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Abstract

We consider the problem of recovering the community structure in the stochastic block
model. We aim to describe the mutual information between the observed network and the
actual community structure as the number of nodes diverges while the average degree of a given
node remains bounded. Our main contribution is a representation of the limit of this quantity,
assuming it exists, as an explicit functional evaluated at a critical point of that functional. While
we mostly focus on the two-community setting for clarity, we expect our method to be robust
to model generalizations. We also present an example involving four communities where we
show the invalidity of a plausible candidate variational formula for this limit.

1 Introduction

1.1 Informal summary of the main results

We consider a problem of community detection in the context of the stochastic block model. We
focus on the case with two communities, where the community structure is encoded by a vector

σ
∗ := (σ∗

1 , . . . ,σ
∗
N) ∈ ΣN := {−1,+1}N . (1.1)

We understand that individuals i and j belong to the same community if and only if σ∗
i = σ∗

j .
The labels (σ∗

i )i≤N are sampled independently from a Bernoulli distribution P∗ with probability of
success p ∈ (0,1) and expectation m,

p := P∗{1}= P{σ
∗
i = 1} and m := Eσ

∗
i = 2p−1. (1.2)

The assignment vector σ∗ is thus distributed according to the product law

σ
∗ ∼ P∗

N := (P∗)⊗N . (1.3)

We fix parameters c > 0 and ∆ ∈ (−c,c) \ {0}. The case when ∆ = 0 would be trivial and we
prefer to exclude it. Given the community structure σ∗, we sample a random undirected graph
GN := (Gi j)i, j≤N with vertex set {1, . . . ,N} by stipulating that an edge between node i and node j
is present with conditional probability

P{Gi j = 1 | σ
∗} :=

c+∆σ∗
i σ∗

j

N
, (1.4)
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and that this sampling is performed independently for each pair i ̸= j ∈ {1, . . . ,N}. In words, we
create a link between two vertices with probability (c+∆)/N if those two vertices belong to the
same community; and we create this link with probability (c−∆)/N otherwise. In the case when
∆ > 0, it is more likely for an edge to be present between nodes belonging to the same community,
and the model is called assortative; otherwise it is called disassortative. The inference task that
we consider is that of recovering the community structure σ∗ given the observation of the graph
GN . We focus in particular on characterizing the mutual information between the graph GN and
the community structure σ∗, in the limit of large N.

We denote by M+ the space of non-negative measures over [−1,1] with finite total mass, and
by Mp the set of probability measures with mean m = 2p−1,

Mp :=
{

ν ∈ Pr[−1,1] |
∫ 1

−1
xdν(x) = m

}
. (1.5)

Our main results will be stated in terms of a fixed point of the functional Γt,µ : Mp → Mp, which
is defined for each t ≥ 0 and µ ∈ M+ according to the following procedure. Fixing ν ∈ Mp, we
sample ε∗ according to P∗, and conditionally on ε∗, we let Πt,µ(ν) be a Poisson point process with
intensity measure (c+∆ε∗x)d(µ + tν)(x); we then set

Γt,µ(ν) := Law

(∫
Σ1

εe−εm
∏x∈Πt,µ (ν)(c+∆εx)dP∗(ε)∫

Σ1
e−εm ∏x∈Πt,µ (ν)(c+∆εx)dP∗(ε)

)
. (1.6)

In other words, the quantity between the large parentheses in (1.6) is a random variable, as it
depends on the realization of ε∗ and Πt,µ(ν), and we define Γt,µ(ν) to be the law of this random
variable.

Let (σ ℓ)ℓ≥1 = ((σ ℓ
i )i≤N)ℓ≥1 be independent random variables that are sampled according to

the conditional law of σ∗ given the observation of GN . Our first main result states that, up to a
perturbation of the inference problem that does not change the asymptotic behavior of the mutual
information, and up to the extraction of a subsequence in N, the asymptotic law of (σ ℓ

i )i≤N,ℓ≥1 can
be sampled as follows. For some measure ν∗ that is a fixed point of the operator Γ1,0:

S1 generate a sequence (xi)i≥1 of i.i.d. random variables with law ν∗;

S2 conditionally on (xi)i≥1, generate ±1-valued random variables σ ℓ
i with mean xi, indepen-

dently over i, ℓ≥ 1.

Our second main result states that, assuming that the limit mutual information exists, it can be
expressed in terms of an explicit functional P1,0 : M+ →R that is evaluated at a fixed point of the
map Γ1,0. The functional P1,0 is closely related to the map Γ1,0 since, at least formally, a measure
is a critical point of P1,0 if and only if it is a fixed point of the map Γ1,0.

While we think of our results as being rather precise, since they substantially narrow down the
space of possible asymptotic behaviors for the mutual information and for the conditional law of
σ∗ given the observation of GN , we also wish to stress that our results do not provide a complete
characterization of the limits of these objects. Indeed, this is due to the fact that the map Γ1,0 may
admit several fixed points in general. We will show that the existence of a unique fixed point can be
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guaranteed in a regime of small signal-to-noise ratio, but we do not expect this uniqueness property
to extend to arbitrary choices of parameters.

A complete characterization of the limit of the mutual information has already been achieved
in a number of cases. The disassortative case was settled in [2, 15] when p = 1/2, and in [18]
for arbitrary p. The technique in [18] is based on partial differential equations (see also [19] for a
presentation of the approach), and the key point is that in the disassortative case, the non-linearity
appearing in this equation is convex. We expect this complete characterization to extend to settings
with more than two communities, as long as the corresponding non-linearity remains convex. This
would be analogous to [11, Theorem 1.1] in the context of spin glasses, a result which itself builds
upon [9, 22, 42, 43, 44, 45, 46, 47, 52]. Moreover, whenever this convexity property holds, the limit
mutual information can be expressed as a variational formula. From the point of view of partial
differential equations, this relates to the validity of a Hopf-Lax representation of the solution, see
[20, Theorem 1.3].

The assortative case presents a greater challenge. It was successfully resolved when p = 1/2
in [53], building upon [1, 24, 34, 36]. The approach in [53] relies upon the study of the fixed points
of an operator that relates to the setting of broadcasting on trees, and the key step of the proof is to
establish the uniqueness of a non-trivial fixed point. This uniqueness property does not generalize
to models with more than two communities [21]. Despite similarities, we could not identify a
precise correspondence between the operator Γ1,0 whose fixed points enter into our analysis and
the operators appearing in [53]. Part of the difficulty is that the first step of the approach in these
earlier works is to decompose the mutual information into an integral involving a family of new
statistical inference problems with an additional survey mechanism. When one can guarantee that
there is a unique non-trivial fixed point to each problem in this family, there is a tight relationship
between the true community-detection problem and the problems involving broadcasting on trees.
On the other hand, when uniqueness fails, this relationship seems less rigid to us, and we do not
immediately see how one could derive results comparable to those obtained in the present paper in
the context explored in these earlier works.

We expect the method presented here, primarily based on cavity calculations, to be robust
to model variations such as situations involving more than two communities, and we also expect
the lower bound on the mutual information obtained in [18] to generalize similarly. The results
we present here and those in [18] are analogous to those obtained for spin glasses in [11] and in
[39, 40] respectively. We have preferred to stick to a two-community model here to facilitate the
presentation, but as an illustration of the robustness of the approach, we will at least indicate as
we proceed the few small adaptations that need to be implemented in order to cover the case when
then measure P∗ is arbitrary with support in [−1,1] in place of {−1,1}.

In order to make further progress and obtain a full characterization of the limit mutual infor-
mation in general, one must first ask what a good candidate for the limit could be. One proposal
based on partial differential equations was put forward in [18]. It would of course be convenient
to identify a more explicit formulation of the candidate limit. For dense versions of the problem
we consider, where the average degree of the graph diverges to infinity, a sort of central limit
theorem takes place at the level of each node, and one can relate the problem to a simpler setup
such as that of rank-one matrix estimation in the presence of additive Gaussian noise, as shown
in [17, 26] (see also [19, Section 4.5]). For the latter class of problems, a saddle-point variational
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formula was shown to be valid in a very wide range of settings in [14] (see also [19, Chapter 4]),
building upon [4, 5, 6, 10, 13, 12, 23, 26, 27, 28, 29, 31, 32, 37, 38, 50, 51]. From the point of
view of partial differential equations, this corresponds to the possibility to write a Hopf formula
based on the convexity of the initial condition (as opposed to the convexity of the non-linearity for
the Hopf-Lax formula, cf. [19, Theorems 3.8 and 3.13]). However, the convexity of the relevant
“initial condition” in our setting is invalid [25], and as explained around [18, (1.49)], this implies
that this tentative saddle-point Hopf formula is invalid in our setting with sparse graph connec-
tivity. An alternative candidate limit for the mutual information could be considered by extending
the Hopf-Lax variational formula known to be valid in the disassortative case. While we could not
rule this out in the two-community case, we show here that this candidate variational formula is
invalid in general. To do so, we focus on a version of the two-community problem in which the
graph additionally possesses a bipartite structure. The model can be thought of as involving four
communities, and it is inspired by the bipartite spin-glass model investigated in [39] (see in par-
ticular [39, Section 6]). In this context, we show that a naive generalization of the formula valid in
the standard disassortative two-community case would lead to a prediction that is in contradiction
with the main results of this paper.

As was already said, the main focus of this paper is to obtain precise characterizations of the
mutual information and conditional law of the community structure given the observation, in the
limit of large system size. In the two-community case with p = 1/2, it was shown in [30, 33, 35]
that there exists an efficient algorithm that allows one to recover non-trivial information about the
community structure whenever ∆2 > c, and that it is information-theoretically impossible to do so
otherwise. To the best of our knowledge, whether or not there exists an efficient algorithm that
recovers as much of the signal as is information-theoretically possible is not known. In certain
settings involving more than two communities, one expects the existence of a gap between the
regime for which there exists an efficient algorithm for recovering a non-trivial fraction of the
community structure, and the regime for which it is information-theoretically possible to do so.
The results of [3] vindicate a significant part of this picture. A precise characterization of the
information-theoretic limit is not known however. These open questions are directly related to the
main purposes of the present paper. Much of the recent work on the community detection problem
has been triggered by [16], in which the results reviewed in this paragraph and much more had
been anticipated using non-rigorous methods.

1.2 Precise statement of the main results

We now turn to a more precise description of our main results. As in [18], our starting point is
to embed the community-detection problem under consideration into a richer family parametrized
by a pair (t,µ) ∈ R≥0 ×M+. The conjecture in [18] is that, up to a simple affine transformation,
the limit f (t,µ) of the re-scaled mutual information between the signal and the observation solves
an explicit Hamilton-Jacobi equation. As is well-known in finite dimensions, first-order Hamilton-
Jacobi equations can be solved for a short time using the method of characteristics (see for instance
[19, Exercise 3.10 and solution]). This method allows us to uncover the value of the solution to
the equation along each characteristic line separately. At larger times though, difficulties occur
because characteristic lines may intersect, and will typically not agree on what the value of the
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solution ought to be. Our main result can be interpreted as saying that, while this might indeed
occur, there is always one characteristic line that prescribes the correct value for f (t,µ). In the
language of [19, Section 3.5], one may say that the graph of f always belongs to the wavefront of
the equation.

As already stated, the central object of interest to us is the mutual information between the
community structure σ∗ and the observed random graph GN , that is,

I(GN ;σ
∗) := E log

P(GN ,σ
∗)

P(GN)P(σ∗)
= E

∫
RN

log
(

dPσ∗|GN

dP∗
N

(σ)

)
dPσ∗|GN (σ), (1.7)

where Pσ∗|GN denotes the conditional law of σ∗ given GN . The likelihood of the model is given by

P
{

GN = (Gi j) | σ
∗ = σ

}
= ∏

i< j

(c+∆σiσ j

N

)Gi j
(

1−
c+∆σiσ j

N

)1−Gi j
, (1.8)

and Bayes’ formula implies that the posterior of the model is the Gibbs measure

P
{

σ
∗ = σ | GN = (Gi j)

}
=

exp
(
H◦

N(σ)
)
P∗

N(σ)∫
ΣN

exp
(
H◦

N(τ)
)

dP∗
N(τ)

(1.9)

associated with the Hamiltonian

H◦
N(σ) := ∑

i< j
log
[(

c+∆σiσ j
)Gi j
(

1−
c+∆σiσ j

N

)1−Gi j
]
. (1.10)

Up to an error vanishing with N and a simple additive constant, the normalized mutual informa-
tion (1.7) coincides with the free energy

F◦
N :=

1
N
E log

∫
ΣN

expH◦
N(σ)dP∗

N(σ). (1.11)

Indeed, one can observe that

I(GN ;σ
∗) =

(
N
2

)
E log(c+∆σ

∗
1 σ

∗
2 )

G12
(

1−
c+∆σ∗

1 σ∗
2

N

)1−G12
−NF◦

N ; (1.12)

averaging with respect to the randomness of G12 and Taylor-expanding the logarithm yields that

1
N

I(GN ;σ
∗) =

1
2
E
(
c+∆σ

∗
1 σ

∗
2
)

log
(
c+∆σ

∗
1 σ

∗
2
)
− c

2
− ∆m2

2
−F◦

N +O
(
N−1). (1.13)

In place of the mutual information, the main protagonist of this paper is in fact the free energy F◦
N

and its extension, which we now proceed to introduce.
We begin by describing the enrichment of the free energy involving the parameter t ≥ 0. For

each t ≥ 0, we introduce a random variable Πt ∼ Poi t
(N

2

)
as well as an independent family of i.i.d.

random matrices (Gk)k≥1 each having conditionally independent entries (Gk
i, j)i, j≤N taking values

in {0,1} with conditional distribution

P
{

Gk
i, j = 1 | σ

∗} :=
c+∆σ∗

i σ∗
j

N
. (1.14)
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Given a collection of random indices (ik, jk)k≥1 sampled uniformly at random from {1, . . . ,N}2,
independently of the other random variables, we define the t-dependent Hamiltonian Ht

N on ΣN by

Ht
N(σ) := ∑

k≤Πt

log
[(

c+∆σikσ jk
)Gk

ik , jk

(
1−

c+∆σikσ jk
N

)1−Gk
ik , jk

]
, (1.15)

and denote by

FN(t) :=
1
N
E log

∫
ΣN

expHt
N(σ)dP∗

N(σ) (1.16)

its corresponding free energy. Notice that this is the Hamiltonian associated with the task of infer-
ring the signal σ∗ from the data

D t
N :=

(
Πt ,(ik, jk)k≤Πt ,(G

k
ik, jk)k≤Πt

)
. (1.17)

By this we mean that the law of σ∗ given the observation of D t
N is described by a formula analogous

to that in (1.9), with H◦
N replaced by Ht

N there. By [18, Appendix A], the difference between the
free energies F◦

N and FN(1) converges to zero as N tends to infinity. The main advantage of this
construction is that it allows one to study derivatives of the free energy with respect to the “time”
parameter t. It is also convenient to study derivatives of the free energy with respect to an additional
parameter denoted by µ ∈M+. Given µ ∈M+, we let (Λi(Nµ))i≤N be independent Poisson point
processes with intensity measure Nµ , and we let the µ-dependent Hamiltonian Hµ

N on ΣN be given
by

Hµ

N (σ) := ∑
i≤N

∑
x∈Λi(Nµ)

log
[(

c+∆σix
)Gx

i
(

1− c+∆σix
N

)1−Gx
i
]
, (1.18)

where (Gx
i )i≤N are conditionally independent random variables taking values in {0,1} with condi-

tional distribution
P{Gx

i = 1 | σ
∗,x} :=

c+∆σ∗
i x

N
. (1.19)

For a review of Poisson point processes, we refer the reader to [19, Chapter 5]. The function Hµ

N is
the Hamiltonian associated with the task of inferring the signal σ∗ from the data

Dµ

N :=
(
Λi(Nµ),(Gx

i )x∈Λi(Nµ)

)
i≤N . (1.20)

Finally, for each (t,µ) ∈ R≥0 ×M+, we introduce the enriched Hamiltonian

Ht,µ
N (σ) := Ht

N(σ)+Hµ

N (σ) (1.21)

as well as its associated free energy

FN(t,µ) :=
1
N
E log

∫
ΣN

expHt,µ
N (σ)dP∗

N(σ). (1.22)

The function Ht,µ
N is the Hamiltonian associated with inferring the signal σ∗ from the data

D t,µ
N := (D t

N ,D
µ

N ), (1.23)
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where the randomness in these two datasets is taken to be independent conditionally on σ∗. We
recall that by [18, Appendix A], the difference between the free energy F◦

N in (1.11) and FN(1,0)
tends to zero as N tends to infinity. The problem of finding the asymptotic value of the mutual
information (1.7) is therefore a specific instance of the task of determining the limit of the enriched
free energy (1.22).

