥ are pairwise in distinct
parts. Therefore contracting a⊥ and b⊥ or c⊥ and d⊥ would create a vertex of red degree
at least 5. The structure of the fence gadgets in U thus prevents any contraction.

We deduce that priming the wire of ¬x (resp. +x) can only be done after x and ⊥
(resp. x and ⊤) are contracted.

Lemma 54. Assume that G has a variable gadget with outputs the vertical sets V 3 (root
of the wire of +x) and V4 (root of the wire of ¬x). In a partial 4-sequence from G, the
contraction of x4 and y4 (resp. x3 and y3) has to be preceded by the contraction of x and
⊥ (resp. x and ⊤).

Proof. By the second item of lemma 44 applied to the fence attached to U , the pair x4, y4

cannot be contracted until U is not contracted to a single vertex. Thus by lemma 53, the
pair x4, y4 can only be contracted after the pair x, ⊥ is contracted. The other statement
is obtained symmetrically.

Contraction of the variable gadget. We show two options to contract a “half” of
the variable gadget, either T and its fence, or U and its fence, into a single vertex.

Lemma 55. There is a partial 4-sequence that contracts x and ⊤ together, and T ∪ F ⊤

into a single vertex. Symmetrically there is a partial 4-sequence that contracts x and ⊥
together, and U ∪ F ⊥ into a single vertex.

Proof. We first contract x and ⊤ into a vertex +x. Observe that +x has exactly three
red neighbors: x1, y1, and a⊥. Thus {a⊤, b⊤, c⊤, d⊤, e⊤} and their three fences can be
contracted exactly like an OR gadget. So by lemma 51, there is a partial 4-sequence that
contracts all these vertices to a single vertex u, with three red neighbors (+x, f⊤, and
g⊤). We can now contract u and f⊤ into u′, followed by contracting their fence gadget
F ′⊤ into a single vertex, by lemma 45. That pendant vertex can be contracted to u′, and
the result to g⊤, forming vertex v. Finally, again by lemma 45, the fence F ⊤ attached to
T can be contracted into a single vertex, which can be contracted with v.

The other sequence is the symmetric.

42

We now see how the second “half” of the variable gadget can be contracted once the
vertical pairs of the half-guards V 1, V 2 have been contracted.

Lemma 56. Assume T ∪F ⊤ (resp. U ∪F ⊥) has been contracted into a single vertex u, and
that the pairs {⊤, x} (resp. {⊥, x}), {x1, y1}, and {x2, y2} have been contracted into +x
(resp. ¬x), z1, and z2, respectively. We further assume that the red degree of z2 (resp. z1)
is at most 3. Then there is partial 4-sequence that contracts ⊤, x, ⊥ and their fence into
a single vertex, and U ∪ F ⊥ (resp. T ∪ F ⊤) into a single vertex.

Proof. We contract ⊥ with +x into v of red degree 4. This increases the red degree of z2

by one, which remains at most 4. We then contract U ∪ F ⊥ into a single vertex w, like
in lemma 55. We contract u and w into y, a vertex of red degree at most 3. Now v has
degree 3. So we can contract its fence gadget by lemma 45. We further contract v with
its pendant neighbor, and finally with y. What results is a unique vertex with four red
neighbors.

The other partial sequence is symmetric.

2.3.6 Clause gadget

A 3-clause gadget (or simply clause gadget) has for inputs three vertical sets V 1, V 2, V 3,
and for output one vertical set V 4. It consists of combining two OR gadgets, and using
long chains to make the OR gadgets distant enough. We add an OR gadget with input V 1

and V 2, and output V . We then add a long chain from V to V ′, and an OR gadget with
input V ′ and V 3, and output V 4. The clause gadget is depicted in fig. 2.12. We call first
OR gadget of the clause gadget, the one with output V , and second OR gadget, the one
with output V 4.

OR

OR

C

Figure 2.12: Left: A 3-clause gadget. Right: A shorthand for the gadget.

Constraint of the clause gadget on a 4-sequence. As a consequence of lemmas 47
and 50, we get that once a contraction involves the output, at least one of the vertical
pairs of the inputs has been contracted.

Lemma 57. Assume G contains a clause gadget with inputs V 1, V 2, V 3 and output V 4.
In a partial 4-sequence from G, any contraction involving a vertex of V 4 is preceded by the
contraction of the vertical pair of one of V 1, V 2, or V 3.

Proof. Assume a contraction involves a vertex of V 4. By lemma 50 applied to the second
OR gadget, the vertical pair of V 3 or of V ′ has to be contracted beforehand. If the vertical
pair V 3 has been contracted, we conclude. Otherwise, the vertical pair of V ′ has been
contracted, and by lemma 47, this implies that the vertical pair of V has been contracted.
By lemma 50 applied to the first OR gadget, this in turn implies that the vertical pair of
V 1 or of V 2 has been contracted.

43

Contraction of the clause gadget. The OR gates of the clause gadgets will be
contracted as specified in lemma 51, while we wait the overall construction to describe the
contraction of the wires.

2.3.7 Overall construction and correctness

Let I = (C1, . . . , Cm) be an instance of 3-SAT, that is, a collection of m 3-clauses over the
variables x1, . . . , xn. We further assume that each variable appears at most twice positively,
and at most twice negatively in I. The 3-SAT problem remains NP-complete with that
restriction, and without 2o(n)-time algorithm unless the ETH fails; see theorem 30. We
build a trigraph G that has twin-width at most 4 if and only if I is satisfiable. As trigraph
G will satisfy the condition of lemma 37, it can be replaced by a graph on O(|V (G)|)
vertices. We set L the length of the long chain to 2⌈log(5n + 3m)⌉ = O(log n).

Construction

We now piece the gadgets described in the previous sections together.
Variable to clause gadgets. For every variable xi, we add a variable gadget half-

guarded by V 1
i , V 2

i , and with outputs V 3
i , V 4

i . We add a long chain starting at vertical
set V 3

i (resp. V 4
i), and ending at a branching vertical set from which starts two long

chains stopping at vertical sets V ⊤,1
i and V ⊤,2

i (resp. V ⊥,1
i and V ⊥,2

i). Vertical set V ⊤,1
i

(resp. V ⊥,1
i) serves as the input of the first clause gadget in which xi appears positively

(resp. negatively), while V ⊤,2
i (resp. V ⊥,2

i) becomes the input of the second clause gadget
in which xi appears positively (resp. negatively). If a literal has only one occurrence, then
we omit the corresponding vertical set, and the long chain leading to it. We nevertheless
assume that each literal has at least one occurrence, otherwise the corresponding variable
could be safely assigned.

Clause gadgets to global output. For every j ∈ [m], we add a long chain from the
output of the clause gadget of Cj , to a vertical set, denoted by V c

j . For every j ∈ [2, m],
we then add a long chain starting at V c

j and ending at V c
j−1. We add an arc from V c

1 to a
new vertical set V o, which we call the global output.

Global output back to half-guarding the variable gadgets. For every i ∈ [n],
we add two vertical sets V 1,r

i , V 2,r
i , and puts a long chain starting at V 1,r

i and ending at
V 2,r

i . We add a long chain from V o to V 1,r
1 . We also add a long chain from V 2,r

i to V 2,r
i+1,

for every i ∈ [n − 1]. Finally we add a long chain from V a,r
i to V a

i for every a ∈ {1, 2} and
every i ∈ [n]. Recall that V 1

i and V 2
i are half-guarding the variable gadget of xi.

This finishes the construction of the graph G = G(I). See fig. 2.13 for an illustration.

Correctness

If G has twin-width at most 4, then I is satisfiable. Let us consider the trigraph H
obtained after the vertical pair of the global output V o is contracted (see top-right picture
of fig. 2.14). This has to happen in a 4-sequence by the first item of lemma 44 applied
to the fence of V o. By lemma 47, no contraction involving vertices of the vertical sets
V 1

i , V 2
i can have happened (for any i ∈ [n]). This is because there is a directed path in

the propagation digraph D(G) from V o to V 1
i and V 2

i .
Thus by lemmas 52 and 54, for every variable xi (i ∈ [n]), at most one of the wire

of +xi and the wire of ¬xi has been primed. We can define the corresponding truth
assignment A: xi is set to true if the wire of ¬xi is not primed, and to false if instead the

44

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

C C C C C C C C

o

Figure 2.13: An example of the overall construction G on a 3-SAT instance with 6 variables
and 8 clauses. The first two clauses are ¬x1 ∨ x3 ∨ x4 and x1 ∨ x2 ∨ ¬x5.

wire of +xi is not primed. Besides, by lemma 47 applied to the contraction in V o, every
vertical pair of a clause-gadget output has been contracted. Then lemma 57 implies that
the vertical pair of at least one input of each clause gadget has been contracted. But such
a vertical pair can be contracted only if it corresponds to a literal set to true by A. For
otherwise, the root of the wire of that literal cannot be contracted. This implies that A
is a satisfying assignment.

If I is satisfiable, then G has twin-width at most 4. In what follows, when we
write that we can contract a vertex, a set, or make a sequence of contractions, we mean
that there is a partial 4-sequence that does the job. Let A be a satisfying assignment
of I. We start by contracting “half” of the variable gadget of each xi. We add a subscript
matching the variable index to the vertex and set labels of fig. 2.11. For every i ∈ [n], we
contract vertices xi and ⊤i together, and Ti ∪ F ⊤

i to a single vertex vi, if A sets variable
xi to true, and xi and ⊥i together, and Ui ∪ F ⊥

i to a single vertex vi, if instead A sets xi

to false. By lemma 55, this can be done by a partial 4-sequence.
Next we contract the wire of +xi if A(xi) is true, or the wire of ¬xi if A(xi) is false.

This is done as described in the end of section 2.3.2. We contract the vertical pair of
the root of the wire into zi (the red degree of vi goes from 1 to 2). We then contract its
fence by lemma 45. We can now contract the resulting vertex with zi. Inductively, we
contract the children of the current vertical set to single vertices, in a similar fashion. As
the propagation digraph has degree at most 3, this never creates a vertex of red degree
more than 4. At this point the trigraph corresponds to the top-left drawing of fig. 2.14.

At the leaves of the wire (the vertical sets V ⊤,1
i , V ⊤,2

i or V ⊥,1
i , V ⊥,2

i), we make an
exception, and only contract the vertical pair. We then contract, by lemma 51, all the
(non-already reduced) OR gadgets (involved in clause gadgets) at least one input of which
has its vertical pair contracted. After that, applying lemma 45, we finish the contraction
of the OR inputs whose vertical pairs was contracted. Next we contract each output of
a contracted OR gadget into a single vertex.

In those clauses where the third literal is not satisfied by A, the output of the clause
gadget is not contracted at that point. However, as A is a satisfying assignment, the

45

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

C C C C C C C C

o

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

C C C C C C C C

oo

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

C C C C C C C C

oo

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

CC CC CC CC CC CC CC CC

oo

Figure 2.14: The different stages of the contraction sequence. Gadgets in black are con-
tracted to single vertices, while gadgets in gray are only partially contracted.

output of the first OR gate of the gadget is contracted. We then contract each vertical
set of the long chain leading to the input of the second OR gate. We only contract the
vertical pair of that input, and contract the incident OR gadget, by lemma 51. We finally
proceed by contracting the input vertical set into a single vertex, and the output vertical
set into a single vertex.

At this point, each output of the clause gadgets is contracted into a single vertex. The
(not strongly) connected component C of the propagation digraph D(G) containing the
global output Vo is acyclic and has total degree at most 3. All the vertical sets of C with
in-degree 0 (ant out-degree 1) in D(G) are the clause outputs, which have been contracted
to single vertices. Thus each vertical set of C can be contracted to single vertices, by
repeated use of lemma 45, followed by contracting the pendant vertex (resulting from the
fence contraction) with its unique (red) neighbor.

Note that this process terminates by contracting the half-guards V 1
i , V 2

i (for every
i ∈ [n]). The conditions of lemma 56 are now satisfied, so we can finish contracting
each variable gadget into two vertices that we further contract together. This results in a
vertex of red degree 4. See top-right and bottom-left drawings of fig. 2.14 for the additional
contractions leading to that point.

We can then contract the wire of the literal that was set to false by A. Again, we only
contract the vertical pair of the inputs of OR gates that are not contracted yet. Then we
contract those OR gadgets, and finish by fully contracting the vertical set of those inputs.
We next contract each output of the newly contracted OR gates. We eventually contract
into a single vertex each vertical set of the long chain in clause gadgets where this was not
already done.

At this point, the current trigraph H has only red edges (and corresponds to the
bottom-right drawing of fig. 2.14). Thus it can be interpreted as a graph, and we write de-
gree instead or red degree. H has 4n + 3m vertices of degree 3, n vertices of degree 4,
and the rest of its vertices have degree 2. Because we added long chains to separate what
now corresponds to vertices of degree at least 3, H is an (⩾ L)-subdivision of a graph on
5n + 3m vertices. Since L = 2⌈log(5n + 3m)⌉, by lemma 7, H finally admits a 4-sequence.

46

Wrapping up

The initial trigraph G comprises O((n + m)L) = O(n log n) gadgets and vertical sets,
each consisting of O(1) vertices. Hence |V (G)| = O(n log n). It is immediate that the
construction of G can be made in polynomial time.

The red graph of G is a disjoint union of paths of length 12 (fence gadgets), and
isolated vertices (the rest of the trigraph). Thus, by lemma 37, there is a graph G′ on
O(|V (G)|) = O(n log n) vertices such that G′ has twin-width at most 4 if and only if (G has
twin-width at most 4 if and only if) I is satisfiable. This concludes the proof of theorem 29
since a 2o(N/ log N)-time algorithm deciding if an N -vertex graph has twin-width at most 4,
would allow to decide 3-SAT where each variable appears at most twice positively and at
most twice negatively, in time 2o(n log n

log n+log log n
) = 2o(n), contradicting the ETH.

47

Chapter 3

Approximation algorithms
parameterized by twin-width

Contents
3.1 Introduction . 49
3.2 Preliminaries . 53

3.2.1 Handled graph problems . 53
3.2.2 Balanced partition sequences 54
3.2.3 Subexponential-time constant-approximation algorithm 58
3.2.4 Improving the approximation factor 59
3.2.5 Time-approximation trade-offs 60

3.3 Finding the suitable generalization: the case of Coloring 63
3.4 Edge-based problems: the case of Max Induced Matching 64
3.5 Technical generalizations . 67

3.5.1 Mutually Induced H-packing 67
3.5.2 Independent induced packing of stars and forests 70

3.6 Limits . 74

In this chapter we give the first in-depth study of the approximability of problems in
graphs of bounded twin-width. Prior to this work, essentially the only such result was
a polynomial-time O(1)-approximation algorithm for Min Dominating Set [14].

For any ε > 0, we give a polynomial-time nε-approximation algorithm for Max Inde-
pendent Set in graphs of bounded twin-width given with an O(1)-sequence. This result
is derived from the following time-approximation trade-off: We establish an O(1)2q−1-
approximation algorithm running in time exp(Oq(n2−q)), for every integer q ⩾ 0. Guided
by the same framework, we obtain similar approximation algorithms for Min Coloring
and Max Induced Matching. In general graphs, all these problems are known to be
highly inapproximable: for any ε > 0, a polynomial-time n1−ε-approximation for any of
them would imply that P=NP [58, 59, 60]. We generalize the algorithms for Max Inde-
pendent Set and Max Induced Matching to the independent (induced) packing of
any fixed connected graph H.

In contrast, we show that such approximation guarantees on graphs of bounded twin-
width given with an O(1)-sequence are very unlikely for Min Independent Dominating
Set, and somewhat unlikely for Longest Path and Longest Induced Path. Regarding
the existence of better approximation algorithms, there is a (very) light evidence that the
obtained approximation factor of nε for Max Independent Set may be best possible.

48

3.1 Introduction

Classes of binary structures with bounded twin-width include graph classes with bounded
treewidth, and more generally bounded clique-width, proper minor-closed classes, posets
with antichains of bounded size, strict subclasses of permutation graphs, as well as Ω(log n)-
subdivisions of n-vertex graphs [4], and some classes of (bounded-degree) expanders [5].
A notable variety of geometrically defined graph classes have bounded twin-width such
as map graphs, bounded-degree string graphs [4], classes with bounded queue number
or bounded stack number [5], segment graphs with no Kt,t subgraph, visibility graphs of
1.5D terrains without large half-graphs, visibility graphs of simple polygons without large
independent sets [13].

For every class C mentioned so far, O(1)-sequences can be computed in polynomial
time1 on members of C. For classes of binary structures including a binary relation in-
terpreted as a linear order on the domain (called ordered binary structures), there is
a fixed-parameter approximation algorithm for twin-width [8]. More precisely, given a
graph G and an integer k, there are computable functions f and g such that one can out-
put an f(k)-sequence of G or correctly report that tww(G) > k in time g(k)nO(1). Such
an approximation algorithm is currently missing for classes of general (not necessarily
ordered) binary structures, and in particular for the class of all graphs.

