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Abstract. We consider mean-field vector spin glasses with possibly non-convex interac-
tions. Up to a small perturbation of the parameters defining the model, the asymptotic
behavior of the Gibbs measure is described in terms of a critical point of an explicit
functional. In this paper, we study some properties of these critical points. Under
modest assumptions ensuring that different types of spins interact, we show that the
replica-symmetry-breaking structures of the different types of spins are in one-to-one
correspondence with one another. For instance, if some type of spins displays one level
of replica-symmetry breaking, then so do all the other types of spins. This extends the
recent results of [5, 6] that were obtained in the case of multi-species spherical spin
glasses with convex interactions.

1. Introduction

We consider general multi-species or vector spin glasses with possibly non-convex
interactions. When the interaction is indeed non-convex, a complete identification of
the limit free energy is still lacking. Despite this, it was shown in [10] that the limit
free energy and overlap distribution must satisfy strong constraints, as they must admit
a representation in terms of a critical point of an explicit functional. The goal of the
present paper is to demonstrate that this representation allows us to infer physically
relevant information about the limit behavior of the model. We do so in the context of the
property of simultaneous replica-symmetry breaking investigated in [5, 6] for multi-species
spherical spin glasses with convex interactions. Roughly speaking, it was shown in [5, 6]
that for such models and under mild conditions ensuring the effective coupling between
the species, it must be that all species of spins share the same replica-symmetry-breaking
structure. For instance, it cannot be that one species is replica-symmetric (its overlap
is concentrated) while another one has one level of symmetry breaking (its overlap is
asymptotically supported on two values). We show here that this property extends to
non-spherical vector spin glasses with possibly non-convex interactions.

We fix an integer D ⩾ 1, and let (HN(σ))σ∈(RN )D be a centered Gaussian field such

that, for every σ = (σ1, . . . , σD) and τ = (τ1, . . . , τD) ∈ (RN)D, we have

(1.1) E [HN(σ)HN(τ)] = Nξ (στ
⊺

N
) ,

where ξ ∈ C∞(RD×D;R) is a smooth function admitting an absolutely convergent power-
series expansion with ξ(0) = 0, and where στ⊺ denotes the matrix of scalar products

(1.2) στ⊺ = (σd ⋅ τd′)1⩽d,d′⩽D.
The notation in (1.2) is natural if we think of σ and τ as D-by-N matrices, and we often
identify (RN)D with RD×N . We think of the Gaussian fields that can be represented in
the form of (1.1) as essentially encoding the most general class of (non-sparse) mean-field
spin glasses; the mean-field character of the model is captured by the assumption that the

Date: November 22, 2024.

1



2 HONG-BIN CHEN AND JEAN-CHRISTOPHE MOURRAT

covariance in (1.1) depends only on the matrix of scalar products between the different
types of spins. The set of functions ξ such that there exists a Gaussian random field
satisfying (1.1), together with an explicit construction of the Gaussian process HN , can be
found in [21, Proposition 6.6] and [10, Subsection 1.5]. We do not impose any convexity
assumption on ξ.

We give ourselves a probability measure P1 with compact support in RD, and for each
integer N ⩾ 1, we denote by PN = P⊗N

1 the N -fold tensor product of P1. We think of PN
as a probability measure on RD×N ≃ (RN)D. We will often also assume that

(1.3) the affine space spanned by the support of P1 is the full space RD.

This entails no loss of generality, for whenever it is not satisfied, we can always redefine
the model by restricting our attention to the affine space spanned by the support of P1.

For each β ⩾ 0, we are interested in the large-N behavior of the Gibbs measure whose
Radon–Nikodym derivative with respect to PN is proportional to exp(βHN), and of
the corresponding free energy. For technical reasons, we will in fact consider a more
complicated “enriched” version of the free energy. We denote by SD+ the cone of positive
semidefinite matrices. We let Q be the space of increasing and right-continuous paths
q ∶ [0,1)→ SD+ with left limits; a path q ∶ [0,1)→ SD+ is said to be increasing if for every
u ⩽ v ∈ [0, 1), we have q(u) ⩽ q(v) in the sense that q(v)− q(u) ∈ SD+ . For every r ∈ [1,∞],
we write Qr = Q ∩Lr([0,1], SD); we also often use the shorthand Lr for Lr([0,1], SD).
The enriched free energy FN(t, q) is defined for every t ∈ R+ and q ∈ Q1. When the path q
is constantly equal to h ∈ SD+ , this free energy is given by

(1.4) FN(t, h)

= − 1

N
E log∫ exp(

√
2tHN(σ) − tNξ (σσ

⊺

N
) +

√
2hz ⋅ σ − h ⋅ σσ⊺) dPN(σ),

where z = (z1, . . . , zD) is a random element of (RN)D ≃ RD×N with independent standard
Gaussian entries, independent of (HN(σ))σ∈(RN )D , and E denotes the expectation with

respect to all randomness. In (1.4) and throughout the paper, whenever a and b are
two matrices of the same size, we denote by a ⋅ b = tr(ab⊺) the entrywise scalar product,

and by ∣a∣ = (a ⋅ a)1/2 the associated norm. For more general paths q, the definition

of FN(t, q) involves replacing the random magnetic field
√

2hz by a more complicated
external field comprising an ultrametric structure, and the parameters of this structure
are encoded into the path q. We denote by ⟨⋅⟩ the Gibbs measure associated with the
free energy FN(t, q); the precise definitions of the free energy and the Gibbs measure
are given in Subsection 2.2 below. We stress that the Gibbs measure ⟨⋅⟩ is still random
as it depends on the realization of the Gaussian random field HN and of the external
magnetic field. Although this is not displayed in the notation, it also depends on the
choice of the parameters N , t and q. We denote by σ the canonical spin variable under ⟨⋅⟩,
and by σ′ an independent copy of σ under ⟨⋅⟩, also called a replica. In the limit of large
N , we can probe the geometry of the Gibbs measure by studying the law of the overlap
σσ′⊺/N under E ⟨⋅⟩ (see for instance [13, Section 5.7] for a more thorough discussion of
this point). One of the main results of [10] states that up to a small perturbation of the
energy function, any subsequential limit of the law of the overlap must be encoded by a
critical point of an explicit functional which we describe next.

To motivate the definition of this functional, we start by pointing out that, whenever
the function ξ is convex over SD+ , we have (see [10, Theorem 1.1]) that FN converges
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pointwise to the viscosity solution f to the equation

(1.5) ∂tf − ∫
1

0
ξ(∂qf) = 0,

with initial condition

(1.6) ψ(q) = lim
N→+∞

FN(0, q).

Moreover, whether or not ξ is convex, every subsequential limit f of FN satisfies the
relation (1.5) at every point of differentiability of f , by [10, Proposition 7.2] (see also
[11, 19, 21] for related works exploring the links between the limit free energy and the
partial differential equation in (1.5), and [13] for a book presentation). The derivative
∂qf in (1.5) is understood in the sense that for every q′ ∈ Q2 and as ε > 0 tends to 0, we
have

f(t, q + ε(q′ − q)) − f(t, q) = ε∫
1

0
(q′ − q)(u) ⋅ ∂qf(t, q, u)du + o(ε),

and the integral in (1.5) can be written more explicitly as ∫ 1
0 ξ(∂qf(t, q, u))du. Under

our assumption that PN = P⊗N
1 , the quantity FN(0, q) in fact does not depend on N

(see [21, Proposition 3.2]), so we have ψ(q) = F 1(0, q) in this case. Although we will not
study spherical models here, we point out that when PN is the uniform measure on the
sphere of radius

√
N in RN , an explicit expression for ψ is given in [20, Proposition 3.1].

For every t ⩾ 0, q, q′ ∈ Q2, and p ∈ L2(= L2([0,1], SD)), we set

Jt,q(q′, p) = ψ(q′) + ∫
1

0
p(u) ⋅ (q(u) − q′(u))du + t∫

1

0
ξ(p(u))du

= ψ(q′) + ∫
1

0
p ⋅ (q − q′) + t∫

1

0
ξ(p).

The functional Jt,q is closely related to the Hamilton–Jacobi equation in (1.5), so we call
it the Hamilton–Jacobi functional. A first simple link between the two objects is the
observation that, for each fixed q′ and p, the mapping (t, q) ↦ Jt,q(q′, p) is a solution
to (1.5). More profound links are presented in detail in [13, Sections 3.4 and 3.5]. We say
that a pair (q′, p) ∈ Q2 ×L2 is a critical point of Jt,q if

(1.7) q = q′ − t∇ξ(p) and p = ∂qψ(q′).
The first condition is the critical-point condition with respect to variations of the pa-
rameter p, while the second one relates to variations with respect to the parameter q′.
In a nutshell, the main result of [10] is that possibly up to a small perturbation of the
parameters of the model and up to the extraction of a subsequence, we have that the
overlap matrix σσ′⊺/N converges in law to p(U), where (q′, p) ∈ Q∞ is a critical point
of Jt,q and U is a uniform random variable over [0,1].

We therefore seek to study the properties of critical points of Jt,q. Prior works related
to this goal include [1, 2, 3, 4, 12, 14, 15, 18, 24, 25, 26, 27, 28]. Much of the attention
there is paid to the number of steps of replica-symmetry breaking. In our context, the
number of steps of replica-symmetry breaking, plus one, is the number of different values
taken by the path p.

For multi-species spherical models with convex interactions, the property of simultane-
ous replica-symmetry breaking has been investigated in [5, 6] (see also [17] concerning the
Crisanti-Sommers formula for the limit free energy). This refers to the idea that, provided
that the different species of spins are effectively coupled in the model, the supports of the
limit laws of the overlaps of the different species are in bijective correspondence with one
another. In other words, all species share the same number of levels of replica-symmetry
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breaking. In the present paper, we extend this result to non-spherical models with possibly
non-convex interactions.

For clarity, we appeal to a simple assumption on ξ to guarantee the effective coupling
between the different types of spins; more general results will be discussed later on. As
explained in [21, Section 6], for ξ to be the covariance of a Gaussian field as in (1.1),
it is necessary that for every a, b ∈ SD+ , one has ∇ξ(a + b) − ∇ξ(a) ∈ SD+ . A sufficient
assumption to ensure that the different types of spins are indeed coupled is that

(1.8) for every a, b ∈ SD+ with b ≠ 0, we have d
dε ∣ε=0∇ξ(a + εb) ∈ S

D
++,

where SD++ denotes the set of positive definite matrices. As explained in more details in
Remark 5.18, one possible way to ensure the validity of this assumption is to add to the
energy function HN a term of the form

(1.9)
D

∑
d,d′=1

√
cd,d′

N

∑
i,j=1

W d,d′
i,j σd,iσd′,j ,

where (cd,d′)d,d′⩽D are in (0,+∞) and (W d,d′
i,j )i,j⩽N,d,d′⩽D are independent standard Gauss-

ian random variables, independent of HN .

Theorem 1.1 (Simultaneous RSB). Suppose that the assumptions (1.3) and (1.8) hold.
Let t > 0, q ∈ Q1, and let (q′, p) ∈ Q2

∞ be a critical point of Jt,q. For every s ⩽ s′ ∈ [0,1],
if p(s′) − p(s) ≠ 0, then p(s′) − p(s) ∈ SD++.

Let us first explain why Theorem 1.1 relates to the statement of simultaneous replica-
symmetry-breaking. Recall that by [10, Theorem 1.4], possibly up to a small perturbation
of the parameters and up to the extraction of a subsequence, the law of the overlap σσ′⊺/N
converges to p(U), where (q′, p) ∈ Q∞ is a critical point of Jt,q and U is a uniform random
variable over [0, 1]. Recalling that p is a matrix-valued path, we denote by p1, . . . , pD its
diagonal entries, so that the limit law of the overlap of the d-th spin type is pd(U). Suppose
that the d-th spin type has at least K levels of replica-symmetry breaking. This means
that pd takes at least K +1 values, so we can find 0 ⩽ s0 < s′0 < s1 < s′1 < ⋯sK < s′K ⩽ 1 such
that for each k ∈ {0, . . . ,K}, we have that pd(sk) < pd(s′k). An application of Theorem 1.1
then yields that all the other spin types also have at least K levels of replica-symmetry
breaking. Since this argument applies for every choice of d ∈ {1, . . . ,D}, we conclude that
the paths (pd)d⩽D all take exactly the same number of values, as desired.

The assumption (1.8) is not necessary to ensure the validity of the phenomenon of
simultaneous replica-symmetry breaking, and more general results will be proved below.
For instance, it suffices that the energy function contains a term of the form of (1.9) with
cd,d′ non-zero only for d′ = d + 1 (mod D). What is key is that there is a “transmission
chain” from each spin type to every other spin type; see also the notion of “y-to-z coupled”
in Proposition 5.17 and Remark 5.18.

We also prove an analogue of Theorem 1.1 for multi-species models, which is perhaps
simpler to interpret as in this context we can ignore the off-diagonal part of the paths. In
other words, the statement in this case is directly at the level of the paths (p1, . . . , pD)
that encode the respective laws of the overlaps for each of the different species; see
Theorem 6.2 for more precision.

Organization of the paper. In Section 2, we recall the construction of the free energy
FN(t, q) based on Poisson–Dirichlet cascades and present some basic properties of these
objects. For our purposes, we need to manipulate possibly discontinuous matrix-valued
paths. In Section 3, we introduce convenient decompositions of such a path as the
composition of a Lipschitz matrix-valued path and a quantile function. Section 4 presents
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fundamental properties of the Parisi PDE, which appears in the explicit calculation of
the initial condition ψ in (1.6). In Section 5, we obtain convenient representations of
the derivative of ψ, which may be of independent interest, and we use them to prove
Theorem 1.1. The final section covers the case of multi-species models.

2. Continuous cascades

In this section, we recall definitions and properties of continuous Poisson–Dirichlet
cascades and associated Gaussian processes. We also recall the definition of the free energy
with an external field parameterized by a matrix-valued path, which generalizes (1.4).

2.1. Definition and properties of the continuous cascade. The existence of the
following objects has been explained in the beginning of [10, Section 4]. There is an
infinite-dimensional separable Hilbert space H and a random probability measure R on
the unit sphere of H such that the following holds. We denote the inner product in H
by ∧ and let (hl)

l∈N be an sequence of independent random variables sampled from R.

Then, under PRN, hl ∧ hl
′

is distributed uniformly on [0,1] for every distinct pair l and
l′. Moreover, for almost every realization of R, the support of R satisfies the following
properties: (i) suppR is a subset of the unit sphere; (ii) h ∧ h′ ⩾ 0 for all h,h′ ∈ suppR;
(iii) h ∧ h′ ⩾ min (h ∧ h′′,h′′ ∧ h′), for all h,h′,h′′ ∈ suppR.

By [10, Proposition 4.1], we know the existence of the following Gaussian process. For
almost every realization of R and every q ∈ Q∞, there is an RD-valued centered Gaussian
process (wq(h))h∈suppR such that for every h,h′ ∈ suppR,

E [wq(h)wq(h′)⊺] = q (h ∧ h′) .(2.1)

Here, we recall that q ∈ Q is a function defined on [0, 1). Since q is bounded and increasing,
we have that the function s↦ a ⋅ q(s) for every a ∈ SD+ is bounded and increasing. Hence,
lims→1 a ⋅ q(s) exists for every a ∈ SD+ , then we can define q(1) ∈ SD+ to be the unique
matrix determined by lims→1 a ⋅ q(s) = a ⋅ q(1). In this way, we can extend the definition
of q to [0,1] with the right endpoint satisfying

q(1) = lim
s→1

q(s).(2.2)

Then, (2.1) makes sense when h = h′ or equivalently h ∧ h′ = 1.

Henceforth, whenever we take expectations with respect to R and (wq(h))h∈suppR, we

always first average the Gaussian randomness of (wq(h))h∈suppR conditioned on R and

then average over the randomness of R. According to [10, Lemma 4.5], this order of
averaging is needed to avoid measurability issues in all situations that we are interested
in.

We often appeal to the following invariance property of the cascade. For a Lipschitz
g ∶ RD → R, we consider the random Gibbs measure

⟨⋅⟩Rg =
exp (g(wq(h))dR(h)
∬ exp (g(wq(h))dR(h)

which averages over h. In the following, we often use (σ,h) and (σ′,h′) to denote two
independent copies sampled from a random Gibbs measure.

