SPIN GLASSES AND THE PARISI FORMULA
JEAN-CHRISTOPHE MOURRAT

ABSTRACT. Spin glasses are models of statistical mechanics in which a large number
of simple elements interact with one another in a disordered fashion. Omne of the
fundamental results of the theory is the Parisi formula, which identifies the limit of the
free energy of a large class of such models. Yet many interesting models remain out
of reach of the classical theory, and direct generalizations of the Parisi formula yield
invalid predictions. I will report here on some partial progress towards the resolution of
this problem, which also brings a new perspective on classical results.

The aim of statistical mechanics is to describe the emergent properties of systems
that are made of a large number of simple elements. Spin glasses are particular such
models, in which there is a lot of “disagreement” between the elementary units of the
system'. Mathematically, this is usually modeled by introducing randomness into the
interactions between the elements. In the first section of this note, we make this concrete
by presenting a basic spin glass called the Sherrington-Kirkpatrick (SK) model. We
define the free energy of the model, and state a fundamental result, called the Parisi
formula, that identifies the asymptotic behavior of the free energy in the limit of large
system size. We also discuss surprising aspects of this formula, and in Section 2, we
present a more recent alternative formulation. In Section 3, some variants of the SK
model are introduced for which the limit free energy is currently not known. This is the
fundamental problem that has driven most of my work in the topic. In Section 4, a point
of view based on partial differential equations is introduced that allows us to formulate a
natural conjecture for the limit free energy of these models. Partial results consistent
with this conjecture are also presented. In Section 5, we discuss a promising connection
between this point of view based on partial differential equations and the alternative
representation of the Parisi formula that appeared in Section 2. The note ends with a
short concluding section.

1. THE PARISI FORMULA

We start by introducing a basic spin glass called the Sherrington-Kirkpatrick (SK)
model [85]. We give ourselves independent Gaussian random variables (Wj ;); j»1 of zero
mean and unit variance, and for every o € RV, we set

1 N
1.1 Hy(o) = — W, i0;0;.
( ) N( ) \/Nl"?zzl ) J

We are interested in questions such as: what is the limit of
1
1.2 — max Hy(o
(12) N ge{-1,1}N N(o)
as N tends to infinity? This problem is often motivated with the following story. There
are N individuals {1,..., N} that need to be split into two groups. We can represent
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one such splitting using a vector o € {~1,1}", with the understanding that ¢; indicates
the group to which individual 7 is assigned. The coefficients W;; represent how much
individual ¢ likes individual j, and we would like to find an assignment ¢ that maximizes
global welfare, that is, a maximizer in {-1,1}" of

N
(1.3) o > Wiilis oy
i,j=1

For o € {-1,1}", we have 0;0; = 21(5,-;1 — 1, so the maximization of (1.3) is essentially
equivalent to that in (1.2), up to an affine transformation.

Finding a configuration o € {-1,1}V that maximizes
Hy(o) is a non-trivial task. Even with N = 3, we see in
situations such as that depicted in Figure 1.1 that it will
typically not be possible to find a configuration ¢ such that
for every ¢ and j, we have (W;; + Wj;)o;0; > 0. In other
words, certain pairs will be frustrated: two individuals ¢
and j may be assigned to different groups even though they
would rather be together, or vice versa. The presence of
these frustrations is the key signature of spin glasses.

FIGURE 1.1. A simple
situation with frustration.
The coefficients (W;;) sug-
gest to set o; = 0, 0; = Ok,
and o; = -0y, but we can-
not realize these three con-
ditions simultaneously.

More fundamentally, one can show that the problem, given
the coefficients (W;;), of finding a configuration o € {+1}¥
that maximizes Hpy, is NP-hard in general. In fact, the
problem is NP-hard even if we only aim to find a configuration
o € {1}V such that Hy(c) is at least a fixed positive
fraction of the maximal value, no matter how small we
allow the fraction to be [6]. But here we depart from such
worst-case analysis, and focus instead on “typical” choices of the coefficients (Wj;), by
postulating that they are chosen randomly.

Standard concentration inequalities allow us to show that the maximum in (1.2) deviates
only little from its expectation in the limit of large IV, so we may as well focus on studying
its expectation. In addition to the expectation of (1.2), it is natural to also consider, for
each > 0, the quantity