To state the main results of this paper, we introduce additional notation. We define the function
g : [−1,1]→ R by

g(z) := (c+∆z)
(

log(c+∆z)−1
)
= (c+∆z) log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
zn − c, (1.24)

and for each measure µ ∈ M+, we let Gµ : [−1,1]→R be the function obtained by marginalizing
the kernel (x,y) 7→ g(xy),

Gµ(x) :=
∫ 1

−1
g(xy)dµ(y). (1.25)

Given (t,µ) ∈ R≥0 ×M+, we introduce the functional Pt,µ : M+ → R defined by

Pt,µ(ν) := ψ(µ + tν)− t
2

∫ 1

−1
Gν(y)dν(y), (1.26)

where ψ : M+ → R denotes the function

ψ(µ) :=−µ[−1,1]c+ pE log
∫

Σ1

exp
(
−∆σ

∫ 1

−1
xdµ(x)

)
∏

x∈Π+(µ)

(c+∆σx)dP∗(σ)

+(1− p)E log
∫

Σ1

exp
(
−∆σ

∫ 1

−1
xdµ(x)

)
∏

x∈Π−(µ)

(c+∆σx)dP∗(σ) (1.27)

for Poisson point processes Π±(µ) with respective intensity measures (c±∆x)dµ(x) on [−1,1].
The function ψ is the initial condition of the partial differential equation that was identified in [18],
since it arises as the large-N limit of FN(0,µ). Our first main result states that the limit of the free
energy, assuming it exists, is given by the functional (1.26) evaluated at one of its critical points.
As mentioned in the previous subsection, it will be possible to recast the critical-point condition
as a fixed-point equation for the operator Γt,µ defined in (1.6), so that our first main result reads as
follows.

Theorem 1.1. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise
to some limit f : R≥0 ×M+ → R. For every (t,µ) ∈ R≥0 ×M+, the map ν 7→ Γt,µ(ν) admits a
fixed point ν∗ ∈ Mp with the property that

f (t,µ) = Pt,µ(ν
∗). (1.28)

Our second result concerns the asymptotic behavior of the conditional law of the community
structure σ∗ given the observation. We use the bracket notation ⟨·⟩ to denote the expectation with
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respect to the conditional law of σ∗ given the observation, with σ being the canonical random
variable under ⟨·⟩. Explicitly, this means that for every function h : ΣN → R, we have

⟨h(σ)⟩ :=

∫
ΣN

h(σ)expHt,µ
N (σ) dPN(σ)∫

ΣN
expHt,µ

N (σ) dPN(σ)
. (1.29)

We stress that the expectation ⟨·⟩ is itself random, since it depends on the observation. We denote
by (σ ℓ)ℓ≥1 = ((σ ℓ

i )i≤N)ℓ≥1 independent copies, often called replicas, of the random variable σ

under ⟨·⟩. We also introduce the set Reg(M+) of measures in M+ that admit a smooth and strictly
positive density with respect to the Lebesgue measure on [−1,1],

Reg(M+) :=
{

µ ∈ M+ | µ admits a smooth and strictly positive density on [−1,1]
}
. (1.30)

Our next result states that for most choices of (t,µ) ∈ R≥0 ×M+, we can identify a fixed point of
the map ν 7→ Γt,µ(ν) for which the equality (1.28) holds, and for which we can also identify the
limit law of (σ ℓ)ℓ≥1 after a small perturbation of the inference problem. More precisely, we will
show that this can be done at any point (t,µ) ∈ R≥0 ×Reg(M+) at which the limit free energy
is Gateaux differentiable; we refer to Section 2 for a definition of Gateaux differentiability and
a precise discussion of why the limit free energy is Gateaux differentiable at most points. The
convergence in law of (σ ℓ

i )i≤N,ℓ≥1 is in the sense of finite-dimensional distributions.

Theorem 1.2. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise
to some limit f : R≥0 ×M+ → R. If (t,µ) ∈ R≥0 × Reg(M+) is such that f (t, ·) is Gateaux
differentiable at µ , then we can identify a probability measure ν∗ ∈ Mp such that the Gateaux
derivative density of f at (t,µ) is Gν∗ . Moreover, the probability measure ν∗ is a fixed point of the
map Γt,µ , and we have

f (t,µ) = Pt,µ(ν
∗). (1.31)

Finally, there exists a sequence
(
Nk,λ

Nk
)

k≥1 such that (Nk)k≥1 increases to infinity, the spin array
(σ ℓ

i )i≤Nk,ℓ≥1 converges in law under E⟨·⟩ with the modified Hamiltonian (4.6) with perturbation
parameters (λ Nk)k≥1, and the limit law is generated by ν∗ according to (S1)-(S2). The perturba-
tion parameters λ Nk introduced in the modified Hamiltonian (4.6) are sufficiently small that the
difference between the free energy (1.22) and the free energy with the perturbed Hamiltonian (4.6)
tends to zero as N tends to infinity.

One limitation of Theorems 1.1 and 1.2 is that they assume the existence of the limit free
energy, which we do not know a priori. To a large extent, this is a side effect of the fact that
we do not know how to single out the correct critical point in general, as was discussed in the
previous subsection. Correspondingly, this assumption can be removed whenever we can guarantee
the uniqueness of a fixed point to Γt,µ . As shown in Lemma 5.3, the second part of Theorem 1.2
in fact does not require that we assume that the free energy converges. Indeed, to show this result
we only need to ensure that the free energy converges along a subsequence, and this can always be
obtained using the Arzelà-Ascoli theorem.

The next proposition certifies the uniqueness of a fixed point in a regime of small signal-to-
noise ratio.
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Proposition 1.3. There exists C < +∞ such that for all t < C−1 and µ ∈ M+, the map ν 7→
Γt,µ(ν) admits a unique fixed point ν∗ in Mp. Moreover, the sequence of enriched free energies
(FN(t,µ))N≥1 converges to Pt,µ(ν

∗),

lim
N→+∞

FN(t,µ) = Pt,µ(ν
∗). (1.32)

For completeness, we also explain how to recover the variational formula already obtained
in [2, 15] (for p = 1/2) and in [18] for the limit free energy in the disassortative case.

Proposition 1.4. In the disassortative case, that is when ∆ ≤ 0, we have for every (t,µ) ∈ R≥0 ×
M+ that

lim
N→+∞

FN(t,µ) = sup
ν∈Mp

Pt,µ(ν). (1.33)

As explained in the previous subsection, we will also show the invalidity of a candidate varia-
tional formula for the limit free energy. Since this involves a variant of the model with an additional
bipartite structure, we prefer to postpone a precise description of the setting and result to Section 7.

1.3 Organization of the paper

In Section 2, we recall the expressions for the derivatives of the free energy obtained in [18]. We
then leverage these to establish the uniform Lipschitz continuity of the free energy, the almost
everywhere differentiability of the limit free energy, and the asymptotic behavior of the derivative
of the free energy. Section 3 is a brief overview of the main multioverlap concentration result
in [8] which implies that the spin array sampled from the asymptotic Gibbs measure is generated
according to (S1)-(S2) for some measure ν∗ in Mp. In Section 4, the cavity computations leading
to the functional Pt,µ in (1.26) are performed. In Section 5, the cavity representation is combined
with the multioverlap concentration result in Section 3 and the regularity properties of the free
energy obtained in Section 2 to prove Theorems 1.1 and 1.2. Section 6 is devoted to the proofs of
Propositions 1.3 and 1.4. Finally, in Section 7, it is argued that, unlike in the disassortative setting,
one should not in general expect the limit free energy to be given by evaluating the functional Pt,µ
at the measure ν ∈ Mp which maximizes its value.

Acknowledgements. We would like to warmly thank Dmitry Panchenko and Jean Barbier for
sharing their notes [7] on the free energy in the disassortative sparse stochastic block model with
us, which helped us with many of the computations in Section 4.

2 Regularity properties of the free energy

In this section we discuss three regularity properties of the enriched free energy (1.22). In Sec-
tion 2.1, we establish a Lipschitz continuity bound for the enriched free energy which implies in
particular that the free energy restricted to the space of probability measures is Lipschitz continuous
with respect to the Wasserstein distance. In Section 2.2, we prove that a Lipschitz continuous func-
tion on the space of cumulative distribution functions on [−1,1], viewed as a subset of L2[−1,1],
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is Gateaux differentiable on a dense subset of its domain. Finally, in Section 2.3, we leverage a
convexity property of the free energy to prove that the sequence of derivatives of the free energy
converges to the derivative of the limit free energy at any point of differentiability of said limit. We
now state the three main results of this section. Since the ideas developed in these proofs will not
reappear later, the reader may consider skipping these proofs on first reading.

The Lipschitz continuity result in Section 2.1 involves the Wasserstein distance. The Wasser-
stein distance between two probability measures µ,ν ∈ Pr[−1,1] is defined by

W (µ,ν) := sup
{∣∣∣∫ 1

−1
h(x)dµ(x)−

∫ 1

−1
h(x)dν(x)

∣∣∣ | ∥h∥Lip ≤ 1
}
, (2.1)

where ∥·∥Lip denotes the Lipschitz semi-norm

∥h∥Lip := sup
x ̸=x′∈[−1,1]

|h(x)−h(x′)|
|x− x′|

(2.2)

on the space of Lipschitz continuous functions h : [−1,1]→ R. The Kantorovich-Rubinstein theo-
rem [48, Theorem 4.15] ensures that the Wasserstein distance admits the dual representation

W (µ,ν) = inf
{
E|X −Y | | X ∼ µ and Y ∼ ν

}
. (2.3)

In the one-dimensional setting, as shown in [41, Theorem 1.5.1 and Corollary 1.5.3], the Wasser-
stein distance admits an explicit representation in terms of the cumulative distribution function or
the quantile function. Indeed, if Fµ : [−1,1]→ [0,1] and F−1

µ : [0,1]→ [−1,1] denote the cumula-
tive distribution function and the quantile transform of a probability measure µ ∈ Pr[−1,1],

Fµ(x) := µ[−1,x] and F−1
µ (u) := inf{x ∈ R | Fµ(x)≥ u}, (2.4)

then for all probability measures µ,ν ∈ Pr[−1,1],

W (µ,ν) =
∫ 1

0

∣∣F−1
µ (u)−F−1

ν (u)
∣∣du =

∫ 1

−1

∣∣Fµ(x)−Fν(x)
∣∣dx. (2.5)

In this notation, the main Lipschitz continuity result for the enriched free energy reads as follows.

Proposition 2.1. There exists C <+∞ such that for any (t,µ),(t,µ ′) ∈ R≥0 ×M+,∣∣FN(t,µ)−FN(t ′,µ ′)
∣∣≤C

(
|t − t ′|+

∣∣µ[−1,1]−µ
′[−1,1]

∣∣+µ[−1,1]|Fµ −Fµ
′|L2
)
. (2.6)

In Sections 2.2-2.3 and throughout the paper, the notion of Gateaux differentiability that we
take may differ from the most classical one, so we proceed to define it precisely. As in [11], we fix
a topological vector space X and a subset U of X . We denote by X∗ the continuous dual of X , and
we write ⟨·, ·⟩ for the duality pairing. We will not necessarily take U to be an open set, so, given a
point q ∈U , the set

Adm(U,q) :=
{

x ∈ X | there exists r > 0 such that for all t ∈ [0,r] we have q+ tx ∈U
}

(2.7)

of admissible directions along which a small line segment starting at q is contained in U will play an
important part in the definition. Indeed, we say that a function h : U →R is Gateaux differentiable
at q ∈U if the following two conditions hold.
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GD1 For every x ∈ Adm(U,q), the limit

Dh(q;x) := lim
ε↘0

h(q+ εx)−h(q)
ε

(2.8)

exists.

GD2 There is a unique y ∈ X∗ such that, for every x ∈ Adm(U,q), we have Dh(q;x) = ⟨y,x⟩.

In this case, the dual vector y is called the Gateaux derivative of h at q.
We will mainly be concerned with the case X = R≥0 ×M+ endowed with the product of the

Euclidean topology and the topology of weak convergence, which is induced by the Wasserstein
distance (2.1). In this setting, given a function f : R≥0 ×M+ → R, a time t ≥ 0, and measures
µ ∈ M+ and ν ∈ Adm(M+,µ), we denote by Dµ f (t,µ;ν) the Gateaux derivative of the function
f (t, ·) at the measure µ in the direction ν ,

Dµ f (t,µ;ν) := lim
ε→0

f (t,µ + εν)− f (t,µ)
ε

. (2.9)

We say that the Gateaux derivative of f (t, ·) admits a density at the measure µ ∈ M+ if there
exists a continuous function x 7→ Dµ f (t,µ,x) defined on the interval [−1,1] such that for all ν ∈
Adm(M+,µ),

Dµ f (t,µ;ν) =
∫ 1

−1
Dµ f (t,µ,x)dν(x). (2.10)

We often abuse notation and identify the density Dµ f (t,µ, ·) with the Gateaux derivative Dµ f (t,µ).
Implicitly identifying the continuous dual of M+ with the space of continuous functions on [−1,1],
this definition of Gateaux differentiability coincides with that in (GD1)-(GD2) but differs slightly
from that in [18] where the density is only required to be measurable and bounded as opposed to
continuous. However, all Gateaux derivative densities appearing in [18] are of the finite-volume
free energy and are continuous, so this difference is insignificant.

For technical reasons, it will be convenient for the dense subset of R≥0 ×M+ on which we
establish the Gateaux differentiability of the free energy to be composed of well-behaved measures.
Recall the definition in (1.30) of the set Reg(M+) of measures in M+ that admit a smooth and
strictly positive density with respect to Lebesgue measure on [−1,1]. A key property of this set is
that for any µ,ν ∈ Reg(M+) and t ∈R with |t| small enough, we have µ + tν ∈M+. In particular,
the set of admissible directions at µ ∈ Reg(M+) contains Reg(M+). In this notation, the main
Gateaux differentiability results for the enriched free energy proved in Sections 2.2 and 2.3 read as
follows.

Proposition 2.2. Suppose that the sequence of enriched free energies (FN)N≥1 converges point-
wise to some limit f : R≥0 ×M+ → R along a subsequence (Nk)k≥1. The subsequential limit f is
Gateaux differentiable jointly in its two variables on a subset of R>0 ×Reg(M+) that is dense in
R≥0 ×M+.

Proposition 2.3. Suppose that the sequence of enriched free energies (FN)N≥1 converges point-
wise to some limit f : R≥0 ×M+ → R along a subsequence (Nk)k≥1. For each t ≥ 0, if f (t, ·) is
Gateaux differentiable at µ ∈ Reg(M+), then DµFNk(t,µ, ·) converges weakly to Dµ f (t,µ, ·).
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In proving Propositions 2.1 and 2.2, it will be convenient to remember from [18, Lemmas 2.1
and 2.3] that the enriched free energy (1.22) is Gateaux differentiable at every (t,µ) ∈ R≥0 ×M+

with

∂tFN(t,µ) =
1
2
E
(
c+∆⟨σ1σ2⟩

)
log
(
c+∆⟨σ1σ2⟩

)
− ∆m2

2
− c

2
+O(N−1), (2.11)

DµFN(t,µ,x) = E
(
c+∆⟨σ1⟩x

)
log
(
c+∆⟨σ1⟩x

)
− c−∆mx+O(N−1). (2.12)

We have used ⟨·⟩ to denote the Gibbs average associated with the enriched Hamiltonian (1.21). This
means that for any bounded and measurable function f = f (σ1, . . . ,σn) of finitely many replicas,

⟨ f (σ1, . . . ,σn)⟩ := ⟨ f ⟩ :=

∫
Σn

N
f (σ1, . . . ,σn)∏ℓ≤n expHt,µ

N (σ ℓ)dP∗
N(σ

ℓ)(∫
ΣN

expHt,µ
N (σ)dP∗

N(σ)
)n . (2.13)

The computations leading to (2.11)-(2.12) are considerably simplified by the Nishimori identity.
This identity allows us to freely interchange one replica σ ℓ by the signal σ∗ when taking an average
with respect to all sources of randomness, thus avoiding a cascade of new replicas as we differ-
entiate the free energy. More precisely, it states that, for every bounded and measurable function
f = f (σ1, . . . ,σn,D t,µ

N ) of finitely many replicas and the data,

E
〈

f
(
σ

1,σ2, . . . ,σn,D t,µ
N
)〉

= E
〈

f
(
σ
∗,σ2, . . . ,σn,D t,µ

N
)〉
. (2.14)

This can be first verified for functions of product form using that the Gibbs average is the condi-
tional law of the signal σ∗ given the data D t,µ

N , and then extended to all bounded and measurable
functions by a monotone class argument as in [19, Proposition 4.1].