We will therefore assume that the input graph is given with a d-sequence, and treat d
as a constant (or that the input comes from any of the above-mentioned classes). Thus
far, this is the adopted setting when designing faster algorithms on bounded twin-width
graphs [4, 14, 20, 19, 61]. From the inception of twin-width [4] –actually already from the
seminal work of Guillemot and Marx [3]– it was clear that structures wherein this invariant
is bounded may often allow the design of parameterized algorithms. More concretely, it was
shown [4] that, on graphs G given with a d-sequence, model checking a first-order sentence
φ is fixed-parameter tractable –it can be solved in time f(d, φ) · n–, the special cases of,
say, k-Independent Set or k-Dominating Set admit single-exponential parameterized
algorithms [14], an effective data structure almost linear in n can support constant-time
edge queries [20], the triangles of G can be counted in time O(d2n + m) [19].

So far, however, the connection between having bounded twin-width and enjoying en-
hanced approximation factors was tenuous. The only such result concerned Min Domi-
nating Set, known to be inapproximable in polynomial-time within factor (1 − o(1)) ln n
unless P=NP [62], but yet admits a constant-approximation on graphs of bounded twin-
width given with an O(1)-sequence [14]. We start filling this gap by designing approxima-
tion algorithms on graphs of bounded twin-width given with an O(1)-sequence for notably
Max Independent Set (MIS, for short), Max Induced Matching, and Coloring.
Getting better approximation algorithms for MIS and Coloring in that particular sce-
nario was raised as an open problem [14]. Before we describe our results and elaborate on
the developed techniques, let us briefly present the notorious inapproximability of these
problems in general graphs.

MIS and Coloring are NP-hard [63], and very inapproximable: for every ε > 0, it is
NP-hard to approximate these problems within ratio n1−ε [58, 59]. The same was shown
to hold for Max Induced Matching [60]. Besides, there is only little room to improve
over the brute-force algorithm in 2O(n): Unless the Exponential Time Hypothesis2 [55]
(ETH) fails, no algorithm can solve MIS in time 2o(n) [56] (nor the other two problems).
For any r (possibly a function of n) WMIS can be r-approximated in time 2O(n/r) [64,

1Admittedly, for the geometric classes, a representation is (at least partially) needed.
2That is, the assumption that there is a δ > 0 such that n-variable 3-SAT cannot be solved in time δn.

49

65]. Bansal et al. [66] essentially shaved a log2 r factor to the latter exponent. It is known
though that polynomial shavings are unlikely. Charlermsook et al. [67] showed that, for
any ε > 0 and sufficiently large r (again r can be function of n), an r-approximation
for MIS and Max Induced Matching cannot take time 2O(n1−ε/r1+ε), unless the ETH
fails. For instance, investing time 2O(

√
n), one cannot hope for significantly better than a√

n-approximation.

Contributions and techniques Our starting point is a constant-approximation algo-
rithm for MIS running in time 2O(

√
n) when presented with an O(1)-sequence, which is

very unlikely to hold in general graphs by the result of Charlermsook et al. [67].

Theorem 58. On n-vertex graphs given with a d-sequence Max Independent Set can
be Od(1)-approximated in time 2Od(

√
n).

Our algorithm builds upon the functional equivalence between twin-width and the so-
called versatile twin-width [5]. We defer the reader to section 3.2 for a formal definition of
versatile twin-width. At this point, for our purpose, one only needs to know the following
useful consequence of that equivalence. From a d′-sequence of G, we can compute in
polynomial time another partition sequence Pn, . . . , P1 of G of width d := f(d′), for some
computable function f , such that for every integer 1 ⩽ i ⩽ n, all the i parts of Pi have
size at most d · n

i . Even if some parts of Pi can be very small, this partition is balanced
in the sense that no part can be larger than d times the part size in a perfectly balanced
partition. Of importance to us is P⌊

√
n⌋ when the number of parts (⌊

√
n⌋) and the size of

a larger part in the partition (at most d n
⌊
√

n⌋ ≈ d
√

n) are somewhat level.
We can then properly color the red graph (made by the red edges on the vertex set

P⌊
√

n⌋) with d+1 colors. Any color class X is a subset of parts of P⌊
√

n⌋ such that between
two parts there are either all edges (black edge) or no edge at all (non-edge). In graph-
theoretic terms, the subgraph GX of G induced by all the vertices of all the parts of X
have a simple modular decomposition: a partition of at most

√
n modules each of size

at most d
√

n. It is thus routine to compute a largest independent set of GX essentially
in time exponential in the maximum between the number of modules and the maximum
size of a module, that is, in at most d

√
n. As one color class X∗ contains more than a

1
d+1 fraction of the optimum, we get our d + 1-approximation when computing a largest
independent set of GX∗ . Figure 3.1 serves as a visual summary of what we described so
far.

The next step is to substitute recursive calls of our approximation algorithm to exact
exponential algorithms on induced subgraphs of size Od(

√
n). Following this inductive

process at depth q = 2, 3, 4, . . ., we degrade the approximation ratio to (d+1)3, (d+1)7, (d+
1)15, etc. but meanwhile we boost the running time to 2Od(n1/4), 2Od(n1/8), 2Od(n1/16), etc.
In effect we show by induction that:

Theorem 59. On n-vertex graphs given with a d-sequence Max Independent Set has
an Od(1)2q−1-approximation algorithm running in time 2Od,q(n2−q), for every integer q ⩾ 0.

It is convenient that in the case of MIS we are only making recursive calls on induced
subgraphs of the current graph. Hence the twin-width, hence the versatile twin-width
bound, can only decrease. And we can simply compute (from scratch) new balanced
partition sequences for the subinstances. The following polynomial-time algorithm is a
corollary of theorem 59 choosing q = Od,ε(log log n).

Theorem 60. For every ε > 0, Max Independent Set can be nε-approximated in
polynomial-time Od,ε(1) · logOd(1) n · nO(1) on n-vertex graphs given with a d-sequence.

50

Note that the exponent of the polynomial factor is an absolute constant (not depending
on d nor on ε).

We then apply our framework to Coloring and Max Induced Matching.

Theorem 61. For every ε > 0, Coloring and Max Induced Matching admit polynomial-
time nε-approximation algorithms on n-vertex graphs of bounded twin-width given with an
O(1)-sequence.

The main additional difficulty for Coloring is that one cannot satisfactorily solve/approximate
that problem on a modular decomposition by simply coloring its modules and its quotient
graph. One needs to tackle a more general problem called Set Coloring. Fortunately
this generalization is the fixed point we are looking for: approximating Set Coloring
can be done in our framework by mere recursive calls (to itself).

For Max Induced Matching, we face a new kind of obstacle. It can be the case that
no decent solution is contained in any color class X –in the chosen d + 1-coloring of the
red graph G/P⌊

√
n⌋. For instance, it is possible that any such color class X induces in G

an edgeless graph, while very large induced matchings exist with endpoints in two distinct
color classes. We thus need to also find large induced matchings within the black edges
and within the red edges of G/P⌊

√
n⌋. This leads to a more intricate strategy intertwining

the coloring of bounded-degree graphs (specifically the red graph and the square of its line
graph) and recursive calls to induced subgraphs of G, and to special induced subgraphs of
the total graph (i.e., made by both the red and black edges) of G/P⌊

√
n⌋. Although this

is not necessary, one can observe that the latter graphs are also induced subgraphs of G
itself.

We then explore the limits of our results and framework in terms of amenable problems.
We give the following technical generalization to the approximation algorithms for MIS
and Max Induced Matching.

Theorem 62. For every connected graph H and ε > 0, Mutually Induced H-packing
admits a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-
width given with an O(1)-sequence.

In this problem, one seeks for a largest induced subgraph that consists of a disjoint
union of copies of H. All the previous technical issues are here combined. We try all the
possibilities of batching the vertices of H into at most |V (H)| parts of G/P⌊

√
n⌋, based on

the trigraph that these parts define. For instance with H = K2 (an edge), i.e., the case
of Max Induced Matching, the three possible trigraphs are the 1-vertex trigraph, two
vertices linked by a red edge, and two vertices linked by a black edge. In the general case,
the problem generalization is quite delicate to find. We have to keep some partitions of
V (G) and V (H) to enforce that the copies of H in G follow a pattern that the algorithm
committed to higher up in the recursion tree, and a weight function on |V (H)|-tuples of
vertices of G, not to forget how many mutually induced copies of H can be packed within
these vertices. The other novelty is that some recursive calls are on induced subgraphs
of the total graph of G/P⌊

√
n⌋ that are not induced subgraphs of G. Fortunately, these

graphs keep the same bound of versatile twin-width, and thus our framework allows it.
Defining, for a family of graphs H, Mutually Induced H-packing as the same

problem where the connected components of the induced subgraph should all be in H,
we get a similar approximation factor when H is a finite set of connected graphs. (Note
that Mutually Induced H-packing is sometimes called Independent Induced H-
Packing.) In particular, we can similarly approximate Independent H-Packing, which

51

is the same problem but the copies of H need not be induced. (Our approximation algo-
rithms could extend to other H-packing variants without the independence requirement,
but these problems can straightforwardly be O(1)-approximated in general graphs.)

We can handle some cases when H is infinite, too. For instance, by slightly adapting
the case of MIS, we can get an nε-approximation when H is the set of all cliques. We
show this more involved example, also expressible as Mutually Induced H-packing
for H the set of all trees or the set all stars.

Theorem 63. For every ε > 0, finding the induced (star) forest with the most edges admits
a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-width
given with an O(1)-sequence.

As we already mentioned, our framework is exclusively useful for problems that are
very inapproximable in general graphs; at least for which an nε-approximation algorithm is
not known for every ε > 0. Are there natural such problems that cannot be approximated
better in graphs of bounded twin-width? We answer this question positively with the
example of Min Independent Dominating Set.

Theorem 64. For every ε > 0, Min Independent Dominating Set does not admit
an n1−ε-approximation algorithm in n-vertex graphs given with an O(1)-sequence, unless
P=NP.

The reduction is the same as the one for general graphs [68], but performed from a
planar variant of 3-SAT. The obtained instances are not planar but can be contracted to
planar trigraphs, hence overall have bounded twin-width.

Finally the case of Longest Path and Longest Induced Path is interesting. The
best approximation factor for the former [69] is worse than n0.99, while the latter is known
to have the same inapproximability as MIS [70]. However an nε-approximation algorithm
(for every ε > 0) is not excluded for Longest Path. We show that the property of
bounded twin-width is unlikely to help for these two problems, as it would lead to better
approximation algorithms for Longest Path in general graphs. This is mainly because
subdividing at least 2 log n times every edge of any n-vertex graph gives a graph with
twin-width at most 4 [28].

Theorem 65. For any r = ω(1), an r-approximation for Longest Induced Path
or Longest Path on graphs given with an O(1)-sequence would imply a (1 + o(1))r-
approximation for Longest Path in general graphs.

In turn, this can be used to exhibit a family H with an infinite antichain for the induced
subgraph relation such that Mutually Induced H-packing is hard to nε-approximate
on graphs of bounded twin-width. The family H is simply the set of all paths terminated
by triangles at both ends.

Theorem 66. There is an infinite family H of connected graphs such that if for every
ε > 0, Mutually Induced H-packing admits an nε-approximation algorithm on n-
vertex graphs given with an O(1)-sequence, then so does Longest Path on general graphs.

table 3.1 summarizes our results and hints at future work.
For the main highly inapproximable graph problems, we either obtain an nε-approximation

algorithm on graphs of bounded twin-width given with an O(1)-sequence, or a conditional
obstruction to such an algorithm. In the former case, can we improve further the approx-
imation factor? The next theorem was observed using the self-improvement reduction

52

Problem name lower bound upper bound lower bound
general graphs bounded tww bounded tww

Max Independent Set n1−ε nε ?, self-improvement
Coloring n1−ε nε 4/3 − ε

Max Induced Matching n1−ε nε ?
Mut. Ind. H-Packing n1−ε nε (H connected) ?
Mut. Ind. H-Packing n1−ε nε for some H Longest Path-hard
Min Ind. Dom. Set n1−ε n/polylog(n) n1−ε

Longest Path 2log1−ε n n/ exp(Ω(
√

log n)) Longest Path-hard
Longest Induced Path n1−ε n/polylog(n) Longest Path-hard
Min Dominating Set (1 − ε) ln n O(1) ?

Table 3.1: Approximability status of graph problems in general graphs and in graphs
of bounded twin-width given with an O(1)-sequence. Everywhere “ε” should be read as
“∀ε > 0”. Our results are enclosed by boxes. “Longest Path-hard” means that getting
an r-approximation would yield essentially the same ratio for Longest Path in general
graphs. The other lower bounds are under standard complexity-theoretic assumptions,
mostly P̸=NP. Not to clutter the table, we do not put the references, which can all be
found in the paper.

of Feige et al. [71], which preserves the twin-width bound. This reduction consists of go-
ing from a graph G to the lexicographic product G[G], where every vertex of G is replaced
by a module inducing a copy of G (and iterating this trick).

Theorem 67 ([14]). Let r : N → R be any non-decreasing function such that for every
ε > 0, r(n) = o(nε). If Max Independent Set admits an r(n)-approximation algorithm
on n-vertex graphs of bounded twin-width given with an O(1)-sequence, then it further
admits an r(n)ε-approximation.

To our knowledge, the application of the self-improvement trick is always to strengthen
a lower bound, and never to effortlessly obtain a better approximation factor. Therefore,
we may take theorem 67 as a weak indication that our approximation ratio is best possible.
Still, not even a polynomial-time approximation scheme (PTAS) is ruled out for MIS (nor
for Max Induced Matching, Min Dominating Set, etc.) and we would like to see
better approximation algorithms. For Coloring, as was previously observed [14], a PTAS
is ruled out by the NP-hardness of deciding if a planar graph is 3-colorable or 4-chromatic,
since planar graphs have twin-width at most 9 and a 9-sequence can be found in linear
time [12].

3.2 Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at
most j. For every integer i, [i] is a shorthand for [1, i].

3.2.1 Handled graph problems

We will consider several problems throughout the paper. We recall here the definition of
the most central ones. Some technical problem generalizations will be defined along the

53

way.
Weighted Max Independent Set (WMIS, for short)
Input: A graph G and a weight function V (G) → Q.
Output: A set S ⊆ V (G) such that ∀u, v ∈ S, uv /∈ E(G) maximizing w(S) :=∑
v∈S

w(v).

A feasible solution to WMIS is called an independent set. The Max Independent
Set (MIS, for short) problem is the particular case with w(v) = 1, ∀v ∈ V (G). We may
denote by α(G), the independence number, that is the optimum value of WMIS on graph
G.

Coloring
Input: A graph G.
Output: A partition P of V (G) into independent sets minimizing the cardinality of P.

Equivalently, Coloring can be expressed as finding an integer k and a map c : V (G) →
[k] such that for every uv ∈ E(G), c(u) ̸= c(v), while minimizing k.

Max Induced Matching
Input: A graph G, possibly together with a weight function w : E(G) → Q.
Output: A set S ⊆ E(G) such that ∀uv ̸= u′v′ ∈ S, {u, v} ∩ {u′, v′} = ∅ and
G[{u, v, u′, v′}] has exactly two edges, maximizing w(S) := ∑

e∈S
w(e).

An induced matching is a pairwise disjoint set of edges (i.e., a matching) with no edge
bridging them. We now give a common generalization of WMIS and Max Induced
Matching.

Mutually Induced H-packing
Input: A graph G, possibly together with a weight function w : V (G) → Q.
Output: A set S ⊆ V (G) such that G[S] is a disjoint union of graphs each isomorphic
to a graph in H, maximizing w(S) := ∑

v∈S
w(v).

When H consists of a single graph, say H, we simply denote the former problem
Mutually Induced H-packing. WMIS and Max Induced Matching are the special
cases when H is a vertex and an edge, respectively.

3.2.2 Balanced partition sequences

The notion of versatile twin-width is a crucial opening step to our algorithms; see [5].
Let us call d-contraction a contraction between two trigraphs of maximum red degree at
most d. A tree of d-contractions of a trigraph G (of maximum red degree at most d) is a
rooted tree, whose root is labeled by G, whose leaves are all labeled by 1-vertex trigraphs
K1, and such that one can go from any parent to any of its children by performing a
single d-contraction. Observe that d-sequences coincide with trees of d-contractions that
are paths. A trigraph G has versatile twin-width d if G admits a tree of d-contractions in
which every internal node, labeled by, say, F , has at least |V (F)|/d children each obtained
by contracting one of a list of |V (F)|/d pairwise disjoint pairs of vertices of F .

It was shown that twin-width and versatile twin-width are functionally equivalent [5].
The relevant consequence for our purposes is that every graph G with a d′-sequence ad-
mits a balanced d-sequence, where d = h(d′) depends only on d′, i.e., one for which the
partitions Pn, . . . , P1 are such that for every i ∈ [n] and P ∈ Pi, |P | ⩽ d · n

i . As we will
resort to recursion on induced subtrigraphs and quotient trigraphs, we need to keep more

54

information on those subinstances that the mere fact that they have twin-width at most d
(otherwise the twin-width bound could quickly diverge).

This will be done by opening up the proof in [5], and handling divided 0, 1, r-matrices
with some specific properties. Thus we need to recall the relevant definitions.