(14) Px(®) = yBlos(y %) e(Btin(o)

oe{-1,1}N

There are several reasons for this. From the point of view of statistical mechanics, this
quantity is closely related to the Gibbs measure associated with Hy (), which is the
probability measure that attributes a probability proportional to exp(SHy (o)) to each
configuration o € {~1,1}". (See [40, Section 1.1] for some motivations behind the concept
of Gibbs measures.) Mathematically, the free energy can also be seen as a sort of Laplace
transform of the quantity of interest, and contains much information about the geometry
of Hy and the structure of the Gibbs measure. It is often more convenient to work
with, and if we so wish, we can a posteriori recover information about the maximum
in (1.2) by considering Fn(3)/8 for large 8. The normalization of Hy has been chosen
so that max_; 1y~ Hy is of order N. The free energy thus allows us to interpolate
between a large-f regime in which the sum in (1.4) is dominated by the contribution
of the configurations o for which Hy (o) is large (“energy dominates”), and a small-3
regime in which the very large number of configurations with relatively small Hy (o)
provide the dominant contribution (“entropy dominates”).
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The problem of identifying the large-N limit of the free energy Fy (/) turns out to
be surprisingly rich and difficult. An initial guess for this limit was proposed in the
original paper [85] that introduced the model, but it was already understood there that
the proposed answer could not be valid for large values of 5. In 1979, Giorgio Parisi
then came up with a sophisticated non-rigorous procedure, called the replica method,
that led to what is now called the Parisi formula for this limit [77, 78, 79, 80] (see also
[65, 81] for more on the replica method). After many years of effort, Francesco Guerra
and Michel Talagrand managed to prove the Parisi formula rigorously [47, 91] in 2003. A
more conceptual proof, centered around the fact that the associated Gibbs measure is
asymptotically ultrametric?, was then developed by Dmitry Panchenko, and generalized
to a broader class of models [72, 73]. The Parisi formula takes the following form.

Theorem 1.1 (Parisi formula [47, 72, 73, 91]). For every 5 >0, we have

1
15 = lim Fy(8)= inf (<I> 0,0—2ft 0,t dt),
(1.5) F(B) = Jim Fy(B)= inf {®a(0,0)=5" J tu((0,1])
where P([0,1]) denotes the space of probability measures on [0,1], and ®,:[0,1] xR - R
is the solution to

(1.6) {‘atq’“(t’x) - 52(‘93%(’5793) + u([07t])(8x<1>u(t,x))2) for (t,x) €[0,1] x R,
®,(1,z) = log cosh(x) for z € R.

The formula (1.5) came as a surprise, and its validity was initially controversial.
Compared to more classical problems of statistical mechanics, several aspects stand
out. The first is simply the complexity of the formula, as the optimization variable
is a probability measure, while for more classical models it usually ranges in a finite-
dimensional space. A second and perhaps more fundamental surprise is that the limit
free energy is expressed as an infimum, rather than a supremum. Indeed, even before
passing to the limit N — +oo, the free energy of essentially any system can be written as
a supremum of a functional involving intuitive energy and entropy terms. To be precise,
for every probability measure p over a measure space E and every bounded measurable
function g : F - R, we have

(1.7) logfegduz sup (fgdu—H(um)),

veP(F)
where H(v| ) stands for the relative entropy of v with respect to p, which is +oo if v is
not absolutely continuous with respect to u, and is otherwise given by

dv dv
Hv|p) = 4 log(du) dp.
The optimum in (1.7) is achieved by the corresponding Gibbs measure, that is, the
probability measure v* whose Radon-Nikodym derivative with respect to u is proportional
to e?. The first term on the right side of (1.7) expresses the average of g under the
measure v, while the second term expresses the cost for samples from p to look like
samples from v*. In our case, we think of g as being SHxy and of u as being the uniform
measure on {-1,1}". For finite N, the representation coming from (1.7) is complicated
since ¢ is random and we need to maximize over all probability measures over {-1,1},

2Although the concept of ultrametricity is central to the topic, it will not be discussed much in this
note. The interested reader can consult [65] for a light introduction, and [40, Section 5.7] and [73] for
more precision.
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but one could a priori hope that some simplifications occur in the limit of large N, so
that we ultimately end up with a simple formula for the limit free energy of the form

(1.8) f(B) = sup (Be-s),

(e,s)el

for some explicit set I € R?. In simpler systems of statistical mechanics, one can often
obtain a representation of the form in (1.8) by identifying all pairs (e, s) such that, roughly
speaking,

1 _
(1.9) Nlog (2 A 1{HN(U)~N6}) ~ =S
oe{-1,1}N

or at a minimum, one can deduce legible information in the spirit of (1.9) from the
identification of the limit free energy. For spin glasses however, although we know that
a representation of the form (1.8) exists simply because f is convex, I am not aware of
a reasonably direct and concrete way to describe the set I, in other words the set of
energy-entropy pairs that are achievable by the system. This is related to the fact that,
even though the convexity of f is easily checked as Fly itself is convex (e.g. by (1.7)), it is
not at all clear to verify this convexity property directly from the limit expression given
by Theorem 1.1.

Since maximization problems are much more standard representations of free energies,

one may call the variational problem in (1.5) an “inverted” variational representation®.

2. UN-INVERTING THE PARISI FORMULA

An “un-inverted” representation of the limit free energy of the SK model, that is, one
that takes the form of a supremum, was recently found. Recall that we denote by f(3)
the large-N limit of the free energy Fn () defined in (1.4).