Lemma 2.1 (Invariance of cascades). For every q ∈ Q∞, every Lipschitz g ∶ RD → R,
and every bounded measurable ρ ∶ R→ R, we have

E ⟨ρ (h ∧ h′)⟩
Rg = ∫

1

0
ρ(s)ds.
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Proof. According to [10, Proposition 4.8], the left-hand side is unchanged if we replace g
by the constantly zero function. Then, the identity follows from the fact that h ∧ h′ is
uniformly distributed over [0,1] under E ⟨⋅⟩R0 . �

We need the following standard interpolation computation.

Lemma 2.2. Let µ be a finite nonzero Borel measure supported on the unit ball of RD.
For every q ∈ Q∞ and x ∈ RD, we set

fµ(q, x) = E log∬ exp (
√

2σ ⋅wq(h) + σ ⋅ x)dµ(σ)dR(h),

⟨⋅⟩µ,q,x =
exp (

√
2σ ⋅wq(h) + σ ⋅ x)dµ(σ)dR(h)

∬ exp (
√

2σ ⋅wq(h) + σ ⋅ x)dµ(σ)dR(h)
.

(2.3)

Then, for every q, q′ ∈ Q∞ and every x,x′ ∈ RD, writing qλ = λq + (1 − λ)q′ and xλ =
λx + (1 − λ)x′, we have

fµ(q, x) − fµ(q′, x′) = ∫
1

0
E ⟨R1,1 −R1,2 + σ1 ⋅ (x − x′)⟩µ,qλ,xλ dλ;(2.4)

and, for any bounded measurable function F ∶ (RD)n ×Rn×n → R with n ∈ N, there are
constants (cl,l′)1⩽l,l′⩽n+1 and (cl)1⩽l⩽n+1 depending only on n such that

E ⟨F(⋯)⟩µ,q,x −E ⟨F(⋯)⟩µ,q′,x′ = ∫
1

0
E ⟨F(⋯)

⎛
⎝
n+1
∑
l,l′=1

cl,l′Rl,l′ +
n+1
∑
l=1

clσ
l ⋅ (x − x′)

⎞
⎠
⟩
µ,qλ,xλ

dλ

(2.5)

where Rl,l′ = σl (σl
′)⊺ ⋅ (q − q′) (hl ∧ hl

′) and F(⋯) = F (σ1, . . . , σn; (hl ∧ hl
′)

1⩽l,l′⩽n).

Proof. Taking λ ∈ [0,1] and wq to be independent from wq
′
, we can see that

√
λwq +√

1 − λwq′ has the same distribution as wλq+(1−λ)q
′

by checking that they have the same
covariance using (2.1). Hence, we can rewrite

fµ (qλ, xλ)

= E log∬ exp (
√

2σ ⋅ (
√
λwq(h) +

√
1 − λwq′(h)) + σ ⋅ xλ)dµ(σ)dR(h).

Then, for λ ∈ (0, 1), we first compute the derivative and then use the Gaussian integration
by parts (c.f. [13, Theorem 4.6]) to get

d

dλ
fµ (qλ, xλ) = E ⟨σ ⋅

⎛
⎝

1√
2λ
wq(h) − 1√

2(1 − λ)
wq

′(h)
⎞
⎠
+ σ ⋅ (x − x′)⟩

µ,qλ,xλ

= E ⟨σσ⊺ ⋅ (q − q′) (1) − σσ′⊺ ⋅ (q − q′) (h ∧ h′) + σ ⋅ (x − x′)⟩
µ,qλ,xλ

which yields (2.4). For (2.5), we can use the same interpolation arguments based on

replacing wλq+(1−λ)q
′

with
√
λwq +

√
1 − λwq′ . This time, the expression is more compli-

cated due to the presence of n independent copies of (σ,h) from the differentiation and
n + 1 copies after performing the Gaussian integration by parts. Since the procedure is
standard, we omit the details here. �

Corollary 2.3. Under the same setting as in Lemma 2.2, we have

∣fµ(q, x) − fµ(q′, x′)∣ ⩽ ∣q − q′∣ (1) + ∥q − q′∥
L1 + ∣x − x′∣,

and, there is a constant Cn depending only on n such that

∣⟨F(⋯)⟩µ,q,x − ⟨F(⋯)⟩µ,q′,x′ ∣ ⩽ Cn∥F∥L∞ (∣q − q′∣ (1) + ∥q − q′∥
L1 + ∣x − x′∣) .
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Proof. Due to the assumption on the support of µ, we have ∣Rl,l′ ∣ ⩽ ∣q − q′∣ (hl ∧ hl
′).

Using this, the fact that hl ∧ hl = 1 (because R is supported on the unit sphere a.s.), and

Lemma 2.1 for hl ∧ hl
′

with l ≠ l′, we obtain the desired results from (2.4) and (2.5). �

2.2. Enriched free energy. Lastly, we define the enriched free energy. For almost every
realization of R, let (wqi )i∈N be independent copies of wq and define, for every N ∈ N and
h ∈ suppR,

W q
N(h) = (wq1(h), . . . ,wqN(h))

which takes value in RD×N (namely, column vectors of W q
N(h) are given by wqi (h)). For

every N ∈ N and (t, q) ∈ R+ ×Q∞, we consider the Hamiltonian

Ht,q
N (σ,h) =

√
2tHN(σ) − tNξ (σσ

⊺

N
) +

√
2wq(h) ⋅ σ − q(1) ⋅ σσ⊺

and the free energy

FN(t, q) = − 1

N
E log∬ exp (Ht,q

N (σ,h))dPN(σ)dR(h),

where E first averages over the Gaussian randomness inHt,q
N (σ,h) and then the randomness

of R. The associated random Gibbs measure (averaging over (σ,h)) is defined by

⟨⋅⟩N =
exp (Ht,q

N (σ,h))dPN(σ)dR(h)

∬ exp (Ht,q
N (σ,h))dPN(σ)dR(h)

.(2.6)

Viewing FN as a function on R+×Q∞, we can interpret FN(0, ⋅) as its initial condition.
Due to the assumption PN = P⊗N

1 , we have FN(0, ⋅) = F 1(⋅) ([10, Proposition 3.2]). Then,

ψ given as in (1.6) is equal to F 1(0, ⋅) and has the explicit expression:

ψ(q) = −E log∬ exp (
√

2σ ⋅wq(h) − q(1) ⋅ σσ⊺)dP1(σ)dR(h), ∀q ∈ Q∞.(2.7)

It is known ([10, Definition 2.1 and Corollary 5.2]) that ψ is Fréchet differentiable at
every q ∈ Q∞ in the following sense. For every q ∈ Q∞, there is a unique p ∈ Q∞ such that

lim
r→0

sup
q′∈Q∞∖{0}
∥q′−q∥L2⩽r

∣ψ(q′) − ψ(q) − ⟨p, q′ − q⟩L2 ∣
∥q′ − q∥L2

= 0,(2.8)

where ⟨⋅, ⋅⟩L2 is the L2 scalar product for SD-valued functions defined on [0, 1]. We denote
this unique p by ∂qψ(q) ∈ Q∞.

Remark 2.4. In this section, objects are defined with q ∈ Q∞ which is a right-continuous
path with left limits. Later, we will introduce the left-continuous version Ð→q of q defined
in (3.8), which is more natural for other purposes. Here, we comment that all the objects
can be defined in terms of Ð→q instead of q because conditioned on R we can construct the

Gaussian process (wÐ→q (h))
h∈suppR

with covariance

E [w
Ð→q (h)w

Ð→q (h′)⊺] =Ð→q (h ∧ h′) , ∀h,h′ ∈ suppR.

Relevant properties are also preserved, as explained in [10, Remark 4.9]. In particular,
the invariance property in Lemma 2.1 still holds for this version. Since q and Ð→q differ on
a set with zero Lebesgue measure, using interpolation arguments as in Lemma 2.2 and
the invariance property, we can see that fµ(q, x) and the deterministic measure E ⟨⋅⟩q,x
are preserved if we change wq in (2.3) to w

Ð→q . �
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3. Decomposition of matrix-valued paths

A path q ∈ Q∞ is matrix-valued. To facilitate the definition of the Parisi PDE along
the path q, we need to perform a decomposition of q into a Lipschitz matrix-valued path
and a (scalar-valued, possibly discontinuous) quantile function. We explain this procedure
in this section and derive necessary properties for later use.

3.1. Quantile functions. On an interval [0, T ] for some T > 0, the function α ∶ [0, T ]→
[0,1] is said to be a probability distribution function (p.d.f.) if α is increasing (by
this we mean that α(t) ⩽ α(t′) whenever t ⩽ t′), is right-continuous with left limits,
and satisfies α(T ) = 1. Although not needed, we can extend α to α defined on the
entire real line by setting α(t) = 0 for t < 0 and α(t) = 1 for t > T . We denote the
associated probability measure by dα; this probability measure is uniquely determined by
the property that ∫(−∞,t] dα = α(t) for every t ∈ R.

The quantile function α−1 ∶ [0,1]→ [0, T ] associated with α is given by

α−1(s) = inf {t ∈ [0, T ] ∶ s ⩽ α(t)} , ∀s ∈ [0,1].(3.1)

It is straightforward to see that α−1 is increasing and left-continuous with right limits,
and satisfies α−1(0) = 0.

The definition of α−1 and the right-continuity of α imply

α−1 ○ α(t) ⩽ t, ∀t ∈ [0, T ];(3.2)

s ⩽ α ○ α−1(s), ∀s ∈ [0,1].(3.3)

Lemma 3.1. Let α be a p.d.f. on [0, T ] and let α−1 be its associated quantile function.
We have

α(t) = sup{s ∈ [0,1] ∶ t ⩾ α−1(s)} , ∀t ∈ [0, T ].

Proof. We set α′(t) = sup{s ∈ [0,1] ∶ t ⩾ α−1(s)} for t ∈ [0, T ] and we show α = α′.
Since α−1 is left-continuous, we get α−1 ○ α′(t) ⩽ t. This along with (3.3) gives α′(t) ⩽
α ○ α−1 ○ α′(t) ⩽ α(t). The definition of α′ gives s ⩽ α′ ○ α−1(s) for every s, which along
with (3.2) implies α(t) ⩽ α′ ○ α−1 ○ α(t) ⩽ α′(t). �

For a function ρ with right limits defined on an interval [a, b], we write

ρ(r+) = lim
r′↓r

ρ(r′), ∀r ∈ [a, b); ρ(b+) = ρ(b).(3.4)

Lemma 3.2. Denoting α−1([0,1]) = {α−1(s) ∶ s ∈ [0,1]}, we have

α−1 ○ α(t) = t, ∀t ∈ α−1([0,1]); α−1 ○ α(t+) = t, ∀t ∈ α−1([0,1]).

We emphasize that α−1([0,1]) does not denote the preimage of [0,1] under α (the
latter is the full interval [0, T ]). We also clarify that here and henceforth α−1 ○ α(t+) =
limt′↓t α

−1 ○ α(t′), which is in general not equal to α−1 (limt′↓t α(t′)) = α−1 (α(t)) since
α−1 ○ α may not be right-continuous.

Proof. The first identity follows easily from (3.2) and (3.3) and the monotonicity of α.
We focus on the second identity.

First, assume t ∈ α−1([0,1]). If t = T , then the identity holds due to the first identity
and the convention α(T+) = α(T ) in (3.4). Now, assume t < T and let (tn)n∈N be a
decreasing sequence converging to t. Then, using the first identity and the first relation
in (3.2), we get t = α−1 ○ α(t) ⩽ α−1 ○ α(tn) ⩽ tn. Sending n → ∞, we get the desired
identity at t.
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Next, assume t ∈ α−1([0,1]) ∖ α−1([0,1]). We claim that there is a decreasing (tn)n∈N
in α−1([0,1]) converging to t with tn > t. Suppose that this is not true. Then, there
must be an increasing (t′n)n∈N in α−1([0,1]) converging to t. For each t′n, let sn satisfy
t′n = α−1(sn). Then, (sn)n∈N is increasing. Denote by s its limit. The left-continuity of
α−1 implies t = α−1(s) contradicting t /∈ α−1([0, 1]). Hence, the claim holds and let (tn)n∈N
be the sequence described. Since (tn)n∈N approaches t from the right and α−1 ○α(tn) = tn
due to the first identity, we get the second identity at t by passing to the limit. �

Next, we recall relations between the quantile function and the probability measure it
represents. We denote by supp dα the support of dα, defined to be the smallest closed
set on which α has full measure.

Lemma 3.3. The law of α−1(U) is dα, where U is a uniform random variable over [0, 1].
Consequently, for every bounded measurable h ∶ [0, T ]→ R, we have that ∫ 1

0 h ○α−1(s)ds =
∫ T0 h(t)dα(t). Moreover, supp dα = α−1((0,1]) and

α−1 ○ α(t+) = t, ∀t ∈ {0} ∪ supp dα.(3.5)

Here again, α−1((0,1]) = {α−1(s) ∶ s ∈ (0,1]} is not the preimage of (0,1] under α.

Proof of Lemma 3.3. For t ∈ [0, T ], we have P (α−1(U) ⩽ t) = sup{s ∈ [0,1] ∶ α−1(s) ⩽ t},
which is exactly α(t) due to Lemma 3.1. It remains to identify the support of dα.
For brevity, we write S = α−1((0,1]). Since P (α−1(U) ∈ S) ⩾ P (U ∈ (0,1]) = 1, we

have supp dα ⊆ S. To show the other direction, let K be any closed set such that
P (α−1(U) ∈K) = 1. We claim that S ⊆ K. Suppose otherwise S ∩K∁ ≠ ∅. Since K∁

is open, we must have S ∩K∁ ≠ ∅. Let s ∈ (0,1] satisfy α−1(s) ∈ S ∩K∁. Since α−1

is left-continuous and K∁ is open, there is s′ ∈ (0, s) sufficiently close to s such that
α−1(r) ∈ S ∩K∁ for every r ∈ (s′, s). Then, we have P (α−1(U) ∈K∁) ⩾ P (U ∈ (s′, s)) > 0,

reaching a contradiction. Therefore, we have S ⊆K for every closed K with full measure
and thus S ⊆ supp dα. Lastly, using the characterization of supp dα and the easy
observation 0 = α−1(0), we can get (3.5) from Lemma 3.2. �

For a function ρ ∶ I → R defined on some interval I, we say that ρ is strictly increasing
at s if (s,+∞) ∩ I ≠ ∅ and ρ(s′) > ρ(s) for every s′ ∈ (s,+∞) ∩ I; and that ρ is strictly
increasing on J for some J ⊆ I if ρ is strictly increasing at every s ∈ J . If ρ is strictly
increasing on I, then we simply say that ρ is strictly increasing as usual.

Lemma 3.4. Let α ∶ [0, T ]→ [0,1] be right-continuous and increasing. If α−1 is strictly
increasing at some s ∈ [0,1), then there is t ∈ {0} ∪ supp dα such that α(t) = s and
α−1(s) = t.

Proof. We first show that there exists t ∈ [0, T ] satisfying α(t) = s. For r ∈ R, set
Ir = {t ∶ r ⩽ α(t)}. Then, we have α−1(r) = inf Ir and Ir′ ⊆ Ir if r′ ⩾ r. Since α−1 is strictly
increasing at s, we must have Is ∖ Is′ ≠ ∅ for every s′ > s. Hence, for every n ∈ N, there
is tn ∈ Is ∖ Is+n−1 such that s ⩽ α(tn) < s + n−1. For each n, we set t′n = min{t1, . . . , tn}.
Since α is increasing, we have s ⩽ α(t′n) < s + n−1 and the sequence (t′n)n∈N is decreasing.
Let t be its limit. Since α is right-continuous, we send n→∞ to get s ⩽ α(t) ⩽ s, which
gives the desired t.