The proof of Proposition 2.3 will rely on a convexity property of the free energy that will be
obtained through information-theoretic arguments taken from [25].

2.1 Uniform Lipschitz continuity of the free energy

The Lipschitz continuity of the free energy stated in Proposition 2.1 will be deduced from the
Lipschitz continuity of an extension of the free energy. Given a probability measure µ ∈ Pr[−1,1],
consider a sequence x = (xi,k)i,k≥1 of i.i.d. random variables with law µ . For each s > 0 and i ≥ 1,
let Πi,s ∼ Poi(sN) be independent over i ≥ 1, and introduce the Hamiltonian on ΣN defined by

H̃s,µ
N (σ) := ∑

i≤N
∑

k≤Πi,s

log
[(

c+∆σixi,k
)G̃x

i,k
(

1−
c+∆σixi,k

N

)1−G̃x
i,k
]
, (2.15)

where the random variables (G̃x
i,k)i,k≥1 are independent with conditional distribution

P
{

G̃x
i,k = 1 | σ

∗,x
}

:=
c+∆σ∗

i xi,k

N
. (2.16)

Recalling the definition of the time-dependent Hamiltonian in (1.15), we define the extended free
energy functional

F̃N(t,s,µ) :=
1
N
E log

∫
ΣN

exp
(
Ht

N(σ)+ H̃s,µ
N (σ)

)
dP∗

N(σ). (2.17)
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For any µ ∈ M+, we have FN(t,µ) = F̃N
(
t,µ[−1,1],µ

)
. Indeed, this is how the enriched free

energy (1.22) was defined in [18]. The Lipschitz continuity of the extended free energy (2.17) will
be obtained by combining the mean value theorem with the derivative expressions (2.11)-(2.12). It
will also be convenient to remember from [18, Lemma 2.3] that

∂sF̃N(t,s,µ) = E
(
c+∆⟨σ1⟩x1

)
log
(
c+∆⟨σ1⟩x1

)
− c−∆mEx1 +O(N−1), (2.18)

where the random variable x1 has law µ .

Lemma 2.4. There exists C <+∞ such that for any (t,s,µ),(t ′,s′,ν) ∈ R≥0 ×R≥0 ×Pr[−1,1],

|F̃N(t,s,µ)− F̃N(t ′,s′,ν)| ≤C
(
|t − t ′|+ |s− s′|+ s′W (µ,ν)

)
. (2.19)

Proof. The derivative expressions (2.11) and (2.18) reveal that ∂t F̃N(t,s,µ) and ∂sF̃N(t,s,µ) are
bounded by some constant independent of the triple (t,s,µ). By the mean value theorem and the
triangle inequality it therefore suffices to show that there exists C <+∞ such that for all t,s ∈R>0
and µ,ν ∈ Pr[−1,1],

|F̃N(t,s,µ)− F̃N(t,s,ν)| ≤CsW (µ,ν). (2.20)

The fundamental theorem of calculus and the definition of the Gateaux derivative imply that

F̃N(t,s,µ)− F̃N(t,s,ν) = FN(t,sµ)−FN(t,sν) = s
∫ 1

0
DµFN

(
t,sν +us(µ −ν); µ −ν

)
du.

For each u ∈ [0,1], let ft,s,u(x) := DµFN
(
t,sν +us(µ −ν);x

)
in such a way that

∣∣F̃N(t,s,µ)− F̃N(t,s,ν)
∣∣≤ s

∫ 1

0

∣∣∣∫ 1

−1
ft,s,u(x)d(µ −ν)(x)

∣∣∣du. (2.21)

The mean value theorem and the bound∣∣∂xDµFN(t,µ,x)
∣∣≤ c

(
1+ |log(2c)|+ |log(c−|∆|)|

)
(2.22)

established for any (t,µ) ∈ R≥0 ×M+ in [18, Lemma 3.3] imply that

∥ ft,s,u∥Lip ≤ c
(
1+ |log(2c)|+ |log(c−|∆|)|

)
.

Together with the definition of the Wasserstein distance in (2.1) and the bound (2.21), this estab-
lishes (2.20) and completes the proof. ■

Proof of Proposition 2.1. The Lipschitz bound in Lemma 2.4, the representation (2.5) for the one-
dimensional Wasserstein distance, and the Cauchy-Schwarz inequality give a constant C < +∞

such that, for all (t,s,µ),(t ′,s′,ν) ∈ R≥0 ×R≥0 ×Pr[−1,1],

|F̃N(t,s,µ)− F̃N(t ′,s′,ν)| ≤C
(
|t − t ′|+ |s− s′|+ s′|Fµ −Fν |L2

)
.

Remembering that for any µ ∈ M+, we have FN(t,µ) = F̃N
(
t,µ[−1,1],µ

)
completes the proof.

■
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2.2 Almost everywhere differentiability of the limit free energy

The Gateaux differentiability of the free energy stated in Proposition 2.2 will be deduced from the
Gateaux differentiability of the free energy thought of as a function on the space of paths

D [0,1] :=
{

q : [−1,1]→ [0,1] | q is right-continuous

and non-decreasing with q(1) = 1
}
⊂ L2[−1,1]. (2.23)

This space of paths is in one-to-one correspondence with the set of cumulative distribution func-
tions via the mapping F : Pr[−1,1]→D [0,1] defined by F (µ) := Fµ . Through this mapping, any
function h : R≥0 ×M+ → R may be identified with the function h̃′ : R≥0 ×R≥0 ×D [0,1]→ R de-
fined by

h̃′(t,s,q) := h
(
t,sF−1(q)

)
. (2.24)

In particular, the free energy (1.22) may be identified with the function F̃ ′
N :R≥0×R≥0×D [0,1]→

R defined by
F̃ ′

N(t,s,q) := FN
(
t,sF−1(q)

)
. (2.25)

Notice that the notions of Gateaux differentiability for a function h : R≥0 ×M+ → R and its cor-
responding function h̃′ : R≥0 ×R≥0 ×D [0,1]→ R differ. On the one hand, for each fixed t ≥ 0,
the Gateaux derivative of the function h(t, ·) at the measure µ ∈ M+ may be identified with the
continuous density Dµh(t,µ, ·) defined according to (2.10). On the other, for each fixed t,s ≥ 0, the
Gateaux derivative of the function h̃′(t,s, ·) at the path q∈D [0,1] may be identified with the square-
integrable function ∂qh̃′(t,s,q, ·) ∈ L2[−1,1] having the property that for all q′ ∈ Adm(D [0,1],q),

h̃′(t,s,q+ εq′) = h̃′(t,s,q)+ ε

∫ 1

−1
∂qh̃′(t,s,q,u)q′(u)du+o(ε). (2.26)

However, it will be important to observe that whenever h̃′ is Gateaux differentiable at a point
(t,s,q) ∈ R≥0 ×R≥0 ×D [0,1], then h must be Gateaux differentiable at the corresponding point
(t,sF−1(q)) ∈ R≥0 ×M+.

Lemma 2.5. If the function h̃′ : R≥0 ×R≥0 ×D [0,1]→ R is Gateaux differentiable jointly in its
three variables at the point (t,s,q) ∈ R>0 ×R>0 ×D [0,1], then the function h : R≥0 ×M+ → R
used to define it according to (2.24) is Gateaux differentiable jointly in its two variables at the
point (t,sF−1(q)) ∈ R>0 ×M+.

Proof. For simplicity of notation, we will drop the time variable and prove that whenever the
function h̃′ : R≥0 ×D [0,1] → R is Gateaux differentiable jointly in its two variables at the point
(s,q) ∈ R>0 ×D [0,1], then the function h : M+ → R used to define it according to (2.24) with-
out the time variable is Gateaux differentiable at the point sF−1(q). Generalizing the proof to
incorporate the time variable requires only minor changes in notation. Let µ := sF−1(q), and fix
ν ∈ Adm(M+,µ) as well as ε > 0 small enough so that µ + εν ∈ M+. We define s′ := ν [−1,1],
and observe that by Gateaux differentiability of h̃′ at (s,q) ∈ R>0 ×D [0,1],

h(µ + εν)−h(µ) = h̃′
(

s+ εs′,q+ ε
s′Fν−µ

s+ εs′

)
− h̃′(s,q)

= ε

(
s′∂sh̃′(s,q)+

s′

s

∫ 1

−1
∂qh̃′(s,q,u)Fν−µ(u)du

)
+o(ε).
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The Fubini-Tonelli theorem implies that the second term between parentheses is given by

1
s

∫ 1

−1

∫ 1

−1
∂qh̃′(s,q,u)1[−1,u](w)dν(w)du− 1

s

∫ 1

−1

∫ 1

−1
∂qh̃′(s,q,u)Fµ(u)dudν(w)

=
1
s

∫ 1

−1

(∫ 1

w
∂qh̃′(s,q,u)du−

∫ 1

−1
∂qh̃′(s,q,u)Fµ(u)du

)
dν(w).

It follows that

h(µ + εν)−h(µ) = ε

∫ 1

−1
Dµ(w)dν(w)+o(ε)

for the continuous function Dµ : [−1,1]→ R defined by

Dµ(w) := ∂sh̃′(s,q)+
1
s

(∫ 1

w
∂qh̃′(s,q,u)du−

∫ 1

−1
∂qh̃′(s,q,u)Fµ(u)du

)
.

We have used that ∂qh̃′(s,q, ·) ∈ L2[−1,1] to obtain the continuity of Dµ . This establishes the
Gateaux differentiability of h at µ ∈ M+ and completes the proof. ■

To account for the fact that we would like to establish Gateaux differentiability on a subset of
R>0 ×Reg(M+) that is dense in R≥0 ×M+, we also introduce the space of paths

R[0,1] :=
{

q ∈ D [0,1] | q is smooth with strictly positive derivative
}
. (2.27)

This space of paths is in one-to-one correspondence with the probability measures in Reg(M+).
To establish the Gateaux differentiability of a function defined on an infinite-dimensional Banach
space, we will follow the arguments in [11] and rely on the notion of a Gaussian null set. A Borel
subset B of a separable Banach space X is said to be a Gaussian null set if for every non-degenerate
Gaussian measure µ on X , we have µ(B) = 0. Recall that a probability measure µ on X is said
to be a non-degenerate Gaussian measure if for every non-zero y ∈ X∗, the measure µ ◦ y−1 is a
Gaussian measure with non-zero variance. Gaussian null sets appear when invoking the following
two lemmas.

Lemma 2.6. Let (wn)n≥1 be a sequence in a separable Banach space X that has dense linear span
and satisfies limn→+∞|wn|= 0, and let K be the closed convex hull of {0}∪{wn | n ≥ 1}. For every
x ∈ X, the set x+K is not a Gaussian null set.

Proof. This is [11, Lemma 2.5] which itself is adapted from [49, Lemma 3]. ■

Lemma 2.7. Let X be a separable Banach space. If a function h : X → R is Lipschitz continuous,
then it is Gateaux differentiable outside of a Gaussian null subset of X.

Proof. This is [11, Theorem 2.6] which itself is a special case of [49, Theorem 6]. ■

Lemma 2.8. If h :R≥0×R≥0×D [0,1]→R is locally Lipschitz continuous in its first two variables
and uniformly Lipschitz continuous with respect to the L2-norm in its third variable, then it is
Gateaux differentiable jointly in its three variables (in the sense of (2.26)) on a subset of R>0 ×
R>0 ×R[0,1] that is dense in R≥0 ×R≥0 ×D [0,1].
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Proof. For simplicity of notation, we will instead prove that a function h : D [0,1] → R that is
locally Lipschitz continuous with respect to the L2-norm is Gateaux differentiable on a subset
of R[0,1] that is dense in D [0,1]. Our proof generalizes with only modifications in notation to
the setting of a function defined on R≥0 ×R≥0 ×D [0,1]. Up to multiplying the function h with
a cutoff function that vanishes when the total mass of the measure becomes larger than some
predetermined threshold, we will also assume without loss of generality that h : D [0,1]→ R is in
fact uniformly Lipschitz continuous with respect to the L2-norm. The proof proceeds in three steps.
First, we construct a Lipschitz extension h : L2[−1,1]→ R of h, then we show that there exists a
Gaussian null set N such that h is Gateaux differentiable on D [0,1] \N , and finally we prove
that R[0,1]\N is dense in D [0,1].

Step 1: constructing the Lipschitz extension. We denote by P : L2[−1,1]→ D [0,1] the orthogonal
projection onto the closed convex set D [0,1]. We refer the reader to [19, Exercise 2.16] and its
solution for a justification that this projection P is well-defined based on the fact that D [0,1] is a
closed convex subset of L2[−1,1]. It is also shown there using the convexity of D [0,1] that, for
every q ∈ L2[−1,1] and p ∈ D [0,1],

⟨q−P(q), p−P(q)⟩L2 ≤ 0.

It follows that for all q,q′ ∈ L2[−1,1],

⟨q−P(q),P(q′)−P(q)⟩L2 ≤ 0 ≤ ⟨q′−P(q′),P(q′)−P(q)⟩L2.

Rearranging and using the Cauchy-Schwarz inequality yields

|P(q)−P(q′)|2L2 ≤ ⟨q′−q,P(q′)−P(q)⟩L2 ≤ |q′−q|L2 |P(q)−P(q′)|L2

from which it follows that
|P(q)−P(q′)|L2 ≤ |q′−q|L2.

This means that the extension h : L2[−1,1]→ R of h defined by

h(q) := h(P(q))

is Lipschitz continuous.

Step 2: Gateaux differentiability outside a Gaussian null set. By Lemma 2.7, there exists a Gaus-
sian null set N ⊂ L2[−1,1] such that h is Gateaux differentiable on L2[−1,1] \N . We now fix
q∈D [0,1]\N , and prove that h is Gateaux differentiable at q. Let y∈ (L2[−1,1])∗≃ L2[−1,1] de-
note the Gateaux derivative of h at q. The limit Dh(q;x) exists for every x ∈ Adm(D [0,1],q), and
it is equal to ⟨y,x⟩L2 . Let us now assume that there exists y′ ∈ L2[−1,1] with ⟨y′,x⟩L2 = ⟨y,x⟩L2

for all x ∈ Adm(D [0,1],q), and prove that we must have y′ = y. Observe that D [0,1]− q ⊂
Adm(D [0,1],q) by convexity of D [0,1]. Moreover, the orthogonal complement of D [0,1]− q
in L2[−1,1] is trivial. Indeed, suppose that z ∈ L2[−1,1] is such that ⟨z,q′⟩L2 = ⟨z,q⟩L2 for all
q′ ∈ D [0,1]. If µ ′ ∈ Pr[−1,1] is such that q′ = Fµ ′ , then the Fubini-Tonelli theorem implies that

⟨z,q′⟩L2 =
∫ 1

−1
z(u)µ ′[−1,u]du =

∫ 1

−1

∫ u

−1
z(u)dµ

′(v)du =
∫ 1

−1

∫ 1

v
z(u)dudµ

′(v) = 0.
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Since D [0,1] is in one-to-one correspondence with Pr[−1,1], this means that for all µ ′ ∈ Pr[−1,1],∫ 1

−1

∫ 1

v
z(u)dudµ

′(v) = ⟨z,q⟩L2.

Choosing µ ′ = δv for each v ∈ [−1,1], and differentiating the resulting expression with respect
to v shows that z = 0. This means that the closed linear span of D [0,1]− q is L2[−1,1] and that
⟨y′,x⟩L2 = ⟨y,x⟩L2 for all x ∈ L2[−1,1]. It follows that y′ = y, and therefore that h is Gateaux
differentiable on D [0,1]\N .