Theorem 2.1 (Un-inverted Parisi formula [66]). Let (By)t0 denote a Brownian motion
defined on some filtered probability space (2, F,(Ft)es0,P), and let Mart denote the
space of bounded martingales on ). For every 3 >0, we have

@1 1) sw (3R] Bl @)]-# s [ (s~ Bla2)as),

where for every A € R, we set

SL+N)log(1+A) +(1-A)log(1-N)] if[A <1,

+00 otherwise.

¢"(A) =

The representation in (2.1) was obtained by manipulating the Parisi formula from
Theorem 1.1, using the fact from [8] that the functional inside the infimum in (1.5) is
convex, together with duality arguments. The connection between this representation
and the finite-IV system remains to be discovered. There are however some indications
for how this connection might emerge. For instance, the quantity E[¢*(a)] resembles a
relative entropy as in (1.7). Indeed, denoting by

1+m 1-m

Ber(m) := 5 o1+ 5 01

3The real benefit of this terminology is that it is robust to the sign convention we choose, as many
authors (and we too later in this note) would add a minus sign to the definition of the free energy.
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the law of a random variable taking values in {-1,1} with mean m, we have that

1y (é) Ber(m;) | (Ber(O))®N) L %qﬁ*(m-)
N \io ' NE .

and this quantity can be rewritten as E[¢*(a1)] provided that the law of o is + SN Om,-
We recall that for our model, we think of the formula (1.7) with p chosen to be the
uniform measure over {~1,1}", which is (Ber(0))®".

In truth, the Gibbs measure (which is the optimizer of (1.7)) is not a product measure of
the form ®2, Ber(m;), and the last term in (2.1) accounts for a correction. For specialists,
the structure of the formula in (2.1) is likely to evoke the finite- N representation of the
free energy first introduced by Thouless, Anderson and Palmer [94] and further developed
in [9, 10, 29, 30], where a similar correction term appears.

To give further substance to the claim that there should be a direct way to understand
the emergence of the variational formula in (2.1) from the finite-N system, I would like
to make a detour to questions that concern optimization algorithms; a more detailed
overview of these developments is in [43]. First, by taking the large-g limit of f(3)/8,
one can show that

1
2.2 li —E H
(22) fim SE max  Hn(o)

1
= sup {ﬁE[alBl] : |a1| <1 and Vt e [0,1], [ (E[a?] - 5)ds > 0}.
acMart t

In a series of recent works, an algorithmic threshold ALG was identified such that the
following holds. On the one hand, there exists an efficient algorithm that, given the
coefficients (Wj;), returns a configuration ¢ such that Hy(o)/N is ALG(1 + o(1)) with
probability tending to 1 as N tends to infinity [41, 52, 53, 61, 84, 88]. On the other hand,
no matter how small € > 0 is chosen, with probability tending to 1 as N tends to infinity,
an algorithm that is Lipschitz continuous with respect to the input weights (W;;) will not
be able to output a configuration o such that Hy(0)/N exceeds ALG —¢ [42, 44, 45, 51].
This threshold value ALG can be written as

(2.3) ALG = sup {\/iE[alBl] : Jon| <1 and Yt €[0,1], E[o?] = t}.

aeMart

One point I find very interesting is that in this case, we have a clear connection between the
variational formula (2.3) and the spin-glass system at finite N. Indeed, for essentially every
choice of martingale o € Mart that satisfies the constraints |a1| < 1 and V¢, E[a?] = t,
one can construct an algorithm that outputs a configuration o such that Hy(o)/N is
approximately \/iE[alBl]. The algorithm iteratively updates a point in RV, with small
increments that we can here approximate by a continuous evolution m : [0,1] - RY, and
for each t € [0, 1], the empirical measure of the coordinates % N O, (1) converges weakly
to the law of .

In short, I feel particularly interested in, and have the impression that we can make
progress upon, the following question:

Can we interpret the variational formula in (2.1) in terms of finite-N constructs?

Part of my interest in this question is that I think that it has the potential to give us a
new way to understand and study spin glasses. Also, once we have a satisfactory answer
to this question at a heuristic level, perhaps we could devise a new proof at least of the
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inequality stating that, for every a € Mart,
1
(2.4) (8) > BV2E[01B1] - E[¢" (01)] - 5% sup | (s -~ E[al])ds.

As will be explained, having a direct proof of the inequality (2.4) that does not rely on
the Parisi formula would be tremendously useful for resolving the main open problem
discussed in the next section.