Next, we set t = inf {r ∶ α(r) = s}. Comparing with the definition of α−1 in (3.1),
we have α−1(s) = t. The first step ensures that the infimum is taken over a nonempty
set. The right continuity of α implies α(t) = s. It remains to show that if t ≠ 0, then
t ∈ supp dα. Notice that t < T because otherwise we would have s = α(T ) = 1 which is not
allowed. Hence, t ∈ (0, T ) now. We argue by contradiction and suppose t /∈ supp dα. Since
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supp dα is closed, there is ε ∈ (0, t) ∩ (0, T − t) such that (t − ε, t + ε) /⊆ supp dα which
means that α(t′′)−α(t′) = ∫ 1(t′,t′′]dα = 0 for every t− ε < t′ < t′′ < t+ ε. In particular, we

get α(t′) = α(t) = s for some t′ < t, which contradicts the definition of t. Hence, we must
have t ∈ supp dα which completes the proof. �

Lemma 3.5. If α−1(u) < α−1(v), then there is s ∈ [u, v) such that α−1 is strictly increasing
at s.

Proof. We set I = {r ⩾ u ∶ α−1(r) = α−1(u)} and let s = sup I. Clearly, s ⩾ u. Since α−1 is

left-continuous, we have α−1(s) = α−1(u). Suppose that α−1 is not strictly increasing at
s, then there is s′ > s such that α−1(s′) = α−1(s) = α−1(u), contradicts the definition of
s. Hence, α−1 is strictly increasing at s. Also, we must have s < v because otherwise we
have α−1(u) < α−1(v) ⩽ α−1(s) = α−1(u), which is absurd. �

Lemma 3.6. Let s ∈ [0,1). The following are equivalent:

(1) it holds that α−1(s+) > α−1(s);
(2) there are t, t⋆ ∈ {0} ∪ supp dα such that

t⋆ > t, α(t) = s, t = α−1(s), t⋆ = α−1(s+), (t, t⋆) ∩ supp dα = ∅.(3.6)

Proof. The second statement clearly implies the first one. We focus on showing the other
direction. The first statement implies that α−1 is strictly increasing at s. Let t be given
as in Lemma 3.4 and we have α(t) = s and t = α−1(s).

Then, we show the existence of t⋆. Suppose that there is a decreasing sequence (tn)n∈N
in supp dα converging to t. Since α is right-continuous, setting sn = α(tn), we have
limn→∞ sn = s. Using (3.5) and the convergence of (tn)n∈N, we have limn→∞ α−1(sn) =
α−1(s), which contradicts the assumption of the first statement. Therefore, setting
t⋆ = inf {t′ > t ∶ t′ ∈ supp dα}, we must have t⋆ > t. Since supp dα is closed, we also have
t⋆ ∈ supp dα. Lastly, it is clear from the definition that (t, t⋆) ∩ supp dα = ∅.

It remains to verify t⋆ = α−1(s+). First, we show

α−1(s′) ⩾ t⋆, ∀s′ > s.(3.7)

We argue by contradiction and suppose α−1(s′) > t⋆ for some s′ > s. Due to α−1○α(t⋆) = t⋆
by (3.5), we have α−1(s′) < α−1(α(t⋆)) and thus we must have s′ < α(t⋆). By Lemma 3.5
and then Lemma 3.4, there is s′′ ∈ [s′, α(t⋆)) and t′′ ∈ supp dα such that s′′ = α(t′′). Then,
we must have t′′ < t⋆ and thus

t = α−1(s) < α−1(s′) ⩽ α−1(s′′) (3.5)= t′′ < t⋆.

In particular, we have t′′ ∈ (t, t⋆) ∩ supp dα and reaches a contradiction. Hence, (3.7)
holds.

Due to t⋆ > t, we have α(t⋆) ⩾ α(t) = s. Also, recall α−1 ○ α(t⋆) = t⋆ due to (3.5).
These along with (3.7) imply t⋆ = infs′>s α

−1(s′). Since α−1 is increasing, we deduce that
t⋆ = α−1(s+). �

3.2. Decompositions.

3.2.1. Decomposition of one path. Given q ∈ Q∞ which is a function on [0,1), we denote
by Ð→q ∶ [0,1]→ SD+ its left-continuous version defined by

Ð→q (0) = 0; Ð→q (s) = lim
u↑s

q(u), ∀s ∈ (0,1].(3.8)
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For some T > 0, a pair (L,α) is said to be a decomposition of q (defined on [0, T ])
if L ∶ [0, T ]→ SD+ is Lipschitz and increasing, α ∶ [0, T ]→ [0,1] is a p.d.f., and

Ð→q (s) = L ○ α−1(s), ∀s ∈ (0,1].(3.9)

It is easy to see that decompositions of q are not unique. In particular, given Ð→q and α,
one can only determine L on supp dα, more precisely,

L(t) =Ð→q ○ α(t+), ∀t ∈ supp dα.(3.10)

Indeed, fix any t ∈ supp dα, we must have α(t′) > 0 for every t′ > t. Then, using (3.9), we
have Ð→q ○ α(t′) = L ○ α−1 ○ α(t′) for all t′ > t and thus Ð→q ○ α(t+) = L ○ α−1 ○ α(t+). Then,
(3.10) follows from this and (3.5) in Lemma 3.3.

Before proceeding, we comment that the value of Ð→q (0) is insignificant.1 We make the
choice in (3.8) so that when we choose α to satisfy trÐ→q = α−1 in the later construction,
we indeed have trÐ→q (0) = α−1(0) = 0. It is also important to notice that the relation
in (3.9) is not required to hold at s = 0. Otherwise, we would have L(0) =Ð→q (0), which is
an unwanted restriction beyond (3.10) if 0 /∈ supp dα.

This decomposition is needed to express the integration of the cascade in terms of the
solution to the so-called Parisi PDE. The coefficients of the second-order and first-order
terms in this PDE are determined by L and α, respectively (see (4.1)).

We comment that taking the left-continuous version Ð→q is preferred here because Ð→q
resembles a quantile function and thus enjoys better properties due to the duality between
quantile functions and p.d.f.s. Since q is right-continuous with left limits, taking Ð→q does
not lose information and we can always recover q from Ð→q by taking the right-continuous
version.

Since there is too much freedom in choosing a decomposition, sometimes, we need
to put an extra restriction. A decomposition (L,α) of some q is said to be pinned if
L(0) = 0.

3.2.2. Canonical decompositions. We turn to the existence of such a decomposition. In
the following, we describe the construction of an arguably canonical decomposition of Ð→q .
Let us start by explaining the motivation.

First, we want this decomposition to reflect the phenomenon of synchronization of
overlaps in [22, 23]. To explain this, let us denote by R a random variable whose law is

the limit law of σσ′⊺
N under E ⟨⋅⟩N as N →∞, where σ,σ′ are independent samples from

⟨⋅⟩N in (2.6). Panchenko’s synchronization principle in [22, 23] states that there exists
some Lipschitz path L such that R = L(tr(R)) a.s. If we denote by α the probability

distribution function of the law of tr(R), then we have tr(R) d= α−1(U) where U is the

uniform random variable on [0,1]. Setting Ð→q = L ○ α−1, we have R
d= Ð→q (U). Then, we

should expect trÐ→q = α−1 which is enough to determine α. After fixing α, the value of L
on {0} ∪ supp dα is completely determined via (3.10). There is freedom in choosing its
value outside {0} ∪ supp dα and we simply use linear interpolations.

With the above explained, we are ready to give the definition. Given q ∈ Q∞, we
call (L,α) the canonical decomposition of q if α ∶ [0, T ]→ [0,1] is a p.d.f. satisfying
α−1 = trÐ→q with T = trÐ→q (1) and L ∶ [0, T ]→ SD+ is given by

L(t) =Ð→q ○ α(t+), ∀t ∈ {0} ∪ supp dα;

L(t) = tr − t
tr − tlL

(tl) + t − tl
tr − tlL (tr) , ∀t ∈ (0, T ] ∖ supp dα,

(3.11)

1Alternatively, one can set Ð→q (0) =Ð→q (0+), which is similar to the choice of q(1) in (2.2).
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where for every t ∈ [0, T ] we set

tl = sup{r ∈ supp dα ∶ r ⩽ t} , tr = inf {r ∈ supp dα ∶ r ⩾ t} .(3.12)

When the infimum in tr is taken over an empty set, we understand tr = +∞ and L(t) = L(tl)
in (3.11).

Notice that in addition to values of L in (3.10) that are determined by Ð→q and α, we
prescribe the value of L at 0 in (3.11).

Lemma 3.7. For any q ∈ Q∞, let (L,α) be the canonical decomposition of q described
above. Then, (L,α) is a pinned decomposition of q. Moreover, trL(t) = t for every

t ∈ [0, T ] and ∥L∥Lip ⩽
√
D.

For a canonical decomposition (L,α), we can say that L has unit speed due to
trL(t) = t.

Proof of Lemma 3.7. We verify that L is increasing. For convenience, we start by observ-
ing that we can extend the identity on the second line of (3.11) to every t ∈ [0, T ] with the
understanding that, when t ∈ supp dα and thus t = tl = tr, both fractions in (3.11) are set

to be 1. Fix any t ⩽ t′ and let tl, tr, t′l, t′r be given as in (3.12). Due to their definitions,

we can see that there are two possible cases: tl = t′l and tr = t′r; or tr ⩽ t′l.2 In both cases,
since Ð→q ○ α is increasing, we can get from (3.11) that L(t) ⩽ L(t′).

Taking the trace on both sides of the expressions of L in (3.11), and using α−1 = trÐ→q
and (3.5), we can see that trL(t) = t for every t ∈ [0, T ].

To show that L is Lipschitz, we need the following basic result. For any a ∈ SD+ , by

diagonalizing a, we have ∣a∣ =
√
∑Di=1 λ2i where (λi)Di=1 are eigenvalues of a, which implies

D− 1
2 tr(a) ⩽ ∣a∣ ⩽D

1
2 tr(a), ∀a ∈ SD+ .(3.13)

Using that L is increasing, (3.13), and trL(t) = t for t ∈ [0, T ], we have

∣L(t) −L(t′)∣ ⩽D
1
2 ∣trL(t) − trL(t′)∣ =D

1
2 ∣t − t′∣

which verifies that L is Lipschitz with coefficient bounded by
√
D.

We verify Ð→q = L ○ α−1 on (0,1]. Using (3.3) and the monotonicity of Ð→q , we have
Ð→q ○ α ○ α−1(s) ⩾Ð→q (s) for every s. Then,

tr (Ð→q ○ α ○ α−1(s) −Ð→q (s)) = α−1 ○ α ○ α−1(s) − α−1(s) L.3.2= 0.

Now, due to (3.13), we must have Ð→q (s) =Ð→q ○ α ○ α−1(s) for every s. It remains to show
L ○ α−1(s) =Ð→q ○ α ○ α−1(s) for every s ∈ (0,1]. Set t = α−1(s). By the first line in (3.11)
and the characterization of supp dα in Lemma 3.3, we have L ○ α−1(s) =Ð→q ○ α (t+). By
monotonicity, we have Ð→q ○ α (t+) ⩾Ð→q ○ α (t). Taking the trace, we get

tr (Ð→q ○ α (t+) −Ð→q ○ α (t)) = α−1 ○ α(t+) − α−1 ○ α(t) L.3.2& 3.3= t − t = 0,

which by (3.13) implies Ð→q ○ α (t+) = Ð→q ○ α (t) and thus L ○ α−1(s) = Ð→q ○ α ○ α−1(s). As
commented earlier, this verifies Ð→q = L ○ α−1 on (0,1]. Hence, we conclude that (L,α) is
a decomposition of q. �

2Indeed, if the first case does not hold, then either we have tl < t′l or tr < t′r. In the former case, if

t′l < tr, we must have t′l < t (otherwise we have t ⩽ t′l < tr contradicting the definition of tr). But, then we

have tl < t′r < t which contradicts the definition of tl. Hence, we are only left with the possibility tr < t′r.
Then, we must have t′ > tr (otherwise we have t′ ⩽ tr < t′r contradicts the definition of t′r). Now, t′ > tr

implies tr ⩽ t′l.



SIMULTANEOUS RSB FOR VECTOR SPIN GLASSES 13

3.2.3. Joint decomposition of multiple paths. For n ∈ N, given q1, . . . , qn ∈ Q∞, we define a
new path q ∶ [0, 1]→ SnD+ by setting q(s) = diag (q1(s), . . . , qn(s)) for every s ∈ [0, 1]. We
define its left-continuous version similarly as Ð→q (s) = limu↑s q(s) for s ∈ (0, 1] and Ð→q (0) = 0.
A tuple (L1, . . . , Ln, α) is said to be a joint decomposition of q1, . . . , qn if (Lk, α) is a
decomposition of qk for every k ∈ {1, . . . , n} for a common p.d.f. α ∶ [0, T ]→ [0, 1]. Defining
L(t) = diag (L1(t), . . . , Ln(t)), we can see that this is equivalent to that (L, α) is a
decomposition of q (with the ambient matrix space SnD+ ). Similarly, a joint decomposition
(L, α) is said to be pinned if L(0) = 0.

We can construct the canonical decomposition similarly. A tuple (L1, . . . , Ln, α) is
said to be the canonical joint decomposition of q1, . . . , qn if (L, α) is the canonical
decomposition of q. Then, (L, α) enjoys the properties generalized in the obvious way
(i.e. with D replaced by nD) in Lemma 3.7. The canonical joint decomposition is given
explicitly by

α−1(s) =
n

∑
k=1

trÐ→qk(s), ∀s ∈ [0,1],(3.14)

and for every k ∈ {1, . . . , n},

Lk(t) =Ð→qk ○ α(t+), ∀t ∈ {0} ∪ supp dα;

Lk(t) =
tr − t
tr − tlLk

(tl+) + t − tl
tr − tlLk (t

r+) , ∀t ∈ (0, T ] ∖ supp dα
(3.15)

for tl and tr in (3.12).

4. The Parisi PDE

In this section, we recall basic properties of the Parisi PDE. We fix some T > 0
throughout this section. For a p.d.f. α on [0, T ], a Lipschitz increasing path L ∶ [0, T ]→
SD+ , and a smooth function φ ∶ RD → R with bounded derivatives, we consider the Parisi
PDE

∂tΦ(t, x) + ⟨
.
L(t) , ∇2Φ(t, x) + α(t)∇Φ∇Φ⊺(t, x)⟩

SD
= 0,(4.1)

for (t, x) ∈ [0, T ] ×RD with terminal condition Φ(T, ⋅) = φ. The notation
.
L stands for the

time derivative of L, which is defined almost everywhere since L is Lipschitz. For our
purposes, we consider the following class of initial conditions

φ(x) = log∫ exp (x ⋅ σ)dµ(σ), ∀x ∈ RD,(4.2)

where µ is a (positive) finite measure supported on the closed unit ball of RD.

We describe a probabilistic way of constructing the solution to (4.1). We start by
solving the equation explicitly for smooth L and a step function α. We denote by M the
collection of p.d.f.s on [0, T ] and by Md its subcollection consisting of α of the form:

α =
K

∑
l=0

(sl − sl−1)1[tl,∞) =
K−1
∑
l=0

sl1[tl,tl+1) + sK1{tK}(4.3)

where s−1, s0, . . . , sK ∈ [0,1] and t0, t1, . . . , tK ∈ [0, T ] satisfy

0 = s−1 ⩽ s0 < ⋅ ⋅ ⋅ < sK = 1, 0 = t0 ⩽ t1 < ⋅ ⋅ ⋅ < tK = T.

Definition 4.1 (Parisi PDE solution for smooth L and discrete α). For every smooth
increasing path L ∶ [0, T ] → SD+ and α ∈Md, the Parisi PDE solution Φ = Φµ,L,α is
defined as follows:

● Set Φ(T, ⋅) = φ as in (4.2).
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● Inductively, for every l ∈ {1,⋯,K}, t ∈ [tl−1, tl) and x ∈ RD, define

Φ(t, x) = 1

sl−1
logE exp (sl−1Φ (tl,

√
2L(tl) − 2L(t)gl + x))(4.4)

where (gl)l∈{0,...,K} are independent standard RD-valued Gaussian vectors.

For l = 1, the right-hand side of (4.4) is understood to be EΦ(t1,
√

2L(t1) − 2L(t)g1+x)
if s0 = 0.