Given two partitions P, P ′ of the same set, we say that P ′ is a coarsening of P if
every part of P is contained in a part of P ′, and P, P ′ are distinct. Given a matrix M ,
we call row division (resp. column division) a partition of the rows (resp. columns) of M
into parts of consecutive rows (resp. columns). A (k, ℓ)-division, or simply division, of a
matrix M is a pair (R = {R1, . . . , Rk}, C = {C1, . . . , Cℓ}) where R is a row division and
C is a column division. In a matrix division (R, C), each part R ∈ R is called a row part,
and each part C ∈ C is called a column part. Given a subset R of rows and a subset C of
columns in a matrix M , the zone M [R, C] denotes the submatrix of all entries of M at
the intersection between a row of R and a column of C. A zone of a matrix partitioned
by (R, C) = ({R1, . . . , Rk}, {C1, . . . , Cℓ}) is any M [Ri, Cj] for i ∈ [k] and j ∈ [ℓ]. A zone is
constant if all its entries are identical, horizontal if all its columns are equal, and vertical
if all its rows are equal. A 0,1-corner is a 2 × 2 0, 1-matrix which is neither horizontal nor
vertical.

Unsurprisingly, 0, 1, r-matrices are such that each entry is in {0, 1, r} where r is an
error symbol that should be understood as a red edge. A neat division of a 0, 1, r-matrix
is a division for which every zone either contains only r entries or contains no r entry
and is horizontal or vertical (or both, i.e., constant). Zones filled with r entries are called
mixed. A neatly divided matrix is a pair (M, (R, C)) where M is a 0, 1, r-matrix and (R, C)
is a neat division of M . A t-mixed minor in a neatly divided matrix is a (t, t)-division
which coarsens the neat subdivision, and contains in each of its t2 zones at least one mixed
zone (i.e., filled with r entries) or a 0,1-corner. A neatly divided matrix is said t-mixed
free if it does not admit a t-mixed minor.

A mixed cut of a row part R ∈ R of a neatly divided matrix (M, (R, C = {C1, C2, . . .}))
is an index i such that both M [R, Ci] and M [R, Ci+1] are not mixed, and there is a 0, 1-
corner in the 2-by-|R| zone defined by the last column of Ci, the first column of Ci+1,
and R. The mixed value of a row part R ∈ R of a neatly divided matrix (M, (R, C =
{C1, C2, . . .})) is the number of mixed zones M [R, Cj] plus the number of mixed cuts
between two (adjacent non-mixed) zones M [R, Cj] and M [R, Cj+1]. We similarly define
the mixed value of a column part C ∈ C. The mixed value of a neat division of a 0, 1, r-
matrix is the maximum of the mixed values taken over every part. The part size of a
division (R, C) is defined as max(maxR∈R |R|, maxC∈C |C|). A division is symmetric if the
largest row index of each row part and the largest column index of each column part define
the same set of integers. We call symmetric fusion of a symmetric division the fusion of
two consecutive parts in C and of the two corresponding parts in R. A symmetric fusion
on a symmetric division yields another symmetric division. A matrix A := (ai,j)i,j is said
symmetric in the usual sense, namely, for every entry ai,j of A, ai,j = aj,i.

In what follows, we set cd := 8/3(t + 1)224t. The following definition is key.

Definition 68. Let Mn,d be the class of the neatly divided n×n symmetric 0, 1, r-matrices
(M, (R, C)), such that (R, C) is symmetric and has:

• mixed value at most 4cd,
• part size at most 24cd+2, and
• no d-mixed minor.

The red number of a matrix is the maximum number of r entries in a single column or
row of the matrix.

55

Lemma 69. Let (M, (R, C)) ∈ Mn,d. The red number of M is at most cd · 24cd+4. Thus,
the trigraph whose adjacency matrix is M has maximum red degree at most cd · 24cd+4.

Proof. Any row or column intersects at most 4cd mixed zones (filled with r entries). Each
mixed zone has width and length bounded by the part size 24cd+2. Hence the maximum
total number of r entries on a single row or column is at most 4cd ·24cd+2 = cd ·24cd+4.

A coarsening of a neatly divided matrix (M, (R, C)) is a neatly divided matrix (M ′, (R′, C′))
such that (R′, C′) is a coarsening of (R, C), and M ′ is obtained from M by setting to r
all entries that lie, in M divided by (R′, C′), in a zone with at least one r entry or a
0,1-corner. We also refer to the process of going from (M, (R, C)) to (M ′, (R′, C′)) as
coarsening operation. A coarsening operation from (M, (R, C)) ∈ Mn,d to (M ′, (R′, C′)) is
said invariant-preserving if (M ′, (R′, C′)) ∈ Mn,d.

The following lemma is the crucial building block of the current section.

Lemma 70 ([5, Lemma 18]). We set s := 24cd+4. Every neatly divided matrix (M, (R, C)) ∈
Mn,d has an invariant-preserving coarsening (M ′, (R′, C′)) ∈ Mn,d with ⌊n/s⌋ disjoint
pairs of identical columns. Given (M, (R, C)), both (M ′, (R′, C′)) and the pairs of columns
can be computed in nO(1) time.

In [5], it is not explicitly stated that the invariant-preserving coarsening (hence the
pairs of identical columns) can be found in polynomial time. However it is easy to check
that the proof is effective, since it greedily symmetrically fuses two consecutive parts,
provided the resulting divided matrix remains in Mn,d. A special case of the following
observation is shown in [5, Lemma 19].

Lemma 71. Let (M, (R, C)) ∈ Mn,d be a neatly divided matrix. Removing a set of
h columns and the h corresponding rows, and possibly removing from the division the
parts that are now empty, results in a neatly divided matrix in Mn−h,d.

Proof. By construction, the new matrix and division are symmetric. The new neatly
divided matrix remains d-mixed free. The part size and the mixed value can only decrease.

Lemma 72 ([5, Beginning of Lemma 20]). Given any graph G with a d-sequence, one can
find in polynomial-time an adjacency matrix M of G, such that (M, (R, C)) is a neatly
divided matrix of Mn,2d+2 with (R, C) the finest division of M (i.e., the one where all
parts are of size 1).

The adjacency matrix of a trigraph extends the one of a graph by putting r symbols
when the vertices of the corresponding row and column are linked by a red edge. A neatly
divided matrix (M, (R, C)) is said conform to a trigraph G if M is the adjacency matrix of
a trigraph G′ such that G is a cleanup of G′. Furthermore, we assume (and keep implicit)
that we know the one-to-one correspondence between each row (and corresponding column)
of M and vertex of G.

Lemma 73. Let d be a natural, s := 24cd+4, and d′ := cd · 24cd+4. Let G be an n-vertex
trigraph given with a neatly divided matrix (M, (R, C)) ∈ Mn,d conform to G. A partial
d′-sequence S from G to a trigraph H satisfying

• |V (H)| = ⌊
√

n⌋, and
• ∀u ∈ V (H), |u(G)| ⩽ s

√
n,

and a neatly divided matrix (M ′, (R′, C′)) ∈ M⌊
√

n⌋,d conform to H can be computed in
time nO(1).

56

Proof. This is a consequence of lemmas 70 and 71; see the proof of the more general
lemma 75.

Combining lemmas 72 and 73, one obtains the following.

Lemma 74. Let d be a natural, s := 24cd+4, and d′ := cd ·24cd+4. Given an n-vertex graph
G with a d-sequence, one can compute in time nO(1) a partition P = {P1, P2, . . . , P⌊

√
n⌋}

of V (G) satisfying
• for every integer 1 ⩽ i ⩽ ⌊

√
n⌋, |Pi| ⩽ s

√
n ⩽ d′√n, and

• the red graph of G/P has maximum degree at most d′.

We will need a stronger inductive form of lemma 74, also a consequence of lemmas 72
and 73.

Lemma 75. Let d̂ be a natural, d = 2d̂ + 2, and set s := 24cd+4, and d′ := cd · 24cd+4.
Given an n-vertex graph G given with a d̂-sequence, or an n-vertex trigraph G with a neatly
divided matrix (M, (R, C)) ∈ Mn,d such that M is conform to G, one can compute in time
nO(1) a partition P = {P1, P2, . . . , P⌊

√
n⌋} of V (G) with maximum red degree at most d′

satisfying that, for every integer 1 ⩽ i ⩽ ⌊
√

n⌋, |Pi| ⩽ s
√

n ⩽ d′√n, and for any trigraph
H that is

• a cleanup of an induced subtrigraph of G/P, or
• an induced subtrigraph G[⋃i∈J⊆[⌊

√
n⌋] Pi],

a neatly divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d conform to H can be computed in time
nO(1).

Proof. If we are given a graph G with a d̂-sequence, we immediately compute a neatly
divided matrix (M, (R, C)) ∈ Mn,d conform to G, by lemma 72. We then proceed as if we
received the second kind of input.

We will build iteratively the partition P = {P1, P2, . . . , P⌊
√

n⌋} starting from the finest
partition. At each step we merge two parts, until the number of parts is ⌊

√
n⌋. At this

point, we have the desired partition P.
We iteratively maintain a trigraph Gz and a neatly divided matrix (M z, (Rz, Cz)) ∈

Mn−z+1,d conform to it. The maintained partition is just the one corresponding to the
parts of Gz. Initially, G1 is G, and (M1, (R1, C1)) = (M, (R, C)) ∈ Mn,d. At step z
we do the following. We apply lemma 70 on (M z, (Rz, Cz)) ∈ Mn−z+1,d and obtain,
in polynomial-time, an invariant-preserving coarsening (M ′z, (R′z, C′z)) ∈ Mn−z+1,d, and
h := ⌊(n−z+1)/s⌋ disjoint pairs of equal columns {c1, c′

1}, . . . , {ch, c′
h} in (M ′z, (R′z, C′z)).

Let {r1, r′
1}, . . . , {rh, r′

h} be the corresponding rows, and {v1, v′
1}, . . . , {vh, v′

h} the corre-
sponding vertices. Observe that a coarsening of a neatly divided matrix conform to a
trigraph is still conform to that trigraph, since the new matrix may only have some r en-
tries in place of some previously 0 or 1 entries. In particular, (M ′z, (R′z, C′z)) is conform
to Gz.

There is at least one pair {vi, v′
i} whose contraction forms a part of size at most n/h.

Indeed, otherwise the union of the parts corresponding to v1, v′
1 . . . , vh, v′

h is larger than n.
We remove c′

i and r′
i from (M ′z, (R′z, C′z)). By lemma 71, we obtain a neatly divided matrix

of Mn−z,d that we denote by (M z+1, (Rz+1, Cz+1)). As we stop when n − z + 1 = ⌊
√

n⌋, it
means that the maximum size of a part of our partition is at most n/h ⩽ sn/

√
n = s

√
n.

The bound on the maximum red degree of the obtained partition (actually of all maintained
partitions) is given by lemma 69.

We now show to find, for any cleanup H of an induced subtrigraph of G/P, a neatly
divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d conform to H. We first observe, as a consequence

57

of lemmas 70 and 71, that (M ⌊
√

n⌋, (R⌊
√

n⌋, C⌊
√

n⌋)) ∈ M⌊
√

n⌋,d is conform to G/P. Taking
an induced subgraph H ′ of G/P (i.e., removing vertices from it), we get, by removing
the corresponding rows and columns in (M ⌊

√
n⌋, (R⌊

√
n⌋, C⌊

√
n⌋)) a neatly divided matrix

(M ′, (R′, C′)) ∈ M|V (H′)|,d conform to H ′, by lemma 71. Note finally that taking a cleanup
H of H ′, we can simply keep (M ′, (R′, C′)) as a neatly divided matrix of M|V (H)|,d conform
to G. The second item, concerning induced subtrigraphs G[⋃i∈J⊆[⌊

√
n⌋] Pi] is a simple

application of lemma 71, and works more generally for any induced subtrigraph of G.

In effect, we will only apply lemma 75 for graphs G and H, i.e., when H is an induced
subgraph of G or a full cleanup of an induced subtrigraph of G/P. Indeed, the structures
H will correspond to subinstances. We want those to be graphs, so that the tackled graph
problem is well-defined on them.

3.2.3 Subexponential-time constant-approximation algorithm

We present a subexponential-time Od(1)-approximation for WMIS on graphs given with
a d-sequence, which we recall, is unlikely to exist in general graphs [67].

Lemma 76. Let d′ be a natural, s := 24cd′ +4, and d := cd′ ·24cd′ +4. Assume n-vertex inputs
G, vertex-weighted by w, are given with a d′-sequence. Weighted Max Independent
Set can be (d + 1)-approximated in time 2Od(

√
n) on these inputs.

Proof. By lemma 74, we compute in polynomial time a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most s

√
n and such that R(G/P) has maximum degree

at most d.
For every integer 1 ⩽ i ⩽ ⌊

√
n⌋, we compute a heaviest independent set in G[Pi], say Si.

Even with an exhaustive algorithm, this takes time
√

n · s2√
n · 2s

√
n = 2Od(

√
n). We then

(d + 1)-color (in linear time) R(G/P), which is possible since this graph has maximum
degree at most d. This defines a coarsening of P in d+1 parts Q = {C1, . . . , Cd+1}. Thus,
Q is a partition of V (G) such that Cj consists of all the parts Pi ∈ P receiving color j in
the (d + 1)-coloring of R(G/P).

For every j ∈ [d + 1], let Hj be the graph (G/P)[Cj]3 vertex-weighted by Pi ⊆ Cj 7→
w(Si). Note that (G/P)[Cj] can indeed be assimilated to a graph, since it has, by design,
no red edge. We compute a heaviest independent set in Hj , say Rj . This takes time
(d + 1) · n · 2

√
n = 2Od(

√
n). We output ⋃

Pi⊆Rj
Si for the index j ∈ [d + 1] maximizing∑

Pi⊆Rj

w(Si).

This finishes the description of the algorithm. We already argued that its running time
is 2Od(

√
n). We shall justify that it does output an independent set of weight at least a

1
d+1 fraction of the optimum α(G).

I is indeed an independent set. For any j ∈ [d + 1], consider two vertices
x, y ∈

⋃
Pi⊆Rj

Si. If {x, y} ∈ Si for some i, then x and y are non-adjacent since Si is
an independent set of G[Pi]. Else x ∈ Si and y ∈ Si′ for some i ̸= i′. Pi and Pi′ are not
linked by a black edge in (G/P)[Cj] since Rj is an independent set in Hj , nor they can be
linked by a red edge (there are none in (G/P)[Cj]). Thus again, x and y are non-adjacent
in G.

I has weight at least α(G)
d+1 . We claim that ⋃

Pi⊆Rj
Si is a heaviest independent set of

G[Cj]. Note that the Pis that are included in Cj (and partition it) form a module partition
of G[Cj]. In particular, any heaviest independent set intersecting some Pi ⊆ Cj has to

3We use this notation as a slight abuse of notation for (G/P)[{Pi : Pi ⊆ Cj}].

58

w(S4)

w(S2)

w(S7)w(S13)

w(S10) w(S9)

⩽ s
√

n
vertices

. . .

C1 C2 C3

Figure 3.1: The trigraph G/P with its ⌊
√

n⌋ vertices, each corresponding to a subset of at
most s

√
n vertices of G. The weights w(Si) of heaviest independent sets Si of G[Pi] for each

part Pi of the color class C2 of the d+1-coloring of R(G/P). A heaviest independent set in
the so-weighted (G/P)[C2] (shaded) corresponds to an optimum solution in G[⋃Pi⊆C2 Pi].
One of these d + 1 independent sets is a d + 1-approximation.

contain a heaviest independent of G[Pi]. This is precisely what the algorithm computes.
Then a heaviest independent set in G[Cj] packs such subsolutions to maximize the total
weight, which is what is computed in Hj .

We conclude by the pigeonhole principle, since a heaviest independent set X of G is
such that w(X ∩ Cj) ⩾ α(G)

d+1 for some j ∈ [d + 1].

3.2.4 Improving the approximation factor

We notice in this short section that the approximation factor of lemma 76 can be improved
using the notion of clustered coloring. The clustered chromatic number of a class of graphs
is the smallest integer k such that there is a constant c for which all the graphs of the
class can be k-colored such that every color class induces a subgraph whose connected
components have size at most c. A proper coloring is a particular case of clustered coloring
when c = 1.

Instead of properly coloring the red graph, as we did in the proof of lemma 76, we could
use less colors and allow for small monochromatic components (in place of monochromatic
components of size 1). We use for that the following bound due to Alon et al.

Theorem 77 ([72]). The class of graphs of maximum degree at most d has clustered
chromatic number at most ⌈d+2

3 ⌉.

We can use this lemma to improve our approximation algorithms.

Theorem 78. On inputs as in lemma 76 with s := 24cd′ +4, and d := cd′ · 24cd′ +4,
Weighted Max Independent Set further admits an ⌈d+2

3 ⌉-approximation algorithm
in time 2Od(

√
n).