Step 3: density of R[0,1] \N in D [0,1]. The set R[0,1] has dense linear span in L2[−1,1], so
the separability of L2[−1,1] allows us to find a sequence (wn)n≥1 ⊂ R[0,1] whose linear span is
dense in L2[−1,1]. Re-scaling each wn, we can assume without loss of generality that |wn|L2 ≤ 1
and that limn→+∞|wn|L2 = 0. Let K be as in Lemma 2.6, and observe that K ⊂R[0,1] by convexity
of R[0,1]. At this point, fix q ∈ R[0,1] as well as ε > 0. Since q+ εK is not a Gaussian null
set, we have that q+ εK ̸⊂ N . In particular, there exists y ∈ q+ εK \N . Notice that for any
κ ∈ K, we have (q+εκ)′ > 0 so in fact y ∈ R \N with |y−q|L2 ≤ ε . This establishes the density
of R[0,1] \N in R[0,1]. Together with the density of R[0,1] in D [0,1] which can be obtained
through mollifiers, this completes the proof. ■

Proof of Proposition 2.2. We denote by f̃ ′ : R≥0×R≥0×D [0,1]→R the limit of the sequence of
extended free energies (F̃ ′

N)N≥1 defined in (2.25) along the subsequence (Nk)k≥0. Invoking Lemma
2.8, we can find a dense subset A of R>0 ×R>0 ×R[0,1] on which f̃ ′ is Gateaux differentiable
jointly in its three variables. By Lemma 2.5, the limit free energy f : R≥0 ×M+ → R is Gateaux
differentiable jointly in its two variables on the set

B :=
{(

t,sF−1(q)
)
| (t,s,q) ∈ A

}
⊂ R≥0 ×Reg(M+). (2.28)

We now show that this set is dense in R≥0 ×M+. We fix (t,µ) ∈ R≥0 ×M+, and aim to show
that there is a sequence (tn,µn)n≥1 ⊂ B such that tn → t and µn → µ weakly. Let s := µ[−1,1],
and consider the point (t,s,Fµ)∈R≥0×R≥0×D [0,1]. There exists a sequence (tn,sn,qn)n≥1 ⊂A

converging to (t,s,Fµ), and we define µn := snF−1(qn). By compactness, the sequence µn admits
a subsequential limit. Since Fµn = snqn → sFµ = Fµ in L2, the only possible subsequential limit is
µ so indeed µn → µ weakly. ■

2.3 Convergence of the derivative free energy

The convergence of the derivative free energy stated in Proposition 2.3 will be deduced from a
convexity property of the free energy. Although the enriched free energy (1.22) is known not to be
convex [25], we now use the information-theoretic arguments in [25, Proposition 4.1] to show that
it is convex in certain directions. Together with a computation similar to that in [11, Proposition 5.4]
we then establish Proposition 2.3.

Proposition 2.9. For all (t,µ) ∈ R≥0 ×M+ and ν ∈ Pr[−1,1], the map r 7→ FN(t,µ + rν) is
convex.
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Proof. The superposition principle for Poisson point processes implies that, jointly in σ ∈ ΣN ,

Hµ+rν

N (σ)
d
= Hµ

N (σ)+Hrν
N (σ),

where we understand that the Hamiltonians Hµ

N (σ) and Hrν
N (σ) are independent conditionally on

the ground truth σ∗. Conditionally on the ground truth σ∗, the Poisson point processes (Λi(Nµ))i≤N ,
and the Poisson random variable Πt , we define the “prior” measure on ΣN by

P∗
t,µ(σ) := exp

(
Ht

N(σ)+Hµ

N (σ)
)
P∗

N(σ)

in such a way that

FN(t,µ + rν) =
1
N
E log

∫
ΣN

expHrν
N (σ)dP∗

t,µ(σ).

The measure P∗
t,µ is not necessarily a probability measure, but this will not have any significant

effect. The proof now proceeds in two steps. First, we relate the free energy FN(t,µ + rν) to a
mutual information IN(r), and argue that r 7→ FN(t,µ +rν) is convex in r if and only if this mutual
information is concave. Then, we compute the second derivative of the mutual information, and
we show that it is non-positive.

Step 1: introducing a mutual information. Conditionally on the ground truth σ∗, the Poisson point
processes (Λi(Nµ))i≤N , and the Poisson random variable Πt , we sample a signal σ⋄ from the nor-
malized prior distribution P∗

t,µ as well as a family Λrν := (Λi(Nrν))i≤N of Poisson point processes.
Conditionally on the family of Poisson point processes Λrν , we sample the Bernoulli random vari-
ables G̃N := {G̃x

i | x ∈ Λi(Nrν), i ≤ N} with conditional law

P
{

G̃x
i = 1 | σ

⋄,x
}

:=
c+∆σ⋄

i x
N

.

The likelihood of the model is given by

P
{

G̃N = (G̃x
i ) | σ

⋄ = σ
}
= ∏

i<N
∏

x∈Λi(Nrν)

(c+∆σix
N

)G̃x
i
(

1− c+∆σix
N

)1−G̃x
i
,

and Bayes’ formula implies that the posterior of the model is the Gibbs measure

P
{

σ
⋄ = σ | G̃N = (G̃x

i )
}
=

exp
(
H⋄

N(σ)
)
P∗

t,µ(σ)∫
ΣN

exp
(
H⋄

N(τ)
)

dP∗
t,µ(τ)

associated with the Hamiltonian

H⋄
N(σ) := ∑

i≤N
∑

x∈Λi(Nrν)

log
[(

c+∆σix
)G̃x

i
(

1− c+∆σix
N

)1−G̃x
i
]
. (2.29)

It follows that

IN(r) :=
1
N

I
(
G̃N ;σ

⋄)= E ∑
x∈Λ1(Nrν)

log
[(

c+∆σ
⋄
1 x
)G̃x

1
(

1−
c+∆σ⋄

1 x
N

)1−G̃x
1
]
−F⋄

N(r) (2.30)
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for the free energy defined on ΣN by

F⋄
N(r) :=

1
N
E log

∫
ΣN

expH⋄
N(σ)dP∗

t,µ(σ).

Together with [19, Proposition 5.12] on Poisson averages, this implies that

IN(r) = NrE
∫ 1

−1
log
[(

c+∆σ
⋄
1 x
)G̃x

1
(

1−
c+∆σ⋄

1 x
N

)1−G̃x
1
]

dν(x)−F⋄
N(r),

so the free energy F⋄
N(r) is convex if and only if the mutual information IN(r) is concave. Averaging

the free energy F⋄
N(r) over the randomness of the ground truth σ∗, the Poisson point processes

(Λi(Nµ))i≤N , and the Poisson random variable Πt yields the free energy FN(t,µ+rν). It therefore
suffices to prove that r 7→ IN(r) is concave.

Step 2: showing the mutual information is concave. The properties of Poisson point processes
imply that the Hamiltonian (2.29) may be written as

H⋄
N(σ) = ∑

i≤N
∑

k≤Πi,r

log
[(

c+∆σixi,k
)G̃i,k

(
1−

c+∆σixi,k

N

)1−G̃i,k
]
,

where the random variables (xi,k)i,k≥1 are i.i.d. with law ν , the random variables (Πi,r)i≤N are in-
dependent Poisson random variables with mean Nr, and (G̃i,k)i,k≥1 are Bernoulli random variables
with conditional distribution

P
{

G̃i,k = 1 | σ
⋄,xi,k

}
:=

c+∆σ⋄
i xi,k

N
.

This means that the mutual information (2.30) depends on r only through the Poisson random
variable Πi,r. With this in mind, given i, j ≤ N and L1,L2 ≥ 0, introduce the conditional mutual
information functionals

Ii
N(L1) :=

1
N

I
(
G̃N ;σ

⋄ | Πi,r = L1
)

and Ii, j
N (L1,L2) := I

(
G̃N ;σ

⋄ | Πi,r = L1,Π j,r = L2
)
.

A direct computation leveraging the product rule shows that

∂rIN(r) = ∑
i≤N

∑
L≥0

π(rN,L)
(
Ii
N(L+1)− Ii

N(L)
)
.

Another direct computation leveraging the product rule reveals that

∂
2
r IN(r) =N ∑

i≤N
∑

L1≥0
π(rN,L1)

(
Ii
N(L1 +2)−2Ii

N(L1 +1)+ Ii
N(L1)

)
+N ∑

i≤N
∑
j ̸=i

∑
L1,L2≥0

π(rN,L1)π(rN,L2)
(
Ii, j
N (L1 +1,L2 +1)− Ii, j

N (L1 +1,L2)

− Ii, j
N (L1,L2 +1)+ Ii, j

N (L1,L2)
)
.
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It therefore suffices to show that for fixed i ̸= j ≤ N and L1,L2 ≥ 0,

Ii
N(L1 +2)−2Ii

N(L1 +1)+ Ii
N(L1)≤ 0, (2.31)

Ii, j
N (L1 +1,L2 +1)− Ii, j

N (L1 +1,L2)− Ii, j
N (L1,L2 +1)+ Ii, j

N (L1,L2)≤ 0. (2.32)

We will only prove (2.32) as the proof of (2.31) is similar. To alleviate notation, conditionally on
the events Πi,r = L1 and Π j,r = L2 introduce the random vectors

G̃′
N :=

{
G̃m,k | m ̸= i, m ̸= j and k ≤ Πm,r

}
and Z :=

(
(G̃i,ℓ)ℓ≤L1,(G̃ j,ℓ)ℓ≤L2,G̃

′
N
)
.

By the chain rule for mutual information,

Ii, j
N (L1 +1,L2 +1) = I((G̃i,L1+1, G̃ j,L2+1),Z;σ

⋄) = I((G̃i,L1+1, G̃ j,L2+1);σ
⋄ | Z)+ I(Z;σ

⋄),

Ii, j
N (L1 +1,L2) = I(G̃i,L1+1,Z;σ

⋄) = I(G̃i,L1+1;σ
⋄ | Z)+ I(Z;σ

⋄),

Ii, j
N (L1,L2 +1) = I(G̃ j,L2+1,Z;σ

⋄) = I(G̃ j,L2+1;σ
⋄ | Z)+ I(Z;σ

⋄).

It follows that (2.32) is equivalent to the inequality

I((G̃i,L1+1, G̃ j,L2+1);σ
⋄ | Z)− I(G̃i,L1+1;σ

⋄ | Z)− I(G̃ j,L2+1;σ
⋄ | Z)≤ 0. (2.33)

Another application of the chain rule for mutual information reveals that

I((G̃i,L1+1, G̃ j,L2+1);σ
⋄ | Z) = I(G̃i,L1+1;σ

⋄ | Z)+ I(G̃ j,L2+1;σ
⋄ | Z, G̃i,L1+1)

and that the second term on the right side of this expression is given by

I(G̃ j,L2+1;(σ⋄, G̃i,L1+1) | Z)− I(G̃ j,L2+1; G̃i,L1+1 | Z)

= I(G̃ j,L2+1;σ
⋄ | Z)+ I(G̃ j,L2+1; G̃i,L1+1 | Z,σ⋄)− I(G̃ j,L2+1; G̃i,L1+1 | Z).

It follows that the left side of (2.33) is

I(G̃ j,L2+1; G̃i,L1+1 | Z,σ⋄)− I(G̃ j,L2+1; G̃i,L1+1 | Z) =−I(G̃ j,L2+1; G̃i,L1+1 | Z)≤ 0,

where we have used that, conditionally on σ⋄, the random variables G̃ j,L2+1, G̃i,L1+1, and Z are
independent to assert that I(G̃ j,L2+1; G̃i,L1+1 | Z,σ⋄) = 0. This establishes (2.33) and completes
the proof. ■

Proof of Proposition 2.3. Fix r,η > 0 and a probability measure ν ∈ Pr[−1,1]∩Reg(M+). We
define the measure νη ∈ Reg(M+) by νη := ην . The convexity property of the enriched free
energy in Proposition 2.9 gives the upper bound

FN(t,µ + rνη) = FN(t,µ +(r ·1+(1− r) ·0)νη)≤ rFN(t,µ +νη)+(1− r)FN(t,µ).

Subtracting FN(t,µ) from both sides of this inequality, dividing by r, and letting r tend to zero
yields

ηDµFN(t,µ;ν)≤ FN(t,µ +νη)−FN(t,µ).

If Dt,µ denotes a weak subsequential limit of DµFNK(t,µ, ·), then letting K tend to infinity, dividing
by η , and letting η tend to zero gives

Dt,µ(ν)≤ Dµ f (t,µ;ν).

Repeating the argument with η replaced by −η , which is possible as µ,ν ∈ Reg(M+), shows
that for any ν ∈ Reg(M+), we have Dt,µ(ν) = Dµ f (t,µ;ν). By density of Reg(M+) in M+, this
completes the proof. ■
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3 Multioverlap concentration through perturbation

In the next section we will perform the cavity computation that gives rise to the functional (1.26)
and leads to the critical point representation in Theorem 1.1. This cavity computation will require
an understanding of the asymptotic behavior of the array (σ ℓ

i )i,ℓ≥1 of i.i.d. replicas sampled from
the Gibbs measure (2.13). In this section, we leverage the main result in [8] to argue that, up to a
small perturbation of the enriched Hamiltonian (1.21) that does not affect the limit of the enriched
free energy (1.22), the asymptotic spin array (σ ℓ

i )i,ℓ≥1 is generated by some probability measure
ν ∈ Mp according to (S1)-(S2). In particular, as we will see in Lemma 3.4, this means that the
average of a product of finitely many replicas is asymptotically equal to a product of moments
of ν . More precisely, given any finite set of n replicas and collection {Cℓ}ℓ≤n of finite indices,

lim
N→+∞

E∏
ℓ≤n

〈
∏
i∈Cℓ

σ
ℓ
i

〉
= ∏

ℓ≤n
Ex|Cℓ|

ℓ , (3.1)

where the (xℓ)ℓ≥1 are i.i.d. with law ν . This observation will be crucial in Lemma 4.2, where we
study the asymptotic behavior of the cavity representation and first arrive at the functional (1.26).

The perturbation Hamiltonians that will enforce the rigid asymptotic structure described by
(S1)-(S2) depend on a perturbation parameter λ := (λk)k≥0 with λk ∈ [2−k−1,2−k] for k ≥ 0, and
they enforce the concentration of the multioverlaps

R1,...,n :=
1
N ∑

i≤N
σ

1
i · · ·σn

i . (3.2)

As will be explained below, here (σ ℓ
i )i,ℓ≥1 denote i.i.d. replicas from the Gibbs measure associ-

ated with the sum of the Hamiltonian (1.21) and the two perturbation Hamiltonians that we now
introduce. The first perturbation Hamiltonian will ensure the concentration of the overlap R1,2.
Given a sequence (εN)N≥1 with εN := Nγ for some −1/8 < γ < 0 and a standard Gaussian vector
Z0 := (Z0,1, . . . ,Z0,N) in RN , we introduce the Gaussian perturbation Hamiltonian

Hgauss
N (σ ,λ0) := H0 := ∑

i≤N

(
λ0εNσ

∗
i σi +

√
λ0εNZ0,iσi

)
(3.3)

associated with the task of recovering the signal σ∗ from the data

Y gauss :=
√

λ0εNσ
∗+Z0. (3.4)

Notice that
1 ≥ εN → 0 and NεN →+∞. (3.5)

The second perturbation Hamiltonian will ensure the validity of the Franz-de Sanctis identities
[8, 18] which together with the concentration of the overlap R1,2 give the concentration of all the
multioverlaps (3.2). We consider a sequence (sN)N≥1 with sN := Nη for some 4/5 < η < 1, so that
in particular

sN

N
→ 0 and

sN√
N

→+∞. (3.6)
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We fix a sequence of i.i.d. random variables (πk)k≥1 with Poi(sN) distribution as well as a se-
quence e := (e jk) j,k≥1 of random variables with Exp(1) distribution and a family (i jk) j,k≥1 of
random indices uniformly sampled from the set {1, . . . ,N}. We define the exponential perturbation
Hamiltonian by

Hexp
N (σ) := ∑

k≥1
Hk, where Hk := ∑

j≤πk

(
log(1+λkσi jk

)
−

λke jkσi jk

1+λkσ∗
i jk

)
. (3.7)

This is the Hamiltonian associated with the task of recovering the signal σ∗ from the independently
generated data

Y exp :=
{

e jk

1+λkσ∗
i jk

| j ≤ πk and k ≥ 1
}
. (3.8)

For each (t,µ)∈R≥0×M+, the perturbed enriched Hamiltonian is the sum of the enriched Hamil-
tonian (1.21) and the perturbation Hamiltonians just defined,

Ht,µ
N (σ ,λ ) := Ht,µ

N (σ)+Hgauss
N (σ ,λ0)+Hexp

N (σ ,λ ). (3.9)

As usual, we denote by

FN(t,µ,λ ) :=
1
N

log
∫

ΣN

expHt,µ
N (σ ,λ )dP∗

N(σ) and FN(t,µ,λ ) := EFN(t,µ,λ ) (3.10)

its associated free energy functionals, and by ⟨·⟩ its corresponding Gibbs average. This means that
for any bounded and measurable function f = f (σ1, . . . ,σn) of finitely many replicas,

⟨ f (σ1, . . . ,σn)⟩ := ⟨ f ⟩ :=

∫
Σn

N
f (σ1, . . . ,σn)∏ℓ≤n expHt,µ

N (σ ℓ,λ )dP∗
N(σ

ℓ)(∫
ΣN

expHt,µ
N (σ ,λ )dP∗

N(σ)
)n . (3.11)

Since the Gibbs measure associated with the perturbed Hamiltonian (3.9) is a conditional expecta-
tion, it satisfies the Nishimori identity (2.14).

