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Abstract

Let S and S̃ be two independent and identically distributed random variables,
which we interpret as the signal, and let P1 and P2 be two communication channels.
We can choose between two measurement scenarios: either we observe S through P1
and P2, and also S̃ through P1 and P2; or we observe S twice through P1, and S̃ twice
through P2. In which of these two scenarios do we obtain the most information on the
signal (S, S̃)? While the first scenario always yields more information when P1 and P2
are additive Gaussian channels, we give examples showing that this property does
not extend to arbitrary channels. As a consequence of this result, we show that the
continuous-time mutual information arising in the setting of community detection
on sparse stochastic block models is not concave, even in the limit of large system
size. This stands in contrast to the case of models with diverging average degree,
and brings additional challenges to the analysis of the asymptotic behavior of this
quantity.

1 Introduction

Let PS be a probability measure with finite support S , and let S be a random variable sam-
pled according to PS, which we think of as a signal. A communication channel over S ,
or more simply a channel, is a family of probability measures (P(· | s))s∈S over Rd for
some integer d ⩾ 1, which we view as a conditional probability distribution over Rd

given S. Let f : S →Rd , and let W be a standard d-dimensional Gaussian random vector
independent of S. The conditional law, given S, of the random variable

X := f (S)+W (1.1)

defines a channel. We call any channel that can be constructed in this way a Gaussian
channel. The information-theoretic quantities studied in this paper are invariant under
bijective bimeasurable transformations of the channel output; in particular, there is no
loss of generality in assuming the covariance matrix of the noise term in (1.1) to be the
identity. For random variables X and Y defined on the same probability space, we denote
by I(X ;Y ) their mutual information, that is,

I(X ;Y ) := E
[

log
(

dP(X ,Y )

dPX ⊗dPY
(X ,Y )

)]
,
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(a) Scenario 1: We observe the signal and its
independent copy twice through both chan-
nels P1 and P2.
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(b) Scenario 2: We observe the signal twice
through channel P1 and its independent copy
twice through channel P2.

Figure 1: Does the scenario on the left side give us more information about (S, S̃) than the
scenario on the right side?

where P(X ,Y ), PX and PY are the laws of (X ,Y ), X and Y respectively.
Let P1 and P2 be two channels over S . Conditionally on S, we sample X1, X ′

1, X2
and X ′

2 independently, with X1,X ′
1 sampled according to P1(· | S), and X2, X ′

2 sampled
according to P2(· | S). We consider the following question.

Do we have I(S;(X1,X ′
1))+ I(S;(X2,X ′

2))⩽ 2I(S;(X1,X2)) ? (Q1)

A possibly more intuitive way to ask this question, following the phrasing in the
abstract, is displayed in Figure 1, where we denote by (S̃, X̃1, X̃ ′

1, X̃2, X̃ ′
2) an independent

copy of (S,X1,X ′
1,X2,X ′

2). As will be seen below, the answer to this question is positive
whenever P1 and P2 are Gaussian channels. However, we will show that the answer to
this question is actually negative if P1 and P2 can be arbitrary channels. In fact, our
counterexamples are even such that

min
(
I(S;(X1,X ′

1)), I(S;(X2,X ′
2))
)
> I(S;(X1,X2)).

While we find this question interesting on its own, we are also motivated by its impli-
cations in the context of community detection problems. We consider the setting of the
stochastic block model [20, 24, 49, 50], sometimes also called the planted partition model
[8, 9, 19] or the inhomogeneous random graph model [7]. In the case of two communities,
this model is defined as follows. First, we independently attribute each individual to one
of the two possible communities. Next, independently for each pair of individuals, we
draw an edge between these two individuals with probability din/N if the two individuals
belong to the same community, or with probability dout/N if the two individuals belong
to different communities, where N is the total number of individuals. We are then shown
the resulting graph, but not the underlying community structure, which we aim to recon-
struct. The choice of scaling for the link probabilities ensures that the average degree of
a node remains bounded as N tends to infinity.

This problem has received considerable attention. An early contribution is the very
inspiring work of [15], which relies on deep non-rigorous statistical physics arguments. In
the case when the individuals are equally likely to belong to one or the other community, it
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was shown in [34, 37, 39] that one can recover meaningful information on the underlying
community structure if and only if (din − dout)

2 > 2(din + dout); and in this case, there
exists an efficient algorithm for doing so.

A more refined question consists in studying the asymptotic behavior of the mutual
information between the observed graph and the community structure, in the limit of
large N. When din < dout, this problem was resolved in [2, 14]. The case when din > dout
is more challenging and was only resolved very recently in [51]; we also refer to [1, 27,
38, 40] for earlier work on this. The core of the argument of [51] is to show that there is
a unique fixed point to a certain belief-propagation (BP) distributional recursion.

For situations with four or more communities, the problem becomes more compli-
cated, and there exist choices of parameters for which this BP fixed-point equation admits
more than one solution [21]. In these cases, a strategy in the spirit of that deployed in [51]
therefore cannot be adapted in a straightforward way, and further work is necessary.

An alternative approach to the problem of identifying the asymptotic behavior of the
mutual information between the observed graph and the community structure has been
initiated in [17, 18]. The gist of the approach is to identify the limit mutual information
as the solution to a certain partial differential equation (PDE). This technique allowed for
the asymptotic analysis of the mutual information of a very large class of models involving
Gaussian channels [10]; see also [11, 12, 13, 41, 42]. Using other approaches, a number
of special cases had been solved earlier in [4, 5, 6, 26, 30, 31, 32, 33, 35, 36, 46, 47].
As shown in [3, 16, 30], a Gaussian equivalence property ensures that these results also
allow us to identify the asymptotic behavior of the mutual information of the community
detection problem in regimes in which the average degree of a node diverges with the
system size.