Proof. Again, we compute in polynomial time a partition P = {P1, . . . , P⌊
√

n⌋} of V (G)
whose parts have size at most s

√
n and such that R(G/P) has maximum degree at most d,

using lemma 74. Let c be the constant such that R(G/P) admits a clustered coloring using
⌈d+2

3 ⌉ colors such that each color class Cj (with j ∈ [⌈d+2
3 ⌉]) is such that the connected

59

components C1
j , C2

j , . . . , C
hj

j ⊆ Cj of R(G/P)[Cj] have size at most c each. This coloring
is guaranteed to exist by theorem 77. Due to the overall running time, we might as well
compute it by exhaustive search, in time 2Od(

√
n).

For every j ∈ ⌈d+2
3 ⌉ and h ∈ [hj], we denote by P1(Ch

j), . . . , Pc(j,h)(Ch
j) the c(j, h) ⩽ c

parts Pi ∈ P that are included in Ch
j . For every j ∈ ⌈d+2

3 ⌉, every h ∈ [hj], and every
J ⊆ [c(j, h)], we compute a heaviest independent set in G[⋃z∈J Pz(Ch

j)], which we denote
by Sj,h,J . This takes time O(

√
n · 2c · 2sc

√
n) = 2Od(

√
n) since |

⋃
z∈J Pz(Ch

j)| ⩽ c · s
√

n.
For each Cj , in time (2c)

√
n = 2c

√
n, we exhaustively try all subsets X ⊆

⋃
Pi∈Cj

Pi

that are unions of Sj,h,J filtering them out when G[X] is not edgeless, and keep a heaviest
of them, say Rj . Since there can only be black edges or non-edges between some Pi ∈ Ch

j

and Pi′ ∈ Ch′
j with h ̸= h′, it is clear that a heaviest independent set of G[⋃Pi∈Cj

Pi] is
indeed a union of Sj,h,J (with fixed j). We output a heaviest set among the Rjs, which is
the desired ⌈d+2

3 ⌉-approximation. The running time is as claimed.

3.2.5 Time-approximation trade-offs

Lemma 76 and theorem 78 run exhaustive algorithms on induced subgraphs of size Od(
√

n).
As such, the latter inputs keep the same twin-width upper bound. To speed up the algo-
rithm (admittedly while worsening the approximation factor) it is tempting to recursively
call our very algorithm. We show that this leads to a time-approximation trade-off param-
eterized by an integer q = 0, . . . , Od(log log n). At one end of this discrete curve, one finds
the exact exponential algorithm (q = 0), and more interestingly the d + 1-approximation
in time 2Od(

√
n) (q = 1), while at the other end lies a polynomial-time algorithm with

approximation factor nε, where ε > 0 can be made as small as desired.
As we will deal with the same kind of recursions for several problems, we show the

following generic abstraction.

Lemma 79. Let d̂ be a natural, d′ = 2d̂+2, and d := cd′ ·24cd′ +4. Let Π be an optimization
graph problem where inputs come with a d̂-sequence of their n-vertex graph G, or with
a neatly divided matrix (M, (R, C)) ∈ Mn,d′ conform to G. Let P be the partition of V (G)
given by lemma 75. Assume that

1. Π can be exactly solved in time 2O(n), and there are constants c1, c2, c3, and a function
f ⩾ 1 such that

2. a dc3r2-approximation of Π on G can be built in time nc2 by using at most nc1 calls to
an r-approximation of Π—or another optimization problem Π′ already satisfying the
conclusion of the lemma—on an induced subgraph of G with at most f(d)

√
n vertices

or a full cleanup of an induced subtrigraph of G/P (on at most
√

n vertices).
Then Π can be dc3(2q−1)-approximated in time

(f(d)qn)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)n2−q

,

for any non-negative integer q.

Proof. The proof is by induction on q. The case q = 0 is implied by item 1. The case
q = 1, and the induction step in general, is nothing more than an abstraction of lemma 76,
where exhaustive algorithms are replaced by recursive calls.

For any q ⩾ 0, we assume that Π can dc3(2q−1)-approximated in the claimed running
time, and show the same statement for the value q + 1. Following item 2, we run this
algorithm—or one for another optimization problem Π′ satisfying the conclusion of the
lemma—at most nc1 times on f(d)

√
n-vertex induced subgraphs of the input graph G

60

or on full cleanups of induced subtrigraphs of G/P. The latter graphs have at most√
n ⩽ f(d)

√
n vertices. By lemma 75, we can compute in polynomial time a neatly

divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d′ conform to H, for each graph H of a recursive
call; hence the induction applies.

Overall this takes time at most

nc1 + nc2 ·
(

(f(d)q · f(d)
√

n)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)(f(d)
√

n)2−q
)

⩽ (f(d)q+1n)c1+c2+ 1
2 (2−2−q)(c1+c2) · 2f(d)2(1−2−q)+2−q

n
2−q

2

= (f(d)q+1n)(2− 2−q

2)(c1+c2) · 2f(d)2−2−q+1+2−q
n2−(q+1)

= (f(d)q+1n)(2−2−(q+1))(c1+c2) · 2f(d)2(1−2−(q+1))n2−(q+1)
.

For the first inequality, we assume that the two summands are larger than 2, so their
sum can be bounded by their product.

Besides we get an approximation of factor at most (dc3(2q−1))2dc3 = dc3(2q+1−1).

In more legible terms we have proved that:

Lemma 80. Problems Π satisfying the assumptions of lemma 79 can be dO(1)(2q−1)-
approximated in time 2Od,q(2q√

n), for any non-negative integer q.

If most graph problems admit single-exponential algorithms, we will deal with such
a problem that is only known to be solvable in time 2O(n log n). Therefore we prove a variant
of lemma 79 with a slightly worse running time.

Lemma 81. Let Π be solvable in time 2O(n log n) and satisfy the second item of lemma 79.
Then Π can be dc3(2q−1)-approximated in time

2
(

(c1+c2)(2−2−q) log f(d)+f(d)2(1−2−q)n2−q
)

log n
,

for any non-negative integer q.

Proof. We follow the proof of lemma 79 when the induction now gives a running time of

nc2 + nc1 · 2
(

(c1+c2)(2−2−q) log f(d)+(f(d)
√

n)2−q
)

log(f(d)
√

n)

⩽ 2
(

(c1+c2)(2−2−(q+1)) log f(d)+f(d)2(1−2−(q+1))n2−(q+1)
)

log n
.

Again the previous lemma can be rewritten as:

Lemma 82. Problems Π satisfying the assumptions of lemma 81 can be dO(1)(2q−1))-
approximated in time 2Od,q(2q√

n log n), for any non-negative integer q.

We derive from lemma 81 the following notable regimes.

Theorem 83. Problems Π satisfying the assumptions of lemma 81 admit polynomial-time
nε-approximation algorithms, for any ε > 0.

61

Proof. This is the particular case q = ⌈log ε log n
2c3 log d⌉.

Indeed the approximation factor is then at most dc3(2q−1) ⩽ d
2c3

ε log n
2c3 log d = 2ε log n = nε,

while the running time is at most

2
(

(c1+c2)(2−2−q) log f(d)+f(d)2(1−2−q)n2−q
)

log n
⩽ 2

(
2(c1+c2) log f(d)+f(d)2n

2c3 log d
ε log n

)
log n

= n2(c1+c2) log f(d)+f(d)2d
2c3

ε .

If further Π can be solved exactly in time 2O(n) (hence satisfies the assumptions
of lemma 79), one obtains a better running time, where the exponent of n does not
depend on ε. Indeed,

(f(d)qn)(2−2−q)(c1+c2)2f(d)2(1−2−q)n2−q

⩽
(

ε log n

c3 log d

)2(c1+c2) log f(d)
2f(d)2d

2c3
ε n2(c1+c2).

Theorem 84. Problems Π satisfying the assumptions of lemma 79, resp. lemma 81, admit
a log n-approximation algorithm running in time 2Od(n

1
log log n), resp. 2Od(n

1
log log n log n).

Proof. This is the particular case q = ⌊log
(

log log n
c3 log d + 1

)
⌋.

This value is computed such that the approximation factor dc3(2q−1) is at most log n.
It can be easily checked that the running times are as announced.

We derive the following for Weighted Max Independent Set.

Theorem 85. Weighted Max Independent Set on n-vertex graphs G (vertex-weighted
by w) given with a d′-sequence satisfies the assumptions of lemma 79. In particular, this
problem admits

• a (d + 1)2q−1-approximation in time 2Od,q(n2−q), for every integer q ⩾ 0,
• an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and

• a log n-approximation in time 2Od(n
1

log log n),
with d := c2d′+2 · 24c2d′+2+4.

Proof. Even the exhaustive algorithm exactly solves WMIS in time 2O(n). We thus focus
on showing that WMIS satisfies the second item of lemma 79. We set c1 ⩾ 1 as the
required exponent to turn a d′-sequence into a neatly divided matrix of Mn,2d′+2 conform
to G, c2 = 1

2 + η for any fixed η > 0, the appropriate 1 < c3 ⩽ 2, and f(d) = d ⩾ 1.
The algorithm witnessing the second item is simply the proof of lemma 76. We first

check that this algorithm makes ⌊
√

n⌋ + d + 1 recursive calls on induced subgraphs of the
input G: each of the ⌊

√
n⌋ graphs G[Pi] where Pi has indeed size at most Od(

√
n), and

each of the d + 1 graphs (G/P)[Cj] (indeed an induced subgraph of G by definition of the
black graph of a trigraph) on at most

√
n vertices.

We finally assume that each recursive call outputs an r-approximation of WMIS. Let
j ∈ [d + 1] be such that w(Cj ∩ I) ⩾ 1

d+1w(I) for I a heaviest independent set of G
vertex-weighted by w. Let J ⊆ [⌊

√
n⌋] be the indices of the Pis that are intersected by

Cj ∩ I, that is, J = {i : Pi ∩ (Cj ∩ I) ̸= ∅}. For every i ∈ J , set wi = w(Pi ∩ I). Each
recursive call on some Pi with i ∈ J , yields an independent set of weight at least wi

r , by
assumption. Thus the weights that our algorithm puts on (G/P)[Cj] are such that it has
an independent set of weight at least Σi∈J

wi
r = w(Cj∩I)

r . As we run an r-approximation on
this graph, we get an independent set of weight at least w(Cj∩I)

r2 ⩾ w(I)
(d+1)r2 . Thus WMIS

satisfies the assumptions of lemma 79, and we conclude.

62

3.3 Finding the suitable generalization: the case of Coloring

In this section, we deal with the Coloring problem. Unlike for WMIS, we cannot solely
resort to recursively calling our Coloring algorithm on smaller graphs. The right problem
generalization needs to be found for the inductive calls to work through, and it happens
to be Set Coloring.

In the Set Coloring problem, the input is a couple (G, b) where G is a graph, and b
is a function assigning a positive integer to each vertex of G. The goal is to find, for each
v ∈ V (G), a set Sv of at least b(v) colors such that Su ∩ Sv = ∅ whenever uv ∈ E(G), and
minimizing | ∪v∈V (G) Sv|. Let χb(G) be the optimal value of Set Coloring for (G, b).
Observe that Coloring corresponds to the case where b(v) = 1 for every v ∈ V (G).
Theorem 86. Set Coloring (and hence Coloring) on n-vertex graphs G given with
a d′-sequence satisfies the assumptions of lemma 81. In particular, this problem admits

• a (d + 1)2q−1-approximation in time 2Od,q(n2−q log n), for every integer q ⩾ 0, and
• an nε-approximation in polynomial-time for any ε > 0.

with d := c2d′+2 · 24c2d′+2+4.
Proof. It is known [73] that Set Coloring can be solved using the inclusion-exclusion
principle in time O∗(maxv∈V (G) b(v)n) = 2O(n log n). We now prove that it satisfies the
second item of lemma 79. We denote by A the r-approximation algorithm of the statement,
which we will use on instances of Set Coloring. In particular, we will call it at most√

n + 1 times, and will obtain at the end a (d + 1)r2-approximation on our input (G, b) in
polynomial time.

We first apply lemma 75 to get, in polynomial-time, a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most d

√
n and such that R(G/P) has maximum degree

at most d. For every i ∈ [⌊
√

n⌋], we use A to compute an r-approximated solution cPi

of (G[Pi], b|Pi
). We denote by b′ the function which assigns, to each Pi, the number of

colors of cPi . We now compute, in polynomial-time, a proper (d + 1)-coloring of R(G/P),
which defines the sets C1, . . . , Cd+1. For each j ∈ [d + 1], we construct another Set
Coloring instance consisting of the graph Hj = (G/P)[Cj] (recall that this trigraph has
no red edge, and can thus be seen as a graph), together with the function b′

|Cj
. Again

we use A to compute an r-approximated solution on (Hj , b′
|Cj

). We denote by cH this
solution. Let Gj be the subgraph of G induced by ∪Pi∈Cj Pi, and bj the restriction of b to
V (Gj). We now show how to construct a solution cj of Set Coloring to (Gj , bj) from
cH and all cPi . Recall that for every Pi ∈ Cj , every v ∈ Pi, we have that cPi(v) is a subset
of {1, . . . , b′(Pi)} of size at least b(v), and that cH(Pi) is a subset of size at least b′(Pi).
Hence, for each Pi ∈ Cj , one can choose an arbitrary bijection τ from {1, . . . , b′(Pi)} to
cH(Pi), and define to each vertex v ∈ Pi the set cj(v) as {τ(x) : x ∈ cPi(v)}.

By construction, this solution is a feasible one for the instance (Gj , bj). Let us prove
that it is an r2-approximation of χbj

(Gj). First, by definition of cH , our solution uses at
most r · χb′

|Cj

(Hj) colors. Then, by definition of cPi for every Pi ∈ Cj , we have b′
Cj

(Pi) ⩽
r · χb|Pi

(G[Pi]). Now, denote by Γ the function which assigns to each Pi ∈ Cj the number
χb|Pi

(G[Pi]). We now use the following claim, whose proof is left to the reader.
▷ Claim 87. Let (G, b) be an instance of Set Coloring, and r ∈ R+. It holds that
χr·b(G) ⩽ r · χb(G), where r · b is the function which assigns r · b(v) to each v ∈ V (G).

This implies χb′
|Cj

(Hj) ⩽ r · χΓ(Hj), and thus our solution uses at most r2 · χΓ(Hj)
colors. We now prove the following claim.

63

▷ Claim 88. χΓ(Hj) ⩽ χbj
(Gj).

Proof of the claim. Let c be an optimal solution for (Gj , bj). For every distinct Pi, Pi′ ∈ Cj

such that PiPi′ is an edge of Hj , it holds that there are all possible edges between Pi and
Pi′ in Gj (by definition of the coloring C1, · · · , Cd+1), hence it holds that ⋃

v∈Pi
c(v) and⋃

v∈Pi′ c(v) have empty intersection. Moreover, by definition of Γ, we have that ⋃
v∈Pi

c(v)
is of size at least Γ(Pi), hence the function which assigns ⋃

v∈Pi
c(v) to each Pi is a feasible

solution for (Hj , Γ) using at most χbj
(Gj) colors.

We now have in hand an r2-approximated solution of (Gj , bj) for every j ∈ [d + 1],
which can be turned into a (d + 1)r2-approximated solution of (G, b), as desired.

3.4 Edge-based problems: the case of Max Induced Match-
ing

So far, we only considered problems where approximated solutions in each part Pi of a par-
tition P of V (G) of small width, and in some selected induced subgraphs of (V (G/P), E(G/P)),
were enough to build an approximated solution for G.4 We now handle problems for which
a number of edges is to be optimized. Now all competitive solutions can integrally lie in
between pairs of parts Pi, Pj linked by a black or a red edge in G/P. This complicates
matters, and forces us to be competitive there as well, naturally splitting the algorithm
into three subroutines.

We present the algorithms for Max Subset Induced Matching where one is given,
in addition to the input graph G (possibly with edge weights), a subset Y ⊆ E(G), and the
goal is to find a heaviest induced matching S of G such that S ⊆ Y . Then Max Induced
Matching is the particular case when Y = E(G). Of course, we could solely use the
edge weights to emulate Y (by giving negative weights to all the edges in E(G) \ Y). We
believe this formalism is slightly more convenient for the reader to quickly and explicitly
identify where our algorithm is seeking mutually induced edges.

Since the case of Max Induced Matching is more involved than were the treatment
of MIS and Coloring, we again split the arguments into the design of a subexponential-
time constant-approximation algorithm (lemma 89) followed by how this algorithm meets
the requirements of lemma 79 (theorem 90).

Lemma 89. Assume every input (G, Y) is given with a d′-sequence of the n-vertex, edge-
weighted by w, graph G. We set d := cd′ ·24cd′ +4, and s := 24cd′ +4. Max Subset Induced
Matching can be O(d2)-approximated in time 2Od(

√
n) on these inputs.

Proof. Again, by lemma 74, we start by computing in polynomial time a partition of
V (G), P = {P1, . . . , P⌊

√
n⌋}, of parts with size at most s

√
n and such that R(G/P) has

maximum degree at most d.
We (d + 1)-color R(G/P), which defines a coarsening {C1, . . . , Cd+1} of P. We also

distance-2-edge-color R(G/P) with z = 2(d − 1)d + 1 colors, that is, properly (vertex-
)color the square of its line graph. Observe that z − 1 upperbounds the maximum degree
of the square of the line graph of R(G/P). This partitions the edges of R(G/P) into
{E1, . . . , Ez}. For each red edge e = PiPj ∈ R(G/P), we denote by p(e) the set Pi ∪ Pj .
We also set Xh = p(Eh) = ⋃

e∈Eh
p(e) for each h ∈ [z].