Lemma 3.1. For all (t,µ) ∈ R≥0 ×M+ and perturbation parameter λ , the enriched free energy
(1.22) and the perturbed free energy (3.10) are asymptotically equivalent,

lim
N→+∞

∣∣FN(t,µ,λ )−FN(t,µ)
∣∣= 0. (3.12)

Proof. This corresponds to [18, Lemma 4.1] but we provide a proof for completeness. A direct
computation reveals that∣∣FN(t,µ,λ )−FN(t,µ)

∣∣≤ 1
N
E max

σ∈ΣN

∣∣Hgauss
N (σ ,λ0)

∣∣+ 1
N
E max

σ∈ΣN

∣∣Hexp
N (σ ,λ )

∣∣.
For any spin configuration σ ∈ ΣN ,∣∣Hgauss

N (σ ,λ0)
∣∣≤ NεN +

√
εN ∑

i≤N
|Z0,i|
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and ∣∣Hexp
N (σ ,λ )

∣∣≤ ∑
1≤k≤K′

∑
j≤πk

(
log(1+λk)+

λke jk

1−λk

)
.

Since these bounds are uniform in σ , it follows that∣∣FN(t,µ,λ )−FN(t,µ)
∣∣≤ εN +

√
εN EZ0,1 +

sN

N ∑
k≥1

(
log(1+λk)+

λk

1−λk

)
.

The third term was obtained by taking the expectation with respect to the randomness of e, and
then with respect to the randomness of (πk)k≥1. Leveraging (3.5)-(3.6) to let N tend to infinity
completes the proof. ■

Lemma 3.2. For every n ≥ 1, the multioverlap R1,...,n in (3.2) associated with the perturbed Gibbs
measure (3.11) concentrates on average over the perturbation parameters,

lim
N→+∞

Eλ E
〈
(R1,...,n −E⟨R1,...,n⟩)2〉= 0, (3.13)

where Eλ denotes the average with respect to the uniform random variables λk on [2−k−1,2−k].

Proof. We introduce the concentration function

vN :=
1
N

sup
{
E
∣∣FN(t,µ,λ )−FN(t,µ,λ )

∣∣2 | λk ∈ [2−k−1,2−k] for all k ≥ 0
}
, (3.14)

and think of the perturbation parameters λ := (λk)k≥0 as being sampled independently with λk
uniform on [2−k−1,2−k] for k ≥ 0. The concentration function νN is bounded from above by a
constant independent of N by [18, Proposition B.4], so (3.13) follows from [8, Theorem 2.2]. This
completes the proof. ■

Arguing as in [43, Lemma 3.3], it is now possible to find a deterministic sequence (λ N)N≥1
along which, for all n ≥ 1,

lim
N→+∞

E
〈
(R1,...,n −E⟨R1,...,n⟩N)

2〉
N = 0. (3.15)

Here, the Gibbs average ⟨·⟩N for a system of size N is associated with the perturbation parameter
λ N , and the multioverlap R1,...,n is for i.i.d. replicas (σ ℓ

i )i,ℓ≥1 sampled from this perturbed Gibbs
measure. The multioverlap concentration (3.15) ensures that the asymptotic spin array is generated
by some probability measure ν ∈ Mp according to (S1)-(S2).

Proposition 3.3. Let (λ N)N≥1 be a deterministic sequence along which (3.15) holds for all n ≥ 1,
and denote by (σ ℓ

i )i,ℓ≥1 i.i.d. replicas sampled from the Gibbs measure ⟨·⟩N in (3.11) associated
with the perturbation parameter λ N . For any subsequence (Nk)k≥1 along which the distribution
of the spin array (σ ℓ

i )i,ℓ≥1 converges in the sense of finite-dimensional distributions, there exists
a probability measure ν ∈ Mp (which may depend on the subsequence) such that the asymptotic
spin array is generated by ν according to (S1)-(S2).
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Proof. This is immediate from [8, Corollary 2.3]. We have implicitly used that E⟨R1⟩= Eσ∗
1 = m

by the Nishimori identity to assert that ν ∈ Mp. ■

The two-step process (S1)-(S2) to generate the asymptotic spin array from the measure ν ∈
Mp allows us to write the asymptotic spin array (σ ℓ

i )i,ℓ≥1 explicitly in terms of the i.i.d. random
variables (xi)i≥1 sampled from ν and a family of i.i.d. uniform random variables (ui,ℓ)i,ℓ≥1 on [0,1]
also independent of (xi)i≥1,

σ
ℓ
i := 21

{
ui,ℓ ≤

1+ xi

2

}
−1. (3.16)

From this representation of the asymptotic spins we can readily establish (3.1).

Lemma 3.4. Let (λ N)N≥1 be a deterministic sequence along which (3.15) holds for all n ≥ 1,
denote by (σ ℓ

i )i,ℓ≥1 i.i.d. replicas sampled from the Gibbs measure ⟨·⟩N in (3.11) associated with
the perturbation parameter λ N , and suppose that the distributional limit of the spin array (σ ℓ

i )i,ℓ≥1
is generated by a probability measure ν ∈ Mp according to (S1)-(S2). If (xℓ)ℓ≥1 denote i.i.d.
samples from ν , then for any finite set of n replicas and collection {Cℓ}ℓ≤n of finite indices,

lim
N→+∞

E∏
ℓ≤n

〈
∏
i∈Cℓ

σ
ℓ
i

〉
N
= ∏

ℓ≤n
Ex|Cℓ|

ℓ . (3.17)

Proof. Let C := {(i, ℓ) | ℓ≤ n and i ∈ Cℓ}, and observe that

E∏
ℓ≤n

〈
∏
i∈Cℓ

σ
ℓ
i

〉
N
= E

〈
∏

(i,ℓ)∈C

σ
ℓ
i

〉
N
.

Recalling the representation (3.16) of an asymptotic spin in terms of a family (ui,ℓ)i,ℓ≥1 of i.i.d.
uniform random variables on [0,1], and letting N tend to infinity in the previous display reveals
that

lim
N→+∞

E∏
ℓ≤n

〈
∏
i∈Cℓ

σ
ℓ
i

〉
N
= E ∏

(i,ℓ)∈C

(
21
{

ui,ℓ ≤
1+ xi

2

}
−1
)
= E ∏

(i,ℓ)∈C

xi,

where the independence of the (ui,ℓ)i,ℓ≥1 has played its part in the second equality. Leveraging the
independence of the (xi)i≥1 completes the proof. ■

This formula to compute the asymptotic moments of the spin array will be applied to a slight
modification of the Hamiltonian (1.21) in Section 4. The arguments to justify the formula in this
modified setting are identical to those just given.

Remark 3.5. We discuss briefly how to extend the results of the present paper and cover the more
general case when the measure P∗ is arbitrary with support in [−1,1] in place of {−1,1}, with
the understanding that we stick with the formula (1.4) to compute the link probabilities. In this
case, the description of the limit law of (σ ℓ

i )i,ℓ≥1 must naturally be modified from (S1)-(S2), since
these explicitly refer to ±1 random variables. Instead, we would first need to sample i.i.d. random
probability measures (µi)i≥1, each with law Ξ ∈ Pr(Pr[−1,1]), and then conditionally on (µi)i≥1,
to sample σ ℓ

i according to the law µi independently over i, ℓ ≥ 1. One key observation though is
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that Lemma 3.4 remains valid as stated, provided that we understand that ν is the law of the mean
value of µ1, that is,

ν = Law
(∫

x dµ1(x)
)
.

Moreover, the cavity computations ultimately only require us to be able to evaluate moments of
the form described by Lemma 3.4. So even in this more general setting, we do not really need to
keep track of the more complex object Ξ ∈ Pr(Pr[−1,1]), and can proceed as in the ±1 case by
focusing on this simpler measure ν ∈ Mp.

4 Cavity computation

In this section we perform the cavity computation that gives rise to the functional (1.26) and leads
to the critical point representation in Theorem 1.1. The idea behind the cavity computation is
to determine the effect of perturbing the Hamiltonian (3.9) for the system of size N by a single
additional spin. To emphasize this additional spin, we write ρ := (ε,σ) ∈ ΣN+1 for σ ∈ ΣN and
ε ∈ {−1,+1}. Similarly, we write ρ∗ := (ε∗,σ∗) ∈ ΣN+1 for σ∗ ∈ ΣN and ε∗ ∈ Σ1 to denote the
ground truth sampled from P∗

N+1. Given a pair (t,µ) ∈ R≥0 ×M+ and a perturbation parameter
λ = (λk)k≥0, we will compare the systems with Hamiltonians Ht,µ

N+1(ε,σ ,λ ) and Ht,µ
N (σ ,λ ). This

comparison will be done at the level of the free energies, and the re-scaled difference between
FN+1(t,µ,λ ) and FN(t,µ,λ ) will be expressed as the difference between the modified Gibbs
averages of two quantities that we may call the “cavity fields”. We now describe the modified
Hamiltonian associated with this modified Gibbs average as well as the two cavity fields.

For each t ≥ 0, we introduce a random variable Πt ∼ Poi t
(N

2

)
as well as an independent family

of i.i.d. random matrices (G̃k)k≥1 each having conditionally independent entries (G̃k
i, j)i, j≤N taking

values in {0,1} with conditional distribution

P
{

G̃k
i, j = 1 | σ

∗} :=
c+∆σ∗

i σ∗
j

N +1
. (4.1)

Given a collection of random indices (ik, jk)k≥1 sampled uniformly at random from {1, . . . ,N}2,
independently of the other random variables, we define the modified time-dependent Hamiltonian
H t

N on ΣN by

H t
N(σ) := ∑

k≤Πt

log
[(

c+∆σikσ jk
)G̃k

ik , jk

(
1−

c+∆σikσ jk
N +1

)1−G̃k
ik , jk

]
. (4.2)

Similarly, for each µ ∈M+, consider a sequence (Λi((N+1)µ))i≤N of independent Poisson point
processes with mean measure (N +1)µ , and define the modified measure-dependent Hamiltonian
H µ

N on ΣN by

H µ

N (σ) := ∑
i≤N

∑
x∈Λi((N+1)µ)

log
[(

c+∆σix
)G̃x

i
(

1− c+∆σix
N +1

)1−G̃x
i
]
, (4.3)
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where (G̃x
i )i≤N are conditionally independent random variables taking values in {0,1} with condi-

tional distribution
P
{

G̃x
i = 1 | σ

∗,x
}

:=
c+∆σ∗

i x
N +1

. (4.4)

For each pair (t,µ) ∈ R≥0 ×M+, the modified enriched Hamiltonian is the sum of the modified
time-dependent and measure-dependent Hamiltonians,

H t,µ
N (σ) := H t

N(σ)+H µ

N (σ), (4.5)

and, given a perturbation parameter λ := (λk)k≥0, its perturbed version is

H t,µ
N (σ ,λ ) := H t,µ

N (σ)+Hgauss
N (σ ,λ0)+Hexp

N (σ ,λ ) (4.6)

for the perturbation Hamiltonians (3.3) and (3.7). As usual, we write

F ′
N(t,µ) :=

1
N
E log

∫
ΣN

expH t,µ
N (σ)dP∗

N(σ) (4.7)

for the modified free energy, and for each perturbation parameter λ = (λk)k≥0, we denote by

F ′
N(t,µ,λ ) :=

1
N
E log

∫
ΣN

expH t,µ
N (σ ,λ )dP∗

N(σ) (4.8)

its perturbed version. As in (3.11), we write ⟨·⟩′ for the Gibbs average with respect to the perturbed
and modified Hamiltonian (4.6). This means that for any bounded and measurable function f =
f (σ1, . . . ,σn) of finitely many replicas,

⟨ f (σ1, . . . ,σn)⟩′ := ⟨ f ⟩′ :=

∫
Σn

N
f (σ1, . . . ,σn)∏ℓ≤n expH t,µ

N (σ ℓ,λ )dP∗
N(σ

ℓ)(∫
ΣN

expH t,µ
N (σ ,λ )dP∗

N(σ)
)n . (4.9)

This is the modified Gibbs measure relative to which the cavity fields will be averaged. It is readily
verified that this Gibbs measure is a conditional expectation, and therefore satisfies the Nishimori
identity (2.14).

The first cavity field will have a time-dependent and a measure-dependent component. For
each t ≥ 0, we introduce a random variable Π′

t ∼ Poi(tN) as well as an independent family of i.i.d.
random vectors (G′k)k≥1 each having conditionally independent entries (G′k

i )i≤N taking values in
{0,1} with conditional distribution

P
{

G′k
i = 1 | ε

∗,σ∗} :=
c+∆ε∗σ∗

i
N +1

. (4.10)

Given a collection of random indices (ℓk)k≥1 sampled uniformly at random from {1, . . . ,N}, in-
dependently of the other random variables, we define the time-dependent cavity field zt

N(ε,σ) on
ΣN+1 by

zt
N(ε,σ) := ∑

k≤Π′
t

log
[(

c+∆εσℓk

)G′k
ℓk

(
1−

c+∆εσℓk

N +1

)1−G′k
ℓk

]
. (4.11)
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Similarly, for each µ ∈ M+, we define the measure-dependent cavity field zµ

N(ε) on Σ1 by

zµ

N(ε) := ∑
x∈Λi(Nµ)

log
[(

c+∆εx
)G′x(

1− c+∆εx
N +1

)1−G′x]
, (4.12)

where G′x are conditionally independent random variables taking values in {0,1} with conditional
distribution

P
{

G′x = 1 | ε
∗,x
}

:=
c+∆ε∗x

N +1
. (4.13)

For each pair (t,µ) ∈ R≥0 ×M+, the cavity field zt,µ
N (ε,σ) is the sum of the time-dependent and

measure-dependent cavity fields,

zt,µ
N (ε,σ) := zt

N(ε,σ)+ zµ

N(ε). (4.14)

The second cavity field will only have a time-dependent component. For each t ≥ 0, introduce
an independent family of i.i.d. random matrices (G′′k)k≥1 each having conditionally independent
entries (G′′k

i, j)i, j≤N taking values in {0,1} with conditional distribution

P
{

G′′k
i, j = 1 | σ

∗} :=
c+∆σ∗

i σ∗
j

N(N +1)
. (4.15)

Given a collection of random indices (ℓk,mk)k≥1 sampled uniformly at random from {1, . . . ,N}2,
independently of the other random variables, we define the cavity field yN(σ) on ΣN by

yt
N(σ) := ∑

k≤Πt

log
[(

c+∆σℓkσmk

)G′′k
ℓk ,mk

(
1−

c+∆σℓkσmk

N(N +1)

)1−G′′k
ℓk ,mk

]
. (4.16)

The cavity computation reveals that the re-scaled difference between FN+1(t,µ,λ ) and FN(t,µ,λ )
is the difference between the cavity fields (4.14) and (4.16) averaged with respect to the Gibbs
measure (4.9). More precisely, for each pair (t,µ)∈R≥0×M+, the asymptotic difference between
these re-scaled free energies is given by

AN(t,µ,λ ) := E log
∫

Σ1

⟨expzt,µ
N (ε,σ)⟩′ dP∗(ε)−E log

〈
expyt

N(σ)
〉′
. (4.17)

To prove this, it will be convenient to introduce notation for approximate distributional identities.
Given two Hamiltonians H1

N and H2
N on ΣN , we write

H1
N(σ)

d≈ H2
N(σ) ⇐⇒ NF1

N = NF2
N +oN(1), (4.18)

where F1
N and F2

N denote the free energies associated with the Hamiltonians H1
N and H2

N , respec-
tively. Oftentimes we will not prove rigorously that two Hamiltonians are approximately equal in
distribution, contenting ourselves with showing that a given realization of them differs by a quan-
tity that is stochastically of negative degree in N. However, all approximate distributional identities
that we introduce may be justified rigorously through an interpolation argument similar to that in
Lemmas 3.1 or 4.4.
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Lemma 4.1. For all (t,µ) ∈ R≥0 ×M+, perturbation parameter λ , and N ≥ 1, the re-scaled
difference between the perturbed free energy (3.10) for a system of size N +1 and a system of size
N is given by

(N +1)FN+1(t,µ,λ )−NFN(t,µ,λ ) = AN(t,µ,λ )+oN(1), (4.19)

where the error term is uniform over the perturbation parameter λ =(λk)k≥1 with λk ∈ [2−k−1,2−k]
for k ≥ 0.