3. TOWARDS MORE GENERAL MODELS

Building on the insights provided by the Parisi formula and its proof, along with
subsequent developments, we now have a much deeper understanding of the Sherrington-
Kirkpatrick model and the structure of its Gibbs measures. Moreover, the ideas first
developed for the SK model have proven remarkably fruitful in a wide range of other
contexts that exhibit similar kinds of “frustration”, ranging from statistics and high-
dimensional geometry to computer science and combinatorics. Examples include random
constraint satisfaction problems [35, 37, 55, 57, 59, 60], community detection and related
large-scale statistical learning problems [1, 97] [40, Section 4], error-correcting codes in
information theory [82], and classical combinatorial problems such as graph coloring
[31, 36, 68].

This being said, and perhaps surprisingly, some models
that seem like modest generalizations of the SK model still
resist analysis. One such example can be constructed as
follows. In the definition of Hy for the SK model in (1.1),
we sum over all pairs (7,7). For the new model we consider
now, we imagine that the indices are organized over two
layers as on Figure 3.1, and we only sum over pairs of indices FIGURE 3.1. The graph of
that belong to different layers. Such models are related to  direct interactions in the bi-
several classical models of artificial neural networks, such partite model.
as the Hopfield model [3, 4, 5, 12, 50, 56, 93] and restricted
Boltzmann machines [16, 48, 49, 86, 95, 96].

To formalize the model precisely, we can first give ourselves, for each integer N,
two integers N1(N) and Ny(NN) that represent the sizes of the two layers displayed on
Figure 3.1. We will keep the dependency of Ny and N2 on N implicit from now on, and
assume that there exist A1, Ay € (0, +00) such that

N . Ny
(3.1) 1\1[1_120 N A1 and ]\}1—{20 N A2.
Now, for each o = (01,02) = (01,1,.-.,01,N,,02,15---,02.N,) € RN x RV we set
: 1
(3.2) HYP(0) = —= > Wijo1i09;.

VN i<N1,j<N2

We refer to this model as the bipartite model. Writing ¥y := {~1,1}M x {~1,1}2, we
would like for instance to understand the large-N behavior of

1 1 i
(3.3) —Elog (— > exp(ﬂHEp(J))).
N |2N| O'EZN
While this bipartite model may seem like a small modification of the SK model, to
this day, we do not know what the limit of the quantity in (3.3) is; in fact, we do not
even know that it converges as N tends to infinity in this case. (The same goes for the
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maximum of H]k\);p over Yn.) Moreover, the problem we encounter here goes beyond that
of adjusting some technical part of the proof of the Parisi formula. Indeed, although
one can a priori imagine several possible ways of extending the Parisi formula to this
bipartite model, one can in fact show that none of those candidates for the limit are valid
[62, Section 6.

In order to clarify the key difference between the bipartite and the SK models at the
technical level, it is useful to change a bit our viewpoint on the definition of these random
fields Hy and H]ti,lp. Instead of writing them down explicitly as in (1.1) and (3.2), we can
equivalently specify that they are centered Gaussian fields, and display their covariance.
For the SK model, we have for every o,7 ¢ RN that

o-7\?
(34) E[Hx (o) Hy(7)] =N (55 )

where o -7 denotes the scalar product between o and 7. More generally, one could consider
centered Gaussian fields (Hy (o)) er~y such that, for some smooth function £ : R - R, we
have for every o,7 ¢ RV that

o-T

(35) B [Hy (o) Hy()] = Ne( ST )

this corresponds to an assumption on the invariance of the law of Hy under orthogonal
transformations. The SK model (1.1) corresponds to the case when £(r) = r2. For
£(r) = r3, we can construct a Gaussian field that satisfies (3.5) by setting

N
Hy(o) = % > W k0i0;0%,
i,j,k=1
where (W; ;1) are independent centered Gaussians with unit variance. For every integer
p 2 1, we can generalize this and construct a centered Gaussian field Hy such that (3.5)
holds with £(r) = rP. By considering linear combinations of independent versions of such
fields, we can build a centered Gaussian field Hy such that (3.5) holds with

(3.6) &(r) = Ji:)af)rp,

provided that the sequence (ap)p>1 decays to zero sufficiently fast. It turns out that the
functions of the form in (3.6) are all those such that (3.5) holds for some centered Gaussian
field Hy (see [83], and [64, Proposition 6.6] for a more general statement covering cases
with multiple types of spins).

In the case of the bipartite model (3.2), we have instead that, for every o, 7 € RVt x R™2,
; ; o111\ {02 T

(3.7) E[HYP (o) HYP ()] :N(%)(%)
The key technical difference between the SK and the bipartite models is that here the
relevant function that shows up on the right side of (3.7) is the mapping (z,y) — xy,
which is not convezr. To be precise, for models with only one type of spins, i.e. of the form
in (3.5), what is crucial is that the function £ is convex over R, ; as one can see from (3.6),
this is in fact always the case! This convexity property can however break down as soon
as we consider models with two or more types of spins. In general, we can consider
models with a fixed number D of types of spins, say o = (01,...,0p) € RN x ... x RNVD,
with Ng/N — A\g € (0,+00) for every d € {1,..., D}, and with a covariance such that, for
every 0,7 € RV x ... x RND,

(33) B(Hy(o)Hx(n)]= Ne((757) ).
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where ¢ is some (admissible) function from RY to R. Those models for which we can write
down and rigorously prove a Parisi formula for the limit free energy are those for which
the function £ is convex over R? [13, 24, 26, 72, 74, 75, 76]. Some particular models of
the form (3.8) with ¢ that is not convex over RY but with several additional symmetries
have also been successfully analyzed [7, 11, 17, 33, 89, 90], but for the most part, the
analysis of models of the form (3.8) with non-convex £ remains open.