Let M ⊆ Y be a fixed (unknown) heaviest induced matching of G contained in Y .
Let Mv, Mr, Mb partition M , where Mv (as vertex) consists of the edges of M with both

4The improvement based on clustered coloring slightly departed from that simple scheme.

64

Ij

Cj

(a) Computing Rj consists
first of determining the heav-
iest induced matching in each
part Pi and then, for color
Cj , to compute the maximum
independent set Ij (in green)
weighted by the size of the
matchings.

I ′
h

Eh

(b) Color Eh reveals a set of red
edges from trigraph G/P. Set
R′

h corresponds to the heaviest
matching among these edges which
is mutually induced regarding the
black edges. The weight of the red
edges e is w(S′

e).

T1

T2

e

mG(e)

(c) An example of set S
of size 3 with two colors
T1 and T2. The induced
matching R′′

i for color Ti

is obtained by consider-
ing the maximum-weighted
edge mG(e) between the
two parts of e.

Figure 3.2: Illustration of how to determine the induced matching Nv, Nr, and Nb (in
that order, from left to right).

endpoints in a same Pi, Mr (as red) corresponds to edges of M between some Pi and Pj

with PiPj ∈ R(G/P), and Mb (as black), the edges of M between some Pi and Pj with
PiPj ∈ E(G/P). We compute three induced matchings Nv, Nr, Ne ⊆ Y of G, capturing
a positive fraction of Mv, Mr, Me, respectively. fig. 3.2 gives the intuition of the procedures
which determine each of these approximated solutions.

Computing Nv. For every integer 1 ⩽ i ⩽ ⌈
√

n⌉, we compute a heaviest induced
matching in G[Pi] contained in Y , say Si, in time 2Od(

√
n). For each j ∈ [d + 1], let Hj be

the graph (G/P)[Cj] with every vertex Pi ∈ Cj weighted by w(Si). We compute a heaviest
independent set Ij in Hj , also in time 2Od(

√
n).

Let Rj be the induced matching {e ∈ Si : Pi ∈ Ij}. It is indeed an induced matching
in G contained in Y , since each Si is so, there is no red edge in (G/P)[Cj], and Ij is an
independent set of Hj . The solution Nv is then a heaviest among the Rjs.

Computing Nr. For each e = PiPj ∈ R(G/P), we compute a heaviest induced
matching S′

e in G[p(e)] = G[Pi ∪ Pj] among those that are included in Y and have only
edges with one endpoint in Pi and the other endpoint in Pj . This takes times at most√

nd
2 · 2Od(

√
n) = 2Od(

√
n) by trying out all vertex subsets, since |Pi ∪ Pj | ⩽ 2s

√
n. For

each h ∈ [z], let H ′
h be the graph (G/P)[{Pi : Pi is incident to an edge e ∈ Eh}] and

the red edges e ∈ Eh are turned black and get weight w(S′
e). We compute a heaviest

induced matching I ′
h in H ′

h among those included in Eh, in time 2Od(
√

n). Note here that
we changed the prescribed set of edges Y to Eh.

Let R′
h be the induced matching {f ∈ S′

e : e ∈ I ′
h} ⊆ Y of G. Indeed, each S′

e ⊆ Y
is an induced matching, and there is no red edge between an endpoint of e ∈ I ′

h and an
endpoint of e′ ̸= e ∈ I ′

h (since Eh is a color class in a distance-2-edge-coloring of R(G/P)),
nor a black edge (by virtue of I ′

h being an induced matching of H ′
h). The solution Nr is

then a heaviest among the R′
hs.

65

Computing Nb. Observe first that an induced matching of G can only contain at most
one edge between Pi and Pj when PiPj ∈ E(G/P). Thus in the graph (V (G/P), E(G/P)),
we give weight max{w(f) : f = uv ∈ Y, u ∈ Pi, v ∈ Pj}, with the convention that
max ∅ = −1, to each edge e = PiPj ∈ E(G/P), call G′ the resulting edge-weighted graph,
and denote by mG(e) an edge f ∈ Y realizing this maximum. We compute a heaviest
induced matching S of G′ included in E(G′), in time 2Od(

√
n). Let HS be the graph with

vertex set S, and an edge between e and e′ whenever there is a red edge in G/P between an
endpoint of e and an endpoint of e′. As HS has degree at most 2d, it can be 2d+1-colored;
let T1, . . . , T2d+1 the corresponding color classes.

For each i ∈ [2d + 1], let R′′
i be the induced matching {mG(e) : e ∈ Ti} ⊆ Y of G.

Indeed, S is an induced matching in the black graph of G/P, and the underlying vertices
of Ti do not induce any red edge in G/P, by design. The solution Nr is then a heaviest
among the R′′

i s.

We finally output a heaviest set among Nv, Nr, Nb. The overall running time is 2Od(
√

n)

as we make a polynomial number of calls to (exhaustive) subroutines on graphs with
Od(

√
n) vertices, and color in linear time O(n)-vertex graphs of maximum degree ∆ with

∆ + 1 colors. We already argued that Nv, Nr, Nb ⊆ Y are all induced matchings in G,
thus so is our output.

We shall just show that we meet the claimed approximation factor. First, one can
observe w(Nv) ⩾ w(Mv)

d+1 . Second, at least a 1
z fraction of the weight of Mr intersects some

fixed Ei (with i ∈ [z]). Let J be the parts of P intersected by Mr ∩ Xi. As there cannot
be a black edge between two parts of J (otherwise Mr is not an induced matching as
defined), our algorithm indeed computes an induced matching of G[Xi] included in Y of
weight at least w(Mr ∩ Xi). Hence w(Nr) ⩾ w(Mr)

z .
Third, we already argued that an induced matching in G′ corresponds to an induced

matching in the black graph of G/P. Thus at least one of the R′′
i (with i ∈ [2d + 1])

contains at least a 1
2d+1 fraction of the weight of Mb. Therefore w(Nb) ⩾ w(Mb)

2d+1 .
Finally the output induced matching has at least weight

w(M)
3 · max(d + 1, z, 2d + 1) = w(M)

3z
= w(M)

3(2(d − 1)d + 1) .

Theorem 90. Max Subset Induced Matching on an n-vertex graph G, edge-weighted
by w, with prescribed set Y ⊆ E(G), and given with a d′-sequence, satisfies the assumptions
of lemma 79. In particular, this problem admits

• a (d + 1)2q−1-approximation in time 2Od,q(n2−q), for every integer q ⩾ 0,
• an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and

• a log n-approximation in time 2Od(n
1

log log n),
with d := c2d′+2 · 24c2d′+2+4.

Proof. The exhaustive algorithm (trying out all vertex subsets and checking whether they
induce a matching included in Y) solves Max Subset Induced Matching in time 2O(n).
Thus we show Max Subset Induced Matching satisfies the second item of lemma 79,
as witnessed by lemma 89 where subcalls are dealt with recursively. We set c2 ⩾ 1 as
the required exponent to turn a d′-sequence into a neatly divided matrix of Mn,2d′+2, and
compute the various needed colorings, the appropriate 1

2 < c1 < 1, and 2 < c3 < 3, and
f(d) = 2d ⩾ 1 with s := 24cd′ +4.

In computing Nv, the algorithm makes ⌊
√

n⌋ recursive calls and d+1 calls to Weighted
Max Independent Set on induced subgraphs of G. All of these induced subgraphs are

66

on less than f(d)
√

n vertices. Computing Nr makes at most
√

nd
2 recursive calls on induced

subgraphs of G with at most f(d)
√

n vertices, followed by at most 2(d − 1)d + 1 recursive
calls on full cleanups of induced subtrigraphs of G/P with at most

√
n vertices (in fact,

one can observe that the latter recursive calls happen to also be on induced subgraphs
of G). Finally, computing Nb makes one recursive call to a full cleanup of G/P on ⌊

√
n⌋

vertices.
In summary, we make Od(

√
n) recursive calls or calls to another problem WMIS

(which already satisfies lemma 79 with better constants) on induced subgraphs of G or full
cleanups of (the whole) G/P, each on Od(

√
n) vertices. Hence, by lemma 75, the induction

applies.
We check that getting r-approximations on every subcall allows to output a global

3(2(d−1)d+1)r2-approximation. For that we argue that Nv (resp., Nr, Nb) is a (2(d−1)d+
1)r2-approximation of Mv (resp., Mr, Mb). The fact that Nv is a (d + 1)r2-approximation
(hence a (2(d − 1)d + 1)r2-approximation, since we assume that d ⩾ 1) of Mv directly
follows theorem 85.

We now show that Nr is a (2(d − 1)d + 1)r2-approximation of Mr. Let h ∈ [z] = [2(d −
1)d+1] be an index maximizing w(Mr ∩E(G[Xh])). Thus w(Mr ∩E(G[Xh])) ⩾ w(Mr)

2(d−1)d+1 .
Let Fh ⊆ Eh be the edges e = PiPj of R(G/P) that are inhabited by Mr (i.e., Mr contains
at least one edge between Pi and Pj). Note that our algorithm makes an r-approximation
of the optimum such solutions on p(e) (selecting only edges between Pi and Pj). Thus the
r-approximation on H ′

h yields the desired (2(d − 1)d + 1)r2-approximation Nr.
Finally, one can easily see that Nb is a (2d + 1)r-approximation of Mb (note, here, the

absence of a 2 in the exponent of r).

3.5 Technical generalizations

3.5.1 Mutually Induced H-packing

In this section we present a far-reaching generalization of the approximation algorithms
for Max Independent Set and Max Induced Matching. For any fixed graph H,
let Mutually Induced H-packing be the problem where one seeks a largest collection
of mutually induced copies of H in the input graph G, that is, a largest set S such that
G[S] is a disjoint union of (copies of) graphs H. We get similar approximation guarantees
for Mutually Induced H-packing, for any connected graph H. Observe that Max
Independent Set and Max Induced Matching are the special cases when H is a
single vertex and a single edge, respectively.

We in fact approximate a technical generalization that we call Annotated Mutu-
ally Induced H-packing. The input is a tuple (G, w, z, γ, γ′) where G is a graph,
w : V (G)|V (H)| → Q is a weight function over the tuples without repetition of V (G) of size
|V (H)| (that we will use to keep track of the number of mutually induced copies within
a given tuple of vertices of G), z is an integer between 1 and |V (H)|, γ : V (G) → [z] is
a labeled partition of V (G) into z classes, and γ′ : V (H) → [z] is a labeled partition of
V (H) into z classes. Note that the Mutually Induced H-packing is obtained when
w(Z) = [G[Z] is isomorphic to H] (where [.] is the Iverson bracket, i.e., taking value 1 if
the property it surrounds is true, and 0 otherwise) and z = 1 (which forces the value of γ
and γ′). The goal is to find a subset S such that

• G[S] is a disjoint union of copies of H,
• there is an isomorphism between each copy C of H (in S) and H which preserves

γ, γ′, i.e., every vertex v of C is mapped to a vertex v′ ∈ V (H) with γ(v) = γ′(v′),

67

and
• ∑

C copy of H in S
w(V (C)) is maximized.

We will need the notion of compatible trigraphs of a (labeled) graph. Given a graph
H, we call compatible trigraph of H any trigraph on at most |V (H)| vertices obtained
by turning some (possibly none) black edges or non-edges of trigraph H/Q (for any fixed
choice of a partition Q of V (H)) into red edges. In other words, a compatible trigraph
H ′ of H is such that there is a cleanup H ′′ of H ′ that is also a quotient trigraph of H.
Note that the number of compatible trigraphs of an h-vertex graph H is upperbounded
by Bh · 2(h

2) = 2O(h2), where Bh is the h-th Bell number, which counts the number of
partitions of a set of size h.

Given a graph G vertex-partitioned by P and a trigraph H, a subset S ⊆ V (G) is said
cut by P along H if G[S]/P is isomorphic to H. By extension, the copy of G[S] in G
(induced by S) is also said cut by P along H.

Lemma 91. For any connected graph H, Annotated Mutually Induced H-packing,
when every input (G, w, z, γ, γ′) is given with a d′-sequence of the n-vertex graph G, sat-
isfies the assumptions of lemma 79. In particular, this problem admits

• a dOh(2q)-approximation in time 2Od,h,q(n2−q), for every integer q ⩾ 0,
• an nε-approximation in polynomial-time Oε(1) · nOd,h(1), for any ε > 0,

with h = |V (H)|, and d := c2d′+2 · 24c2d′+2+4.

Proof. As the first item of lemma 79 is satisfied, we describe an algorithm that fulfills
the requirement of its second item. We proceed by induction on the number of vertices
of H. Thus we can assume that Annotated Mutually Induced J-packing, with J
a connected graph on less vertices than H, satisfies lemma 79. We already did the base
case of the induction, which was Weighted Max Independent Set.

Algorithm. Again, by lemma 75, we start by computing in polynomial time a parti-
tion of V (G), P = {P1, . . . , P⌊

√
n⌋}, of parts with size at most d

√
n and such that R(G/P)

has maximum degree at most d. Let S be a fixed (unknown) heaviest (with respect to w)
mutually induced H-Packing of G preserving γ, γ′.

For every compatible trigraph H ′ of H, we look for mutually induced copies of H in G
cut by P along H ′, and preserving γ, γ′. As the number of compatible trigraphs of H is
2O(h2), a 1/2O(h2) fraction of the weight of S is made of mutually induced copies of H
which are cut by P along a fixed compatible trigraph H ′. We now focus on this particular
“run.”

We distinguish two cases:
• (A) H ′ has at least one black edge, or
• (B) H ′ has no black edge.

As H is connected, the total graph of H ′ is also connected. Indeed, switching some edges
or non-edge to red edges in the quotient trigraph of H cannot disconnect the total graph,
which can only gain edges. Thus in case (A), every red component of H ′ has at least one
incident black edge, and in case (B), H ′ has a single red component (and no black edge).

In general, we want to individually pack red components of H ′ (first type of recursive
calls in smaller induced subgraphs of G), then combine those red components by connecting
them with the right pattern of black edges (second type of recursive calls in the total graph
of G/P). Handling both cases (A) and (B) in an unified way runs into the technical issue
that the weight function may destroy our combined solutions in an uncontrollable manner.
The case distinction works as a win-win argument. In case (A), due to the presence of
a black edge in H ′, we can pack at most one mutually induced copy of H within any

68

fixed subtrigraph of G/P matching H ′. We thus exempt ourselves from the first type of
recursive calls. In case (B), we do need the two types of recursive calls (as in WMIS), but
the first type is done on the whole H. Thus the current weight function (on h-tuples) is
informative enough.

Case (A). The essential element here is to build a new weight function w′ on the
h′-tuples of the total graph T (G/P), with h′ := |V (H ′)|. For every injective map ι :
V (H ′) → P inducing a trigraph isomorphism and preserving γ, γ′, for every ordering of
ι(V (H ′)) into an h′-tuple (P1, . . . , Ph′), we set

w′(P1, . . . , Ph′) := max{w(v1
1, v2

1, . . . , va1
1 , . . . , v1

h′ , v2
h′ , . . . , v

ah′
h′) : v1

1, v2
1, . . . , va1

1 ∈ P1, . . .

v1
h′ , v2

h′ , . . . , v
ah′
h′ ∈ Ph′ , and G[{v1

1, v2
1, . . . , va1

1 , . . . , v1
h′ , v2

h′ , . . . , v
ah′
h′ }] is isomorphic to H}.

Indeed as we previously observed, in case (A), at most one mutually induced copy of H
respecting the cut along H ′ can be packed in the subgraph of G induced by the vertices
of ι(V (H ′)). (In the definition of w′, we can further impose that ai matches the number
of vertices of H in the corresponding part of H ′ but this is not necessary.)

All the h′-tuples not getting an image by w′ in the previous loop (realized in time
nO(h)) are assigned the value 0. We then make a recursive call to Annotated Mutually
Induced T (H ′)-packing on input (T (G/P), w′, 1, γ0, γ′

0) where we recall that T (.) is the
total graph, and γ0, γ′

0 are the constant 1 functions.
Case (B). For every injective map ι : V (H ′) → P inducing a trigraph isomorphism

and preserving γ, γ′, we make a recursive call to Annotated Mutually Induced H-
packing with input (Gι = G[⋃P ∈ι(V (H′)) P], w, h, γι, γ′

ι) where two vertices get the same
label by γι if and only if they have the same label by γ and lie in the same P ∈ ι(V (H ′)),
and γ′

ι gives to a vertex v′ ∈ X ∈ V (H ′) of H the same label given to the vertices v ∈ ι(X)
such that γ′(v′) = γ(v). Informally γι, γ′

ι forces the recursive call to commit to the map ι
and the former functions γ, γ′.