Proof. For simplicity, we will ignore the perturbation Hamiltonians (3.3) and (3.7); however, the
choices (3.5)-(3.6) of the sequences (εN)N≥1 and (sN)N≥1 can be used to show that the error in-
curred by replacing the perturbation Hamiltonian Hgauss

N+1 (σ ,λ0)+Hexp
N+1(σ ,λ ) for the system of

size N + 1 by that for the system of size N can be absorbed into the error term on the right side
of (4.19). The proof proceeds in two steps. First we relate the time-dependent Hamiltonian (1.15)
for the system of size N + 1 to that for the system of size N, and then we do the same for the
measure-dependent Hamiltonian (1.18).

Step 1: time-dependent cavity computation. The probability that the tuple {ik, jk} in the time-
dependent Hamiltonian (1.15) contains the index N +1 is

1−
( N

N +1

)2
=

2N +1
(N +1)2 =

2
N +1

− 1
(N +1)2 .

It follows by the Poisson coloring theorem that

Ht
N+1(ρ)

d
≈ H t

N(σ)+ zt
N(ε,σ) (4.20)

for the modified time-dependent Hamiltonian (4.2) and the time-dependent cavity field (4.11). We
have implicitly used that

t
(

N +1
2

)(
1− 2

N +1

)
= t
(

N
2

)
and t

(
N +1

2

)
· 2

N +1
= tN.

Another application of the Poisson coloring theorem reveals that

Ht
N(σ)

d
≈ H t

N(σ)+ yt
N(σ), (4.21)

for the modified time-dependent Hamiltonian (4.2) and the time-dependent cavity field (4.16). We
have implicitly used that

1
N
− 1

N +1
=

1
N(N +1)

.

Step 2: measure-dependent cavity computation. The measure-dependent Hamiltonian (1.18) admits
the approximate distributional decomposition

Hµ

N+1(ρ)
d≈ H µ

N (σ)+ zµ

N(ε,σ) (4.22)
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for the modified measure-dependent Hamiltonian (4.3) and the measure-dependent cavity field
(4.12). Similarly, the Poisson coloring theorem implies that

Hµ

N (σ)
d≈ H µ

N (σ). (4.23)

Combining the cavity computations (4.20)-(4.23) with the definitions of the modified enriched
Hamiltonian (4.5), the Gibbs average (4.9), and the cavity fields (4.14) and (4.16) completes the
proof. ■

The cavity representation in Lemma 4.1 suggests that to understand the limit of the free energy,
it is helpful to understand the asymptotic behavior of the quantity AN in (4.17). Indeed, if both
limits existed, they would coincide. Unfortunately, it will not be possible to show that the limit of
AN exists in general; however, we will now argue that any subsequential limit of AN along which
the multioverlaps (3.2) concentrate in the sense of (3.15) is given by the functional (1.26) evaluated
at a measure ν ∈ Mp which generates the asymptotic spin array according to (S1)-(S2).

Lemma 4.2. Fix (t,µ) ∈ R≥0 ×M+, and suppose there is a sequence (Nk,λ
Nk)k≥1 such that

(Nk)k≥1 increases to infinity and the multioverlap concentration (3.15) for the Hamiltonian (4.6)
with perturbation parameters (λ Nk)k≥1 holds for every n ≥ 1. Then there are a subsequence
(N′

k,λ
N′

k)k≥1 and a measure ν ∈ Mp such that the asymptotic spin array associated with the per-
turbation parameters (λ N′

k)k≥1 is generated by ν according to (S1)-(S2) and

lim
k→+∞

AN′
k

(
t,µ,λ N′

k
)
= Pt,µ(ν). (4.24)

Proof. Using the Prokhorov theorem, we can find a subsequence (N′
k)k≥1 along which the distri-

bution of the spin array (σ ℓ
i )i,ℓ≥1 under the Gibbs measure E⟨·⟩′ converges in the sense of finite-

dimensional distributions. For simplicity of notation, we will denote this subsequence N′
k simply

by N. By Proposition 3.3, there exists a probability measure ν ∈ Mp such that the asymptotic
spin array is generated by ν according to (S1)-(S2). The rest of the proof is devoted to establish-
ing (4.24) and proceeds in two steps. Each step determines the asymptotic behavior of one of the
quantities

A1
N(t,µ,λ

N) := E log
∫

Σ1

⟨expzt,µ
N (ε,σ)⟩′ dP∗(ε) and A2

N(t,µ,λ
N) := E log⟨expyt

N(σ)⟩′

which make up AN(t,µ,λ N). The main difficulty will be that there are two limits to account for:
the convergence of the spin array (σ ℓ

i )i,ℓ≥1 and the convergence of the Poisson sums. Nonetheless,
it will be possible to show that

lim
N→+∞

A1
N(t,µ,λ

N) = ψ(µ + tν) and lim
N→+∞

A2
N(t,µ,λ

N) =
t
2

∫ 1

−1
Gν(y)dν(y) (4.25)

for the initial condition ψ : M+ → R in (1.27) and the function Gν : [−1,1] → R in (1.25). To
alleviate notation, the dependence of A1

N , A2
N , zN and yN on t, µ and λ N will be kept implicit, and

we will write s := µ[−1,1].

29



Step 1: limit of A1
N . The modified Hamiltonian (4.6) corresponds to a problem in statistical infer-

ence, so the Nishimori identity (2.14) implies that

A1
N = E log

∫
Σ1

⟨expzN(ε,σ
1)⟩′ dP∗(ε)

for the cavity field

zN(ε,σ
1) := ∑

k≤Π′
t

log
[(

c+∆εσ
1
ℓk

)G′k
ℓk

(
1−

c+∆εσ1
ℓk

N +1

)1−G′k
ℓk

]
+ zµ

N(ε),

where, through a slight abuse of notation, the family of i.i.d. random matrices (G′k)k≥1 each has
conditionally independent entries (G′k

i )i≤N taking values in {0,1} with conditional distribution

P
{

G′k
i = 1 | ε

∗,σ2} :=
c+∆ε∗σ2

i
N +1

.

The Poisson coloring theorem implies that the number of terms in the first sum defining zN(ε,σ
1)

that have G′k
ℓk

equal to zero is Poisson with mean

tN ·
(

1−
c+∆ε∗σ2

ℓk

N +1

)
= tN +O(1).

Together with a Taylor expansion of the logarithm and the law of large numbers, this implies that
the contribution of the terms in the first term defining zN(ε,σ

1) that have G′k
ℓk

equal to zero is

− ∑
k≤tN

c+∆εσ1
ℓk

N
+O

(
N−1)=−ct −∆tεm+O

(
N−1).

A similar argument shows that the contribution of the terms in zµ

N(ε) that have G′x equal to zero is
−cs−∆sε Ex1 +O(N−1). If we define

z′N(ε,σ
1) := ∑

k≤Π′
t

log
(
c+∆εσ

1
ℓk

)G′k
ℓk + ∑

k≤Π′
s

log
(
c+∆εxk

)G′x
k ,

where (xk)k≥1 are i.i.d. random variables with law µ and, through a slight abuse of notation, the
random variables (G′x

k)k≥1 are conditionally independent with conditional distribution

P
{

G′x
k = 1 | ε

∗,xk
}

:=
c+∆ε∗xk

N +1
,

then this implies that

A1
N = E log

∫
Σ1

exp(−∆ε(tm+ sEx1))⟨expz′N(ε,σ
1)⟩′ dP∗(ε)− c(t + s)+O

(
N−1). (4.26)
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We now fix δ > 0 and focus on the first term in this expression which we denote by A1,1
N . Averag-

ing with respect to the randomness of (G′k
ℓk
)k≥1 and (G′x

k)k≥1, and using symmetry between sites
reveals that A1,1

N is given by averaging the sum over r ≤ Π′
t and q ≤ Π′

s of(
Π′

t
r

)(
Π′

s
q

) r

∏
i=1

c+∆ε∗σ2
i

N +1

Π′
t

∏
i=r+1

(
1− c+∆ε∗σ2

i
N +1

) q

∏
j=1

c+∆ε∗x j

N +1

Π′
s

∏
j=q+1

(
1−

c+∆ε∗x j

N +1

)
log
〈∫

Σ1

exp(−∆ε(tm+ sEx1))
r

∏
i=1

(c+∆εσ
1
i )

q

∏
j=1

(c+∆εx j)dP∗(ε)

〉′

with respect to the randomness of σ2, (xk)k≥1, Π′
t , Π′

s, and ε∗. Since the expression in the second
line of this display grows at most linearly in r and q, the concentration of Π′

t and Π′
s about tN and

sN, respectively, and the rapid decay of the binomial coefficients allow us to truncate both sums at
a large enough integer M by incurring an error of at most δ uniformly over N. Together with the
approximations

Π′
t

∏
i=r+1

(
1− c+∆ε∗σ1

i
N +1

)
= exp(−tc−∆tε∗m)+oN(1),

Π′
s

∏
j=q+1

(
1−

c+∆ε∗x j

N +1

)
= exp(−sc−∆sε

∗Ex1)+oN(1),

this implies that, up to an error vanishing in N and uniform in δ , the quantity A1,1
N is given by

E ∑
r≤Π′

t∧M
∑

q≤Π′
s∧M

(
Π′

t
r

)(
Π′

s
q

)
e−c(t+s)−∆ε∗(tm+sEx1)

(N +1)r+q

〈 r

∏
i=1

(c+∆ε
∗
σ

2
i )

q

∏
j=1

(c+∆ε
∗x j)

log
〈∫

Σ1

e−∆ε(tm+sEx1)
r

∏
i=1

(c+∆εσ
1
i )

q

∏
j=1

(c+∆εx j)dP∗(ε)

〉′〉′
.

Up to incurring a further error vanishing in N and uniform in δ , the Weierstrass approximation
theorem can be used to replace the logarithm by a polynomial. This results in a linear combination
of finitely many terms that are functions of finitely many spins at a time. Invoking Lemma 3.4 to
replace each of the averaged spins in this expression by a sample from the measure ν , tracing back
the manipulations we have done to A1,1

N , and letting δ tend to zero reveals that

A1,1
N = E log

∫
Σ1

exp(−∆ε(tm+ sEx1))expz′N(ε)dP∗(ε)+oN(1),

for the cavity field

z′N(ε) := ∑
k≤Π′

t

log(c+∆εyk)
G′y

k + ∑
k≤Π′

s

log(c+∆εxk)
G′x

k , (4.27)

where (yk)k≥1 are independent samples from the measure ν ∈ Mp which generates the asymptotic
spin array according to (S1)-(S2). In other words, it is possible to take the limit of the spin ar-
ray while leaving the finite-volume Poisson sums unaffected. To simplify this expression further,
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suppose that the probability measures µ and ν are discrete,

µ := ∑
ℓ≤K

pℓδaℓ and ν := ∑
ℓ≤K

qℓδaℓ

for some integer K ≥ 1, some weights pℓ,qℓ ∈ [0,1], and some masses aℓ ∈ [−1,1]. For each ℓ≤ K,
introduce the index sets

I ℓ
t := {k ≤ Π

′
t | G′y

k = 1 and yk = aℓ} and I ℓ
s := {k ≤ Π

′
s | G′x

k = 1 and xk = aℓ}

in such a way that

A1,1
N = E log

∫
Σ1

exp(−∆ε(tm+ sEx1)) ∏
k≤Π′

t

(c+∆εyk)
G′y

k ∏
k≤Π′

s

(c+∆εxk)
G′x

k dP∗(ε)+oN(1)

= E log
∫

Σ1

exp(−∆ε(tm+ sEx1)) ∏
ℓ≤K

∏
k∈Iℓt ∪Iℓs

(c+∆εaℓ)dP∗(ε)+oN(1).

The Poisson coloring theorem implies that |Iℓt ∪ Iℓs | is Poisson with mean

EΠ
′
tP{G′y

1 = 1,y1 = aℓ}+EΠ
′
sP{G′x

1 = 1,x1 = aℓ}= spℓ(c+∆ε
∗aℓ)+ tqℓ(c+∆ε

∗aℓ)+oN(1)
= (c+∆ε

∗aℓ)(µ + tν)(aℓ)+oN(1).

It follows that

A1,1
N = E log

∫
Σ1

exp(−∆ε(tm+ sEx1)) ∏
x∈Π∗(µ+tν)

(c+∆εx)dP∗(ε)+oN(1)

= ψ(µ + tν)+ c(t + s)+oN(1),

where Π∗(µ + tν) is a Poisson point process with mean measure (c+∆ε∗x)d(µ + tν)(x). Extend-
ing this result to the case when µ and ν are arbitrary can be done through a continuity argument
leveraging Proposition 2.1. Combining this with (4.26) establishes the first equality in (4.25).

Step 2: limit of A2
N . The modified Hamiltonian (4.6) corresponds to a problem in statistical infer-

ence, so the Nishimori identity (2.14) implies that

A2
N = E log⟨expyN(σ

1)⟩′

for the cavity field

yN(σ
1) := ∑

k≤Πt

log
[(

c+∆σ
1
ℓk

σ
1
mk

)G′′k
ℓk ,mk

(
1−

c+∆σ1
ℓk

σ1
mk

N(N +1)

)1−G′′k
ℓk ,mk

]
,

where, through a slight abuse of notation, the family of i.i.d. random matrices (G′′k)k≥1 each has
conditionally independent entries (G′′k

i, j)i, j≤N taking values in {0,1} with conditional distribution

P
{

G′′k
i, j = 1 | σ

2} :=
c+σ2

ℓk
σ2

mk

N(N +1)
.
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The Poisson coloring theorem implies that the number of terms in the sum defining yN(σ
1) that

have G′′k
ℓk,mk

equal to zero is Poisson with mean

t
(

N
2

)
·
(

1−
c+∆σ2

ℓk
σ2

mk

N(N +1)

)
=

t
2

N2 +O(1).

Together with a Taylor expansion of the logarithm and the law of large numbers, this implies that
the contribution of the terms in the sum defining yN(σ

1) that have G′k
ℓk

equal to zero is

− ∑
k≤tN2/2

c+∆σ1
ℓk

σ1
mk

N(N +1)
+O

(
N−1)=− t

2
(
c+∆m2)+O

(
N−1).

If we define
y′N(σ

1) := ∑
k≤Πt

log(c+∆σ
1
ℓk

σ
1
mk
)

G′′k
ℓk ,mk ,

then this implies that

A2
N = E log⟨expy′N(σ

1)⟩′− t
2
(
c−∆m2)+O

(
N−1). (4.28)

We now focus on the first term in this expression which we denote by A2,1
N . A similar argument

as that in Step 1 shows that it is possible to take the limit of the spin array while leaving the
finite-volume Poisson sum unaffected. More precisely, it is possible to show that

A2,1
N = E ∑

k≤Πt

log(c+∆y1,ky2,k)
G′′y

k +oN(1),

where (y1,k)k≥1 and (y2,k)k≥1 are independent samples from the measure ν ∈ Mp which generates
the asymptotic spin array according to (S1)-(S2), and (G′′y

k)k≥1 has conditional distribution

P
{

G′′y
k = 1 | y1,k,y2,k

}
:=

c+∆y1,ky2,k

N(N +1)
.

Averaging with respect to the randomness of (G′′y
k)k≥1, and using the independence of (y1,k)k≥1

and (y2,k)k≥1 reveals that

A2,1
N =

1
N(N +1)

E ∑
k≤Πt

(c+∆y1,ky2,k) log(c+∆y1,ky2,k)+oN(1)

=
t
2
E(c+∆y1y2) log(c+∆y1y2)+oN(1).

Combining this with (4.28) and recalling the definition of the function Gν : [−1,1]→ R in (1.25)
gives

lim
N→+∞

A2
N =

t
2

(
E(c+∆y1y2) log(c+∆y1y2)−∆m2 − c

)
=

t
2

∫ 1

−1
Gν(y)dν(y).