4. A CONNECTION WITH HAMILTON-JACOBI EQUATIONS

In order to make progress on the identification of the limit free energy for systems
such as the bipartite model, my collaborators and I have explored an approach that
consists in seeking a partial differential equation that would be solved by the limit of
Fy. The free energy Fy as we defined it here in (1.4) (or in (3.3) for the bipartite
model) depends only on (3, and it is not possible to find a simple equation for Fy or its
limit that would only involve derivatives in 8. Hence, we first seek to add terms to the
energy function Hy that depend on additional parameters; for instance, we could replace
BHy(o) by BHn(o) + AH ) (o) for some free parameter A € R and some well-chosen Hy;.
This would yield a free energy that now depends on A in addition to 5. We perform this
“enrichment” of the free energy with the hope of finding a partial differential equation
involving derivatives in, say, 8 and A, that the free energy would asymptotically solve as
N tends to infinity. Naturally, one would like the additional quantities such as H} in the
example to be less complicated to analyze than the original field Hy. On the other hand,
we would like the additional parameters to be sufficiently rich that we can ultimately close
the equation for the limit free energy. In practice, we will always shoot for first-order
partial differential equations, so we can intuitively think of the task as that of building a
simpler but “locally equivalent” energy function H);, so that we can compensate small
variations of # with small variations of A and keep the free energy roughly constant. If
this is indeed possible, then we obtain a way to flow the parameter § from the “easy”
case with 8 = 0 towards the value of 5 of interest.

The idea of thinking of the limit free energy of a model of statistical mechanics as a
solution to a partial differential equation goes back at least to [22, 69] (see also [18] for a
recent survey on related topics). For simpler models of statistical mechanics, as well as
some problems of inference such as community detection on dense graphs, this strategy
can work very well, see [28] and [40, Chapters 1 to 4] for a detailed presentation. The
case of spin glasses is more difficult though. Ideas in this spirit were first explored in
[2, 14, 15, 46] under simplifying assumptions. We now informally discuss some of the
recent progress in this direction. Similar difficulties, not discussed further here, also show
up for community detection on sparse graphs [38, 39, 54].

In order to keep the notation simple, we first present the approach in the case of the
SK model (1.1). For every t >0 and h > 0, we set

1 1
(4.1) Fn(t,h):=-—=Elog| = >  exp(V2tHy(c)-Nt+V2hz-0c-Nh)|,
N 2N oe{-1,1}N
where z = (21,...,2n) is a vector of independent centered Gaussian random variables

with unit variance, independent of Hy, and we recall that the function Hy for the SK
model is defined in (1.1). The key decision we made is that of adding the term involving
z-0. As will be seen more clearly below, the fact that this term is linear in ¢ makes it
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much simpler indeed. And if we write Hy (o) in the form

HN(O') = \/_z;(z szo'])o'za

it is perhaps not unreasonable to hope that the term (Zj]\il Wijo;) could be substituted

with equivalent independent Gaussians. We also wrote a factor of v/2t in place of 3 in front
of Hy; since Hy is Gaussian, this ensures that the variance of V2tH N scales linearly, as
with Brownian motion. The compensating parameter Nt is only a convenience®. Similar
comments also hold concerning the terms v2h and —Nh. Notice also that, unhke in
previous sections, we added a minus sign to the definition of the free energy Fn(¢,h).

Before proceeding, we introduce notation for the Gibbs measure. For any function f,
we write
(4.2) (f(o)) = zUE{il}N f(o)exp(Hn(t, h,o))
Zae{il}N exp(Hn(t,h,0)) 7
where Hy (t,h,0) = /2tHy(0) = Nt +\/2hz -0 — Nh. In the notation on the left side of
(4.2), the bracket (-) stands for the expectation with respect to the Gibbs measure, and
we think of o as a random variable that is sampled accordingly. We write ¢’ to denote
an independent copy of o under the Gibbs measure, so that

<f( /)) Zo‘,o"e{:&l}N f(av Ul)eXp(HN(t7h70) +HN(t,h,0'/))
o,0")) =
Yo ore{«1}N exp(Hy(t,h,0) + Hy(t,h,0"))

This expectation (-) depends on the parameters ¢ and h, even though we keep it implicit
in the notation. A simple calculation involving Gaussian integration by parts gives us
that

N2

(4.3) 6tFN(t,h):E<( )> and ahFN(t,h)=E(“]'V"’>.