It is well-known that the Parisi PDE solution for discrete α satisfies the equation in
the classical sense except at discontinuity points of α.

Lemma 4.2. Let Φ = Φµ,L,α for a smooth increasing path L ∶ [0, T ] → SD+ and α ∈Md

as in (4.3). For every l ∈ {1, . . . ,K} and at every (t, x) ∈ (tl−1, tl)×RD, the function Φ is
differentiable and equation (4.1) is satisfied.

We refer to [7, Lemma 2.4] for a proof, which uses the Hopf–Cole transformation and
a direct computation.

We equipM with the metric given by dM (α,α′) = ∣α−1(1) − α′−1(1)∣ + ∥α−1 − α′−1∥
L1

for α,α′ ∈ M. For any two normed spaces X and Y, let C(X ;Y) be the collection
of Y-valued continuous functions on X equipped with the uniform norm. We extend
Definition 4.1 to general L and α. A sequence ((Ln, αn))n∈N is said to converge to (L,α)
if (αn)n∈N converges to α in M and (Ln)n∈N of converges to L in C([0, T ];SD+ ).

Definition 4.3 (Parisi PDE solution). Given a Lipschitz function L, α ∈M, and an
initial condition φ in (4.2), the associated Parisi PDE solution Φµ,L,α is the limit in

C([0, 1]×RD;R) of (Φµ,Ln,αn)n∈N (given in Definition 4.1) for any sequence ((Ln, αn))n∈N
converging to (L,α) where Ln is smooth and αn ∈Md for each n.

Lemma 4.4. The Parisi PDE solution in Definition 4.3 is well-defined and independent
of the approximation sequences.

Proof. First, we show the existence of approximation sequences. We can approximate α−1

by step functions α−1n satisfying α−1n (1) = α−1(1) and then take right-continuous inverses
to get αn. This gives a sequence approximating α in M. Next, let Λ ∶ R+ → R+ be a
smooth function compactly supported on (0,1) satisfying ∫ Λ = 1. For each ε > 0, we

take Λε = 1
εΛ ( ⋅

ε
). We extend L to be defined on R by setting L(t) = L(0) for t < 0 and

L(t) = L(T ) for t > T , and we set

Ln(t) = ∫ Λ1/n(t′)L(t − t′)dt′, ∀t ∈ [0, T ].(4.5)

It is easy to see that Ln is still increasing and Lipschitz with ∥Ln∥Lip ⩽ ∥L∥Lip. Moreover,
(Ln)n∈N converges to L uniformly.

Next, we recall a representation of the Parisi PDE solution associated with smooth L
and discrete α [7, Lemma 2.7]:

Φµ,L,α(t, x) = E log∬ exp (
√

2σ ⋅wπt(h) + σ ⋅ x)dµ(σ)dR(h), ∀(t, x) ∈ [0, T ] ×RD,
(4.6)

where πt = L ○ α−1[t (⋅) − L(t) and α[t = α1[t,T ]. Using the representation (4.6), we want

to obtain estimates of Parisi PDE solutions in terms of L and α. Let L′ be smooth and
α′ ∈Md. The right-hand side of (4.6) is equal to fµ(πt, x) given in (2.3). For any fixed t,
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we define π′t and α′[t similarly, and we have Φµ,L′,α′ = fµ(π′t, x). Then, by Corollary 2.3,
we get

∣Φµ,L,α(t, x) −Φµ,L′,α′(t, x)∣ ⩽ ∣πt(1) − π′t(1)∣ + ∫
1

0
∣πt(s) − π′t(s)∣ds

⩽ 4 ∥L −L′∥
L∞ + ∥L∥Lip dM (α,α′) ,

(4.7)

where L and L′ are smooth and α,α′ ∈Md.

Now, let L be a general Lipschitz increasing function and α be a general p.d.f. Given
approximating sequences (Ln)n∈N and (αn)n∈N, we can use the above estimate to see that
Φµ,Ln,αn converges uniformly to some limit Φµ,L,α. The above estimate also implies the
independence of choice of approximating sequences. �

Lemma 4.5 (Cascade representation of the solution). Let Φµ,L,α be a Parisi PDE

solution. For every (t, x) ∈ [0, T ] ×RD, we have

Φµ,L,α(t, x) = E log∬ exp (
√

2σ ⋅wπt(h) + σ ⋅ x)dµ(σ)dR(h)(4.8)

where πt = L ○ α−1[t (⋅) − L(t) and α[t = α1[t,T ]. In other words, we have Φµ,L,α(t, x) =
fµ(πt, x) for every (t, x) ∈ [0, T ] ×RD, where fµ is given as in (2.3).

We remark that, given this lemma, we can directly define the Parisi PDE solution
via (4.8). Here, πt is a left-continuous path with right limits but results in Section 2 are
stated for right-continuous paths. This is not an issue due to Remark 2.4.

Proof of Lemma 4.5. We approximate Φµ,L,α as described in Definition 4.3. Then, this
lemma follows from the representation (4.6) for approximations and Corollary 2.3 (to
derive a similar estimate as in (4.7) to bound the discrepancy between the right-hand
side of (4.8) and its approximations). �

Lemma 4.6 (Continuity of the solution in (L,α)). Let Φµ,L,α and Φµ,L′,α′ be two Parisi

PDE solutions. Then, for every (t, x) ∈ [0, T ] ×RD,

∣Φµ,L,α(t, x) −Φµ,L′,α′(t, x)∣ ⩽ 4 ∥L −L′∥
L∞ + ∥L∥Lip dM (α,α′) .

Proof. This is a consequence of (4.7) and approximations. �

Let I = ∪k∈{0}∪N{1, . . . ,D}k be the set of multi-indices. For i = (i1, i2, . . . , ik) ∈
{1, . . . ,D}k for some k ∈ N, we set ∣i∣ = k and ∂ix = ∂xi1∂xi2⋯∂xik . We set ∂∅ to be the

identity operator. For k ∈ N, we write ∇k = (∂ix)i∶ ∣i∣=k.

Proposition 4.7 (Regularity of the solution). Let Φ = Φµ,L,α be any Parisi PDE solution
and let (Φn)n∈N = (Φµ,Ln,αn)n∈N be any sequence of Parisi PDE solutions. The following
holds:

(1) For every i ∈ I , the real-valued function ∂ixΦ exists and is continuous on [0, T ] ×RD.
(2) If ((Ln, αn))n∈N converges to (L,α), then, for every i ∈ I , ∂ixΦn converges to ∂ixΦ

uniformly on [0, T ] ×RD.
(3) For every i ∈ I with ∣i∣ ⩾ 1,

sup
(L,α)

sup
[0,T ]×RD

∣∂ixΦ∣ <∞.

(4) If L is continuously differentiable and α is continuous, then for every i ∈ I , the
real-valued function ∂t∂

i
xΦ exists and is continuous on [0, T ] ×RD. In particular, Φ

satisfies the Parisi PDE (4.1) everywhere on [0, T ] ×RD (namely, Φ is a classical
solution).
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Proof. Using the representation in Lemma 4.5 we can inductively verify that, for every

(t, x) and every i with ∣i∣ ⩾ 1, there is a polynomial Fi ∶ (RD)∣i∣ → R independent of (L,α)
such that

∂ixΦ(t, x) = E ⟨Fi (σ1, σ2, . . . σ∣i∣)⟩
µ,πt,x

(4.9)

where ⟨⋅⟩µ,πt,x is the Gibbs measure given as in (2.3) and each σl is an independent copy

of σ under ⟨⋅⟩µ,πt,x. This along with the assumption on the support of µ gives Part (3).

We consider the presentation of Φ in Lemma 4.5 in terms of fµ from (2.3). Then, (4.9)
is of the form considered in Lemma 2.2 and Corollary 2.3. Applying Corollary 2.3, we
have that there is a constant Ci such that, for every (t, x), (t′, x′) ∈ [0, T ] ×RD,

∣∂ixΦ(t, x) − ∂ixΦ(t′, x′)∣ ⩽ Ci (∣πt(1) − πt′(1)∣ + ∫
1

0
∣πt(s) − πt′(s)∣ds + ∣x − x′∣)

where πt and πt′ are given as in Lemma 4.5. From this, we can verify Part (1).

For n ∈ N, we consider the representation of Φn in Lemma 4.5. Let πn,t be as given in

Lemma 4.5 associated with (Ln, αn). Then, we can represent ∂ixΦn(t, x) in the same way
as in (4.9) with the Gibbs measure therein replaced by ⟨⋅⟩µ,πn,t,x. We apply Corollary 2.3

to get a constant C ′
i such that, for every n ∈ N and (t, x) ∈ [0, T ] ×RD,

∣∂ixΦ(t, x) − ∂ixΦn(t, x)∣ ⩽ C ′
i (∣πn,t(1) − πt(1)∣ + ∫

1

0
∣πn,t(s) − πt(s)∣ds)

⩽ C ′
i (4 ∥Ln −L∥L∞ + ∥L∥Lip dM (αn, α)) .

where the last inequality can deduced in the same way as in (4.7). This implies Part (2).

Lastly, we work under the assumptions in Part (4) and take an approximation sequence
((Ln, αn))n∈N of (L,α) consisting of smooth Ln and discrete αn. In particular, we can

take Ln as in (4.5) to ensure that (
.
Ln)n∈N converges to

.
L pointwise everywhere on [0, T ].

By Lemma 4.2, Φn satisfies the equation except possibly at finitely many t. Fix any
t ∈ [0, T ], we can integrate the equation for Φn over [t, T ] and then pass to the limit as
n→∞. Parts 2 and 3 together with the bounded convergence theorem imply, for every
x ∈ RD,

φ(x) −Φ(t, x) = −∫
T

t
⟨
.
L(r) , ∇2Φ(r, x) + α(r)∇Φ∇Φ)⊺(r, x)⟩

SD
dr.

By the assumption on L and α in Part (4) and also the continuity in Part (1), we can
see that the integrand on the right is continuous in r. Therefore, we can differentiate in
t to obtain (4.1). This proves Part (4) in the case ∣i∣ = 0. For the general case, we can
first apply the derivative operator ∂ix on the equation satisfied by Φn and then repeat the
above argument to conclude. �

Lemma 4.8 (Time derivative of the solution). Let (L,α) be a decomposition defined
on [0, T ] satisfying that L is smooth and α is continuous and strictly increasing. Let
Φ = Φµ,L,α be the associated Parisi PDE solution. Then, Φ is differentiable in t at every

t ∈ [0, T ] ×RD with

∂tΦ(t, x) = −
.
L(t) ⋅ (E ⟨σσ⊺⟩

µ,πt,x
−E ⟨σσ′⊺1h∧h′>α(t)⟩µ,πt,x)

where ⟨⋅⟩µ,πt,x is given as in (2.3) with πt from Lemma 4.5.

Proof. We only compute the one-sided derivative in t from the right; this is sufficient by
Part (4) of Proposition 4.7. Fix any (t, x) ∈ [0, T )×RD. We set s = α(t) and sε = α(t+ ε)
for every ε ∈ (0, T − t). Since α−1 is strictly increasing, we also have t = α−1(s) and
t + ε = α−1(sε). We also set πεt = πt1[sε,1].



SIMULTANEOUS RSB FOR VECTOR SPIN GLASSES 17

Lemma 4.5 gives that Φ(t + ε, x) = fµ(πt+ε, x) with fµ given as in (2.3). To compute

∂tΦ(t, x), we evaluate the limit of 1
ε (fµ(πt+ε, x) − fµ(πt, x)). We split the difference into

two parts fµ(πt+ε, x) − fµ(πεt , x) and fµ(πεt , x) − fµ(πt, x).
We start by treating the second part. Notice that πεt (1) = πt(1) due to the definition of

πεt . Also, πεt differs from πt only on the interval [s, sε], on which the difference is bounded
by ∥L∥Lip (α−1(s + ε) − α−1(s)) = ∥L∥Lip(t + ε − t). Hence, ∥πεt − πt∥L1 ⩽ (sε − s)∥L∥Lipε.
These along with Corollary 2.3 implies

1

ε
∣fµ(πεt , x) − fµ(πt, x)∣ ⩽

1

ε
(∣πεt − πt∣ (1) + ∥πεt − πt∥L1) ⩽ (sε − s)∥L∥Lip

which vanishes as ε→ 0.

Then, we turn to the first part. Comparing πt+ε as in Lemma 4.5 with πεt , we can see
πt+ε − πεt = −(L(t + ε) −L(t))1(sε,1]. Using this and Lemma 2.2, we get

1

ε
(fµ(πt+ε, x) − fµ(πεt , x)) = −

1

ε
(L(t + ε) −L(t)) ⋅ ∫

1

0
E ⟨σσ⊺ − σσ′⊺1h∧h′>sε⟩λ dλ

where ⟨⋅⟩λ,ε = ⟨⋅⟩λπt+ε+(1−λ)πεt , x. The integrand converges to E ⟨σσ⊺ − σσ′⊺1h∧h′>s⟩πt,x as

ε→ 0 (to see this, one can use Corollary 2.3). This along with that the first part vanishes
as argued above yields the desired result. �

We record an interesting observation below, even though we will not need it.

Corollary 4.9. Under the same setup of Lemma 4.8, it holds for every (t, x) ∈ [0, T ]×RD
that

.
L(t) ⋅E ⟨σσ′⊺1h∧h′⩽α(t)⟩πt,x =

.
L(t) ⋅E ⟨σ⟩πt,xE ⟨σ⟩⊺πt,x α(t).

Proof. By Proposition 4.7 (4), Φ satisfies (4.1) everywhere. Since we can easily compute
using the representation in Lemma 4.5 that

∇Φ(t, x) = E ⟨σ⟩πt,x , ∇2Φ(t, x) = E ⟨σσ⊺ − σσ′⊺⟩
πt,x

,

we can rewrite (4.1) into

∂tΦ(t, x) = −
.
L(t) ⋅ (E ⟨σσ⊺ − σσ′⊺⟩

πt,x
+ α(t)E ⟨σ⟩πt,xE ⟨σ⟩⊺πt,x)

Comparing this with the expression in Lemma 4.8, we get the result. �

5. Proof of the main result

Recall that P1 is the distribution of a single spin. For every a ∈ SD, we define the tilted
measure P a1 through

dP a1 (σ) = e−a⋅σσ
⊺
dP1(σ).

We use the following terminology in this section. Given a decomposition (L,α) of some
q ∈ Q∞ on [0, T ], we say that Φ is associated with (L,α) if Φ = Φµ,L,α is the Parisi
PDE solution given in Definition 4.3 for µ given by

µ = PL○α
−1(1)

1 = P q(1)1 .(5.1)

The second equality in (5.1) follows from q(1) =Ð→q (1) = L ○ α−1(1) due to the definitions
of q(1) in (2.2) and Ð→q in (3.8). Instead of (4.2), the terminal condition φ = Φ(T, ⋅) now
becomes

φ(x) = log∫ exp (σ ⋅ x − q(1) ⋅ σσ⊺)dP1(σ), x ∈ RD.(5.2)
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We also need a stochastic process, the sample paths of which can be interpreted as
characteristics of the Parisi PDE. Fix a probability space on which there is a standard
D-dimensional Wiener process W = (Ws)s∈[0,T ], where [0, T ] is the common domain for L
and α. Given the solution Φ associated with (L,α), we say that the process X = (Xt)t∈[0,T ]
is associated with (L,α) if X is the strong solution (see [16, Definition 2.1 in Chapter 5])
of the following SDE

dXt = 2α(t)
.
L(t)∇Φ(t,Xt)dt + (2

.
L)

1
2 (t)dWt,

X0 = x
(5.3)

for some x ∈ RD to be specified in different contexts. The existence and uniqueness of the
strong solution follows from the regularity of ∇Φ in Proposition 4.7, that

.
L is bounded

a.e., and the standard results [16, Theorems 2.5 and 2.9 in Chapter 5].

5.1. Computation along characteristics. Later, we need some approximation using
more regular (L,α). For this, we need the following result.