This completes the proof. ■
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This result can now be combined with the cavity representation in Lemma 4.1 to bound the
asymptotic free energy from above and from below by the functional (1.26) evaluated at two possi-
bly different measures ν± ∈Mp which generate the asymptotic spin array associated with two sets
of perturbation parameters according to (S1)-(S2). This result will be improved in the next section.

Proposition 4.3. For all (t,µ) ∈ R≥0 ×M+ there are sequences
(
N±

k ,λ N±
k
)

k≥1 and measures
ν± ∈ Mp such that the following holds. The sequences (N±

k )k≥1 increase to infinity, the multi-
overlap concentration (3.15) for the Hamiltonian (4.6) with perturbation parameters (λ N±

k )k≥1
holds for n ≥ 1, the asymptotic spin array associated with the perturbation parameters (λ N±

k )k≥1
is generated by ν± according to (S1)-(S2), and

Pt,µ(ν
−)≤ liminf

N→+∞
FN(t,µ)≤ limsup

N→+∞

FN(t,µ)≤ Pt,µ(ν
+). (4.29)

Proof. Combining Lemma 3.2 with the arguments in [43, Lemma 3.3], it is possible to find a
sequence of perturbation parameters (λ N)N≥1 such that the multioverlap concentration (3.15) for
the perturbed Hamiltonian (4.6) holds for all n ≥ 1. Remembering that the perturbation parameters
do not affect the asymptotic behavior of the free energy by Lemma 3.1 and that the liminf of a
Cesàro sum is bounded from below by the liminf of its general term, we see that

liminf
N→+∞

FN(t,µ)≥ liminf
N→+∞

AN(t,µ,λ N).

Invoking Lemma 4.2 and passing to a further subsequence along which (AN(t,µ,λ N))N≥1 con-
verges to its liminf if necessary, gives a sequence (N−

k ,λ N−
k )k≥1 and a measure ν− ∈Mp such that

the asymptotic spin array associated with the perturbation parameters (λ N−
k )k≥1 is generated by

ν− according to (S1)-(S2) and

liminf
N→+∞

AN
(
t,µ,λ N)= lim

k→+∞
AN−

k

(
t,µ,λ N−

k
)
= Pt,µ

(
ν
−).

Together with the previous display this gives the lower bound in (4.29). The upper bound in this
inequality is proved in an identical manner by instead using that the limsup of a Cesàro sum is
bounded from above by the limsup of its general term. This completes the proof. ■

We close this section by showing that the asymptotic behavior of the enriched free energy
(1.22) and the modified enriched free energy (4.7) are equivalent. This will play its part in the next
section when we show that whenever the free energy converges, we can turn (4.29) into an equality.

Lemma 4.4. For all (t,µ)∈R≥0×M+, the enriched free energy (1.22) and the modified enriched
free energy (4.7) are asymptotically equivalent,

lim
N→+∞

∣∣FN(t,µ)−F ′
N(t,µ)

∣∣= 0. (4.30)

Proof. Recall from (4.21) and (4.23) that the enriched Hamiltonian (1.21) and the modified en-
riched Hamiltonian (4.5) differ by the cavity field yt

N in (4.16) in the approximate sense defined in
(4.18),

Ht,µ
N (σ)

d≈ H t,µ
N (σ)+ yt

N(σ). (4.31)
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We now leverage an interpolation argument to establish the asymptotic equivalence (4.30). For
each u ∈ [0,1], we define the interpolating Hamiltonian

H t,µ
N (u,σ) := H t,µ

N (σ)+uyt
N(σ),

and denote by FN(u) and ⟨·⟩u its associated free energy and Gibbs average, respectively. The
fundamental theorem of calculus implies that∣∣FN(1)−FN(0)

∣∣≤ sup
u∈[0,1]

∣∣∣ d
du

FN(u)
∣∣∣≤ 1

N
sup

u∈[0,1]
E
〈
|yt

N(σ)|
〉

u. (4.32)

Averaging with respect to the randomness of (G′′k)k≥1 shows that for each u ∈ [0,1],

E
〈
|yt

N(σ)|
〉

u ≤ EΠt

(
(c+ |∆|)(log(c+ |∆|)+1)

N(N +1)
+O

(
N−4))= O(1).

Substituting this into (4.32), recalling that FN(1) = FN(t,µ)+oN(1) by the approximate distribu-
tional identity (4.31), and observing that FN(0) = F ′

N(t,µ) completes the proof. ■

5 Critical point representation

In this section we finally prove Theorems 1.1 and 1.2. We begin by showing that whenever the
limit free energy exists and is Gateaux differentiable, it may be identified with a measure ν ∈ Mp
through the function Gν in (1.25). We then show that the map η 7→Gη is injective on Mp, meaning
that the identified measure ν ∈Mp is unique. We also prove that this measure generates some sub-
sequential limit of the spin array associated with the modified and perturbed Hamiltonian (4.6). We
then argue that under these same assumptions, the measure ν is a valid choice for both the measure
ν+ and the measure ν− in Proposition 4.3. Through arguments similar to those in Lemma 4.2, at
any point (t,µ) ∈ R≥0 ×M+ of differentiability of the limit free energy, we relate the Gateaux
derivative of the limit free energy at (t,µ) to the Gateaux derivative of the asymptotic initial con-
dition (1.27) at µ + tν . This leads to the equality Gν = Dµψ(µ + tν , ·) which we show to be
equivalent to the fixed point equation ν = Γt,µ(ν) associated with the operator (1.6). Finally, we
combine all these insights with Proposition 2.2 on the almost everywhere Gateaux differentiability
of the limit free energy to establish Theorems 1.1 and 1.2.

To relate the Gateaux derivative of the limit free energy to that of the initial condition, it will
be convenient to recall from [18, Remark 3.2] that for any µ ∈ M+, the density of the Gateaux
derivative Dµψ(µ) is

Dµψ(µ,x) = E⟨c+∆εx⟩∗ log⟨c+∆εx⟩∗− c−∆mx, (5.1)

where, conditionally on the ground truth σ∗, the bracket ⟨·⟩∗ denotes the Gibbs average associated
with the Hamiltonian defined on Σ1 by

Hµ(ε) :=−
∫ 1

−1
(c+∆εx)dµ(x)+ ∑

x∈Π∗(µ)

log(c+∆εx). (5.2)
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Here Π∗(µ) denotes a Poisson point process on [−1,1] with mean measure (c+∆σ∗x)dµ(x). This
means that for any bounded and measurable function f = f (ε1, . . . ,εn) of finitely many replicas,

⟨ f (ε1, . . . ,εn)⟩∗ := ⟨ f ⟩∗ :=

∫
Σn

1
f (ε1, . . . ,εn)∏ℓ≤n expHµ(εℓ)dP∗(εℓ)(∫

Σ1
expHµ(ε)dP∗(ε)

)n . (5.3)

It will also be convenient to remember from the proof of [18, Lemma 2.4] that the Gateaux deriva-
tive of the enriched free energy (1.22) at (t,µ) ∈ R≥0 ×M+ in the direction of a probability
measure η ∈ Pr[−1,1] is given by

DµFN(t,µ;η) = ∑
i≤N

E log
〈(

c+∆σiwi
)G̃w

i
(

1− c+∆σiwi

N

)1−G̃w
i
〉
, (5.4)

where the bracket ⟨·⟩ denotes the Gibbs average (2.13), the (wi)i≥1 are i.i.d. random variables
sampled from η , and (G̃w

i )i≤N are conditionally independent random variables taking values in
{0,1} with conditional distribution

P
{

G̃w
i = 1 | σ

∗,wi
}

:=
c+∆σ∗

i wi

N
. (5.5)

Lemma 5.1. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise to
some limit f : R≥0 ×M+ → R along a subsequence (Nk)k≥1, and fix (t,µ) ∈ R≥0 ×Reg(M+). If
f (t, ·) is Gateaux differentiable at µ ∈ Reg(M+), then there exists ν ∈ Mp with

Gν = Dµ f (t,µ, ·). (5.6)

Proof. For each integer k ≥ 1, let νNk := L
(
⟨σ1⟩

)
denote the law (under P) of the Gibbs average

of a spin variable, where the Gibbs measure is as in (2.13). The Nishimori identity (2.14), the
derivative expression (2.12), and the definition of the kernel g in (1.24) imply that

DµFNk(t,µ, ·) = GνNk
(·)+O(N−1

k ). (5.7)

By the Prokhorov theorem, the sequence (νNk)k≥1 ⊂ Mp admits a subsequential limit ν ∈ Mp.
Invoking Proposition 2.3 to let k tend to infinity in (5.7) completes the proof. ■

Lemma 5.2. If ν ,ν ′ ∈ Mp are such that Gν = Gν ′ , then ν = ν ′.

Proof. The equality Gν = Gν ′ means that for all x ∈ [−1,1],

c log(c)− c+∆mx+c ∑
n≥2

(−∆/c)n

n(n−1)

∫ 1

−1
yn dν(y)xn

= c log(c)− c+∆mx+ c ∑
n≥2

(−∆/c)n

n(n−1)

∫ 1

−1
yn dν

′(y)xn.

It follows that ν and ν ′ have all the same moments of order n ≥ 2, and are therefore equal by the
Stone-Weierstrass theorem. ■
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Lemma 5.3. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise to
some limit f : R≥0 ×M+ → R along a subsequence (Nk)k≥1. If (t,µ) ∈ R≥0 ×Reg(M+) is such
that f (t, ·) is Gateaux differentiable at µ and ν ∈ Mp is such that Gν = Dµ f (t,µ, ·) (which exists
by Lemma 5.1), then there is a sequence

(
N′

k,λ
N′

k
)

k≥1 such that the following holds. The sequence
(N′

k)k≥1 ⊂ (Nk)k≥1 increases to infinity, the multioverlap concentration (3.15) for the Hamiltonian
(4.6) with perturbation parameters (λ N′

k)k≥1 holds for every n ≥ 1, and the asymptotic spin array
associated with the perturbation parameters (λ N′

k)k≥1 is generated by ν according to (S1)-(S2).

Proof. Combining Lemma 3.2 with the arguments in [43, Lemma 3.3], it is possible to find a se-
quence of perturbation parameters (λ N)N≥1 such that the multioverlap concentration (3.15) for
the perturbed Hamiltonian (4.6) holds for all n ≥ 1. Using the Prokhorov theorem, we can find a
subsequence (N′

k)k≥1 of (Nk)k≥1 along which the distribution of the spin array (σ ℓ
i )i,ℓ≥1 under the

Gibbs measure E⟨·⟩′Nk
with perturbation parameter λ Nk converges in the sense of finite-dimensional

distributions. By Proposition 3.3, there exists a probability measure ν∗ ∈Mp such that the asymp-
totic spin array is generated by ν∗ according to (S1)-(S2). We now show that ν∗ = ν . An identical
computation to that leading to the derivative expression (2.12) reveals that the Gateaux derivative
of the perturbed modified free energy (4.8) is given by

DµF ′
N′

k
(t,µ,λ N′

k ,x) =
(
c+∆mx

)
log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
E⟨R1,...,n⟩′N′

k
xn − c+oN′

k
(1).

Remembering Lemmas 4.4 and 3.1, and arguing as in the proof of Proposition 2.3 to let k tend to
infinity reveals that Dµ f (t,µ, ·) = Gν∗ . Leveraging the assumption that Gν = Dµ f (t,µ, ·) implies
that Gν = Gν∗ . Invoking Lemma 5.2 completes the proof. ■

Lemma 5.4. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise to
some limit f : R≥0×M+ →R, and fix (t,µ)∈R≥0×Reg(M+). If f (t, ·) is Gateaux differentiable
at µ ∈ Reg(M+) and ν ∈ Mp is such that Gν = Dµ f (t,µ, ·) (which exists by Lemma 5.1), then

f (t,µ) = Pt,µ(ν). (5.8)

Proof. Let (Nk,λ
N±

k )k≥1 and ν± ∈ Mp be as in the proof of Proposition 4.3. By inequality (4.29),
it suffices to show that ν− = ν+ = ν . Since ν± generate the asymptotic spin array associated with
the perturbation parameters (λ N±

k )k≥1 according to (S1)-(S2), arguing as in the proof of Lemma
5.3 with ν∗ replaced by ν±, it is possible to show that Gν± = Dµ f (t,µ, ·) = Gν . Invoking Lemma
5.2 gives ν = ν± and completes the proof. ■

Lemma 5.5. Suppose that the sequence of enriched free energies (FN)N≥1 converges pointwise to
some limit f : R≥0 ×M+ → R along a subsequence (Nk)k≥1, and fix (t,µ) ∈ R≥0 ×Reg(M+).
If f (t, ·) is Gateaux differentiable at µ ∈ Reg(M+) and ν ∈ Mp is such that Gν = Dµ f (t,µ, ·)
(which exists by Lemma 5.1), then

Dµ f (t,µ, ·) = Dµψ(µ + tν , ·). (5.9)

Proof. Let (N′
k,λ

N′
k)k≥1 be as in the statement of Lemma 5.3. To alleviate the exposition, we abuse

notation and denote this sequence by (N,λ N)N≥1. An identical computation to that leading to the
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derivative expression (5.4) reveals that the Gateaux derivative of the perturbed free energy (3.10)
in the direction of a probability measure η ∈ Pr[−1,1] is given by

DµFN+1(t,µ,λ N ;η) = ∑
i≤N+1

E log
〈(

c+∆σiwi
)G̃w

i
(

1− c+∆σiwi

N +1

)1−G̃w
i
〉

N+1
,

where the bracket ⟨·⟩N+1 denotes the Gibbs average (3.11) with perturbation parameter λ N , the
(wi)i≥1 are i.i.d. random variables sampled from η , and (G̃w

i )i≤N+1 are conditionally independent
random variables taking values in {0,1} with conditional distribution

P
{

G̃w
i = 1 | σ

∗,wi
}

:=
c+∆σ∗

i wi

N +1
.

Taylor-expanding the logarithm and using the law of large numbers shows that the contribution of
the terms in this sum that have G̃w

i equal to zero is

−c− ∆Ew1

N +1 ∑
i≤N+1

σi +O(N−1) =−c−∆mEw1 +O(N−1).

Together with the symmetry between sites, this implies that

DµFN+1(t,µ,λ N ;η) = (N +1)E log
〈
(c+∆εw1)

G̃w
1
〉

N+1 − c−∆mEw1. (5.10)

The distributional identities (4.20) and (4.22) reveal that the first term in this expression is given
by

D1 := E log
∫

Σ1

〈
(c+∆εw1)

G̃w
1 expzt,µ

N (ε,σ)
〉′−E log

∫
Σ1

⟨expzt,µ
N (ε,σ)⟩′ dP∗(ε)

for the cavity field zt,µ
N in (4.14) and the modified Gibbs average (4.9). By Lemma 5.3, the choice of

sequence (N,λ N)N≥1 ensures that the asymptotic spin array (σ ℓ
i )i,ℓ≥1 is generated by ν according

to (S1)-(S2), so arguing as in Step 1 of the proof of Lemma 4.2 it is possible to show that

D1 = E log
∫

Σ1

e−c(t+s)−∆ε(tm+sEx1)(c+∆εw1)
G′w

expz′N(ε)dP∗(ε)

−E log
∫

Σ1

e−c(t+s)−∆ε(tm+sEx1) expz′N(ε)dP∗(ε)+oN(1),

where s := µ[−1,1], the cavity field z′N is defined in (4.27), and G′w has conditional distribution

P
{

G′w = 1 | ε
∗,w1

}
:=

c+∆ε∗w1

N +1
.

Continuing to argue as in Step 1 of the proof of Lemma 4.2 gives

D1 = E log
〈
(c+∆εw1)

G′w〉
∗+oN(1) =

1
N +1

E⟨c+∆εw1⟩∗ log⟨c+∆εw1⟩∗+oN(1).

Substituting this into (5.10) and leveraging Lemma 3.1 and Proposition 2.3 to let N tend to infinity
reveals that

Dµ f (t,µ;η) = E⟨c+∆εw1⟩∗ log⟨c+∆εw1⟩∗− c−∆mEw1.

Remembering the expression (5.1) for the Gateaux derivative of the initial condition completes the
proof. ■
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Lemma 5.6. For any (t,µ) ∈R≥0×M+, a measure ν ∈Mp satisfies Gν = Dµψ(µ + tν , ·) if and
only if it is a fixed point of the map ν 7→ Γt,µ(ν).