For general models as in (3.5), we would find the same expression for 9, Fy as in (4.3)
(for the corresponding definition of the Gibbs measure), while for the derivative in ¢, we
would find that

(4.4) 8, Fn(t,h) =E (5 ( "]'VU’)) .

Coming back to the SK model for now, we thus obtain that

(4.5) O Fy — (O Fn)? = E((U]'VU/)2> - (]E("J’VU/»Z.

The right-hand side of (4.5) is the variance of the random variable o - ¢'/N under E ().
Since o - ¢’'/N is a sum of a large number of terms, we may at first anticipate that it will

g0

n general, we do not need to restrict ourselves to models defined on {-1, l}N . For a model whose
covariance is given by (3.5), we can consider

Fn(t,h) = —%Elog f exp (\/Q_tHN(a) - Nt&(Jo)*/N) +V2hz o - h|a|2) dPn(0),

where Py = P1®N is the N-fold tensor product of a probability measure P; on R with compact support.
We recover the SK model (1.1) by choosing £(r) = r* and Py = (61 +0-1)/2. Notice that with this definition
(and thanks to the minus sign appearing there), Jensen’s inequality yields that Fx > 0. The additional
terms involving t£(|o|*/N) and |o|* facilitate the analysis, and can be removed a posteriori as they are
not themselves random.
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have small fluctuations. If we assume that this is so for the moment, we are led to the
expectation that Fiy may converge to a limit function f that solves the equation

(4.6) Ocf - (Onf)? =0.

Moreover, one can easily compute the value of the free energy Fy (4.1) at t =0, as we
have that, for every h > 0,

(4.7) Fy(0,h) = Fy (0, h).

Hence, if we believe that the random variable o - ¢’/ N has vanishingly small fluctuations
in the limit of large NV, then we are led to the belief that Fj should converge to the
function f that solves (4.6) with initial condition f(0,-) = F1(0,-). For the model with the
covariance as in (3.5), we can proceed in the same way, and under the same assumption,
we would obtain the limit partial differential equation

(4.8) Ouf ~E(Onf) =0.

Equations of this form go by the name of Hamilton-Jacobi equations.

Unfortunately, the hypothesis that the random variable o - ¢'/N has vanishingly small
fluctuations in the limit of large NV is only valid at high temperature, or in other words,
for small values of ¢t. For large values of ¢, the Gibbs measure becomes more complex
(with an ultrametric structure), and the variance of o - ¢//N under the Gibbs measure
does not tend to zero.

Since for large ¢, one cannot close the equation for the limit of Fy using only the
variables ¢ and h, we need to refine this first attempt and introduce a richer additional
term than this z- o that we used here. The more sophisticated term is still linear in o,
but replaces the simple “external field” z by one with an ultrametric structure. This
ultrametric structure is encoded by a number of parameters, which can be collectively
bundled into an increasing® and bounded cadlag function ¢ : [0,1) - R; we denote by Q
the set of such functions. The detailed motivation and complete definition of this term
would bring us too far off, and I will have to ask the reader to accept (or to consult [40,
Section 6]) that it is indeed possible to define an enriched free energy Fy(t,q), for every
te R, and g € Q, so that asymptotically as N tends to infinity, we have for the SK model
that

1
(4.9) O Fn — /{; (0,Fn)? = some plausibly small conditional variance term,

and that moreover, we have in analogy with (4.7) that, for every g € Q,
(4.10) Fn(0,q) = F1(0,q). For convenience, we write ¢1(q) := F1(0,q).

In the special case when the path ¢ is identically equal to h, we recover the quantity
in (4.1), so this enriched free energy Fy : R, x Q - R is an extension of that defined in
(4.1); and in particular, the quantity we are ultimately most interested in computing is
Fn(t,0). Informally, the derivative 9, appearing in (4.9) is such that, for a sufficiently
smooth function ¢g: @ - R and ¢ € Q, the quantity 9,9(g,-) is a function from [0,1] to R
such that for every ¢’ € Q and as ¢ tends to zero,

g((1-e)g+eq’)-g(q) =¢ /01 949(q,u)(¢" — q)(u) du +o(e) ;

and a more explicit writing of the integral in (4.9) is fol(aqFN(t, q,u))? du.
For all models with a single type, we can indeed characterize the limit free energy as
the unique solution to the equation in (4.9).

5By “increasing”, we mean that for every s <t € [0,1), we have q(s) < q(t).
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Theorem 4.1 (Limit free energy via a Hamilton-Jacobi equation [27, 63, 67]). The
enriched free energy Fy : Ry x Q@ = R of the SK model converges pointwise to the unique
function f:R, x Q@ - R that solves

O f - _[01(aqf)2 =0 onRyxQ,
f(0,-) =1 on Q.
More generally, if Fiv : Ry x @ - R stands instead for the enriched free energy associated

with a model with covariance given by (3.5), then Fy converges pointwise to the unique
function f:R,; x Q@ - R that solves

8tf—f01§(3qf) =0 onR,.xQ,
f(07) = ¢1 on Q.