Each such recursive call yields a mutually induced packing of H. Since the red graph
of G/P has degree at most d, we can color the (ordered) tuples of P of length up to h and
inducing a connected subgraph of R(G/P) with at most p(h, d) = hd2h · d2h · h! + 1 colors
such that every color class consists of disjoint tuples pairwise not linked by a red edge in
G/P. Indeed the claimed number of colors minus 1 upperbounds, in R(G/P), the number
of connected tuples of length up to h that can touch (i.e., intersect or be adjacent to) a
fixed connected tuple of length up to h. One color class contains a fraction 1/p(h, d) of
the weight of the optimal solution S (subject to the same constraints). Running through
all color classes j (and focusing on one containing a largest fraction of the optimum), we
define a weight function w′ on the h′-tuples of T (GP), with h′ = |V (H ′)|, by giving to a
tuple the weight returned by the corresponding recursive call whenever it is part of color
class j, and weight 0 otherwise. We then make a recursive call to Annotated Mutually
Induced T (H ′)-packing on input (T (G/P), w′, 1, γ0, γ′

0) where we recall that T (.) is the
total graph, and γ0, γ′

0 are the constant 1 functions.
We output a heaviest solution among all runs. We now check that the algorithm is as

prescribed by lemma 79.
Number of recursive calls. We make at most 2O(h2)·h·|V (G/P)|h = nOh(1) recursive

calls to Annotated Mutually Induced H-packing, and at most p(h, d)+1 = Od,h(1)
recursive calls to Annotated Mutually Induced T (H ′)-packing. Hence there is a
constant c1 (function of d and h) such that the number of calls is bounded by nc1 .

Nature and size of the inputs of the recursive calls. Both H and T (H ′) have
strictly less vertices than H or are equal to H. Thus the induction on h applies. Besides,

69

G[⋃P ∈ι(V ′(H)) P] is an induced subgraph of G of size at most h · d
√

n = Od,h(1) ·
√

n, and
T (G/P) is a full cleanup of G/P of size at most ⌊

√
n⌋.

Running time. Outside of the recursive calls, one can observe that our algorithm
takes times Od,h(1) · nOh(1). Hence there is a constant c2 (function of d and h) such that
the running time of that part is bounded by nc2 .

Correctness and approximation guarantee. As all the recursive calls are on
induced subgraphs of G or of the total graph T (G/P), we return a mutually induced
collection of graphs of the size of H. All these graphs are indeed induced copies of H since
the weight function prevents the false positives of copies of H in the total graph T (G/P)
but not in G (these tuples are given weight 0). Finally it can be checked that the returned
solution has weight a fraction (2O(h2) ·max(r, p(h, d)r2))−1 of the optimum, which can also
be seen as a dc3r2-approximation for some constant c3 depending on d and h.

3.5.2 Independent induced packing of stars and forests

The techniques employed to design approximations algorithms for Max Subset Induced
Matching can be extended in order to tackle more general problems. In particular,
we show in this section a generalization of theorem 90 for Max Edge Induced Star
Forest and Max Edge Induced Forest. These two problems stand as the version
of Mutually Induced H-packing where H is respectively either the infinite family of
stars or trees.

On the one hand, Max Edge Induced Star Forest asks, given a graph G and a
subset Y ⊆ E(G), for a collection of induced stars on G, made up of edges of Y only,
maximizing the number of edges (or leaves).

Max Edge Induced Star Forest
Input: Graph G, subset Y ⊆ E(G)
Output: Collection (Ai)i∈[k] of induced stars on G, made up of edges in Y only, such
that there is no edge between Ai and Aj , for any i ̸= j ∈ [k], which maximizes the
number of edges.

On the other hand, given the same input, Max Edge Induced Forest asks for an
induced forest F on G with the largest set of edges.

We would like to emphasize the fact that the objective function of both problems
counts the number of edges in the solution, instead of vertices, as it is often the case in
the literature when looking for a collection of stars or trees in a graph. The reason for
this is because an approximated solution for these vertex versions can be obtained from
an approximated solution of Weighted Max Independent Set (since any independent
set is a star forest, and any forest is a bipartite graph).

Observe moreover that a solution of Max Edge Induced Forest can be 3-approximated
with a solution of Max Edge Induced Star Forest. Indeed, the edge set of any tree
can be partitioned into three distance-2-edge colors, which consist of a collection of stars.
Therefore, the induced forest F can be partitioned into three collections of induced stars.
In the remainder, we design approximation algorithms for Max Edge Induced Star
Forest, and directly deduce results for Max Edge Induced Forest.

In the remainder, we propose approximation algorithms for Max Edge Induced
Star Forest. We provide in particular a nε-approximation algorithm for Max Edge
Induced Star Forest, running in polynomial time.

We need to find the suitable generalization of Max Edge Induced Star Forest,
as it was done for Coloring in section 3.3. We call this problem Max Leaves Induced

70

Star Forest. Now, a weight function on vertices is added to the input, and we seek a
collection of mutually induced stars with maximum weight, the weight of a star being the
sum of the weights of its leaves (that is, the weight of the root is omitted).

Max Leaves Induced Star Forest
Input: Graph G, weights wV : V → N, subset Y ⊆ E(G)
Output: Collection (Ai)i∈[k] of induced stars on G with root ri, Ai = {ri, s1

i , . . . , sLi
i },

made up of edges in Y only, with no edge between Ai and Aj , for any i ̸= j ∈ [k],
maximizing

k∑
i=1

wV (Ai) =
k∑

i=1

Li∑
ℓ=1

w(sℓ
i)

We prove that Max Leaves Induced Star Forest follows the framework proposed
in lemma 79. We begin with the design of a subexponential-time algorithm approximating
a solution of Max Leaves Induced Star Forest with a ratio function of twin-width.

Lemma 92. Assume every input of Max Leaves Induced Star Forest is given with
a d′-sequence of the n-vertex G, and d := c2d′+2 ·24c2d′+2+4. Max Leaves Induced Star
Forest can be O(d2)-approximated in time 2Od(

√
n) on these inputs.

Proof. We compute in polynomial time a partition of V (G), P = {P1, . . . , P⌊
√

n⌋}, of
parts with size at most d

√
n and such that R(G/P) has maximum degree at most d, by

lemma 74.
As in lemma 76, we (d + 1)-color R(G/P), which defines a coarsening {C1, . . . , Cd+1}

of P. Moreover, we distance-2-edge-color R(G/P) with z = 2(d − 1)d + 1 colors. This
partitions the edges of R(G/P) into {E1, . . . , Ez}. For each red edge e = PiPj ∈ R(G/P),
we denote by p(e) the set Pi ∪ Pj .

Let A = ⋃k
i=1 Ai be the union of all stars present in an optimum solution of Max

Leaves Induced Star Forest in G. We have A ⊆ Y . Let Av, Ar, Ab partition A,
where Av contains the edges of A with both endpoints in a same Pi, Ar corresponds to
edges of A between some Pi and Pj with PiPj ∈ R(G/P), and Ab, the edges of A between
some Pi and Pj with PiPj ∈ E(G/P). The set of edges Av (resp. Ar, Ab) still form a
collection of mutually induced stars. At least one over the three solutions produced by the
partition Av, Ar, Ab gives us a 3-approximation for this problem. Our algorithm consists
of computing three solutions for Max Leaves Induced Star Forest of G, capturing
a positive fraction of Av, Ar, Ab, respectively.

Computing a d + 1-approx for Av. Construction. For every integer 1 ⩽ i ⩽ ⌈
√

n⌉,
we compute an optimum solution for Max Leaves Induced Star Forest in G[Pi]
contained in Y , say Si, in time 2Od(

√
n). This can be achieved with guesses of the vertices

in Pi, as |Pi| ⩽ d
√

n.
Then, we focus on each color Cj of R(G/P), for j ∈ [d + 1]. There is no red edge in

Hj = (G/P) [Cj]. We compute a heaviest independent set Ij in Hj where the parts Pi are
weighted by the edge weight of Si. Let Rj be the union of all optimum solutions for Max
Leaves Induced Star Forest on all Pi belonging to Ij . The solution returned is the
maximum over all Rjs.

Approximation ratio. Let Aj
v be the subset of Av made up of edges belonging to parts

of Cj . There is no red edge between two parts of Cj , therefore their neighborhood consists
of either full adjacency or full non-adjacency. As a consequence, a maximum-weighted
collection of stars in Cj with edges inside parts intersects parts which are pairwise non-
adjacent in (G/P)[Cj], otherwise the stars are not mutually induced. Consequently, this
justifies that the set Rj returned for each Cj is a maximum-weighted collection of stars

71

in Cj made up of edges inside parts. In summary, the weight of each collection Rj is
greater than the weight of Aj

v. As j ∈ [d + 1], a heaviest collection among all Rjs is a
d + 1-approximation of Av.

Computing a O(d2)-approx for Ar. Construction. For each e = PiPj ∈ R(G/P),
we compute an optimal solution for Max Leaves Induced Star Forest in G[p(e)] =
G[Pi ∪ Pj] among those that are included in Y and have only edges with one endpoint
in Pi and the other endpoint in Pj . Said differently, we determine a maximum-weighted
collection of induced stars in G[p(e)] over Y with a root on one side (for example, Pi)
and all leaves on the other side (Pj). This costs at most 2Od(

√
n) by trying out all vertex

subsets, since |Pi ∪ Pi| ⩽ 2d
√

n. The set of vertices of the solution returned on G[p(e)] is
denoted by Be ⊆ p(e).

For each h ∈ [z], let H ′
h be the trigraph (G/P)[{Pi : Pi is incident to an edge e ∈ Eh}].

The red edges of H ′
h form an induced matching on the red graph of H ′

h as they are at
distance 2 in G/P. We associate with any edge e ∈ Eh the edge weight of Be. Then,
we turn the red edges of H ′

h in black: let H ′′
h be the graph obtained. We solve Max

Subset Induced Matching on H ′′
h by restricting it to edges of Eh (which plays the

role of Y): this is achieved in 2O(
√

n) as |V (H ′′
h)| ⩽

√
n. Let I ′′

h be a maximum-weighted
induced matching obtained. For each h ∈ [z], we obtain the union Rh of all Be, e ∈ I ′′

h :
Rh = ⋃

e∈I′′
h

Be. We return an Rh which maximizes the total edge weight, among all
h ∈ [z].

Approximation ratio. Let Ah
r be the subset of Ar made up of edges being part of red

edges Eh in G/P, for h ∈ [z]. As the edges of Eh form an induced matching in R(G/P),
the union of solutions of Max Leaves Induced Star Forest over graphs G[p(e)] with
e ∈ Eh can only be connected through black edges of G/P. Furthermore, two collections
of stars over G[p(e)] and G[p(f)] are necessarily not mutually induced if there is a black
edge between an endpoint of e and an endpoint of f . Consequently, Rh gives a maximum-
weighted collection of mutually induced stars over Eh and its weight is at least the weight
of Ah

r . The maximum-weighted collection over all Rh gives a z-approximation, as h ∈ [z].
Computing a 2d + 1-approx for Ab. Construction. For each part Pi, we solve

Weighted Max Independent Set on G[Pi] with weight function wV . Let I(Pi)
be the independent set returned and w(Pi) its weight. We focus now on graph G′ =
(V (G/P), E(G/P)), made up of the black edges of G/P, and solve Max Leaves In-
duced Star Forest on it with weights w(Pi). As |V (G′)| ⩽

√
n, this is achieved in

2O(
√

n).
Let (Bh)h∈[k] be the collection of stars returned, Bh = {Rh, S1

h, . . . , SLh
h } and B ∈

E(G′) be the set of edges belonging to this collection. Based on the bounded maximum
red degree of G/P, we determine a O(d)-partition of the edges of B, in order to produce
collections of mutually induced stars. Let H∗ be the graph where each edge e in the
collection (Bh)h∈[k] is represented with a vertex and two of them e, f are adjacent if and
only if there is a red edge in G/P connecting an endpoint of e with an endpoint of f .
This graph has degree at most 2d, so it can be 2d + 1-colored: let T1, . . . , T2d+1 be the
corresponding color classes. Any set of edges Tj gives us a collection of mutually induced
stars on trigraph G/P, in the sense that there is neither a black nor a red edge between
two stars.

We fix some color class: say T1 w.l.o.g. Let (B∗
h) be the collection of stars produced

by T1, where B∗
h = {R∗

h, S1,∗
h , . . . , S

L∗
h,∗

h }. For the root R∗
h = Pi of each star B∗

h, we select
an arbitrary vertex rh ∈ Pi. Let (B∗

h∗)h∈[k] be the following collection of stars (which are
mutually induced) on G: B∗∗

h = {rh} ∪
⋃L∗

h
ℓ=1 I(Sℓ,∗

h). In brief, the collection (B∗∗
h)h∈[k]

is made up of an arbitrary vertex of each root of stars B∗
h and a maximum-weighted

72

independent set of each leaf of B∗
h. Remember that we computed this collection of stars

for T1: we return a maximum-weighted collection (B∗∗
h)h∈[k] among all the ones determined

for Tj , j ∈ [2d + 1].
Approximation ratio. Any collection Bb with stars belonging only to black edges of

G/P reveals a collection of stars on the quotient graph. Concretely, two black edges of
G/P containing each a branch of Bb must be either non-adjacent or form an induced
3-vertex path on G′ = (V (G/P), E(G/P)). Conversely, considering a collection B∗ of
mutually induced stars of G′ and, for each e ∈ B∗, a collection B∗

e of mutually induced
stars on G[p(e)] produces a global collection of stars of G: then, we can partition its edges
into 2d + 1 parts (as with T1, . . . , T2d+1) such that each part contains mutually induced
stars. As the collection B computed above provides us with a heaviest collection of G′, a
maximum-weighted B∗∗

h over all Tj is a 2d + 1-approximation for B, whose weight is at
least the weight of Ab.

Conclusion of the proof. We finally output a heaviest collection of mutually induced
stars among the three approximating respectively Av, Ar, and Ab. The overall running
time is in 2Od(

√
n). An upper bound for the approximation ratio of this algorithm is

3z = O(d2).

As for the other problems treated in this article, we apply to Max Leaves Induced
Star Forest the time-approximation trade-off proposed in lemma 79.

Theorem 93. Max Leaves Induced Star Forest on an n-vertex graph G, weight
function wV , with prescribed set Y ⊆ E(G), and given with a d′-sequence, satisfies the
assumptions of lemma 79. In particular, this problem admits

• a (d + 1)2q−1-approximation in time 2Od,q(n2−q), for every integer q ⩾ 0,
• an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and

• a log n-approximation in time 2Od(n
1

log log n),
with d := c2d′+2 · 24c2d′+2+4.

Proof. The exhaustive algorithm (trying out all vertex subsets and checking whether they
induce a collection of mutually induced stars in Y) solves Max Leaves Induced Star
Forest in time 2O(n). Thus we show Max Leaves Induced Star Forest satisfies the
second item of lemma 79. We set c2 ⩾ 1 as the required exponent to turn a d′-sequence
into a neatly divided matrix of Mn,2d′+2 conform to G, and compute the various needed
colorings, the appropriate 1

2 < c1 < 1, and 2 < c3 < 3, and f(d) = 2d ⩾ 1.
Approximating Av. The algorithm makes ⌊

√
n⌋ recursive calls to solve Max Leaves

Induced Star Forest on parts Pi. Furthermore, d + 1 calls to WMIS are needed on
induced subgraphs of G/P. All of these induced subgraphs are on at most d

√
n vertices.

Approximating Ar. The algorithm makes at most
√

nd
2 recursive calls (one call per

red edge of G/P) on induced subgraphs of G with at most 2d
√

n vertices, followed by at
most 2(d − 1)d + 1 calls of Max Subset Induced Matching on full cleanups of induced
subtrigraphs of G/P with at most

√
n vertices.

Approximating Ab. The algorithm makes ⌊
√

n⌋ calls to solve WMIS on parts Pi

and one recursive call on a full cleanup of G/P on ⌊
√

n⌋ vertices.
In summary, we make Od(

√
n) recursive calls or calls to problems WMIS and Max

Subset Induced Matching (which already satisfy lemma 79 with better constants) on
induced subgraphs of G or full cleanups of (the whole) G/P, each on Od(

√
n) vertices.

Hence, by lemma 75, the induction applies.
Getting r-approximations on every subcall allows us to output a global 3(2(d − 1)d +

1)r2-approximation for Max Leaves Induced Star Forest:

73

• collection Av is approximated with ratio (d + 1)r2

• collection Ar is approximated with ratio (2(d − 1)d + 1)r2

• collection Ab is approximated with ratio (2d + 1)r2.
The extra factor 3 comes from the fact that we output the heaviest of these three solutions.

Max Edge Induced Star Forest is a particular case of Max Leaves Induced
Star Forest with wV (u) = 1 for every vertex u ∈ V (G). Furthermore, a solution of
Max Edge Induced Star Forest is a 3-approximation of a solution of Max Edge
Induced Forest. These observations together with theorem 93 allow us to state the
following result.

Corollary 94. Max Edge Induced Star Forest and Max Edge Induced Forest
on an n-vertex graph G, with prescribed set Y ⊆ E(G), and given with a d′-sequence,
admit

• an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and

• a log n-approximation in time 2Od(n
1

log log n),
with d := c2d′+2 · 24c2d′+2+4.