In the approach taken up in [10, 18], one can leverage a certain regularity property
of the mutual information to obtain a lower bound on the limit mutual information in
terms of the solution to the PDE. This is similar to the results obtained in [43, 44] in the
context of spin glasses. In order to show the matching upper bound, a central ingredi-
ent of the approach taken up in [10] is the observation that the mutual information is a
concave function of the signal-to-noise ratios of the various observations considered for
the resolution of the problem. For the community detection problem, if the mutual infor-
mation studied in [18] happened to be concave in its parameters, we would be optimistic
that the approach of [10] would be adaptable to this setting, and thus would allow us to
obtain the matching upper bound. However, we show here that the mutual information
is in fact not a concave function of its parameters. We find this surprising given that this
concavity property does hold for the problems with Gaussian channels considered in [10]
and elsewhere. We derive this breakdown of concavity as a consequence of the fact that
the answer to Question Q1 is negative in general. Precisely, we will show that, although
the Hessian of the mutual information only contains nonpositive entries, we can witness a
breakdown of concavity that scales as (din −dout)

6 in the regime of small |din −dout|. We
are also surprised by the relatively high exponent 6 appearing here, suggesting a rather
subtle deviation from concavity in the regime of small |din −dout|.

Had the mutual information been concave in its parameters, we would presumably
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have been able to represent the solution to the relevant PDE as a saddle-point variational
problem, using a version of the Hopf formula (see [10], and also [17] for a proof of a re-
lated variational formula under different assumptions). Given that this concavity property
is in fact invalid, we tend to think that there will not be any reasonable way to represent
the limit mutual information of community detection as a variational problem, unlike the
situation with Gaussian channels. In the context of spin glasses, this point is discussed
more precisely in [43, Section 6].

The rest of the paper is organized as follows. In Section 2, we show that the answer to
Question Q1 is positive for Gaussian channels, and construct counterexamples in general.
We pay special attention to the case of Bernoulli channels with very low signal-to-noise
ratios, as these examples will be fundamental to subsequent considerations concerning
the community detection problem. In Section 3, we focus on Gaussian channels and
explore variants of the inequality appearing in Question Q1 that involve more than two
channels. In Section 4, we turn to the setting of community detection, for the stochastic
block model with two communities. We use the results of Section 2 to show that the
mutual information is not a concave function of its parameters, even after we pass to the
limit of large system size.

2 Answers to Question Q1

We start by providing a positive answer to Question Q1 in the case of Gaussian channels.

Proposition 2.1 (Mixing Gaussian channels yields more information). If P1 and P2 are
Gaussian channels, then the answer to Question Q1 is positive.

Proof. The proof of Proposition 2.1 is based on remarkable identities involving deriva-
tives of the mutual information with respect to the signal-to-noise ratio. In particular, the
first-order derivative of the mutual information is half of the minimal mean-square error,
as was explained in [22] and extended to the matrix case in [29, 45, 48]. Here we will rely
on the calculation of second-order derivatives of the mutual information, which already
appeared in [23, 29, 45].

By definition of Gaussian channels, for each i ∈ {1,2}, there exists a mapping fi :
S → Rdi such that the channel Pi can be represented as

S 7→ fi(S)+Wi,

where W1, W2 are independent standard Gaussians, independent of S, of dimension d1 and
d2 respectively. For every i ∈ {1,2} and ti ⩾ 0, we define

Xi(ti) :=
√

ti fi(S)+Wi,

as well as
I (t1, t2) := I(S;(X1(t1),X2(t2))).

Since the mapping s 7→ (s, f1(s), f2(s)) is injective, we have

I (t1, t2) = I((S, f1(S), f2(S));(X1(t1),X2(t2))).
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We can therefore replace the signal S by (S, f1(S), f2(S)) if desired, and apply [29, The-
orem 3] or [45, Theorem 5] with H chosen to be the identity matrix and P chosen to be
a diagonal matrix with d1 entries at

√
t1 and d2 entries at

√
t2. The conclusion of these

theorems is that the function I is jointly concave in (t1, t2). In particular,

I (2,0)+I (0,2)⩽ 2I (1,1).

Recalling that
I (1,1) = I(S;(X1(1),X2(1))) = I(S;(X1,X2)),

Proposition 2.1 will be proved once we verify that

I (2,0) = I(S;(X1,X ′
1)) and I (0,2) = I(S;(X2,X ′

2)). (2.1)

We fix i ∈ {1,2}, let W ′
i be a di-dimensional standard Gaussian independent of (S,Wi),

and use it to represent X ′
i as

X ′
i = fi(S)+W ′

i .

We define

Zi :=
Xi +X ′

i√
2

=
√

2t fi(S)+
Wi +W ′

i√
2

,

and
Di := Xi −X ′

i =Wi −W ′
i .

Using that the the map (x,y) 7→ ((x+y)/
√

2,x−y) is bijective and the chain rule, we can
write

I(S;(Xi,X ′
i )) = I(S;(Zi,Di)) = I(S;Di)+ I(S;Zi | Di).