(4.11)

(4.12)

Part of the task of making sense of this theorem is that one needs to find a good notion
of solution for the Hamilton-Jacobi equations in (4.11) and (4.12). This is based on the
notion of viscosity solutions (see [40, Chapter 3] for an introduction that is tailored to
our context).

Using that £ is convex on R, , we can in fact write the viscosity solution f of (4.12) as
a variational formula. Indeed, this solution is such that, for every ¢ >0 and g € O,

1 !
(1.13 s =sw(ntrd)- e (1)),
q'eQ 0 3
where £ is the convex dual of &, which is defined, for every s € R, by
§(s) = sup (s = £(r))

One can recover the Parisi formula by setting ¢ = 0 in (4.13), making a change of variables,
and doing some explicit calculations involving the function 1, (see again [40, Section 6]
for more details)®.

The main motivation for developing this PDE point of view on the Parisi formula is
to tackle the case when ¢ is non-convex, such as is the case for the bipartite model. In
this case, with H}i,lp defined in (3.2), we can try to mimic the simple arguments that led
us to (4.6) or (4.8). The point now is that since there are two types of spins, we add
one variable for each of these two types. That is, for every ¢t > 0, h = (h1,ho) € R%, and
o= (01,02) € Xy, we set

Hy(t,h,0) = V2LHIP(0) = NA\ Aot +\/2h121 - 01 — N1y +\/2ho2s - 03 — Nohs,

as well as

Fr(t,h) = —~Elog [ —— Y exp(Hy(t,h,0))).
N |2N|O'€EN

In the displays above and from now on, we drop the superscript PP for ease of notation.
The definition of the Gibbs average (-) is as in the formula in (4.2), with h € R? and with
the summation variable o ranging in Xx. In place of (4.3) or (4.4), we obtain that

O Fn(t,h) = E(((”]'Vai) (‘”&Ué)),

6Recall that in this section, we added a minus sign in the definition of the free energy in (4.1), so what
we see as a supremum here is an infimum in the convention of Sections 1 and 2.
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while we still have

o101

!
athN(t,h)=E< ) and ahQFN(t,h) =E<02NJ2>.
Under the assumption that the random variables o1 - 0] /N and o9 - 05/N have vanishing
fluctuations in the limit of large IV, we would expect Fi to converge to f solution to

atf_ahlfahgf = 0

The initial condition f(0,-) is easy to compute as it factorizes similarly to what we saw
in (4.7).

As was the case earlier, the assumption of concentration of the random variables
o1-01/N and oy - 0)/N is invalid for large ¢, and we need again to pass to a more
sophisticated free energy Fi : R, x Q> — R, which this time takes as second argument a
pair of paths q = (q1,¢2) € Q2. We have a factorization property similar to that in the
first identity of (4.10); for every ¢ = (q1,¢2) € @2, we write

b2(q) = lim Fy(0,q).

It is useful here to distinguish between the function ¢, defined on Q we introduced earlier
in (4.10), and that new function 1 : Q%> - R we just defined, as indeed one can easily
show using (3.1) that

(4.14) V2(q) = M1(q1) + Aap1(qe)-

Calculations similar to those leading to (4.9) lead to the following conjecture.

Conjecture 4.2. The enriched free energy Fy : Ry x Q* - R for the bipartite model
converges to the function f:R, x Q2 > R that solves

{atf_fol O fOpf =0 onRyx Q2

(4.15) f(0,-) =y on Q%

In equation (4.15), the nonlinearity (i.e. the mapping (z,y) — zy) is neither convex
nor concave, so we cannot write a variational representation similar to that in (4.13) for
the solution to (4.15).

A number of partial results have been obtained that give credence to Conjecture 4.2.
For ease of discussion, let us suppose that the enriched free energy Fiy : R, x Q% - R of
the bipartite model converges pointwise to some function g (one can easily show that
converging subsequences exist). First, we know from [27, 62, 64] that g > f, where f is
the (unique) viscosity solution to (4.15). Moreover, the limit function g is differentiable
“almost everywhere””, and the function g solves the equation displayed in (4.15) at every
point of differentiability [26]. The latter property is weaker than that of being a viscosity
solution to (4.15) though, so this is not sufficient to conclude. Another result from [26]
gives a characterization of g in terms of a critical point of an explicit functional. While one
can show that there exists a unique such critical point for small ¢, there can be more than
one critical point for large ¢, so this is again not sufficient to conclude. For those readers
who are familiar with Hamilton-Jacobi equations, the result can be understood as saying
that the value of g at a given point (¢, q) is as prescribed by one of the characteristic lines
that goes through (,q).