Lemma 5.1 (Continuity of X in (L,α)). For each n, let Φn and Xn be associated
with some decomposition (Ln, αn) defined on [0, T ] and let Xn

0 = xn ∈ RD. Assume that

(xn)n∈N converges to x ∈ RD, (αn)n∈N converges to α in M, supn∈N ∥
.
Ln∥L∞ < ∞, and

that (
.
Ln)n∈N converges to L pointwise a.e. on [0, T ]. Let Φ and X be associated with

(L,α) and let X0 = x. Then, limn→∞E [supt∈[0,T ] ∣Xn
t −Xt∣p] = 0 for every p ⩾ 1.

Proof. For simplicity, we write ∇Φ = ∇Φ(⋅,X⋅) and ∇Φn = ∇Φn(⋅,Xn
⋅ ). Fix any t ∈ [0, T ],

we set

I = ∫
t

0
2αn

.
Ln∇Φndr − ∫

t

0
2α

.
L∇Φndr, II = ∫

t

0
(2

.
Ln)

1
2 dW − ∫

t

0
(2

.
L)

1
2 dW

and thus Xn
t −Xt = xn − x + I + II. We start by splitting

I = ∫
t

0
2(αn − α)

.
Ln∇Φndr + ∫

t

0
2αn (

.
Ln −

.
L)∇Φndr + ∫

t

0
2αn

.
Ln (∇Φn −∇Φ)dr.

For the last term, we can further split

∇Φn(r) −∇Φ(r) = (∇Φn(r,Xn
r ) −∇Φ(r,Xn

r )) + (∇Φ(r,Xn
r ) −∇Φ(r,Xr)) .

Due to the uniform bound on
.
Ln and the bounds in Proposition 4.7 (3), there is a constant

C > 0 such that

C−1∣I∣ ⩽ ∥αn − α∥L1 + ∥
.
Ln −

.
L∥

L1 + ∥∇Φn −∇Φ∥L∞ + ∥∇Φ∥Lip∫
t

0
∣Xn

r −Xr ∣dr.

Henceforth, we allow the deterministic constant C to change from instance to instance but
independent of n or t. By the assumption on various convergences and Proposition 4.7 (2),
we can see that the first three terms on the right-hand side vanish as n→∞. Hence, we
get

∣Xn
t −Xt∣ ⩽ on(1) +C ∫

t

0
∣Xn

r −Xr ∣dr + ∣II∣.(5.4)

where limn→∞ on(1) = 0 and on(1) is dependent of n or t.

Fix any p ⩾ 1. By the BDG inequality [16, Theorem 3.28 in Chapter 3], we have

E sup
t∈[0,T ]

∣II∣p ⩽ C (∫
T

0
∣(2

.
Ln)

1
2 − (2

.
L)

1
2 ∣

2

dr)
p/2
.

(A simpler argument is also possible using the observation that II is a deterministic time

change of Brownian motion.) By the assumption on
.
Ln and the fact that the matrix
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square root is a continuous function, we can see that the right-hand side vanishes as
n→∞. We can thus absorb E∣II∣p into on(1) in (5.4) and get

an(t) ⩽ on(1) +C ∫
t

0
an(r)dr, ∀t ∈ [0, T ].

where an(r) = E [supr′∈[0,r] ∣Xn
r′ −Xr′ ∣p]. This along with Gronwall’s inequality implies

limn→∞ an(T ) = 0, which is the desired result. �

As another step of preparation, we need the following, where the setting is slightly
more general (Φ is not required to have terminal condition (5.2) and X0 is not specified).

Lemma 5.2 (Martingale along the linearization of the Parisi PDE). Let Φ be a classical
solution of (4.1) with continuously differentiable L, continuous α, and a smooth terminal
condition. Let X be a strong solution of (5.3). Let g ∶ [0, T ] ×RD → R be continuous and
let Ψ be a classical solution of

∂tΨ(t, x) + ⟨
.
L(t), ∇2Ψ(t, x) + 2α(t)∇Ψ∇Φ⊺(t, x)⟩

SD
+ g(t, x) = 0(5.5)

for (t, x) ∈ [0, T ] ×RD. Then,

Ψ(t,Xt) + ∫
t

0
g(r,Xr)dr

is a martingale with index t ∈ [0, T ].

Proof. Notice that the quadratic variation of X is given by ⟨X⟩t = 2
.
L(t). Using this and

Ito’s formula, we get

dΨ(t,Xt) = (∂tΨ(t,Xt) + ⟨
.
L(t),∇2Ψ(t,Xt)⟩SD)dt + ⟨∇Ψ(t,Xt),dXt⟩RD .

Inserting the expression of dXt in (5.3) and using (5.5), we get

dΨ(t,Xt) = −g(t,Xt)dt + ⟨∇Ψ(t,Xt), γ
1
2 (t)dWt⟩RD

which implies the desired result. �

We can get the following result using the Itô calculus and the fact that Φ solves the
Parisi PDE.

Lemma 5.3 (Relation between matrix-valued processes). Let Φ and X be associated
with some decomposition (L,α). For t ∈ [0, T ], define

R(t) = E [∇Φ∇Φ⊺(t,Xt)] ; At = ∇2Φ(t,Xt).(5.6)

Then, the following holds for every t ∈ [0, T ]:

R(t) = R(0) + 2∫
t

0
E [A⊺

r

.
L(r)Ar]dr;(5.7)

E [At] = E [AT ] + ∫
T

t
α(r)

.
R(r)dr.(5.8)

We emphasize that both R(⋅) and A⋅ depend on the initial data X0 which is kept
implicit here.

Proof. For m ∈ N and i1, . . . , im ∈ {1, . . . ,D}, we write Φi1i2...im = ∂xi1∂xi2⋯∂ximΦ. We

recall the following identities from [8, Lemma 3.3] (with µ therein replaced by 2L) obtained
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by using the Itô formula and the Parisi PDE (4.1):

d (∇Φ(t,Xt)) = ∇2Φ(t,Xt) (2
.
L)

1
2 (t)dWt;

(5.9)

d (Φkl(t,Xt)) =
D

∑
i,j=1

(−α(t) (2
.
L)

ij
(t)ΦikΦjl(t,Xt)dt +Φikl(t,Xt) (2

.
L)

1
2

ij
(t)dWj,t) ,

(5.10)

where k, l ∈ {1, . . . ,D}. Then, we compute

dΦkΦl(t,Xt) = Φk(t,Xt)dΦl(t,Xt) +Φl(t,Xt)dΦk(t,Xt) + d ⟨Φk(⋅,X⋅), Φl(⋅,X⋅)⟩t
(5.9)= martingale +

D

∑
i,j=1

(2
.
L)

ij
(t)ΦikΦjl(t,Xt)dt

where ⟨Φk(⋅,X⋅), Φl(⋅,X⋅)⟩t denotes the corresponding quadratic variation. The above
display implies

Rkl(t) = Rkl(0) + ∫
t

0

D

∑
i,j=1

E [(2
.
L)

ij
(r)ΦikΦjl(r,Xr)]dr(5.11)

which gives (5.7). We also have

EΦkl(t,Xt)
(5.10)= EΦkl(T,XT ) +E∫

T

t
α(s)

D

∑
i,j=1

(2
.
L)

ij
(r)ΦikΦjl(r,Xr)dr

(5.11)= EΦkl(T,XT ) +E∫
T

t
α(r)

.
Rkl(r)dr,

which yields (5.8). �

We recall that the function ψ is as in (2.7).

Lemma 5.4. Let Φ and X be associated with some decomposition (L,α) of some q ∈
Q∞. Let X(0) =

√
2L(0)η for a standard RD-valued Gaussian vector η independent of

everything else. Let R(⋅) and A⋅ be given as in (5.6). We have

EηΦ (0,
√

2L(0)η) = −ψ(q), EηA0 = E [⟨σσ⊺⟩
q
− ⟨σσ′⊺⟩

q
](5.12)

where Eη averages only over the randomness of η and the Gibbs measure is given by

⟨⋅⟩q ∝ exp (
√

2σ ⋅wq(h) − q(1) ⋅ σσ⊺)dP1(σ)dR(h).(5.13)

If L(0) = 0, we also have R(0) = E ⟨σ⟩q (⟨σ⟩q)
⊺
.

Gibbs measures defined in (5.13) and (2.3) satisfy the following relation:

⟨⋅⟩q = ⟨⋅⟩
P
q(1)
1 , q, 0

.

Proof of Lemma 5.4. Using the representation of Φ in Lemma 4.5 at t = 0 where µ is now

given by (5.1), we have that Φ (0, x +
√

2L(0)η) is equal to

E∬ exp (
√

2σ ⋅w
Ð→q −L(0)(h) − q(1) ⋅ σσ⊺ + (x +

√
2L(0)η) ⋅ σ)dP1(σ)dR(h)

where E averages over all randomness except for that of η. In view of the covariance

formula (2.1), we can see that, conditioned on R, w
Ð→q −L(0) +

√
L(0)η has the same

distribution as w
Ð→q , and we can substitute w

Ð→q (h) for wq(h) as explained in Remark 2.4.



SIMULTANEOUS RSB FOR VECTOR SPIN GLASSES 21

Setting x = 0 and taking Eη, we can get the first relation in (5.12) by comparing the
above with ψ given in (2.7).

Since A0 = ∇2Φ (0,
√

2L(0)η), we can compute A0 = E [⟨σσ⊺⟩ − ⟨σσ′⊺⟩] where ⟨⋅⟩ is the

random Gibbs measure proportional to

exp (
√

2σ ⋅w
Ð→q −L(0)(h) − q(1) ⋅ σσ⊺ +

√
2L(0)η ⋅ σ)dP1(σ)dR(h).

By the same reason as above, we have EηE ⟨⋅⟩ = E ⟨⋅⟩q. Hence, we can verify the relation

involving A0 in (5.12).

Since R(0) = ∇Φ∇Φ⊺ (0,
√

2L(0)η), we can compute R(0) = E ⟨σ⟩ (E ⟨σ⟩)⊺ for the

same ⟨⋅⟩ as above. If L(0) = 0, we simply have ⟨⋅⟩ = ⟨⋅⟩q which gives the expression for

R(0). �

Lemma 5.5 (Representation of a functional derivative). Let (L,α) be any composition
of some q ∈ Q∞ defined on [0, T ]. Let L′ ∶ [0, T ] → SD+ be any smooth increasing path.
For each ε ∈ [0,1), let Φε be associated with (L + εL′, α). Let Φ = Φ0 and let X be the
process associated with (L,α) with X0 = x0 ∈ RD. We have

d

dε
∣
ε=0

Φε(0, x0) = −L′(0) ⋅ (A0 + α(0)R(0)) − ∫
T

0
L′(t) ⋅R(t)dα(t)(5.14)

where R(⋅) and A⋅ are given in (5.6).

We view (5.14) as a generalization of [26, Lemma 3.7] and [1, (19)] that focused on the
case D = 1.

Proof of Lemma 5.5. We proceed in three steps. In the first two steps, we assume that L
is continuously differentiable and that α is continuous and strictly increasing. Under these
assumptions, we verify (5.15). In the third step, we use approximations to extend (5.15)

to the general case. We write ∂ε = d
dε ∣ε=0 and Ψ = ∂εΦε pointwise whenever the limit

exists.

Step 1. Under the additional assumption on (L,α), we show

Ψ(0, x0) = −L′(T ) ⋅N(T ) + ∫
T

0

.
L′(t) ⋅N(t)dt,(5.15)

where

N(t) = E [∇2Φ(t,Xt) + α(t)∇Φ∇Φ⊺(t,Xt)] , ∀t ∈ [0, T ].

First, we argue that Ψ, ∂tΨ, and ∂ixΨ are well defined and that the limits commute:
∂tΨ = ∂ε∂tΦε and ∂ixΨ = ∂ε∂ixΦε. For the derivative in t, we recall that ∂tΦ

ε has the
expression given in Lemma 4.8, which has the form appearing on the left-hand side
of the interpolation computation (2.5). Based on this, we use Lemma 2.2 to compute
∂ε∂tΦ

ε. On the other hand, we can first compute ∂εΦ
ε using Lemma 4.5 and Lemma 2.2.

Then, we can compute ∂t∂εΦ
ε following the same argument in Lemma 4.8. Comparing

these expressions, we can verify ∂ε∂tΦ
ε = ∂t∂εΦε. The main point is that all objects are

computable because they are expectations of bounded functions of the spin and cascade
variables. The detail is tedious and omitted here. The same can be said about derivatives
in x.

Allowed by this, we can differentiate the equation (4.1) satisfied by Φε in ε to see that
Ψ is the classical solution of (5.5) with g given by

g(t, x) = ⟨
.
L′(t), ∇2Φ(t, x) + α(t)∇Φ∇Φ⊺(t, x)⟩

SD
.
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By the martingale property proved in Lemma 5.2, we thus have

Ψ(0, x0) = E [Ψ(T,XT ) + ∫
T

0
g(t,Xt)ds] .(5.16)

Now, let us evaluate E [Ψ(T,XT )]. In view of the terminal condition given in (5.2), we
can compute for every x ∈ RD

Ψ(T,x) = −q′(1) ⋅ ⟨σσ⊺⟩ , ∇Φ(T,x) = ⟨σ⟩ , ∇2Φ(T,x) = ⟨σσ⊺⟩ − ⟨σ⟩ ⟨σ⟩⊺

where ⟨⋅⟩ is the deterministic Gibbs measure associated with the right-hand side in (5.2)
at x. Also, since we have assumed that α is strictly increasing in the first two steps, we
have α(T ) = 1 and α−1(1) = T . In particular, we have q′(1) = L′ ○ α−1(1) = L′(T ). Using
these, we get

Ψ(T,x) = −L′(T ) ⋅ (∇2Φ(T,x) + α(T )∇Φ∇Φ⊺(T,x)) , ∀x ∈ RD.
This along with (5.16) yields (5.15) under the assumption that L is continuously differen-
tiable and α is continuous and strictly increasing.

Step 2. Continuing with the regularity assumptions on (L,α), we now verify (5.14).
We want to use the relations from Lemma 5.3. Recall R(⋅) and A⋅ given in (5.6). For
brevity, we write a(⋅) = E[A⋅]. Then, we have

N(t) = a(t) + α(t)R(t), ∀t ∈ [0, T ].
Inserting this into (5.15), we get

Ψ(0, x0) = −L′(T ) ⋅ (a(T ) + α(T )R(T )) + ∫
T

0

.
L′(t) ⋅ a(t)dt + ∫

T

0

.
L′(t) ⋅ α(t)R(t)dt.

Next, we compute the second term on the right using the integration by parts (IBP) and
results from Lemma 5.3:

∫
T

0

.
L′(t) ⋅ a(t)dt (IBP)= L′(T ) ⋅ a(T ) −L′(0) ⋅ a(0) − ∫

T

0
L′(t) ⋅ .a(t)dt

(5.8)= L′(T ) ⋅ a(T ) −L′(0) ⋅ a(0) + ∫
T

0
L′(t) ⋅ α(t)

.
R(t)dt

(IBP)= L′(T ) ⋅ (a(T ) + α(T )R(T )) −L′(0) ⋅ (a(0) + α(0)R(0))

− ∫
T

0

.
L′(t) ⋅ α(r)R(t)dt − ∫

T

0
L′(t) ⋅R(t)dα(t).

Plugging this back to the previous display, we get (5.14). Notice that A0 is deterministic
(since X0 = x0 is determinisitic) and thus a(0) = A0.

Step 3. We conclude by approximations. Fix any (L,α). For each n ∈ N, let Ln
be the mollified version of L given in (4.5). In particular, (Ln(T ))n∈N converges to

L(T ) and (
.
Ln)n∈N converges to

.
L pointwise a.e. on [0, T ]. Let (αn)n∈N be a sequence of

continuous and strictly increasing p.d.f.s defined on [0, T ] and converging to α in M. In
particular, we can choose (αn)n∈N in such a way that (αn)n∈N converges pointwise a.e.
to α; and (αn(0)) converges α(0). Notice that ((Ln, αn))n∈N satisfies the conditions in
Proposition 4.7 (2) and Lemma 5.1.