The random variables S and Di being independent, the first term on the right side of
this identity vanishes. We also observe that the pair (Wi,W ′

i ) is independent of S, and
moreover, the Gaussian random variables Wi +W ′

i and Wi −W ′
i are independent. This

implies that the random variables (S,Wi +W ′
i ,Wi −W ′

i ) are independent, and thus that Di
is independent of the pair (S,Zi). The previous display therefore simplifies into

I(S;(Xi,X ′
i )) = I(S;Zi).

Since the pairs (S,Xi(2)) and (S,Zi) have the same law, this is (2.1).

We now turn to showing that Proposition 2.1 does not generalize to non-Gaussian
channels. Before doing so, we record a simple observation allowing to simplify the ques-
tion somewhat.

Lemma 2.2. Let S be a random variable with finite support S , let P1,P2 be two com-
munication channels over S , and conditionally on S, let (X1,X ′

1,X2,X ′
2) be independent

random variables, with X1,X ′
1 sampled according to P1(· | S) and X2,X ′

2 sampled accord-
ing to P2(· | S). For every i, j ∈ {1,2}, we have

I(S;(Xi;X ′
j)) = I(S;Xi)+ I(S;X j)− I(Xi;X ′

j). (2.2)
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Proof. By the chain rule,

I(S;(Xi,X ′
j)) = I(S;Xi)+ I(S;X ′

j | Xi)

= I(S;Xi)+ I(X ′
j;(S,Xi))− I(Xi;X ′

j)

= I(S;Xi)+ I(S;X ′
j)+ I(Xi;X ′

j | S)− I(Xi;X ′
j).

Conditionally on S, the random variables Xi and X ′
j are independent. It thus follows that

I(Xi,X ′
j | S) = 0, and we obtain (2.2).

A direct consequence of Lemma 2.2 is that

2I(S;(X1,X2))− I(S;(X1,X ′
1))− I(S;(X2,X ′

2)) = I(X1,X ′
1)+ I(X2,X ′

2)−2I(X1,X2),

And in particular, Question Q1 can be rephrased as:

Do we have 2I(X1,X2)⩽ I(X1,X ′
1)+ I(X2,X ′

2) ? (Q2)

For every p ∈ [0,1], we write Ber(p) := pδ1 +(1− p)δ0 for the law of a Bernoulli ran-
dom variable of parameter p. For our counterexamples, we assume that S is a Ber(1/2)
random variable, and we consider channels of the following form, for different choices of
p0, p1,q0,q1 ∈ [0,1]:

P1(· | s) = Ber(ps) and P2(· | s) = Ber(qs) (s ∈ {0,1}).

Already for the choice of p0 = 1/2, p1 = 0, q0 = 0, q1 = 1/2, we find that

I(X1;X2) =
5
2

log(2)− 3
2

log(3)≃ 0.0849,

while
I(X1;X ′

1) = I(X2;X ′
2) = log(2)+

5
8

log(5)− 3
2

log(3)≃ 0.0511.

In particular, this leads to a counterexample to the inequalities appearing in Ques-
tions Q1 and Q2. In fact, for Bernoulli channels with p0 = q1 and p1 = q0, we observe
numerically that there are large regions of values of p0, p1 where the inequality in Ques-
tion Q2 does not hold—in fact, probably all values with p0 ̸= p1, see Figure 2. Perhaps
surprisingly in view of Proposition 2.1 and its proof, the next proposition shows that the
inequalities in Questions Q1 and Q2 can be violated even in regimes of small signal-to-
noise ratio. This class of examples will be particularly relevant in the context of commu-
nity detection discussed later.

Proposition 2.3. Assume that S is a Ber(1/2) random variable, that we sample X1, X ′
1

according to P1(· | S) and X2, X ′
2 according to P2(· | S), where P1 and P2 are such that, for

some p0, p1,q0,q1 ⩾ 0 and ε > 0,

P1(· | s) = Ber(ε ps) and P2(· | s) = Ber(εqs) (s ∈ {0,1}).
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Figure 2: Value of the 2I(X1,X2)− I(X1,X ′
1)− I(X2,X ′

2) for the setting of Bernoulli chan-
nels (see description in the text). The value is represented by color, the larger values
correspond to darker color. Left: the regime of small p0, p1. Red dashed lines are coun-
tour lines of (p0−p1)

6/(p0+p1)
4. Right: general p0, p1 ∈ [0,1].

If p0 = q1, p1 = q0, then

2I(X1,X2)− I(X1,X ′
1)− I(X2,X ′

2)⩾
ε2(p0 − p1)

6

6(p0 + p1)4 +o(ε2) (ε → 0).

In particular, the inequalities in Questions Q1 and Q2 are false whenever p0 ̸= p1 and
ε > 0 is sufficiently small.

Proof. For unconstrained values of p0, p1,q0,q1 ⩾ 0, the definition of mutual information
yields that

I(X1,X2) = log

(
1
2(1− ε p0)(1− εq0)+

1
2(1− ε p1)(1− εq1)

1
4(2− ε p0 − ε p1)(2− εq0 − εq1)

)
· 1

2
((1− ε p0)(1− εq0)+(1− ε p1)(1− εq1))

+ log

(
1
2ε p0(1− εq0)+

1
2ε p1(1− εq1)

1
4ε(p0 + p1)(2− εq0 − εq1)

)
· 1

2
ε(p0(1− εq0)+ p1(1− εq1))

+

(
1
2εq0(1− ε p0)+

1
2εq1(1− ε p1)

1
4ε(2− ε p0 − ε p1)(q0 +q1)

)
· 1

2
ε(q0(1− ε p0)+q1(1− ε p1))

+ log

(
1
2ε2 p0q0 +

1
2ε2 p1q1

1
4ε2(p0 + p1)(q0 +q1)

)
· 1

2
ε

2(p0q0 + p1q1)

=: I1 + I2 + I3 + I4.
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The Taylor expansions of these terms are given by

I1 =
1
4

ε
2(p0 − p1)(q0 −q1)+o(ε2),

I2 = I3 =−1
4

ε
2(p0 − p1)(q0 −q1)+o(ε2),

I4 =
1
2

ε
2(p0q0 + p1q1) log

(
2(p0q0 + p1q1)

(p0 + p1)(q0 +q1)

)
+o(ε2).