7Qu0tation marks are due here because there is no Lebesgue measure on Q; the exact formulation is
in terms of Gaussian null sets.
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5. CONJECTURED UN-INVERTED FORMULA FOR GENERAL MODELS

As already mentioned, direct generalizations of the Parisi formula to models such as
the bipartite case yield formulas that are provably invalid. For a long time, I therefore
could not see any alternative candidate variational formula for the limit of Fl. I have
changed my mind on this, and now believe that the limit of Fiy in the bipartite case does
admit a variational representation. However, I do not expect it to take a form similar to
that of the Parisi formula in (1.5), but rather to take a form similar to its “un-inverted”
version in (2.1).

For Hamilton-Jacobi equations such as (4.15), there are two classical settings in which
one can write a variational formula. The first, already discussed, is when the non-linearity
in the equation is either convex or concave, but this is clearly not the case here. The
second classical situation in which one can obtain a variational formula for the solution
to (4.15) is when the initial condition ), is either convex or concave. Alas, one can also
see that the function 1 is neither convex nor concave in general [62, Section 6]. This
being said, the function ¢» can be turned into a concave function through the following
change of variables. Recalling the decomposition in (4.14), we first work with the function
11, and interpret a single path ¢ € Q as the inverse cumulative distribution function
of a probability measure. In other words, there is a bijective correspondence between
the set @ and the set P.(R,) of probability measures over R, with compact support,
through the mapping which to a given ¢ € Q attributes the law of ¢(U), where U is a
uniform random variable over [0,1]. Denoting this mapping by M : @ — Pc(R.), we
define ¢y : P.(R;) - R so that 11 (Mq) = ¥1(g). It turns out that the function t; is
concave over P,(R,) [8]. Similarly, we can define ¢ : (P.(R,))? — R such that for every
q1,¢2 € Q, we have o (Mq1, Mga) = ¥2(q1,2), and by (4.14), the function o is concave
over (P.(Ry))2.

Since 12;2 is concave, it can be written as an infimum of affine functions. I now expect
that the solution to the Hamilton-Jacobi equation in (4.15) can be represented as the
infimum of the solutions started from these enveloping affine functions. Using also explicit
calculations involving the function 1, this would yield an “un-inverted” representation
of the limit free energy in the spirit of the right-hand side of (2.1).

For general models of the form in (3.8) with convex £, the connection between the Parisi
formula, the Hamilton-Jacobi equation, and the un-inverted variational representation
is verified in [25]. One natural goal, also interesting from a purely PDE perspective, is
to extend the un-inverted variational representation of the Hamilton-Jacobi equation to
the non-convex case. Since we know from [27, 62, 64] that the limit free energy is always
greater than or equal to the solution to the Hamilton-Jacobi equation, this would give
us a lower bound on the free energy in the form of a variational formula similar to the
right-hand side of (2.1). The justification of an inequality in the spirit of (2.4) would
then allow us to complete this picture, prove Conjecture 4.2, and obtain a variational

representation of the limit free energy for all models with a covariance taking the form
n (3.8).

6. CONCLUSION

Despite the relative simplicity of their definition, spin glasses display a mathematical
structure that I find surprisingly rich and profound. Moreover, the ideas and techniques
that were developed to study spin glasses have turned out to be useful in the analysis of
a broad class of models across disciplines.
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This short review is centered around the problem of identifying the free energy of
models of spin glasses involving several different types of spins. We chose the bipartite
model defined in (3.2) as our guiding example of models in the class of centered Gaussian
fields with a covariance in the form of (3.8). While the case when ¢ is convex over RY
is well-understood, models with non-convex £ such as the bipartite model have so far
resisted complete analysis. Strikingly, direct generalizations of the Parisi formula to these
models yield predictions that are demonstrably false, and an alternative approach is
required.

We reviewed one possible approach based on the idea that the limit free energy should
satisfy a Hamilton-Jacobi equation. One can formulate the precise Conjecture 4.2 to this
effect, and several partial results have been obtained that give substance to it.

Perhaps most interestingly, a connection between the Hamilton-Jacobi equation ap-
pearing in Conjecture 4.2 and an “un-inverted” variational formula in the spirit of that
presented in Theorem 2.1 is starting to emerge. In my opinion, this “un-inverted” formula
deserves further study and could potentially help us to better understand spin glasses,
including those models for which the Parisi formula is already proved rigorously.

The topic of spin glasses is much broader than what this short and partial review could
cover. Books on spin glasses include [19, 20, 21, 23, 32, 34, 40, 58, 70, 71, 73, 87, 92, 93].
The book [40] is close in spirit to the discussion presented here, and in particular to
Section 4.

Acknowledgements. I would like to warmly thank Hong-Bin Chen, Tomés Dominguez,
and Victor Issa, with whom much of what is presented here was developed.
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