For each n ∈ N and ε ∈ [0,1), let Φε
n be associated with (Ln + εL′, αn), set Φn = Φ0

n,
and Ψn = ∂εΦε

n. Let Xn be associated with (Ln, αn). For each n ∈ N, we define Rn(⋅) and
An⋅ as in (5.6) with Φn,X

n substituted for Φ,X therein. In the first two steps, we have
shown (5.14) for these approximations, namely,

Ψn(0, x0) = −L′(0) ⋅ (An0 + αn(0)Rn(0)) − ∫
T

0
L′(t) ⋅Rn(t)dαn(t).(5.17)
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We only need to show that both sides in this display converge respectively to those
in (5.14).

We first show the convergence of the right-hand side. Using the uniform bound on
derivatives of Φn and Φ and the uniform convergence of derivatives of Φn in Proposi-
tion 4.7 (3) and (2), respectively, we can find a constant C and a vanishing sequence
(on(1))n∈N of positive real numbers such that, uniformly in n and t,

∣Rn(t) −R(t)∣ ⩽ on(1) +CE ∣Xn
t −Xt∣ .

Then, using Lemma 5.1, we can see that (Rn)n∈N converges to R uniformly on [0, T ].
Therefore, the right-hand side of (5.14) is stable under this approximation:

lim
n→∞∫

T

0
L′(t) ⋅Rn(t)dαn(t) = ∫

T

0
L′(t) ⋅R(t)dα(t).

In view of (5.6), we have Rn(0) = ∇Φn∇Φ⊺
n(0, x0) and An0 = ∇2Φn(0, x0). Hence, we

also have limn→∞Rn(0) = R(0) and limn→∞An0 = A0. In conclusion, the right-hand side
in (5.17) converges to that in (5.14).

It remains to show the convergence of the left-hand side in (5.17). Namely, that
Ψn(0, x0) converges to Ψ(0, x0). To compute Ψn(0, x0) = ∂εΦε

n(0, x0), we consider the
representation of Φε

n(0, x0) given in Lemma 4.5. Then, we can compute the derivative
using the interpolation (2.4) in Lemma 2.2 to get

Ψn(0, x0) = E ⟨σσ⊺ ⋅L′ ○ α−1n (1) − σσ′⊺ ⋅L′ ○ α−1n (h ∧ h′)⟩
n
,

where ⟨⋅⟩n is the Gibbs measure associated with the representation (4.8) of Φε(0, x0)
which depends only on Ð→qn = Ln ○ α−1n . Let us denote the random variable inside E ⟨⋅⟩n by
fαn , highlighting the dependence on αn, so that Ψn(0, x0) = E ⟨fαn⟩n. Similarly, we have
Ψ(0, x0) = E ⟨fα⟩ in which ⟨⋅⟩ depends only on L ○ α−1. Then, we can estimate

∣Ψn(0, x0) −Ψ(0, x0)∣ ⩽ ∣E ⟨fαn⟩n −E ⟨fα⟩n∣ + ∣E ⟨fα⟩n −E ⟨fα⟩∣ .
Using the invariance of cascades (Lemma 2.1) and the Lipschitzness of L′, there is a
constant C > 0 such that the first term on the right is bounded by C ∣α−1n (1) − α−1(1)∣ +
C ∥α−1n − α−1∥

L1 . By the standard interpolation argument as in Corollary 2.3, there is a

constant C > 0 such that the second term is bounded by C ∣Ln ○ α−1n (1) − L ○ α−1(1)∣ +
C∥Ln ○ α−1n − L ○ α−1∥L1 . Due to our choices of ((Ln, αn))n∈N, we can see that both of
them vanish as n→∞. Therefore, we get limn→∞ Ψn(0, x0) = Ψ(0, x0), which completes
the proof. �

We recall the definition of joint decompositions of paths from Subsection 3.2.3, as well
as the initial condition ψ as in (2.7) and its differentiability in (2.8). In the following, we
often assume the following common setting:

(S) Let p, q ∈ Q∞ satisfy p = ∂qψ(q) and let (Lp, Lq, α) be any joint decomposition of
(p, q) on [0, T ]. Let Φ and X be associated with (Lq, α). Let R(⋅) and A⋅ be given
as in (5.6) corresponding to (Lq, α).

In addition to (S), we often need to specify additional properties of the decomposition
and the value of X0.

Lemma 5.6 (Representation of ∂qψ(q), Part 1). Under (S), let X0 =
√

2Lq(0)η for a

standard RD-valued Gaussian vector η independent of everything else. Then, for every
smooth increasing path L′ ∶ [0, T ]→ SD+ , we have

L′(0) ⋅ α(0)Eη[R(0)] + ∫
T

0
L′(t) ⋅Eη[R(t)]dα(t) = ∫

T

0
L′(t) ⋅Lp(t)dα(t),

where Eη averages over the randomness of η.
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Proof. Let η′ be a standard RD-valued Gaussian vector independent of everything else.
Henceforth, E = Eη,η′ averages over the randomness of η and η′. Let q′ ∈ Q∞ be

determined through the relation
Ð→
q′ = L′ ○α−1 on (0, 1]. Then, (Lp, Lq +εL′, α−1) is a joint

decomposition of (p, q + εq′) for ε ⩾ 0. Let Φε be associated with (Lq + εL′, α). Notice

that
√
Lq(0) + εL′(0)η is equal to

√
Lq(0)η +

√
εL′(0)η′ in law. Hence, using the first

relation in Lemma 5.4, we get

EΦε (0,
√

2Lq(0)η +
√

2εL′(0)η′) = −ψ (q + εq′) .(5.18)

Next, we compute the derivatives of both sides in ε and evaluate them at ε = 0.

We first compute the derivative of the left-hand side. For this, we consider two parts

I = ε−1 (EΦε (0,
√

2Lq(0)η +
√

2εL′(0)η′) −EΦε (0,
√

2Lq(0)η)) ,

II = ε−1 (EΦε (0,
√

2Lq(0)η) −EΦ0 (0,
√

2Lq(0)η)) .

For the second part, we apply Lemma 5.5 (with
√

2L(0)η substituted for x0 therein). We
can justify the interchange of derivative and E using the regularity proved in Proposi-
tion 4.7. Hence, we get

lim
ε→0

II = −L′(0) ⋅E [A0 + α(0)R(0)] − ∫
T

0
L′(t) ⋅E[R(t)]dα(t).

Now, we turn to I. By Taylor’s expansion, we get

I = ε−
1
2E [∇Φε(⋯) ⋅

√
L′(0)η′] +E [(

√
L′(0)η′)

⊺
∇2Φε(⋯)

√
L′(0)η′] +O (ε

1
2 )

= L′(0) ⋅E [∇2Φε(⋯)] +O (ε
1
2 )

where (⋯) = (0,
√

2Lq(0)η). Therefore,

lim
ε→0

I = L′(0) ⋅E [∇2Φ0(⋯)] (5.6)= L′(0) ⋅E[A0].

Putting together the limits of I and II, we can conclude

d

dε
∣
ε=0

EΦε (0,
√
Lq(0)η +

√
εL′(0)η′) = −L′(0) ⋅ α(0)E [R(0)] − ∫

T

0
L′(t) ⋅E[R(t)]dα(t).

This gives the derivative of the left-hand side in (5.18). For the right-hand side, using
the differentiability of ψ as in (2.8), we have

d

dε
∣
ε=0

(−ψ (q + εq′)) (2.8)= −∫
1

0
q′(s) ⋅ p(s)ds (3.9)= −∫

1

0
L′ ○ α−1(s) ⋅Lp ○ α−1(s)ds

L.3.3= −∫
T

0
L′(t) ⋅Lp(t)dα(t).

Combining the two above displays, we get the desired result. �

Recall the definition of pinned decompositions from Subsection 3.2.3.

Lemma 5.7 (Representation of ∂qψ(q), Part 2). Under (S), assume further that the
joint decomposition is pinned and fix X0 = 0 (hence, R(0) and A0 are deterministic).
Then, we have

Lp(t) = R(t), ∀t ∈ supp dα.(5.19)

Proof. We apply Lemma 5.6 to our setting. By taking the difference of two smooth
increasing paths L′, L′′ ∶ [0, T ]→ SD+ , we can get a smoothed version of a1[0,t] for every

a ∈ SD+ and t ∈ [0, T ]. Taking the differences of functions of this type, we can get a
smoothed version of a1[t,t′] for a ∈ SD and 0 ⩽ t < t′ ⩽ T . This procedure yields a family
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of test functions rich enough to determine SD-valued measurable functions on [0, T ]. We
refer to this procedure as “varying L′” in the following.

Since the decomposition is pinned, we have Lq(0) = 0. Also, now we have set X0 = 0.
From the definition of R(⋅) in (5.6), we can see that R(0) is deterministic and thus
Eη[R(0)] = R(0).

If α(0) = 0, then Lemma 5.6 gives

∫
T

0
L′(t) ⋅R(t)dα(t) = ∫

T

0
L′(t) ⋅Lp(t)dα(t)(5.20)

for every smooth increasing L′. Varying L′, we get (5.19). If α(0) > 0, then we have
0 ∈ supp dα and the mass of dα at 0 is exactly α(0). By varying L′ to test near 0, we can
get from Lemma 5.6 that

α(0)R(0) + α(0)R(0) = Lp(0).
Since the decomposition is pinned, we have Lp(0) = 0, which along with α(0) > 0 implies
R(0) = 0. Inserting this back to the relation in Lemma 5.6, we again get (5.20) and
thus (5.19). �

5.2. Left endpoints of paths. We apply Lemma 5.7 to studying the left endpoints of
(p, q) satisfying p = ∂qψ(q). Recall that, for every q ∈ Q∞, we have fixed Ð→q (0) = 0 as
in (3.8). But due to the second relation in (3.8) and right-continuous of q, we have

q(0) =Ð→q (0+), ∀q ∈ Q∞.(5.21)

Hence, to find the value of q(0), it is equivalent to determine Ð→q (0+) and vice versa.

To describe the result in the next lemma, we need to define the following object. For
every q ∈ Q∞, we define

V (q) = ∫
1

0
Eη [a(s, η)q(0)a(s, η)⊺]ds(5.22)

where η is a standard RD-valued Gaussian vector independent of everything else and

a(s, η) = E ⟨σσ⊺ − σσ′⊺⟩
P
q(1)
1 , q−sq(0),

√
2q(0)sη , ∀s ∈ [0,1].(5.23)

Here, the Gibbs measure is given as in (2.3). Notice that V (q) = 0 if q(0) = 0.

Lemma 5.8 (Formula for the left endpoint). Let p, q ∈ Q∞ satisfy p = ∂ψ(q), let V (q)
be given as in (5.22), and let ⟨⋅⟩q be given as in (5.13). We have

p(0) = E ⟨σ⟩q E ⟨σ⟩⊺q + 2V (q).(5.24)

In particular, when p(0) = q(0) = 0, we have E ⟨σ⟩q = 0.

Proof. Let (Lp, Lq, α) be the canonical decomposition of (p, q) given as in (3.14) and (3.15).
We also assume the setting (S) and fix X0 = 0. We consider two cases: p(0) = q(0) = 0 or
otherwise.

In the first case, we have Ð→p (0+) =Ð→q (0+) = 0, which by α−1 = trÐ→p + trÐ→q (see (3.14))
implies α−1(0+) = 0. By the characterization of supp dα in Lemma 3.3, we have 0 ∈ supp dα,
which allows us to apply Lemma 5.7 at t = 0. Since the canonical decomposition is pinned,
we have Lp(0) = 0. Hence, we get

0 = Lp(0) L.5.7= R(0) L.5.4= E ⟨σ⟩q E ⟨σ⟩⊺q ,
which implies E ⟨σ⟩q = 0 and thus (5.24) holds in this case.

Now, we consider the other case when either p(0) ≠ 0 or q(0) ≠ 0. Set t = α−1(0+),
which lies in supp dα. By the relation α−1 = trÐ→p + trÐ→q and (5.21), we have t > 0. Using
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the property (3.9) of decompositions, we get Ð→p (0+) = Lp(t) and Ð→q (0+) = Lq(t). Applying
Lemma 5.7, (5.7) in Lemma 5.3, and the last statement in Lemma 5.4, we get

p(0) (5.21)= Ð→p (0+) = Lp(t) = R(t) = E ⟨σ⟩q E ⟨σ⟩⊺q + 2∫
t

0
E [A⊺

r

.
Lq(r)Ar]dr.

The proof is complete if we can show

∫
t

0
E [A⊺

r

.
Lq(r)Ar]dr = V (q).(5.25)

We devote the remainder of the proof to verifying this relation.

We start by identifying
.
Lq on [0, t]. Since the canonical decomposition is pinned, we

have Lq(0) = 0. Due to α−1(0+) = t, we can use Lemma 3.1 to see α(t) = 0 and thus
α(r) = 0 on [0, t] via monotonicity. As a result, (0, t)∩ supp dα = ∅. Due to the definition
of the canonical decomposition in (3.15), we have that Lq on [0, t] is a linear interpolation
between Lq(0) and Lq(t) = q(0). Hence,

Lq(r) = q(0)r/t,
.
Lq(r) = q(0)/t, ∀r ∈ (0, t).(5.26)

Now, the process X given as in (5.3) satisfies dXr =
√

2q(0)/tdWr on [0, t]. Since we
have fixed X0 = 0, we have

Xr
d=
√

2q(0)r/tη, ∀r ∈ [0, t].(5.27)

Next, we study ∇2Φ(r, ⋅) for r ∈ [0, t] by using the representation in Lemma 4.5. Recall

that we have set µ = P q(1)1 in (5.1). Let πr and α[r be given as in that lemma. Due to α = 0

on [0, t], we have α[r = α for every r ∈ [0, t] and thus πr = Lq ○α−1 −Lq(r) =Ð→q −Ð→q (0)r/t
on (0, t], where we used Lq ○ α−1 =Ð→q on (0, 1] due to (3.9). Also, recall the definition of
the Gibbs measure in (2.3). Therefore, the natural Gibbs measure associated with the
representation of Φ(r, x) for r ∈ [0, t] given by Lemma 4.5 is ⟨⋅⟩

P
q(1)
1 , q−q(0)r/t, x. Hence,

we can compute

∇2Φ(r, x) = E ⟨σσ⊺ − σσ′⊺⟩
P
q(1)
1 , q−q(0)r/t, x , ∀(r, x) ∈ [0, t] ×RD.

Recall the definition of A⋅ in (5.6). Using the above display and (5.27), we can thus verify

that Ar
d= a(r/t, η) for a(⋅, ⋅) given in (5.23). This along with (5.26) gives

∫
t

0
E [A⊺

r

.
Lq(r)Ar]dr = 1

t
∫

t

0
Eη [a(r/t, η)⊺q(0)a(r/t, η)]dr,

which is equal to V (q) given in (5.22) after a change of variable. This verifies (5.25) and
completes the proof. �

We can view E ⟨σ⟩q as the mean magnetization associated with the Gibbs measure

⟨⋅⟩q. If p represents the Parisi measure, then p(0) is the smallest point in its support.
The following corollary is an easy consequence of Lemma 5.8. It states that if the mean
magnetization under ⟨⋅⟩q+t∇ξ(p) is not zero, then 0 is not in the support of the Parisi

measure. Recall that we know [1] in the setting with Ising spins and no external field
that 0 is always in the support of the Parisi measure (there, because of D = 1 and the
Ising setup, E ⟨σ⟩q = 0 always holds).

Corollary 5.9. Let p, q ∈ Q∞ satisfy p = ∂qψ(q + t∇ξ(p)) for some t ⩾ 0 and ξ. Assume
∇ξ(0) = 0 and q(0) = 0. If E ⟨σ⟩q+t∇ξ(p) ≠ 0, then p(0) ≠ 0.
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5.3. Detection of increments. In the previous subsection, through Lemma 5.8, we
have gained understanding of p(0) and q(0). Now, we turn to investigating the increments
of the two paths at s ∈ (0,1).

In the general vector case D ⩾ 1, we need to first describe non-trivial directions of the
spin distributing P1 and clarify its relation to the strict convexity of Φ.