Hence we obtain

I(X1,X2) =− 1
4

ε
2(p0 − p1)(q0 −q1)

+
1
2

ε
2 log

(
1+

(p0 − p1)(q0 −q1)

(p0 + p1)(q0 +q1)

)
(p0q0 + p1q1)+o(ε2).

In the case when p0 = q0 and p1 = q1, we get

I(X1,X ′
1) = I(X2,X ′

2)

=−1
4

ε
2(p0 − p1)

2 +
1
2

log
(

1+
(p0 − p1)

2

(p0 + p1)2

)
(p2

0 + p2
1)+o(ε2),

while in the considered case when p0 = q1 and p1 = q0,

I(X1,X2) =
1
4

ε
2(p0 − p1)

2 + p0 p1 log
(

1− (p0 − p1)
2

(p0 + p1)2

)
+o(ε2).

Rescaling the mutual information by ε2, we obtain that

1
ε2

(
2I(X1,X2)− I(X1,X ′

1)− I(X2,X ′
2)
)

= (p0 − p1)
2 +2p0 p1 log

(
1− (p0 − p1)

2

(p0 + p1)2

)
− (p2

0 + p2
1) log

(
1+

(p0 − p1)
2

(p0 + p1)2

)
+o(1)

(2.3)

Denoting t := (p0−p1)
2/(p0+p1)

2 ∈ [0,1], we can rewrite the above identity as

1
ε2(p0 + p1)2

(
2I(X1,X2)− I(X1,X ′

1)− I(X2,X ′
2)
)
+o(1)

= t +
1− t

2
log(1− t)− 1+ t

2
log(1+ t) =: g(t).

We observe that g(0) = 0, or equivalently, this difference is zero when p0 = p1. We
compute the derivative of g with respect to t and obtain that

g′(t) =−1
2
(log(1− t)+ log(1+ t)) =−1

2
log(1− t2)⩾

t2

2
,
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so g(t)⩾ t3

6 for every t ∈ [0,1]. Substituting back t yields that

2I(X1,X2)− I(X1,X ′
1)− I(X2,X ′

2)⩾
ε2(p0 − p1)

6

6(p0 + p1)4 +o(ε2),

as desired.

3 Positive semidefinite kernels in the Gaussian case

For arbitrary random variables (Zi)1⩽i⩽n, one may wonder whether (I(Zi;Z j))1⩽i, j⩽n is a
positive semidefinite matrix; a negative answer to this question was provided in [25]. In
our setting, consider multiple channels (P1, . . . ,Pn) over S , and conditionally on S, de-
note by (Xi,X ′

i )1⩽i⩽n conditionally independent random variables with Xi, X ′
i distributed

according to Pi(· | S). One could ask:

Is the matrix (I(Xi;X ′
j))1⩽i, j⩽n positive semidefinite? (Q3)

We find that this is a natural question on its own; as will be seen below, it also arises nat-
urally in the study of the continuous-time mutual information discussed below in relation
with the problem of community detection. If the answer to Question Q3 were positive,
then it would mean that the mapping (Pi,Pj) 7→ I(Xi;X ′

j) defines a positive semidefinite
kernel over the space of channels. Notice that Question Q2 can be rephrased as

Do we have
(

1
−1

)
·
(

I(X1;X ′
1) I(X1;X ′

2)
I(X2;X ′

1) I(X2;X ′
2)

)(
1
−1

)
⩾ 0 ?

Since we identified examples for which the inequality in Question Q2 is violated, it fol-
lows that the answer to Question Q3 is also negative in general. We do not know whether
the answer to Question Q3 is positive for Gaussian channels. Roughly speaking, the next
proposition states that the answer to Question Q3 is positive for Gaussian channels in the
low signal-to-noise regime.

Proposition 3.1 (psd kernel for Gaussian channels). Let n ⩾ 1 be an integer. For every
i ∈ {1, . . . ,n}, let fi : S → Rdi , and let (Wi,W ′

i )1⩽i⩽n be independent standard Gaussian
random vectors, independent of the signal S, with Wi and W ′

i of dimension di. For every
i ∈ {1, . . . ,n} and t ⩾ 0, we define

Xi(t) :=
√

t fi(S)+Wi and X ′
i (t) :=

√
t fi(S)+W ′

i .

For every i, j ∈ {1, . . . ,n}, we have

lim
t→0

t−2 I(Xi(t);X ′
j(t)) =

∣∣E[( fi(S)−E[ fi(S)])( f j(S)−E[ f j(S)])∗
]∣∣2, (3.1)

where the superscript ∗ denotes the transpose operator, and the norm | · | over matrices is
the Frobenius norm. Moreover, the matrix(∣∣E[( fi(S)−E[ fi(S)])( f j(S)−E[ f j(S)])∗

]∣∣2)
1⩽i, j⩽n

(3.2)

is positive semidefinite.
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Proof. The proof is again based on the fundamental identities derived in [22, 29, 45]. In
order to ligthen the notation, we define, for every i ∈ {1, . . . ,n} and s ∈ S ,

f i(s) := fi(s)−E [ fi(S)] .