3.6 Limits

We now discuss the limits of our framework. We give some examples of problems that are
unlikely to have an nε-approximation algorithm on graphs of bounded twin-width. The
first such problem is Min Independent Dominating Set, where one seeks a minimum-
cardinality set which is both an independent set and a dominating set. In general n-vertex
graphs, this problem cannot be n1−ε-approximated in polynomial time unless P=NP [68],
and cannot be r-approximated in time 2o(n/r) for any r = r(n), unless the ETH fails [74].

We show that Min Independent Dominating Set has the same polytime inapprox-
imability in graphs of bounded twin-width.

Theorem 95. For every ε > 0, Min Independent Dominating Set cannot be n1−ε-
approximated in polynomial time on n-vertex graphs of twin-width at most 9 given with a
9-sequence, unless P=NP.

Proof. We perform the classic reduction of Halldórsson from SAT [68], but from Planar
3-SAT where each literal has at most two occurrences, which remains NP-complete [75].
More precisely we add a triangle di, ti, fi for each variable xi (with i ∈ [N]), and an
independent set Ij of size r for each 3-clause Cj (with j ∈ [M]). We link ti to all the
vertices of Ij whenever xi appears positively in Cj , and we link fi to all the vertices of Ij

whenever xi appears negatively in Cj . This defines a graph G with n = 3N +rM vertices.
It can be observed that if the Planar 3-SAT instance is satisfiable, then there is

an independent dominating set of size N , whereas if the formula is unsatisfiable then
any independent dominating set has size at least r. Setting r := N

2−ε
ε , the gap between

positive and negative instances is Θε(1)n1−ε, while preserving the fact that the reduction
is polynomial.

Let us now argue that G has twin-width at most 9, and that a 9-sequence of it can be
computed in polynomial time. We can first contract each Ij into a single vertex without
creating a red edge. Next we can contract every triangle di, ti, fi into a single vertex of red
degree at most 4. At this point, the current trigraph is a planar graph of maximum degree
at most 4. It was observed in [29] that planar trigraphs with maximum (total) degree at

74

most 9 have twin-width at most 9. This is because any planar graph has a pair of vertices
on the same face with at most 9 neighbors (outside of themselves) combined [76]. Hence
we get a 9-sequence for G that can be computed in polynomial time. (One could also use
the more complicated linear algorithm to get a 8 -sequence for any planar graph [9].)

Another very inapproximable is Longest Induced Path, which also does not admit
a polytime n1−ε-approximation algorithm unless P=NP [70], and cannot be r-approximated
in time 2o(n/r) for any r = o(n), unless the ETH fails [74]. The non-induced version, the
Longest Path problem, has a notoriously big gap between the best known approxima-
tion algorithm whose factor is n/ exp(Ω(

√
log n)) [69], and the sharpest conditional lower

bound which states that, for any ε > 0, a 2log1−ε n-approximation would imply that NP ⊆
QP [77].

Despite being an open question for decades the existence or conditional impossibility
of an approximation algorithm for Longest Path with approximation factor, say,

√
n has

not been settled. Nor do we know whether an nε-approximation for any ε > 0 is possible.
We now show that using our framework to obtain an nε-approximation for Longest
Induced Path of Longest Path in graphs of bounded twin-width is unlikely to work,
in the sense that it would immediately yield such an approximation factor for Longest
Path in general graphs.

Theorem 96. For any r = ω(1), an r-approximation for Longest Induced Path or
Longest Path on graphs of twin-width at most 4 given with a 4-sequence would imply
a (1 + o(1))r-approximation for Longest Path in general graphs.

Proof. It was shown in [28] that any graph obtained by subdividing every edge of an n-
vertex graph at least 2 log n has twin-width at most 4. Besides, a 4-sequence can then be
computed in polynomial time.

Let G be any graph with minimum degree at least 2 (note that this restriction does not
make Longest Path easier to approximate), and G′ be obtained from G by subdividing
each of its edges 2⌈log n⌉ times, and let s := 2⌈log n⌉ + 1. Let us observe that G has a
path of length ℓ if and only if G′ has a path of length (ℓ + 2)s − 2 if and only if G′ has
an induced path of length (ℓ + 2)s − 4. Hence a polytime r-approximation for Longest
Induced Path or Longest Path in graphs of bounded twin-width given a 4-sequence
would translate into a (1+o(1))r-approximation for Longest Path in general graphs.

We can use theorem 96 to get a similar weak obstruction to an nε-approximation
for Mutually Induced H-packing in graphs of bounded twin-width, for some infinite
family of connected graphs H. Recall that by lemma 91 such an approximation algorithm
does exist when H is a finite collection of connected graphs.

Setting H to be the set of all paths does not serve that purpose, since one can then
use the approximation algorithm for Max Induced Matching. Nevertheless this almost
works. We just need to decorate the endpoints of the paths. For every positive integer n,
let Dn be the decorated path of length n, obtained from the n-vertex path Pn by adding
for each endpoint u two adjacent vertices u′, u′′ both adjacent to u. Informally, Dn is a
path terminated by a triangle at each end.

Theorem 97. Let H := {Dn : n ∈ N+} be the family of all decorated paths. If for every
ε > 0, Mutually Induced H-packing admits an nε on n-vertex graphs of bounded
twin-width given with a 4-sequence, then so does Longest Path on general graphs.

Proof. Let G be any graph. For every pair u ̸= v ∈ V (G), define Guv as the graph
obtained from G by subdividing all its edges 2⌈log(n+2)⌉ times, and adding two adjacent

75

vertices u′, u′′ both adjacent to u, and two adjacent vertices v′, v′′ both adjacent to v. Since
there are only two triangles in Guv, only one graph of H can be present in a (mutually
induced) packing. Thus Mutually Induced H-packing is now equivalent to finding a
longest path between u and v. An nε-approximation algorithm for this problem would,
by theorem 96, give a similar approximation algorithm for Longest Path in general
graphs.

Despite u′, u′′, v′, v′′, Guv still admits a 4-sequence. For instance, first contract u′

and u′′, and contract v′ and v′′; this does not create red edges, and has the same effect
as deleting u′′ and v′′. The obtained graph is an induced subgraph of a 2⌈log(n + 2)⌉-
subdivision (of a graph on at most n+2 vertices). Hence it admits a polytime computable
4-sequence [28].

76

Conclusion

In Chapter 1, we presented a construction whose twin-width is exponential in treewidth.
An interesting point about this construction is the proof of the lower bound on twin-width.
It is quite hard to lower bound twin-width because we lack a general construction showing
that a graph has twin-width at least d for a given d, like brambles for treewidth:

▷ Question 5. For a given d, is there a construction such that the graph has twin-width
at least d if and only if the graph has the construction?

It is known from [5] that there exists a class of graphs of degree at most 3 with
unbounded twin-width, but no explicit construction is known. Perhaps the construction
presented in Section 1.2 can be adapted to find such a class.

▷ Question 6. Can we give an explicit construction of a class of graphs with degree at
most 3 and unbounded twin-width?

For the relation between the mixed minor parameter and twin-width, there is a gap
between our lower bound and the upper bound given by Theorem 14 of [4].

▷ Question 7. Is the double exponential bound on twin-width in function of the mixed-
minor parameter optimal?

In Chapter 2, we showed that deciding if twin-width is at most 4 is NP-hard. Even
if it is hard, computing twin-width is still a crucial question. Our result only rules out
anything better than a 5/4 approximation algorithm.

▷ Question 8. Is there a polynomial-time f(n)-approximation algorithm for computing
twin-width with f(n) = o(n)?

We can also ask whether the hardness result holds if we restrict ourselves to simpler
classes of graphs. We believe that this is the case for graphs of bounded treewidth.

Conjecture 98. Deciding, given an integer k, if a graph of bounded treewidth has twin-
width at most k is NP-hard.

In Chapter 3, we give several optimization problems that are easier to approximate
on graphs of bounded twin-width. We also give some problems that are still hard to
approximate.

For the Maximum Independent Set problem, there is no known lower bound on the
approximation ratio of a polynomial-time algorithm on graphs of bounded twin-width.

▷ Question 9. Is it possible to show a hardness result matching our O(nϵ)-approximation
algorithm?

If not, can a better approximation algorithm be found? From [14], we know that a
constant ratio approximation algorithm implies that there is a PTAS.

77

▷ Question 10. Is there a Polynomial Time Approximation Scheme for Maximum Inde-
pendent Set on graphs of bounded twin-width?

To give an example of a problem for which we may be closer to finding such an algo-
rithm, there is Minimum Dominating Set. From [14], we already know that there is an
approximation algorithm with a constant ratio.

▷ Question 11. Is there a PTAS for Minimum Dominating Set on graphs of bounded
twin-width?

78

Bibliography

[1] Bruno Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs”. In: Information and Computation 85.1 (1990), pp. 12–75. issn:
0890-5401. doi: https://doi.org/10.1016/0890-5401(90)90043-H. url: http:
//www.sciencedirect.com/science/article/pii/089054019090043H.

[2] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth”. In: SIAM J. Comput. 25.6 (1996), pp. 1305–1317. url: https:
//doi.org/10.1137/S0097539793251219.

[3] Sylvain Guillemot and Dániel Marx. “Finding small patterns in permutations in
linear time”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014.
2014, pp. 82–101. doi: 10.1137/1.9781611973402.7. url: https://doi.org/10.
1137/1.9781611973402.7.

[4] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. “Twin-
width I: Tractable FO Model Checking”. In: J. ACM 69.1 (2022), 3:1–3:46. url:
https://doi.org/10.1145/3486655.

[5] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watri-
gant. “Twin-width II: small classes”. In: Proceedings of the 2021 ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). 2021, pp. 1977–1996. doi: 10.1137/1.
9781611976465.118.

[6] Édouard Bonnet, O-joung Kwon, and David R. Wood. “Reduced bandwidth: a qual-
itative strengthening of twin-width in minor-closed classes (and beyond)”. In: CoRR
abs/2202.11858 (2022). url: https://arxiv.org/abs/2202.11858.

[7] Édouard Bonnet and Julien Duron. “Stretch-Width”. In: 18th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023,
Amsterdam, The Netherlands. Ed. by Neeldhara Misra and Magnus Wahlström.
Vol. 285. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 8:1–8:15.
url: https://doi.org/10.4230/LIPIcs.IPEC.2023.8.

[8] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan
Thomassé, and Szymon Toruńczyk. “Twin-width IV: ordered graphs and matrices”.
In: CoRR abs/2102.03117 (2021). arXiv: 2102.03117. url: https://arxiv.org/
abs/2102.03117.

79

https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
http://www.sciencedirect.com/science/article/pii/089054019090043H
http://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1145/3486655
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.1137/1.9781611976465.118
https://arxiv.org/abs/2202.11858
https://doi.org/10.4230/LIPIcs.IPEC.2023.8
https://arxiv.org/abs/2102.03117
https://arxiv.org/abs/2102.03117
https://arxiv.org/abs/2102.03117

[9] Petr Hlinený and Jan Jedelský. “Twin-Width of Planar Graphs Is at Most 8, and
at Most 6 When Bipartite Planar”. In: 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany.
Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis. Vol. 261. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 75:1–75:18. url: https://doi.
org/10.4230/LIPIcs.ICALP.2023.75.

[10] Daniel Král and Ander Lamaison. “Planar graph with twin-width seven”. In: CoRR
abs/2209.11537 (2022). url: https://doi.org/10.48550/arXiv.2209.11537.

[11] Hugo Jacob and Marcin Pilipczuk. “Bounding twin-width for bounded-treewidth
graphs, planar graphs, and bipartite graphs”. In: CoRR abs/2201.09749 (2022). url:
https://arxiv.org/abs/2201.09749.

[12] Petr Hliněný. Twin-width of Planar Graphs is at most 9. 2022. doi: 10.48550/
ARXIV.2205.05378. url: https://arxiv.org/abs/2205.05378.

[13] Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes,
and Stéphan Thomassé. “Twin-width VIII: delineation and win-wins”. In: CoRR
abs/2204.00722 (2022). url: https://doi.org/10.48550/arXiv.2204.00722.

[14] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Wa-
trigant. “Twin-width III: Max Independent Set, Min Dominating Set, and Color-
ing”. In: 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference). Ed.
by Nikhil Bansal, Emanuela Merelli, and James Worrell. Vol. 198. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 35:1–35:20. url: https://doi.
org/10.4230/LIPIcs.ICALP.2021.35.

[15] Michal Pilipczuk and Marek Sokolowski. “Graphs of bounded twin-width are quasi-
polynomially χ-bounded”. In: CoRR abs/2202.07608 (2022). url: https://arxiv.
org/abs/2202.07608.

[16] William Pettersson and John Sylvester. “Bounds on the Twin-Width of Product
Graphs”. In: CoRR abs/2202.11556 (2022). url: https://arxiv.org/abs/2202.
11556.

[17] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi
Watrigant. “Twin-Width and Polynomial Kernels”. In: 16th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021,
Lisbon, Portugal. Ed. by Petr A. Golovach and Meirav Zehavi. Vol. 214. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 10:1–10:16. url: https:
//doi.org/10.4230/LIPIcs.IPEC.2021.10.

[18] Wojciech Przybyszewski. VC-density and abstract cell decomposition for edge rela-
tion in graphs of bounded twin-width. 2022. url: https://arxiv.org/abs/2202.
04006.

[19] Stefan Kratsch, Florian Nelles, and Alexandre Simon. “On Triangle Counting Pa-
rameterized by Twin-Width”. In: CoRR abs/2202.06708 (2022). url: https : / /
arxiv.org/abs/2202.06708.

80

https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://doi.org/10.48550/arXiv.2209.11537
https://arxiv.org/abs/2201.09749
https://doi.org/10.48550/ARXIV.2205.05378
https://doi.org/10.48550/ARXIV.2205.05378
https://arxiv.org/abs/2205.05378
https://doi.org/10.48550/arXiv.2204.00722
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://arxiv.org/abs/2202.07608
https://arxiv.org/abs/2202.07608
https://arxiv.org/abs/2202.11556
https://arxiv.org/abs/2202.11556
https://doi.org/10.4230/LIPIcs.IPEC.2021.10
https://doi.org/10.4230/LIPIcs.IPEC.2021.10
https://arxiv.org/abs/2202.04006
https://arxiv.org/abs/2202.04006
https://arxiv.org/abs/2202.06708
https://arxiv.org/abs/2202.06708

[20] Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. “Compact Repre-
sentation for Matrices of Bounded Twin-Width”. In: 39th International Symposium
on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Mar-
seille, France (Virtual Conference). Ed. by Petra Berenbrink and Benjamin Mon-
mege. Vol. 219. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
52:1–52:14. url: https://doi.org/10.4230/LIPIcs.STACS.2022.52.

[21] Jakub Balabán and Petr Hlinený. “Twin-Width Is Linear in the Poset Width”.
In: 16th International Symposium on Parameterized and Exact Computation, IPEC
2021, September 8-10, 2021, Lisbon, Portugal. Ed. by Petr A. Golovach and Meirav
Zehavi. Vol. 214. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
6:1–6:13. url: https://doi.org/10.4230/LIPIcs.IPEC.2021.6.

[22] Jakub Balabán, Petr Hlinený, and Jan Jedelský. “Twin-width and Transductions
of Proper k-Mixed-Thin Graphs”. In: CoRR abs/2202.12536 (2022). url: https:
//arxiv.org/abs/2202.12536.

[23] André Schidler and Stefan Szeider. “A SAT Approach to Twin-Width”. In: CoRR
(accepted at ALENEX ’22) abs/2110.06146 (2021). url: https://arxiv.org/abs/
2110.06146.

[24] Daniel Král, Kristýna Pekárková, and Kenny Storgel. “Twin-width of graphs on
surfaces”. In: CoRR abs/2307.05811 (2023). url: https://doi.org/10.48550/
arXiv.2307.05811.

[25] Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, and Sang-il Oum. “Twin-
width of subdivisions of multigraphs”. In: CoRR abs/2306.05334 (2023). url: https:
//doi.org/10.48550/arXiv.2306.05334.

[26] Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. “Bounds for the
Twin-width of Graphs”. In: CoRR abs/2110.03957 (2021). url: https://arxiv.
org/abs/2110.03957.

[27] Yonatan Bilu and Nathan Linial. “Lifts, Discrepancy and Nearly Optimal Spectral
Gap*”. In: Combinatorica 26.5 (2006), pp. 495–519. doi: 10.1007/s00493-006-
0029-7. url: https://doi.org/10.1007/s00493-006-0029-7.

[28] Pierre Bergé, Édouard Bonnet, and Hugues Déprés. “Deciding twin-width at most 4
is NP-complete”. In: CoRR abs/2112.08953 (2021). url: https://arxiv.org/abs/
2112.08953.

[29] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. “Twin-
width VI: the lens of contraction sequences”. In: CoRR, accepted at SODA 2022
abs/2111.00282 (2021). url: https://arxiv.org/abs/2111.00282.

[30] Jörg Flum and Martin Grohe. “Fixed-Parameter Tractability, Definability, and Model-
Checking”. In: SIAM J. Comput. 31.1 (2001), pp. 113–145. url: https://doi.org/
10.1137/S0097539799360768.