Lemma 5.10 (Non-trivial directions along the Hessian). Let (L,α) be a decomposition
of some q ∈ Q∞, let Φ be associated with (L,α), and let φ be the terminal condition of Φ
given as in (5.2). Then, the following holds:

(1) If P1 is not a Dirac mass, then there exists z ∈ RD such that

z⊺∇2φ(x)z > 0, ∀x ∈ RD.(5.28)

(2) If suppP1 spans RD, then (5.28) holds for every non-zero z ∈ RD.
(3) For every z ∈ RD satisfying (5.28), it holds that z⊺∇2Φ(t, x)z > 0 for every (t, x) ∈

[0,1] ×RD.

Proof. In view of the definition of φ in (5.2), we can compute, for x, z ∈ RD,

z ⋅ ∇2φ(x)z = d2

dε2
∣
ε=0
φ(x + εz) = ⟨(σ ⋅ z − ⟨σ ⋅ z⟩x)

2⟩
x

where ⟨⋅⟩x ∝ exp (σ ⋅ x − q(1) ⋅ σσ⊺)dP1(σ). To prove (1), we argue by contradiction and
suppose that for every z there is xz such that z⊺∇2φ(xz)z = 0. Then, the above display
implies that σ ⋅ z = ⟨σ ⋅ z⟩xz a.s. under ⟨⋅⟩xz which thus also holds a.s. under P1. Varying
z, we deduce that σ is constant a.s. under P1 reaching a contradiction. Hence, the first
part is verified.

For Part (2), we again argue by contradiction and suppose that there are z and x
such that z⊺∇2φ(xz)z = 0. Again, we get σ ⋅ z = ⟨σ ⋅ z⟩x a.s. under P1. Hence, suppP1 is
contained in an affine plane, reaching a contradiction.

For Part (3), we fix any (t, x). We assume the setting (S) but redefine (Xr)r∈[t,T ] to
be the strong solution of the SDE in (5.3) but with initial condition at t satisfying Xt = x.
Then computation in the proof of Lemma 5.3 still holds. Combining (5.7) and (5.8), we
get

E[At] = E[AT ] + 2∫
T

t
α(r)E [A⊺

r

.
L(r)Ar]dr ⩾ E[AT ]

where A⋅ is defined as in (5.6) but with the new X. This implies ∇2Φ(t, x) ⩾ E [∇2φ(XT )],
which along with (5.28) yields the desired result. �

We need a simple lemma on matrices.

Lemma 5.11. For A ∈ SD+ , we have A ≠ 0 if and only if A ⩾ zz⊺ for some nonzero
z ∈ RD.

Proof. Since A ∈ SD+ , there exist λ1 ⩾ ⋯ ⩾ λD ⩾ 0 and (v1, . . . , vD) an orthonormal basis
of RD such that A = ∑Dd=1 λdvdv⊺d . If A ≠ 0, then λ1 ≠ 0 and we can choose z =

√
λ1v1.

The converse implication is obvious. �

With the above preparation, we are ready prove results on detecting increments of
paths.

Lemma 5.12 (Detection of a general increment). Let p, q ∈ Q∞ satisfy p = ∂qψ(q),

assume that suppP1 spans RD, and let 0 < s < s′ < 1. We have that Ð→p (s′) ≠Ð→p (s) if and
only if Ð→q (s′) ≠Ð→q (s).
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Proof. Instead of the original statement, we show that Ð→p (s′) = Ð→p (s) if and only if
Ð→q (s′) = Ð→q (s). Before proceeding into the proof, we need some preparation. Let
(Lp, Lq, α) be the canonical joint decomposition of p and q given in (3.14) and (3.15).
Adopt the setting (S) for the pair (p, q). By Lemma 3.3, we have α−1(s), α−1(s′) ∈ supp dα.
Applying Lemma 5.7 to the pair (p, q) and Lemma 5.3, we get

Ð→p (s′) −Ð→p (s) (3.9)= Lp ○ α−1(s′) −Lp ○ α−1(s) = 2∫
α−1(s′)

α−1(s)
E [A⊺

r

.
Lq(r)Ar]dr.(5.29)

By (3.9), we also have

Ð→q (s′) −Ð→q (s) = Lq ○ α−1(s′) −Lq ○ α−1(s).(5.30)

First, assume that Ð→q (s′) = Ð→q (s). Then, from (5.30), we can deduce that either

α−1(s′) = α−1(s) or
.
Lq = 0 a.e. on [α−1(s), α−1(s′)]. In either case, (5.29) implies

Ð→p (s′) =Ð→p (s).
Next, assume Ð→p (s′) = Ð→p (s). If α−1(s′) = α−1(s), then we have Ð→q (s′) = Ð→q (s)

from (5.30) as desired. Hence, we further assume α−1(s′) > α−1(s) and show
.
Lq = 0

a.e. on [α−1(s), α−1(s′)]. Fix a sequence (xn)n∈N in RD that forms a dense subset of RD.

The assumption Ð→p (s′) =Ð→p (s) together with (5.29) implies

∫
α−1(s′)

α−1(s)
x⊺nE [A⊺

r

.
Lq(r)Ar]xndr = 0, ∀n ∈ N.

Write I = [α−1(s), α−1(s′)]. For each n ∈ N, let In be the measurable subset of I satisfying

Leb(I ∖ In) = 0 and x⊺nE [A⊺
r

.
Lq(r)Ar]xn = 0 for every r ∈ In. Taking I⋆ = ⋂n∈N In, we

have Leb(I ∖ I⋆) = 0. Fix any r ∈ I⋆. For every n, let Ωr,n be the full measure set on

which x⊺nA
⊺
r

.
Lq(r)Arxn = 0 (we can do so because this quantity is nonnegative). Take

Ωr,⋆ = ⋂n∈N Ωr,n which is still a full measure set. The density of (xn)n∈N implies that, on

Ωr,⋆, we have x⊺A⊺
r

.
Lq(r)Arx = 0 for every x ∈ RD. Recall the definition of Ar from (5.6).

The assumption on suppP1 allows us to apply Lemma 5.10 to see that Ar ∈ SD++ and thus
Ar is an invertible matrix a.s. Hence, we can assume that Ar is invertible on Ωr,⋆. Fixing

any realization from Ωr,⋆ and varying x ∈ RD, we deduce that y⊺
.
Lq(r)y = 0 for every

y ∈ RD, which implies Lq(r) = 0 for r ∈ I⋆. Inserting this back to (5.29), we see that the
integral therein is zero and thus Ð→p (s′) =Ð→p (s). This completes the proof. �

Next, we give a formula for the increment at discontinuities.

Lemma 5.13 (Formula at a discontinuity point). Under (S), further assume that the
decomposition is canonical and fix X0 = 0. If either Ð→q (s+) ≠Ð→q (s) or Ð→p (s+) ≠Ð→p (s) at
some s ∈ (0,1), then there are t, t⋆ ∈ supp dα satisfying (3.6) and

Ð→p (s+) −Ð→p (s) = 2

t⋆ − t ∫
t⋆

t
E [A⊺

r (Ð→q (s+) −Ð→q (s))Ar]dr.

Proof. Due to Ð→p = Lp ○α−1 and Ð→q = Lq ○α−1 on (0, 1] (see (3.9)), the assumption on the
discontinuity of either of them at s implies α−1(s+) − α−1(s) > 0. By Lemma 3.6, there
are t, t⋆ ∈ {0}∪ supp dα such that (3.6) is satisfied. Here, t, t′ ∈ supp dα because s > 0 (see
Lemma 3.3). In particular, we have t = α−1(s), t⋆ = α−1(s+). Using this, Ð→p = Lp ○ α−1
and Ð→p = Lq ○ α−1 on (0,1], we get

Ð→p (s+) = Lp(t⋆), Ð→p (s) = Lp(t), Ð→q (s+) = Lq(t⋆), Ð→q (s) = Lq(t).
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Using Lemma 5.7 and Lemma 5.3, we can get

Ð→p (s+) −Ð→p (s) = R(t⋆) −R(t) = 2∫
t⋆

t
E [A⊺

r

.
Lq(r)Ar]dr.

Next, we determine
.
Lq(r) for r ∈ [t, t⋆]. Recall the definition of Lq in (3.15). Since

t, t⋆ ∈ supp dα and (t, t⋆)∩ supp dα = ∅, we can see that Lq on (t, t⋆) is defined as a linear
interpolation from Lq(t) to Lq(t⋆). Hence, we have

.
Lq(r) =

Lq(t⋆) −Lq(t)
t⋆ − t

=
Ð→q (s+) −Ð→q (s)

t⋆ − t
, ∀r ∈ (t, t⋆).

Inserting this to the above display, we get the desired result. �

Using the above lemma, we are able to detect discontinuity points of paths.

Corollary 5.14 (Detection of discontinuity). Let p, q ∈ Q∞ satisfy p = ∂qψ(q) and let
s ∈ (0, 1). If Ð→p (s+) ≠Ð→p (s), then Ð→q (s+) ≠Ð→q (s). Conversely, if Ð→q (s+) −Ð→q (s) ⩾ zz⊺ for
some z ∈ RD satisfying (5.28), then z⊺ (Ð→p (s+) −Ð→p (s)) z > 0.

Under the assumption that suppP1 spans RD, we have Ð→p (s+) ≠ Ð→p (s) if and only if
Ð→q (s+) ≠Ð→q (s).

Proof. IfÐ→q (s+) =Ð→q (s), then Lemma 5.13 impliesÐ→p (s+) =Ð→p (s) reaching a contradiction,
which gives the first implication. Now assuming Ð→q (s+) −Ð→q (s) ⩾ zz⊺, we can use the
formula in Lemma 5.13 to set

z⊺ (Ð→p (s+) −Ð→p (s)) z = 2

t⋆ − t ∫
t⋆

t
E [(Arz)⊺ (Ð→q (s+) −Ð→q (s))Arz]dr

⩾ 2

t⋆ − t ∫
t⋆

t
E [(z⊺Arz)2]dr

which is strictly positive due to Lemma 5.10 (3) and the definition of A⋅ in (5.6). We
turn to the last assertion and there is only one direction to be verified. If Ð→q (s+) ≠Ð→q (s),
Lemma 5.11 implies Ð→q (s+) −Ð→q (s) ⩾ zz⊺ for some nonzero z ∈ RD. The assumption on
suppP1 together with Lemma 5.10 (2) ensures that z satisfies (5.28) and the desired
result follows. �

Finally, we give a formula for derivatives of paths on an interval on which they are
absolutely continuous. Due to the regularity assumption on α−1, Lp, and Lq, this result
is not used in this paper but can be useful in specific scenarios.

Lemma 5.15 (Formula along an absolutely continuous increment). Under (S), fix X0 = 0.
If α−1 is absolutely continuous on some interval I ⊆ (0, 1) and Lp and Lq are differentiable

on {α−1(s) ∶ s ∈ I}, then Ð→p and Ð→q are differentiable at almost every s ∈ I and satisfy
.Ð→p (s) = 2E [A⊺

α−1(s)
.Ð→q (s)Aα−1(s)] .(5.31)

Proof. Set J = {α−1(s) ∶ s ∈ I}. If α−1 is constant on I, then both Ð→p and Ð→q are constant

on I due to (3.9). In this case, (5.31) holds trivially. Henceforth, we assume that α−1 is
not constant on I and thus J is not a singleton. Due to I ⊆ (0,1), Lemma 3.3 implies
J ⊆ supp dα. This allows us to apply Lemma 5.7 and Lemma 5.3 to get

Lp(t′) −Lp(t) = 2∫
t′

t
E [A⊺

r

.
Lq(r)Ar]dr, ∀t, t′ ∈ J.

Since Lp and Lq are differentiable on J , we have
.
Lp(t) = 2E [A⊺

t

.
Lq(t)At] , ∀t ∈ J.(5.32)
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Since α−1 is absolutely continuous, there is a measurable subset I0 of I with Leb(I∖I0) = 0

such that α−1 is differentiable on I0. Using (3.9), we have
.Ð→p (s) =

.
Lp(α−1(s)) .α−1(s) and.Ð→q (s) =

.
Lq(α−1(s)) .α−1(s) for every s ∈ I. These along with the above display yields the

desired result. �

We briefly explain the reason for requiring Lp and Lq to be differentiable in Lemma 5.15.
Without this assumption, we can still use the Lipschitzness and the Lebesgue differentiation
theorem to get the relation in (5.32) but only for t in a full measure subset J0 of J . To
proceed, we need to change variable from t to α−1 and ensure that {s ∈ I ∶ α−1(s) ∈ J0}
is a full measure subset of I. But in general this does not hold.

We briefly mention a concrete situation where this lemma can be used. Recall the
critical point relation (1.7) and set q = 0 therein. Also set D = 1. In this case, Ð→p is
a real-valued path and we can simply take Lp(t) = t for each t and α−1 = Ð→p . Then,
(Lp, t∇ξ ○Lp, α) is a decomposition of (p, t∇ξ(p)). We can apply the above lemma to this
pair since both Lp and t∇ξ ○Lp are differentiable everywhere (assuming even regularity
of ξ).

5.4. Analysis of the replica-symmetry breaking structure. Recall the critical-
point condition in (1.7), which can be rewritten as p = ∂qψ(q + t∇ξ(p)). We now transfer
the results of the previous subsection to this setting.

Proposition 5.16 (RSB induced by an external field). Let p, q ∈ Q∞ satisfy p = ∂qψ(q +
t∇ξ(p)) for some t ⩾ 0 and ξ. Assume that suppP1 spans RD. We have that, for
0 < s < s′ < 1, if Ð→q (s′) ≠Ð→q (s), then Ð→p (s′) ≠Ð→p (s).

Also, if Ð→q (s+) ≠ Ð→q (s) at some s ∈ (0,1), then Ð→p (s+) ≠ Ð→p (s). More precisely, if
Ð→q (s+) −Ð→q (s) ⩾ zz⊺ for some z ∈ RD ∖ {0}, then z⊺ (Ð→p (s+) −Ð→p (s)) z > 0.

Proof. Write q′ = q + t∇ξ(p). The main statement follows from Lemma 5.12 applied to
the pair (p, q′). The additional statement follows from Corollary 5.14 applied (p, q′). �

The mechanism behind the simultaneity of the replica-symmetry-breaking structures
between the different types of spins is based on the fact that the function ∇ξ can transfer
an increment along some direction y ∈ RD to some other direction z ∈ RD. To formulate
this precisely, for nonzero y, z ∈ RD, we say that ∇ξ is y-to-z coupled if for every a ∈ SD+
and b ∈ SD+ satisfying y⊺by > 0, there is c > 0 such that

d

dε
∣
ε=0

∇ξ(a + εb) ⩾ czz⊺.(5.33)

Proposition 5.17 (Simultaneous RSB). Let t > 0 and p, q ∈ Q∞ satisfy ∂qψ(q+t∇ξ(p)) =
p, let y, z ∈ RD ∖ {0}, and assume that suppP1 spans RD and that ∇ξ is y-to-z coupled.

● If y⊺Ð→p (s′)y > y⊺Ð→p (s)y for some 0 < s < s′ < 1, then z⊺Ð→p (s′)z > z⊺Ð→p (s)z.
● If y⊺Ð→p (s+)y > y⊺Ð→p (s)y for some 0 < s < 1, then z⊺Ð→p (s+)z > z⊺Ð→p (s)z.

Proof. We write q′ = q+t∇ξ(p), and start by proving the second statement. If y⊺Ð→p (s+)y >
y⊺Ð→p (s)y, then the assumption that ξ is y-to-z coupled guarantees the existence of a

constant c > 0 such that ∇ξ(Ð→p (s+)) −∇ξ(Ð→p (s)) ⩾ czz⊺, and thus
Ð→
q′ (s+) −

Ð→
q′ (s) ⩾ tczz⊺.

An application of Corollary 5.14 to the pair (p, q′) thus yields the conclusion.