Recalling that we assume the state space S of the signal S to be finite, one can check that
the mapping t 7→ I(S;Xa(t)) is infinitely differentiable. The I-MMSE relation from [22]
yields that

∂tI(S;Xi(t))|t=0 =
1
2
E
[∣∣ f i(S)

∣∣2] , (3.3)

while [45, Theorem 5] or the proof of [29, Theorem 3] imply that

∂
2
t I(S;Xi(t))|t=0 =

1
2

∣∣E[ f i(S) f i(S)
∗]∣∣2 . (3.4)

Since the choice of fi is arbitrary, the identities (3.3) and (3.4) also imply that

∂tI(S;(Xi(t),X j(t)))|t=0 =
1
2
E
[∣∣ f i(S)

∣∣2]+ 1
2
E
[∣∣ f j(S)

∣∣2] , (3.5)

and

∂
2
t I(S;(Xi(t),X j(t)))|t=0

=
1
2

∣∣E[ f i(S) f i(S)
∗]∣∣2 + 1

2

∣∣E[ f j(S) f j(S)
∗]∣∣2 + ∣∣E[ f i(S) f j(S)

∗]∣∣2 . (3.6)

By Lemma 2.2, we have that

I(Xi(t);X ′
j(t)) = I(S;(Xi(t);X ′

j(t)))− I(S;Xi(t))− I(S;X j(t)).

A Taylor expansion near t = 0 of this identity, combined with the expressions of the
derivatives obtained above, therefore yields (3.1). To see that the matrix in (3.2) is posi-
tive semidefinite, let us denote by S̃ an independent copy of the random variable S. Writ-
ing · for the entrywise scalar product between vectors or matrices, we have for every
α1, . . . ,αn ∈ R that

n

∑
i, j=1

αiα j
∣∣E[ f i(S) f j(S)

∗]∣∣2 = n

∑
i, j=1

αiα jE
[(

f i(S) f j(S)
∗) · ( f i(S̃) f j(S̃)

∗)]
=

n

∑
i, j=1

αiα jE
[(

f i(S) · f i(S̃)
)(

f j(S) · f j(S̃)
)]

= E

( n

∑
i=1

αi f i(S) · f i(S̃)

)2
⩾ 0.

This completes the proof of Proposition 3.1.
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4 Consequences for community detection

Our initial motivation for exploring questions such as Q1 comes from the study of the
mutual information of a problem of community detection in the stochastic block model.
In the notation of [18], we specialize to the choice of parameters p = 1

2 , t = 0, µ =
t1δ1 + t2δ−1, with t1, t2 ⩾ 0, so that the mutual information considered there simplifies
and matches the assumptions of Proposition 2.3, as we explain now. First, we sample S
as a Bernoulli random variable with parameter 1/2 (this is one coordinate of σ∗ in the
notation of [18], except that we reparametrize this random variable taking values {−1,1}
into S taking values in {0,1} for notational consistency). Conditionally on S, we let
(X (ℓ)

1 ,X (ℓ)
2 )ℓ⩾1 be independent random variables, with X (ℓ)

1 sampled according to P1 and
X (ℓ)

2 sampled according to P2, where the channels P1 and P2 are defined by

P1(· | s) = Ber(ps/N) and P2(· | s) = Ber(qs/N) (s ∈ {0,1}), (4.1)

and p0, p1,q0,q1 ∈ [0,∞) are such that p0 = q1 and p1 = q0 (in the notation of [18], we
have p1 = q0 = c+∆, and p0 = q1 = c−∆, with the identification that σ∗ = 1 and −1
correspond to S = 1 and 0 respectively). While we will not always say it explicitly, we
always understand that N is taken sufficiently large that the quantities ps/N and qs/N
appearing in (4.1) belong to the interval [0,1]. Finally, we let Π

(1)
Nt1 and Π

(2)
Nt2 be two in-

dependent Poisson random variables of parameters Nt1 and Nt2 respectively, independent
of the all other random variables. With all these choices, and using the Poisson coloring
theorem (see for instance [28, Chapter 5]) we get that the mutual information studied in
[18] simplifies into

IN(t1, t2) := I
(

S;
(
(X (ℓ)

1 )
ℓ⩽Π

(1)
Nt1

,(X (ℓ)
2 )

ℓ⩽Π
(2)
Nt2

))
.

Although this is not apparent in the notation, we emphasize that the laws of X (ℓ)
1 and X (ℓ)

2
depend on N. As shown in [18, Lemma 3.1], the function IN converges pointwise to a
limit, which we denote by I∞.

Proposition 4.1 (Breakdown of concavity of mutual information). For every N ∈ N∪
{∞}, the entries of the Hessian of the mapping (t1, t2) 7→IN(t1, t2) are nonpositive. How-
ever, in the regime of finite N going to infinity, we have

(
∂

2
t1IN +∂

2
t2IN −2∂t1∂t2IN

)
(0,0)⩾

(p0 − p1)
6

6(p0 + p1)4 +o(1) (4.2)

as well as (
∂

2
t1I∞ +∂

2
t2I∞ −2∂t1∂t2I∞

)
(0,0)⩾

(p0 − p1)
6

6(p0 + p1)4 . (4.3)

In particular, for every sufficiently large N ∈ N∪{∞}, the mapping (t1, t2) 7→ IN(t1, t2)
is not concave.
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Proof. We decompose the proof into four steps.