[31] Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, and Sebastian Ordyniak. “Faster
Existential FO Model Checking on Posets”. In: Logical Methods in Computer Science
11.4 (2015). doi: 10.2168/LMCS-11(4:8)2015. url: https://doi.org/10.2168/
LMCS-11(4:8)2015.

[32] Robert Ganian, Petr Hlinený, Daniel Král, Jan Obdrzálek, Jarett Schwartz, and
Jakub Teska. “FO Model Checking of Interval Graphs”. In: Logical Methods in
Computer Science 11.4 (2015). doi: 10.2168/LMCS-11(4:11)2015. url: https:
//doi.org/10.2168/LMCS-11(4:11)2015.

81

https://doi.org/10.4230/LIPIcs.STACS.2022.52
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://arxiv.org/abs/2202.12536
https://arxiv.org/abs/2202.12536
https://arxiv.org/abs/2110.06146
https://arxiv.org/abs/2110.06146
https://doi.org/10.48550/arXiv.2307.05811
https://doi.org/10.48550/arXiv.2307.05811
https://doi.org/10.48550/arXiv.2306.05334
https://doi.org/10.48550/arXiv.2306.05334
https://arxiv.org/abs/2110.03957
https://arxiv.org/abs/2110.03957
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1007/s00493-006-0029-7
https://arxiv.org/abs/2112.08953
https://arxiv.org/abs/2112.08953
https://arxiv.org/abs/2111.00282
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.2168/LMCS-11(4:8)2015
https://doi.org/10.2168/LMCS-11(4:8)2015
https://doi.org/10.2168/LMCS-11(4:8)2015
https://doi.org/10.2168/LMCS-11(4:11)2015
https://doi.org/10.2168/LMCS-11(4:11)2015
https://doi.org/10.2168/LMCS-11(4:11)2015

[33] Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, Sebastian Or-
dyniak, M. S. Ramanujan, and Saket Saurabh. “FO Model Checking on Posets of
Bounded Width”. In: IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 2015, pp. 963–974.
doi: 10.1109/FOCS.2015.63. url: https://doi.org/10.1109/FOCS.2015.63.

[34] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. “Deciding First-Order
Properties of Nowhere Dense Graphs”. In: J. ACM 64.3 (2017), 17:1–17:32. doi:
10.1145/3051095. url: https://doi.org/10.1145/3051095.

[35] Zdenek Dvorák, Daniel Král, and Robin Thomas. “Testing first-order properties for
subclasses of sparse graphs”. In: J. ACM 60.5 (2013), 36:1–36:24. doi: 10.1145/
2499483. url: https://doi.org/10.1145/2499483.

[36] Stephan Kreutzer and Anuj Dawar. “Parameterized Complexity of First-Order Logic”.
In: Electronic Colloquium on Computational Complexity (ECCC) 16 (2009), p. 131.
url: http://eccc.hpi-web.de/report/2009/131.

[37] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. “Improved Approxi-
mation Algorithms for Minimum Weight Vertex Separators”. In: SIAM J. Comput.
38.2 (2008), pp. 629–657. doi: 10.1137/05064299X. url: https://doi.org/10.
1137/05064299X.

[38] Tuukka Korhonen. “Single-Exponential Time 2-Approximation Algorithm for Treewidth”.
In: CoRR abs/2104.07463 (2021). url: https://arxiv.org/abs/2104.07463.

[39] Sang-il Oum. “Approximating rank-width and clique-width quickly”. In: ACM Trans.
Algorithms 5.1 (2008), 10:1–10:20. url: https://doi.org/10.1145/1435375.
1435385.

[40] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. “Complexity of finding
embeddings in a k-tree”. In: SIAM Journal on Algebraic Discrete Methods 8.2 (1987),
pp. 277–284.

[41] Tatsuo Ohtsuki, Hajimu Mori, Ernest S. Kuh, Toshinobu Kashiwabara, and Toshio
Fujisawa. “One-dimensional logic gate assignment and interval graphs”. In: The
IEEE Computer Society’s Third International Computer Software and Applications
Conference, COMPSAC 1979, 6-8 November, 1979, Chicago, Illinois, USA. IEEE,
1979, pp. 101–106. doi: 10.1109/CMPSAC.1979.762474. url: https://doi.org/
10.1109/CMPSAC.1979.762474.

[42] Toshinobu Kashiwabara. “NP-completeness of the problem of finding a minimal-
clique number interval graph containing a given graph as a subgraph”. In: Proc.
1979 Int. Symp. Circuit Syst. 1979, pp. 657–660.

[43] Thomas Lengauer. “Black-White Pebbles and Graph Separation”. In: Acta Infor-
matica 16 (1981), pp. 465–475. doi: 10.1007/BF00264496. url: https://doi.org/
10.1007/BF00264496.

[44] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. “Clique-
Width is NP-Complete”. In: SIAM J. Discret. Math. 23.2 (2009), pp. 909–939. doi:
10.1137/070687256. url: https://doi.org/10.1137/070687256.

[45] Petr Hlinený and Sang-il Oum. “Finding Branch-Decompositions and Rank-Decompositions”.
In: SIAM J. Comput. 38.3 (2008), pp. 1012–1032. url: https://doi.org/10.1137/
070685920.

82

https://doi.org/10.1109/FOCS.2015.63
https://doi.org/10.1109/FOCS.2015.63
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3051095
https://doi.org/10.1145/2499483
https://doi.org/10.1145/2499483
https://doi.org/10.1145/2499483
http://eccc.hpi-web.de/report/2009/131
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/05064299X
https://arxiv.org/abs/2104.07463
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1109/CMPSAC.1979.762474
https://doi.org/10.1109/CMPSAC.1979.762474
https://doi.org/10.1109/CMPSAC.1979.762474
https://doi.org/10.1007/BF00264496
https://doi.org/10.1007/BF00264496
https://doi.org/10.1007/BF00264496
https://doi.org/10.1137/070687256
https://doi.org/10.1137/070687256
https://doi.org/10.1137/070685920
https://doi.org/10.1137/070685920

[46] Sigve Hortemo Sæther and Martin Vatshelle. “Hardness of computing width pa-
rameters based on branch decompositions over the vertex set”. In: Theor. Comput.
Sci. 615 (2016), pp. 120–125. doi: 10.1016/j.tcs.2015.11.039. url: https:
//doi.org/10.1016/j.tcs.2015.11.039.

[47] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.

[48] Neil Robertson and Paul D. Seymour. “Graph Minors. XIII. The Disjoint Paths
Problem”. In: J. Comb. Theory, Ser. B 63.1 (1995), pp. 65–110. url: https://doi.
org/10.1006/jctb.1995.1006.

[49] James B. Saxe. “Dynamic-Programming Algorithms for Recognizing Small-Bandwidth
Graphs in Polynomial Time”. In: SIAM J. Algebraic Discret. Methods 1.4 (1980),
pp. 363–369. url: https://doi.org/10.1137/0601042.

[50] Markus Sortland Dregi and Daniel Lokshtanov. “Parameterized Complexity of Band-
width on Trees”. In: Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I. Ed. by Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Kout-
soupias. Vol. 8572. Lecture Notes in Computer Science. Springer, 2014, pp. 405–416.
url: https://doi.org/10.1007/978-3-662-43948-7%5C_34.

[51] Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi
Rotics. “Polynomial-time recognition of clique-width ⩽3 graphs”. In: Discret. Appl.
Math. 160.6 (2012), pp. 834–865. doi: 10.1016/j.dam.2011.03.020. url: https:
//doi.org/10.1016/j.dam.2011.03.020.

[52] Michel Habib and Christophe Paul. “A simple linear time algorithm for cograph
recognition”. In: Discret. Appl. Math. 145.2 (2005), pp. 183–197. doi: 10.1016/j.
dam.2004.01.011. url: https://doi.org/10.1016/j.dam.2004.01.011.

[53] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan
Mihajlin, Jakub Pachocki, and Arkadiusz Socala. “Tight Lower Bounds on Graph
Embedding Problems”. In: J. ACM 64.3 (2017), 18:1–18:22. url: https://doi.
org/10.1145/3051094.

[54] Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav
Zehavi. “Computation of Hadwiger Number and Related Contraction Problems:
Tight Lower Bounds”. In: ACM Trans. Comput. Theory 13.2 (2021), 10:1–10:25.
doi: 10.1145/3448639. url: https://doi.org/10.1145/3448639.

[55] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-SAT”. In: J.
Comput. Syst. Sci. 62.2 (2001), pp. 367–375. doi: 10.1006/jcss.2000.1727. url:
https://doi.org/10.1006/jcss.2000.1727.

[56] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have
Strongly Exponential Complexity?” In: J. Comput. Syst. Sci. 63.4 (2001), pp. 512–
530. doi: 10.1006/jcss.2001.1774. url: https://doi.org/10.1006/jcss.2001.
1774.

[57] Craig A. Tovey. “A simplified NP-complete satisfiability problem”. In: Discret. Appl.
Math. 8.1 (1984), pp. 85–89. url: https://doi.org/10.1016/0166-218X(84)
90081-7.

83

https://doi.org/10.1016/j.tcs.2015.11.039
https://doi.org/10.1016/j.tcs.2015.11.039
https://doi.org/10.1016/j.tcs.2015.11.039
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/0601042
https://doi.org/10.1007/978-3-662-43948-7%5C_34
https://doi.org/10.1016/j.dam.2011.03.020
https://doi.org/10.1016/j.dam.2011.03.020
https://doi.org/10.1016/j.dam.2011.03.020
https://doi.org/10.1016/j.dam.2004.01.011
https://doi.org/10.1016/j.dam.2004.01.011
https://doi.org/10.1016/j.dam.2004.01.011
https://doi.org/10.1145/3051094
https://doi.org/10.1145/3051094
https://doi.org/10.1145/3448639
https://doi.org/10.1145/3448639
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/0166-218X(84)90081-7
https://doi.org/10.1016/0166-218X(84)90081-7

[58] Johan Håstad. “Clique is Hard to Approximate Within n1−ϵ”. In: 37th Annual Sym-
posium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA,
14-16 October, 1996. 1996, pp. 627–636. doi: 10.1109/SFCS.1996.548522. url:
https://doi.org/10.1109/SFCS.1996.548522.

[59] David Zuckerman. “Linear Degree Extractors and the Inapproximability of Max
Clique and Chromatic Number”. In: Theory of Computing 3.1 (2007), pp. 103–128.

[60] Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. “Graph Prod-
ucts Revisited: Tight Approximation Hardness of Induced Matching, Poset Dimen-
sion and More”. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013. Ed. by Sanjeev Khanna. SIAM, 2013, pp. 1557–1576. doi: 10.1137/1.
9781611973105.112. url: https://doi.org/10.1137/1.9781611973105.112.

[61] Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk.
“Twin-Width and Types”. In: 49th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. Ed. by
Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 123:1–123:21. doi: 10.
4230/LIPIcs.ICALP.2022.123. url: https://doi.org/10.4230/LIPIcs.ICALP.
2022.123.

[62] Irit Dinur and David Steurer. “Analytical approach to parallel repetition”. In: Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014. Ed. by David B. Shmoys. ACM, 2014, pp. 624–633. doi: 10.1145/
2591796.2591884. url: https://doi.org/10.1145/2591796.2591884.

[63] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[64] Marek Cygan, Lukasz Kowalik, Marcin Pilipczuk, and Mateusz Wykurz. “Exponential-
Time Approximation of Hard Problems”. In: CoRR abs/0810.4934 (2008). arXiv:
0810.4934. url: http://arxiv.org/abs/0810.4934.

[65] Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. “Approximation of
max independent set, min vertex cover and related problems by moderately expo-
nential algorithms”. In: Discret. Appl. Math. 159.17 (2011), pp. 1954–1970. doi: 10.
1016/j.dam.2011.07.009. url: https://doi.org/10.1016/j.dam.2011.07.009.

[66] Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and
Jesper Nederlof. “New Tools and Connections for Exponential-Time Approxima-
tion”. In: Algorithmica 81.10 (2019), pp. 3993–4009. doi: 10.1007/s00453-018-
0512-8. url: https://doi.org/10.1007/s00453-018-0512-8.

[67] Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. “Independent
Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time)
Approximation Hardnesses”. In: 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 2013,
pp. 370–379. doi: 10.1109/FOCS.2013.47. url: https://doi.org/10.1109/FOCS.
2013.47.

[68] Magnús M. Halldórsson. “Approximating the Minimum Maximal Independence Num-
ber”. In: Inf. Process. Lett. 46.4 (1993), pp. 169–172. doi: 10.1016/0020-0190(93)
90022-2. url: https://doi.org/10.1016/0020-0190(93)90022-2.

84

https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1137/1.9781611973105.112
https://doi.org/10.1137/1.9781611973105.112
https://doi.org/10.1137/1.9781611973105.112
https://doi.org/10.4230/LIPIcs.ICALP.2022.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.123
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://arxiv.org/abs/0810.4934
http://arxiv.org/abs/0810.4934
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1007/s00453-018-0512-8
https://doi.org/10.1007/s00453-018-0512-8
https://doi.org/10.1007/s00453-018-0512-8
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/0020-0190(93)90022-2

[69] Harold N. Gabow and Shuxin Nie. “Finding a long directed cycle”. In: ACM Trans.
Algorithms 4.1 (2008), 7:1–7:21. doi: 10.1145/1328911.1328918. url: https:
//doi.org/10.1145/1328911.1328918.

[70] Carsten Lund and Mihalis Yannakakis. “The Approximation of Maximum Subgraph
Problems”. In: Automata, Languages and Programming, 20nd International Collo-
quium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceedings. Ed. by Andrzej Lin-
gas, Rolf G. Karlsson, and Svante Carlsson. Vol. 700. Lecture Notes in Computer
Science. Springer, 1993, pp. 40–51. doi: 10 . 1007 / 3 - 540 - 56939 - 1 \ _60. url:
https://doi.org/10.1007/3-540-56939-1%5C_60.

[71] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
“Approximating Clique is Almost NP-Complete (Preliminary Version)”. In: 32nd
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
1-4 October 1991. IEEE Computer Society, 1991, pp. 2–12. doi: 10.1109/SFCS.
1991.185341. url: https://doi.org/10.1109/SFCS.1991.185341.

[72] Noga Alon, Guoli Ding, Bogdan Oporowski, and Dirk Vertigan. “Partitioning into
graphs with only small components”. In: J. Comb. Theory, Ser. B 87.2 (2003),
pp. 231–243. doi: 10.1016/S0095-8956(02)00006-0.

[73] Jesper Nederlof. Inclusion exclusion for hard problems. Master thesis. 2008.
[74] Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. “Time-approximation

trade-offs for inapproximable problems”. In: J. Comput. Syst. Sci. 92 (2018), pp. 171–
180. doi: 10.1016/j.jcss.2017.09.009. url: https://doi.org/10.1016/j.
jcss.2017.09.009.

[75] László Kozma. “Minimum Average Distance Triangulations”. In: Algorithms - ESA
2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12,
2012. Proceedings. Ed. by Leah Epstein and Paolo Ferragina. Vol. 7501. Lecture
Notes in Computer Science. Springer, 2012, pp. 695–706. doi: 10.1007/978- 3-
642-33090-2_60. url: https://doi.org/10.1007/978-3-642-33090-2%5C_60.

[76] Anton Kotzig. “Contribution to the theory of Eulerian polyhedra”. In: Mat. Cas.
SAV (Math. Slovaca) 5 (1955), pp. 111–113.

[77] David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. “On Approximating
the Longest Path in a Graph”. In: Algorithmica 18.1 (1997), pp. 82–98. doi: 10.
1007/BF02523689. url: https://doi.org/10.1007/BF02523689.

85

https://doi.org/10.1145/1328911.1328918
https://doi.org/10.1145/1328911.1328918
https://doi.org/10.1145/1328911.1328918
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1007/3-540-56939-1%5C_60
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1016/S0095-8956(02)00006-0
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1007/978-3-642-33090-2_60
https://doi.org/10.1007/978-3-642-33090-2_60
https://doi.org/10.1007/978-3-642-33090-2%5C_60
https://doi.org/10.1007/BF02523689
https://doi.org/10.1007/BF02523689
https://doi.org/10.1007/BF02523689

	Contents
	The twin-width of graphs
	Definitions and observations
	Partitions sequences
	Contractions sequences
	Graph operations and twin-width sequences

	Bounds on twin-width
	Long subdivisions have twin-width at most four
	Twin width can be exponential in treewidth

	Deciding twin-width at most 4 is NP-hard
	Introduction
	Outline of the proof of the theorem
	The Exponential-Time Hypothesis
	Organization of this chapter

	Encoding a trigraph by a graph
	Hardness of determining if the twin-width is at most four
	Fence gadget
	Propagation, wire, and long chain
	Binary AND gate
	Binary OR gate
	Variable gadget
	Clause gadget
	Overall construction and correctness

	Approximation algorithms parameterized by twin-width
	Introduction
	Preliminaries
	Handled graph problems
	Balanced partition sequences
	Subexponential-time constant-approximation algorithm
	Improving the approximation factor
	Time-approximation trade-offs

	Finding the suitable generalization: the case of Coloring
	Edge-based problems: the case of Max Induced Matching
	Technical generalizations
	Mutually Induced H-packing
	Independent induced packing of stars and forests

	Limits

	Conclusion