We now turn to the first part of the statement. Let (Lp, Lq, α) be the canonical
joint decomposition of p and q given in (3.14) and (3.15). We adopt the setting (S)
accordingly. Due to α−1 = trÐ→p + trÐ→q (see (3.14)) and the assumption Ð→p (s′) ≠ Ð→p (s),
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we have α−1(s′) > α−1(s). Setting Lq′ = Lq + t∇ξ ○Lp, we have
Ð→
q′ = Lq′ ○ α−1. Applying

Lemma 5.7 to the pair (p, q′) and Lemma 5.3, we get

Ð→p (s′) −Ð→p (s) (3.9)= Lp ○ α−1(s′) −Lp ○ α−1(s) = 2∫
α−1(s′)

α−1(s)
E [A⊺

r

.
Lq′(r)Ar]dr.(5.34)

Here, α−1(s), α−1(s′) ∈ supp dα due to s, s′ > 0 and Lemma 3.3. We set

G = {r ∈ [α−1(s), α−1(s′)] ∶ y⊺
.
Lp(r)y ≠ 0} .

Due to the condition y⊺Ð→p (s′)y ≠ y⊺Ð→p (s)y, we must have Leb (G) > 0. Using (5.33), we

can see that for every r ∈ G there is c(r) > 0 such that d
dr∇ξ (Lp(r)) ⩾ c(r)zz

⊺. We can

ensure that c(⋅) is a measurable function by choosing c(r) = inf
u⊺
.
Lq′(r)u
u⊺zz⊺u for r ∈ G, where

the infimum is taken over a countable dense subset of {u ∈ RD ∶ z⊺u > 0}. By giving up a
subset of zero measure, we can assume that Lq and Lq′ are differentiable on G. Then, we

have
.
Lq′(r) =

.
Lq(r) + t d

dr∇ξ (Lp(r)) ⩾ tc(r)zz
⊺ for each r ∈ G, and since

.
Lq(r) ⩾ 0, we

deduce that
.
Lq′(r) ⩾ tc(r)zz⊺. Inserting this to (5.34), we get

z⊺ (Ð→p (s′) −Ð→p (s)) z ⩾ 2t∫
α−1(s′)

α−1(s)
c(r)E [∣Arz∣2]dr.

By Lemma 5.10 (3), the right-hand side is strictly positive, which yields the desired
result. �

Proof of Theorem 1.1. We first show the result with p replaced by its left-continuous
version Ð→p . Assumption (1.8) implies that ∇ξ is y-to-z coupled for every nonzero y, z ∈ RD,
in the sense of (5.33). Now, if Ð→p (s′) −Ð→p (s) ≠ 0, then there is nonzero y ∈ RD such that
y⊺Ð→p (s′)y > y⊺Ð→p (s)y. The first part of Proposition 5.17 implies z⊺Ð→p (s′)z > z⊺Ð→p (s)z for
every nonzero z ∈ RD, which gives Ð→p (s′) −Ð→p (s) ∈ SD++ as desired.

We now show that the same statement is also valid with the right-continuous version
of the path. Suppose that y⊺p(s′)y > y⊺p(s)y. If the function u ↦ y⊺p(u)y is non-
constant on (s, s′), then we can apply the result that concerns the left-continuous path
Ð→p and obtain the conclusion. Otherwise, the function u ↦ y⊺p(u)y must have a jump
at u = s′ (a jump at u = s is not possible by right-continuity). This means that we have
y⊺Ð→p (s′+)y > y⊺Ð→p (s′)y. We can therefore appeal to the second part of Proposition 5.17
and argue as in the previous paragraph to conclude that Ð→p (s′+) −Ð→p (s′) ∈ SD++. This
implies that p(s′) − p(s) ∈ SD++, as desired. �

Remark 5.18. It was stated in the introduction that the presence of a term of the form of
(1.9) is sufficient to guarantee the validity of the assumption (1.8). We clarify why this is
so here, and for convenience we simply fix D = 2 and choose the energy function HN(σ)
to be given by

HN(σ) = N− 1
2

N

∑
i,j=1

(g11ij σ1iσ1j + g12ij σ1iσ2j + g22ij σ2iσ2j) , ∀σ ∈ R2×N ,(5.35)

where (gklij )1⩽k,l⩽2; i,j⩾1 are independent standard Gaussian variables. The covariance

of this energy function is given as in (1.1) for the function ξ ∶ R2×2 → R such that
ξ(a) = a211 + a222 + a11a22, where we write a = (aij)1⩽i,j⩽2 ∈ R2×2. We have

∇ξ(a) = (2a11 + a22 0
0 2a22 + a11) , ∀a ∈ R2×2,
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and thus, for every a, b ∈ R2×2,

d

dε
∣
ε=0∇ξ(a + εb) = (2b11 + b22 0

0 2b22 + b11) .

For every nonzero y ∈ R2, if b ∈ S2
+ satisfies y⊺by > 0, we must have b11 > 0 or b22 > 0, and

due to the above display, we have that (1.8) holds.

In fact, if we only keep the cross-term in (5.35), so that the function ξ is now given by
ξ(a) = a11a22 and

d

dε
∣
ε=0∇ξ(a + εb) = (b22 0

0 b11
) ,

then we see that ξ is e1-to-e2 coupled and e2-to-e1 coupled, where (e1, e2) is the canonical
basis. Even though this case does not satisfy the assumptions of Theorem 1.1, we see that
we can still ensure simultaneous replica-symmetry breaking by applying Proposition 5.17.
A similar phenomenon is also valid with more types, as discussed in the second paragraph
after the statement of Theorem 1.1.

6. The case of multi-species models

In this section, we describe the necessary adjustments for obtaining a version of
Theorem 1.1 in the context of multi-species models.

We fix a finite set S containing symbols for different species. We start by describing
the multi-species model, which is the same as that in [9] with the parameter κs therein
set to be 1 for every s ∈ S .

For each N ∈ N, let (IN,s)s∈S be a partition of {1, . . . ,N}. We interpret each IN,s as
the set of indices for spins belonging to the s-species. For each N ∈ N, we set

λN,s = ∣IN,s∣/N, ∀s ∈ S ; λN = (λN,s)s∈S .(6.1)

We interpret λN,s as the fraction of the s-species in terms of population. For each
N ∈ N ∪ {∞}, we consider the simplex

▲N = {(λs)s∈S ∣ λs ∈ [0,1] ∩ (Z/N), ∀s ∈ S ; ∑
s∈S

λs = 1}

with the understanding that Z/∞ = R when N =∞. In view of (6.1), we have λN ∈▲N

for each N ∈ N.

For each s ∈ S , let µs be a finite positive measure supported on [−1,+1]. For every
N ∈ N, a spin configuration is of the form σ = (σ1, . . . , σN) ∈ [−1,+1]N , where each
spin σn is independently drawn from µs if n ∈ IN,s. In other words, denoting by PN,λN
the distribution of σ, we have

dPN,λN (σ) = ⊗s∈S ⊗n∈IN,s dµs(σn).

For two spin configurations σ,σ′ of size N and s ∈ S , we consider the overlap of the
s-species:

RN,λN ,s(σ,σ′) =
1

N
σIN,s ⋅ σ′IN,s ∈ [−1,+1]

where

σIN,s = (σn)n∈IN,s(6.2)
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is a vector in R∣IN,s∣ and similarly for σ′IN,s . The entire overlap structure of the spin

configurations is captured by the RS -valued overlap:

RN,λN (σ,σ′) = (RN,λN ,s(σ,σ′))s∈S .

Let ξ ∶ RS → R be a smooth function and assume the existence of a centered Gaussian
process (HN(σ))σ∈[−1,+1]N with covariance

E [HN(σ)HN(σ′)] = Nξ (RN,λN (σ,σ′)) .

Let ◻ be a placeholder for subscripts. In the previous sections, we have used the
notation Q◻ for right-continuous increasing paths in SD+ with properties indicated by ◻.
Now we display the dependence on D by writing Q◻(D). We introduce the collection of
paths appearing in the multi-species setting:

QS
◻ = ∏

s∈S
Q◻(1).

These paths can be thought of as the diagonal part of the paths that appeared in the
previous sections. We now construct the external field parametrized by q = (qs)s∈S ∈ QS

∞ .
Here, each qs is a right-continuous increasing path in R+. For each s ∈ S and n ∈ IN,s,
let (wqsn (h))h∈suppR be the real-valued centered Gaussian process given as in (2.1) (for
D = 1) with covariance

E [wqsn (h)wqsn (h′)] = qs(h ∧ h).(6.3)

Conditioned on R, we assume that all these processes, indexed by s and n, are independent.
For each s, we write wqsIN,s = (wqsn )n∈IN,s . Recall the notation in (6.2). For each N ∈ N and

q ∈ QS
∞ , we define

W q
N(σ,h) = ∑

s∈S
wqsIN,s(h) ⋅ σIN,s

which, conditioned on R, is a centered Gaussian process with covariance

E [W q
N(σ,h)W q

N(σ′,h′)] (6.3)= Nq(h ∧ h′) ⋅RN,λN (σ,σ′).

Now, for N ∈ N, λN ∈▲N , t ∈ [0,∞), and q ∈ QS
∞ , we consider the Hamiltonian

Ht,q
N (σ,h) =

√
2tHN(σ) − tNξ (RN,λN (σ,σ)) +

√
2W q

N(σ,h) −Nq(1) ⋅RN,λN (σ,σ),

where q(1) = (qs(1))s∈S ∈ RS
+ and q(1) ⋅ RN,λN (σ,σ) = ∑s∈S qs(1) ⋅ RN,λN ,s(σ,σ). We

define the associated free energy and Gibbs measure

FN,λN (t, q) = − 1

N
E log∬ exp (Ht,q

N (σ,h))dPN,λN (σ)dR(h),

⟨⋅⟩N,λN ∝ exp (Ht,q
N (σ,h))dPN,λN (σ)dR(h).

Here, E first averages over all the Gaussian randomness in HN(σ) and W q
N(σ,h) and

then the randomness in R. The dependence of FN,λN (t, q) on the partition (IN,s)s∈S is
only through λN , which is the reason for us to set the notation in this way.

For each q = (qs)s∈S ∈ QS
∞ and λ∞ = (λ∞,s)s∈S ∈▲∞, we define

ψµs(qs) = −E log∬ exp (
√

2wqs(h) ⋅ τ − qs(1)τ2)dµs(τ)dR(h), ∀s ∈ S ;

ψλ∞(q) = ∑
s∈S

λ∞,sψµs(qs).

Here, (wqs(h))h∈suppR is the real-valued process given as in (2.1) (for D = 1).
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Remark 6.1. It is important to notice that ψµs(qs) is exactly ψ(q) given in (2.7) with
D = 1 (set Q∞ to be Q∞(1), q = qs and P1 = µs). Hence, results from previous sections
are also valid for ψµs . �

For each s ∈ S , the derivative ∂qsψµs(qs) ∈ Q∞(1) is defined in the same way as that

for ψ in (2.7). By [9, (4.18) and Lemma 4.9], ψλ∞ is differentiable at every q ∈ QS
2 and

its derivative ∂qψλ∞(q) satisfies

∂qψλ∞(q) = (λ∞,s ∂qsψµs(qs))s∈S ∈ QS
∞ .(6.4)

For every λ∞ ∈▲∞ and (t, q) ∈ R+ ×QS
2 , we consider the functional

Jλ∞,t,q(q′, p) = ψλ∞(q′) + ∫
1

0
p ⋅ (q − q′) + t∫

1

0
ξ(p)

defined for every q′ ∈ QS
2 and p ∈ L2([0, 1],RS ). Similarly to the vector case, we say that

(q′, p) ∈ QS
2 ×L2([0,1],RS ) is a critical point of Jλ∞,t,q if

q = q′ − t∇ξ(p) and p = ∂qψλ∞(q′),
where we write ∇ξ = (∂sξ)s∈S .

Similarly to the vector case, we have that up to a small perturbation of the energy
function and up to the extraction of a subsequence in N , and for σ,σ′ two independent
samples from the Gibbs measure, the overlap RN,λN ,s(σ,σ′) converges in law to p(U),
where (q′, p) is a critical point of Jλ∞,t,q and U is a uniform random variable on [0,1].
We refer to [9, Theorem 1.4] for the precise statement.

For every a, b ∈ RS , we write a ⩾ b if as ⩾ bs for every s ∈ S . In the current multi-species
setting, for s, s′ ∈ S , we say that ξ is s-to-s′ coupled provided that, for every a, b ∈ RS

+ ,
we have

a ⩾ b, as > bs Ô⇒ ∂s′ξ(a) > ∂s′ξ(b).

Theorem 6.2 (Simultaneous RSB in multi-species models). Let p, q ∈ QS
∞ satisfy p =

∂qψλ∞(q + t∇ξ(p)) for some λ∞ ∈ ▲∞, t > 0, and ξ. Suppose that ξ is s-to-s′ coupled
for some s, s′ ∈ S and that µs is not a Dirac mass at 0. For every 0 < r < r′ < 1, if
ps(r′) > ps(r), then ps′(r′) > ps′(r).

Proof. Remark 6.1 allows us to apply the results from Section 5.3, stated for more general
ψ as in (2.7), to ψµs here. Using (6.4), we obtain ps′ = λ∞,s′∂qs′ψµs′ (qs′ + t∂s′ξ(p)) from

p = ∂qψλ∞(q + t∇ξ(p)). Assuming that Ð→ps(r′) >Ð→ps(r) and using that ξ is s-to-s′ coupled,
we can apply Lemma 5.12 with p, q,ψ,P1,D therein replaced by λ−1∞,s′ps′ , qs′ + t∂s′ξ(p),
ψµs , µs, 1 respectively to obtain that Ð→ps′(r′) >Ð→ps′(r).

This shows the announced result with p replaced by its left-continuous version Ð→p . As
in the proof of Theorem 1.1, we can also obtain the statement with the right-continuous
path p by examining the case of a jump, i.e. we argue that if for some r ∈ (0, 1), we have
Ð→ps(r+) >Ð→ps(r), then Ð→ps′(r+) >Ð→ps′(r). Indeed, this follows from Corollary 5.14. �

Acknowledgements. HBC is funded by the Simons Foundation.

References

[1] Antonio Auffinger and Wei-Kuo Chen. On properties of Parisi measures. Probab. Theory Related
Fields, 161(3-4):817–850, 2015.

[2] Antonio Auffinger, Wei-Kuo Chen, and Qiang Zeng. The SK model is infinite step replica symmetry
breaking at zero temperature. Comm. Pure Appl. Math., 73(5):921–943, 2020.

[3] Antonio Auffinger and Qiang Zeng. Existence of two-step replica symmetry breaking for the spherical
mixed p-spin glass at zero temperature. Comm. Math. Phys., 370(1):377–402, 2019.



SIMULTANEOUS RSB FOR VECTOR SPIN GLASSES 35

[4] Erik Bates, Leila Sloman, and Youngtak Sohn. Replica symmetry breaking in multi-species
Sherrington-Kirkpatrick model. J. Stat. Phys., 174(2):333–350, 2019.

[5] Erik Bates and Youngtak Sohn. Free energy in multi-species mixed p-spin spherical models. Electronic
Journal of Probability, 27:1–75, 2022.

[6] Erik Bates and Youngtak Sohn. Crisanti-Sommers formula and simultaneous symmetry breaking in
multi-species spherical spin glasses. Comm. Math. Phys., 394(3):1101–1152, 2022.

[7] Hong-Bin Chen. A PDE perspective on the Aizenman-Sims-Starr scheme. Preprint, arXiv:2212.09542,
2022.

[8] Hong-Bin Chen. Parisi PDE and convexity for vector spins. Preprint, arXiv:2311.10446, 2023.
[9] Hong-Bin Chen. On free energy of non-convex multi-species spin glasses. Preprint, arXiv:2411.13342,

2024.
[10] Hong-Bin Chen and Jean-Christophe Mourrat. On the free energy of vector spin glasses with

non-convex interactions. Probab. Math. Phys., to appear.
[11] Hong-Bin Chen and Jiaming Xia. Hamilton-Jacobi equations from mean-field spin glasses. Preprint,

arXiv:2201.12732, 2022.
[12] Partha S. Dey and Qiang Wu. Fluctuation results for multi-species Sherrington-Kirkpatrick model in

the replica symmetric regime. J. Stat. Phys., 185(3):Paper No. 22, 40, 2021.
[13] Tomas Dominguez and Jean-Christophe Mourrat. Statistical mechanics of mean-field disordered

systems: a Hamilton-Jacobi approach. Zurich Lectures in Advanced Mathematics. European Mathe-
matical Society, Zürich, 2024.
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