Step 1. In this step, we derive convenient representations for the second derivatives of IN ,
for finite N. For every t ⩾ 0 and L ∈ Z+, we denote

π(t,L) := e−t tL

L!
.

With the understanding that π(t,−1) = 0, we have the identity

∂tπ(t,L) = π(t,L−1)−π(t,L). (4.4)

In order to lighten the calculations, we also introduce the shorthand notation

IN(L1,L2) = I
(

S;
(
(X (ℓ)

1 )ℓ⩽L1,(X
(ℓ)
2 )ℓ⩽L2

))
.

We start by observing that

IN(t1, t2) =
+∞

∑
L1,L2=0

π(Nt1,L1)π(Nt2,L2)IN(L1,L2).

The identity (4.4) yields that

∂t1IN(t1, t2) = N
+∞

∑
L1,L2=0

π(Nt1,L1)π(Nt2,L2)(IN(L1 +1,L2)− IN(L1,L2)) ,

and thus

∂
2
t1IN(t1, t2) = N2

+∞

∑
L1,L2=0

π(Nt1,L1)π(Nt2,L2)

(IN(L1 +2,L2)−2IN(L1 +1,L2)+ IN(L1,L2)) . (4.5)

A similar expression can be obtained for ∂ 2
t2IN , with the finite-difference operation acting

on the variable L2 in place of L1. The cross-derivative takes the form

∂t1∂t2IN(t1, t2) = N2
+∞

∑
L1,L2=0

π(Nt1,L1)π(Nt2,L2)

(IN(L1 +1,L2 +1)− IN(L1 +1,L2)− IN(L1,L2 +1)+ IN(L1,L2)) . (4.6)

Step 2. In this step, we show that the entries of the Hessian of IN are nonpositive.
Since this property can be understood in a weak sense, or in terms of the signs of certain
finite differences, it suffices to show its validity for finite N. From the expressions of the
second derivatives obtained in the previous step, we see that it suffices to show that, for
every N ∈ N,L1,L2 ∈ Z+,

IN(L1 +2,L2)−2IN(L1 +1,L2)+ IN(L1,L2)⩽ 0, (4.7)
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IN(L1,L2 +2)−2IN(L1,L2 +1)+ IN(L1,L2)⩽ 0, (4.8)

and
IN(L1 +1,L2 +1)− IN(L1 +1,L2)− IN(L1,L2 +1)+ IN(L1,L2)⩽ 0. (4.9)

We only show the validity of (4.9), the arguments for (4.7) and (4.8) being similar. In
order to lighten the notation, we write

Z :=
(
(X (ℓ)

1 )ℓ⩽L1,(X
(ℓ)
2 )ℓ⩽L2

)
.

By the chain rule for mutual information, we have

IN(L1 +1,L2 +1) = I
(

S;
(
(X (ℓ)

1 )ℓ⩽L1+1,(X
(ℓ)
2 )ℓ⩽L2+1

))
= I
(

S;
(

X (L1+1)
1 ,X (L2+1)

2

)
| Z
)
+ I(S;Z),

and similarly,
IN(L1 +1,L2) = I

(
S;X (L1+1)

1 | Z
)
+ I(S;Z),

and
IN(L1,L2 +1) = I

(
S;X (L2+1)

2 | Z
)
+ I(S;Z).

Showing (4.9) is thus equivalent to showing that

I
(

S;
(

X (L1+1)
1 ,X (L2+1)

2

)
| Z
)
− I
(

S;X (L1+1)
1 | Z

)
− I
(

S;X (L2+1)
2 | Z

)
⩽ 0. (4.10)

We use again the chain rule of mutual information to write

I
(

S;
(

X (L1+1)
1 ,X (L2+1)

2

)
| Z
)
= I
(

S;X (L1+1)
1 | Z

)
+ I
(

S;X (L2+1)
2 | X (L1+1)

1 ,Z
)
.

The last term of the identity above can be rewritten as

I
(

X (L2+1)
2 ;

(
S,X (L1+1)

1

)
| Z
)
− I
(

X (L2+1)
2 ;X (L1+1)

1 | Z
)

= I
(

S;X (L2+1)
2 | Z

)
+ I
(

X (L1+1)
1 ;X (L2+1)

2 | S,Z
)
− I
(

X (L1+1)
1 ;X (L2+1)

2 | Z
)
. (4.11)

Conditionally on S, the random variables (X (L1+1)
1 ,X (L2+1)

2 ,Z) are independent, and thus
the second term on the right side of (4.11) is zero. Combining these identities, we obtain
that the left side of (4.10) equals −I

(
X (L1+1)

1 ;X (L2+1)
2 | Z

)
, which is indeed nonpositive.

Step 3. In this step, we show the validity of (4.2), and thus deduce the non-concavity
of IN for every N sufficiently large and finite. Using the expressions for the second
derivative obtained in (4.5) and (4.6), we can write(

1
−1

)
·
(

∂ 2
t1IN(0,0) ∂t1∂t2IN(0,0)

∂t1∂t2IN(0,0) ∂ 2
t2IN(0,0)

)(
1
−1

)
= N2

[
I(S;(X (1)

1 ,X (2)
1 ))+ I(S;(X (1)

2 ,X (2)
2 ))−2I(S;(X (1)

1 ,X (1)
2 ))

]
= N2

[
2I(X (1)

1 ;X (1)
2 )− I(X (1)

1 ;X (2)
1 )− I(X (1)

2 ;X (2)
2 )
]
,
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where we used Lemma 2.2 in the last step. Proposition 2.3 ensures that, for finite N going
to infinity, we have

N2
[
2I(X (1)

1 ;X (1)
2 )− I(X (1)

1 ;X (2)
1 )− I(X (1)

2 ;X (2)
2 )
]
⩾

(p0 − p1)
6

6(p0 + p1)4 +o(1),

which gives the desired result.

Step 4. In this last step, we show the validity of (4.3). Instead of trying to justify that the
second derivatives of IN converge to those of I∞, we simply borrow from [18] an explicit
expression for I∞, and observe that it satisfies (4.3) by calculating its derivatives. We
recall that p1 = q0 corresponds to c+∆ in the notation of [18], while p0 = q1 corresponds
to c−∆ in the notation of [18]. The statement of [18, Lemma 3.1] involves two Poisson
point processes, denoted by Π+ and Π− there, and which in our present context can
be represented as Π

(1)
p1t1δ1 +Π

(2)
p0t2δ−1 and Π

(1)
p0t1δ1 +Π

(2)
p1t2δ−1 respectively. The quantity

µ[−1,1]Ex1 appearing in [18, Lemma 3.1] translates into t1 − t2 in our context. The
function that is denoted by ψ(µ) in the notation of [18, Lemma 3.1] becomes, in our
current setting, the function

ψ(t1, t2) :=−(t1 + t2)
p1 + p0

2

+
1
2
E log

[
1
2

e−
(t1−t2)(p1−p0)

2 p
Π
(1)
p1t1

1 p
Π
(2)
p0t2

0 +
1
2

e
(t1−t2)(p1−p0)

2 p
Π
(1)
p1t1

0 p
Π
(2)
p0t2

1

]
+

1
2
E log

[
1
2

e−
(t1−t2)(p1−p0)

2 p
Π
(1)
p0t1

1 p
Π
(2)
p1t2

0 +
1
2

e
(t1−t2)(p1−p0)

2 p
Π
(1)
p0t1

0 p
Π
(2)
p1t2

1

]
.

Arguing as for [18, (1.16)-(1.17)], one can check that the mutual information IN(t1, t2) is
obtained as a simple (and convergent as N → ∞) linear term in (t1, t2), minus a function,
denoted by ψN(µ) in the notation of [18, Lemma 3.1], that converges to ψ(t1, t2). In order
to show that the mapping (t1, t2) 7→ I∞(t1, t2) is not concave, it thus suffices to show that
the mapping

(t1, t2) 7→ φ(t1, t2) :=
1
2
E log

[
1
2

e−
(t1−t2)(p1−p0)

2 p
Π
(1)
p1t1

1 p
Π
(2)
p0t2

0 +
1
2

e
(t1−t2)(p1−p0)

2 p
Π
(1)
p1t1

0 p
Π
(2)
p0t2

1

]
+

1
2
E log

[
1
2

e−
(t1−t2)(p1−p0)

2 p
Π
(1)
p0t1

1 p
Π
(2)
p1t2

0 +
1
2

e
(t1−t2)(p1−p0)

2 p
Π
(1)
p0t1

0 p
Π
(2)
p1t2

1

]
is not convex. For every s ∈ R and integers L1,L2 ⩾ 0, we denote

J(s,L1,L2) := log
[

1
2

e−
s(p1−p0)

2 pL1
1 pL2

0 +
1
2

e
s(p1−p0)

2 pL1
0 pL2

1

]
,

and observe that

φ(t1, t2) =
1
2

+∞

∑
L1,L2=0

(π(p1t1,L1)π(p0t2,L2)+π(p0t1,L1)π(p1t2,L2))J(t1 − t2,L1,L2).
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Using the identity (4.4), we write

∂t1φ(t1, t2) =
1
2

+∞

∑
L1,L2=0

J(t1 − t2,L1,L2)
[
(π(p1t1,L1 −1)−π(p1t1,L1)) p1π(p0t2,L2)

+(π(p0t1,L1 −1)−π(p0t1,L1)) p0π(p1t2,L2)
]

+∂t1J(t1 − t2,L1,L2)
[
π(p1t1,L1)π(p0t2,L2)+π(p0t1,L1)π(p1t2,L2)

]
,

and

∂
2
t1φ(t1, t2) =

1
2

+∞

∑
L1,L2=0

J(t1 − t2,L1,L2)[
(π(p1t1,L1 −2)−2π(p1t1,L1 −1)+π(p1t1,L1)) p2

1π(p0t2,L2)

+(π(p0t1,L1 −2)−2π(p0t1,L1 −1)+π(p0t1,L1)) p2
0π(p1t2,L2)

]
+∂t1J(t1 − t2,L1,L2)

[
(π(p1t1,L1 −1)−π(p1t1,L1)) p1π(p0t2,L2)

+(π(p0t1,L1 −1)−π(p0t1,L1)) p0π(p1t2,L2)
]

+∂
2
t1J(t1 − t2,L1,L2)

[
π(p1t1,L1)π(p0t2,L2)+π(p0t1,L1)π(p1t2,L2)

]
.

Similar calculations yield

∂t1∂t2φ(t1, t2) =
1
2

+∞

∑
L1,L2=0

J(t1 − t2,L1,L2)

p0 p1

[
(π(p1t1,L1 −1)−π(p1t1,L1))(π(p0t2,L2 −1)−π(p0t2,L2))

+(π(p0t1,L1 −1)−π(p0t1,L1))(π(p1t2,L2 −1)−π(p1t2,L2))
]

+∂t1J(t1 − t2,L1,L2)
[

p0π(p1t1,L1)(π(p0t2,L2 −1)−π(p0t2,L2))

+ p1π(p0t1,L1)(π(p1t2,L2 −1)−π(p1t2,L2))
]

+∂t2J(t1 − t2,L1,L2)
[

p1 (π(p1t1,L1 −1)−π(p1t1,L1))π(p0t2,L2)

+ p0 (π(p0t1,L1 −1)−π(p0t1,L1))π(p1t2,L2)
]

+∂t1∂t2J(t1 − t2,L1,L2)
[
π(p1t1,L1)π(p0t2,L2)+π(p0t1,L1)π(p1t2,L2)

]
.
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We get a similar expression for ∂ 2
t2φ(t1, t2) as for ∂ 2

t1φ(t1, t2):

∂
2
t2φ(t1, t2) =

1
2

+∞

∑
L1,L2=0

J(t1 − t2,L1,L2)[
p2

0π(p0t1,L1)(π(p0t2,L2 −2)−2π(p0t2,L2 −1)+π(p0t2,L2))

+ p2
1π(p0t1,L1)(π(p1t2,L2 −2)−2π(p1t2,L2 −1)+π(p1t2,L2))

]
+∂t2J(t1 − t2,L1,L2)

[
p0π(p1t1,L1)(π(p0t2,L2 −1)−π(p0t2,L2))

+ p1π(p0t1,L1)(π(p1t2,L2 −1)−π(p1t2,L2))
]

+∂
2
t2J(t1 − t2,L1,L2)

[
π(p1t1,L1)π(p0t2,L2)+π(p0t1,L1)π(p1t2,L2)

]
.

We are interested in the value of 2∂t1∂t2φ(t1, t2)−∂ 2
t1φ(t1, t2)−∂ 2

t2φ(t1, t2) at (t1, t2) =
(0,0). Hence, we use the Taylor expansion of J(t1 − t2,L1,L2) for arbitrary L1,L2 ∈ Z+

at t1 = t2 = 0 to get expressions for derivatives up to the second order

J(t1 − t2,N1,N2) = log

(
pN1

1 pN2
0 + pN1

0 pN2
1

2

)
− (t1 − t2)

p1 − p0

2
pN1

1 pN2
0 − pN1

0 pN2
1

pN1
1 pN2

0 + pN1
0 pN2

1

+
1
2
(t1 − t2)2(p1 − p0)

2 pN1+N2
1 pN1+N2

0

(pN1
1 pN2

0 + pN1
0 pN2

1 )2
+O((t1 − t2)3). (4.12)

Further, note that π(0,L) = 0 for all L ⩾ 1 and π(0,0) = 1. With this observation, we can
write the second derivatives of φ as sum of a few terms.

2∂t1∂t2φ(0,0)−∂
2
t1φ(0,0)−∂

2
t2φ(0,0)

=
1
2

(
− (p0 − p1)

2J(0,0,0)+2(p0 − p1)
2J(0,1,0)+2(p0 − p1)

2J(0,0,1)

+4p0 p1J(0,1,1)− (p2
0 + p2

1)J(0,2,0)− (p2
0 + p2

1)J(0,0,2)
)

− (p0 + p1)∂t1J(0,1,0)+(p0 + p1)∂t1J(0,0,1)
+(p0 + p1)∂t2J(0,1,0)− (p0 + p1)∂t2J(0,0,1)

+2∂t1∂t2J(0,0,0)−∂
2
t1J(0,0,0)−∂

2
t2J(0,0,0).

(4.13)

From (4.12) we get

2∂t1∂t2J(0,0,0)−∂
2
t1J(0,0,0)−∂

2
t2J(0,0,0) =−(p0 − p1)

2.

Using that ∂t1J(0,1,0) =−∂t1J(0,0,1) =−(p0−p1)
2/2(p0+p1), we obtain that

−(p0 + p1)∂t1J(0,1,0)+(p0 + p1)∂t1J(0,0,1) = (p0 − p1)
2.
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Similarly, (p0 + p1)∂t2J(0,1,0)− (p0 + p1)∂t2J(0,0,1) = (p0 − p1)
2. It remains to com-

pute the first terms of (4.13) that do not contain derivatives of J.

− (p0 − p1)
2J(0,0,0)+2(p0 − p1)

2J(0,1,0)+2(p0 − p1)
2J(0,0,1)

+4p0 p1J(0,1,1)− (p2
0 + p2

1)J(0,2,0)− (p2
0 + p2

1)J(0,0,2)

= 4(p0 − p1)
2 log

(
p0 + p1

2

)
+4p0 p1 log(p0 p1)−2(p0 + p1)

2 log
(

p2
0 + p2

1
2

)
.

(4.14)

Combining all together and rearranging terms in (4.14), we get

2∂t1∂t2φ(0,0)−∂
2
t1φ(0,0)−∂

2
t2φ(0,0) =

(p0 − p1)
2 +2p0 p1 log

(
1− (p0 − p1)

2

(p0 + p1)2

)
− (p2

0 + p2
1) log

(
1+

(p0 − p1)
2

(p0 + p1)2

)
.

The right-hand side of the above equality coincides with the right-hand side of (2.3), with
the o(1) term taken out. As was shown in the proof of Proposition 2.3, this expression is
lower-bounded by (p0−p1)

6/6(p0+p1)
4.
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