Proof. We denote by y1 a random variable sampled from ν . The definition of the function g in
(1.24) implies that for every x ∈ [−1,1],

Gν(x) =
∫ 1

−1
g(xy)dν

∗(y) = (c+∆Ey1x) log(c)+ c ∑
n≥2

(−∆/c)n

n(n−1)
Eyn

1xn − c. (5.11)

On the other hand, the derivative expression (5.1) implies that

Dµψ(µ + tν ,x) = Eg(⟨ε⟩∗x) = (c+∆E⟨ε⟩∗x) log(c)+ c ∑
n≥2

(−∆/c)n

n(n−1)
E⟨ε⟩n

∗xn − c. (5.12)

The equation Gν = Dµψ(µ + tν , ·) is therefore equivalent to the equality between all moments of
y1 and ⟨ε⟩∗ of order 2 and higher. By the Stone-Weierstrass theorem, this is in turn equivalent to
the equality between the laws of y1 and ⟨ε⟩∗. These laws are equal if and only if the fixed point
equation ν = Γt,µ(ν) is satisfied. This completes the proof. ■

Proof of Theorem 1.1. Proposition 2.2 gives a sequence (µn)n≥1 ⊂ Reg(M+) converging weakly
to µ such that f (t, ·) is Gateaux differentiable at every µn ∈ Reg(M+). By Lemmas 5.4 and 5.5,
for every n ≥ 1, there is νn ∈ Mp with

Gνn = Dµ f (t,µn, ·) = Dµψ(µ + tνn, ·) and f (t,µn) = Pt,µn(νn).

By the Prokhorov theorem, up to passing to a subsequence, we can assume that (νn)n≥1 converges
weakly to some limit ν∗ ∈ Mp. The continuity of the map ν 7→ Gν and of the Gateaux derivative
map ν 7→ Dµψ(ν , ·) in (5.1) imply that ν∗ satisfies the equation

Gν∗ = Dµψ(µ + tν∗, ·). (5.13)

Similarly, the Lipschitz continuity of the limit free energy and of the asymptotic initial condition
established in Proposition 2.1 imply that

f (t,µ) = lim
n→+∞

f (t,µn) = lim
n→+∞

Pt,µn(νn) = Pt,µ(ν
∗).

Remembering that equation (5.13) is equivalent to the fixed point equation ν∗ = Γt,µ(ν
∗) by

Lemma 5.6 completes the proof. ■

Proof of Theorem 1.2. Lemmas 5.5 and 5.6 imply that ν∗ is a fixed point of the map ν 7→ Γt,µ(ν),
and Lemma 5.4 ensures that f (t,µ) = Pt,µ(ν

∗). The second part of the statement on the asymp-
totic spin array follows from Lemma 5.3. This completes the proof. ■
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6 The disassortative and small-time settings

Two limitations of Theorems 1.1 and 1.2 are that they assume the existence of the limit free energy,
and that they do not provide a simple characterization of the fixed point for which (1.28) holds. In
this section we focus on two settings in which these limitations can be addressed: the disassortative
setting when ∆ ≤ 0 and the small-time setting when t ∈ R≥0 is close to zero.

In the disassortative stochastic block model with two communities, it can be shown that the
limit free energy exists and is given by evaluating the functional Pt,µ defined in (1.26) at the fixed
point of the operator Γt,µ which maximizes Pt,µ . This is the content of Proposition 1.4 which we
now prove.

Proof of Proposition 1.4. We fix ν ∈ Mp, and for each u ∈ [0,1], we define the interpolating free
energy

ϕ(u) := FN(tu,µ + t(1−u)ν)

in such a way that ϕ(1) = FN(t,µ) and ϕ(0) = ψ(µ + tν). We denote by x1 a random variable
sampled from ν . Recall from the derivative computations in [18, Corollaries 2.2 and 2.5] that

∂tFN(t,µ) =
1
2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
− c

2
+O(N−1), (6.1)

DµFN(t,µ,x) =
(
c+∆mx

)
log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
E⟨R[n]⟩xn − c+O(N−1). (6.2)

Together with the assumption that ∆ ≤ 0 these imply that

ϕ
′(u) = t∂tFN(tu,µ + t(1−u)ν)− t

∫ 1

−1
DµFN(tu,µ + t(1−u)ν)dν

= t
(

c
2
− 1

2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
− c ∑

n≥2

(−∆/c)n

n(n−1)
E⟨R[n]⟩Exn

1

)
=− t

2

((
c+∆m2) log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
(
Exn

1
)2 − c

)
+

tc
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
(R[n]−Exn

1)
2〉

≥− t
2

∫ 1

−1
Gν(y)dν(y).

Leveraging the fundamental theorem of calculus and letting N tend to infinity gives the lower
bound

liminf
N→+∞

FN(t,µ)≥ sup
ν∈Mp

Pt,µ(ν).

The matching upper bound is immediate from Proposition 4.3. ■

In the small-time setting, a Lipschitz continuity bound on the fixed point operator Γt,µ defined
in (1.6) can be combined with the Banach fixed point theorem to show that Γt,µ admits a unique
fixed point νt,µ ∈Mp. Together with a Lipschitz continuity bound on the map (t,µ) 7→ νt,µ and an
argument similar to that in Lemma 5.4, this uniqueness can be used to establish Proposition 1.3.
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Lemma 6.1. There exists a constant C <+∞ such that the fixed point operator Γt,µ : Mp → Mp
defined in (1.6) satisfies the following Lipschitz continuity bounds.

1. For all (t,µ) ∈ R≥0 ×M+, and ν ,η ∈ Mp,

W
(
Γt,µ(ν),Γt,µ(η)

)
≤CtW (ν ,η). (6.3)

2. For all (t,µ),(t ′,µ ′) ∈ R≥0 ×M+, and ν ∈ Mp,

W
(
Γt,µ(ν),Γt ′,µ ′(ν)

)
≤C

(
|t ′− t|+µ[−1,1]W

(
µ,µ ′)+ |µ[−1,1]−µ

′[−1,1]|
)
. (6.4)

Proof. It will be convenient to remember the dual representation (2.3) of the Wasserstein distance.
With this representation in mind, we prove each bound separately.

1. Fix (t,µ) ∈ R≥0 ×M+ as well as ν ,η ∈ Mp. Conditionally on the ground truth signal ε∗

sampled from P∗, introduce the measures

dν̃(x) := (c+∆ε
∗x)dν(x) and dη̃(x) := (c+∆ε

∗x)dη(x). (6.5)

We denote by (Xk)k≥1 and (Yk)k≥1 i.i.d. samples from the probability measures ν ′ and η ′

induced by ν̃ and η̃ , and let Πt be a Poisson random variable with mean t(c+∆ε∗m). For
each u ∈ [0,1], we define the interpolating Hamiltonian Hu on Σ1 by

Hu(ε) :=−εm+ ∑
x∈Π0,µ (0)

log(c+∆εx)+ ∑
k≤Πt

log
(
c+∆ε(Xk +u(Yk −Xk))

)
as well as the random variable

Zu :=

∫
Σ1

ε expHu(ε)dP∗(ε)∫
Σ1

expHu(ε)dP∗(ε)
.

The superposition principle ensures that Γt,µ(ν)
d
= Z0 and Γt,µ(η)

d
= Z1. If we write ⟨·⟩u for

the Gibbs measure associated with the Hamiltonian Hu, then

d
du

Zu = ∑
k≤Πt

(Yk −Xk)

(〈
ε

c+∆ε(Xk +u(Yk −Xk))

〉
u
−⟨ε⟩u

〈
1

c+∆ε(Xk +u(Yk −Xk))

〉
u

)
.

It follows by the mean value theorem that for some constant C <+∞ that depends only on c
and ∆ whose value may not be the same at each occurrence,

E|Z1 −Z0| ≤CE ∑
k≤Πt

|Yk −Xk| ≤ tCE|X1 −Y1|.

Taking the infimum over all couplings between (Xk)k≥1 and (Yk)k≥1 yields

W
(
Γt,0(ν),Γt,0(η)

)
=W (Z0,Z1)≤ tCW

(
ν
′,η ′), (6.6)
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where we recall that ν ′ and η ′ denote the probability measures induced by ν̃ and η̃ . We now
control the distance between the measures ν ′ and η ′ by that between the measures ν and η .
The explicit representation (2.5) of the one-dimensional Wasserstein distance reveals that

W
(
ν
′,η ′)= ∫ 1

−1
|Fν ′(x)−Fη ′(x)|dx,

and integrating by parts shows that for x ∈ [−1,1],

Fν ′(x) =
1

c+∆ε∗m

(
cFν(x)+∆ε

∗
(

xFν(x)−
∫ x

−1
Fν(z)dz

))
.

It follows that for x ∈ [−1,1],

|Fν ′(x)−Fη ′(x)|dx ≤C
(
|Fν(x)−Fη(x)|+W (ν ,η)

)
,

and therefore
W
(
ν
′,η ′)≤CW (ν ,η).

Together with (6.6) this establishes the Lipschitz bound (6.3).

2. We fix (t,µ),(t ′,µ ′) ∈ R≥0 ×M+ as well as ν ∈ Mp. To simplify notation, we denote by
µ̃ , µ̃ ′ and ν̃ the measures defined as in (6.5), and let s̃ := µ̃[−1,1] and s̃′ := µ̃ ′[−1,1]. Up
to interchanging the roles of t and t ′ or µ and µ ′, assume without loss of generality that
t ≤ t ′ and s̃ ≤ s̃′. For any measure η ∈ M+ write Λ(η) for the Poisson point process with
intensity measure η . Through a slight abuse of notation, we denote by (Xk)k≥1 and (Yk)k≥1
i.i.d. samples from the probability measures induced by µ̃ and µ̃ ′, and let Πs̃ and Πs̃′−s̃
be Poisson random variables with means s̃ and s̃′, respectively. Through another abuse of
notation, for each u ∈ [0,1], we define the interpolating Hamiltonian Hu on Σ1 by

Hu(ε) :=−εm+ ∑
x∈Λ(tν̃)

log(c+∆εx)+u ∑
x∈Λ((t ′−t)ν̃)

log(c+∆εx)

+ ∑
k≤Πs̃

log
(
c+∆ε(Xk +u(Yk −Xk))

)
+u ∑

k≤Πs̃′−s̃

log(c+∆εYk)

as well as the random variable

Zu :=

∫
Σ1

ε expHu(ε)dP∗(ε)∫
Σ1

expHu(ε)dP∗(ε)
.

We have implicitly used that t ≤ t ′ and s̃ ≤ s̃′ to define Hu. The superposition principle en-
sures that Γt,µ(ν)

d
= Z0 and Γt ′,µ ′(ν)

d
= Z1. If we write ⟨·⟩u for the Gibbs measure associated

with the Hamiltonian Hu, then

d
du

Zu = ∑
k≤Πs̃

(Yk −Xk)

(〈
ε

c+∆ε(Xk +u(Yk −Xk))

〉
u
−⟨ε⟩u

〈
1

c+∆ε(Xk +u(Yk −Xk))

〉
u

)
+ ∑

x∈Λ((t ′−t)ν̃)

(
⟨ε log(c+∆εx)⟩u −⟨ε⟩u⟨log(c+∆εx)⟩u

)
+ ∑

k≤Πs̃′−s̃

(
⟨ε log(c+∆εYk)⟩u −⟨ε⟩u⟨log(c+∆εYk)⟩u

)
.
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It follows by the mean value theorem that for some constant C <+∞ that depends only on c
and ∆ whose value may not be the same at each occurrence,

E|Z1 −Z0| ≤C
(
E ∑

k≤Πs̃

|Yk −Xk|+E|Λ((t ′− t)ν̃)|+EΠs̃′−s̃

)
≤C

(
µ[−1,1]E|Y1 −X1|+ |t ′− t|+ |µ ′[−1,1]−µ[−1,1]|

)
.

Taking the infimum over all couplings between (Xk)k≥1 and (Yk)k≥1 completes the proof. ■

Lemma 6.2. There exists a constant C <+∞ such that for all t <C−1 and µ ∈M+, the fixed point
operator Γt,µ : Mp → Mp defined in (1.6) admits a unique fixed point νt,µ ∈ Mp. Moreover, for
all (t,µ),(t ′,µ ′) ∈ R≥0 ×M+ with t, t ′ <C−1, the fixed point map satisfies the Lipschitz bound

W (νt,µ ,νt ′,µ ′)≤C
(
|t ′− t|+µ[−1,1]W

(
µ,µ ′)+ |µ[−1,1]−µ

′[−1,1]|
)
. (6.7)

Proof. Let C < +∞ be as in the statement of Lemma 6.1, and fix L ∈ (0,1). For t < LC−1, the
Lipschitz bound (6.3) and the Banach fixed point theorem ensure that Γt,µ admits a unique fixed
point νt,µ ∈ Mp. Moreover, for any initial measure ν0 ∈ Mp, the Banach fixed point theorem
implies that the sequence (νn

t,µ)n≥1 defined iteratively by

ν
0
t,µ := ν

0 and ν
n+1
t,µ := Γt,µ(ν

n
t,µ) for n ≥ 0

converges weakly to νt,µ ∈ Mp, and satisfies the rate bound

W
(
νt,µ ,ν

0)≤ 1
1−L

W
(
ν

1
t,µ ,ν

0)= 1
1−L

W
(
Γt,µ(ν

0),ν0).
Applying this with ν0 := νt ′,µ ′ and recalling that this is the fixed point of Γt ′,µ ′ reveals that

W (νt,µ ,νt ′,µ ′)≤ 1
1−L

W
(
Γt,µ(νt ′,µ ′),νt ′,µ ′

)
=

1
1−L

W
(
Γt,µ(νt ′,µ ′),Γt ′,µ ′(νt ′,µ ′)

)
Invoking the Lipschitz bound (6.4) and redefining the constant C <+∞ completes the proof. ■

Proof of Proposition 1.3. The Arzelà-Ascoli theorem gives a subsequence (Nk)k≥1 along which
the free energy converges to some limit f : R≥0 ×M+ → R. Arguing as in Proposition 4.3, find
sequences (N±

k ,λ N±
k )k≥1 and measures ν± ∈ Mp such that the following holds. The sequences

(N±
k )k≥1 ⊂ (Nk)k≥1 increase to infinity, the multioverlap concentration (3.15) for the Hamiltonian

(4.6) with perturbation parameters (λ N±
k )k≥1 holds for all n ≥ 1, the asymptotic spin array associ-

ated with the perturbation parameters (λ N±
k )k≥1 is generated by ν± according to (S1)-(S2), and

Pt,µ(ν
−)≤ f (t,µ)≤ Pt,µ(ν

+). (6.8)

The idea is to now fix C < +∞ as in the statement of Lemma 6.2, and show that for t < C−1,
the measure ν± is equal to the unique fixed point νt,µ ∈ Mp of the operator Γt,µ . This shows
that the sequence of enriched free energies admits the unique subsequential limit Pt,µ(νt,µ) for
t <C−1, and therefore converges to said limit in this small-time regime. It suffices to prove this at
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points (t,µ)∈R≥0×Reg(M+) such that f (t, ·) is Gateaux differentiable at µ . Indeed, the equality
f (t,µ) = Pt,µ(νt,µ) can then be extended to all measures µ ∈ M+ using a density argument
relying on Proposition 2.2 and the Lipschitz continuity results in Proposition 2.1 and Lemma 6.2.
If (t,µ) ∈ R≥0 ×Reg(M+) is such that f (t, ·) is Gateaux differentiable at µ and ν ∈ Mp is such
that Gν = Dµ f (t,µ, ·), then arguing as in the proof of Lemma 5.3 with ν∗ replaced by ν± and
invoking Lemma 5.5, it is possible to show that

Gν± = Gν = Dµ f (t,µ, ·) = Dµψ(µ + tν , ·).

By Lemma 5.2, the first of these equalities implies that ν± = ν which means that ν± satisfies the
fixed point equation

Gν± = Dµψ(µ + tν±, ·).

Invoking Lemma 5.6 reveals that ν± is a fixed point of the operator Γt,µ , and is therefore equal
to the unique fixed point νt,µ ∈ Mp whenever t < C−1. Together with (6.8) this completes the
proof. ■

We close this section by showing that the limit free energy is differentiable about the origin.
The generalization of this result to the bipartite version of the stochastic block model will be used
in Proposition 7.1 to argue that the generalization of the variational formula (1.33) does not hold
in this setting.

Corollary 6.3. If C < +∞ is as in the statement of Proposition 1.3, and f : [0,C−1]×M+ → R
denotes the limit of the sequence of enriched free energies (FN)N≥1 on [0,C−1]×M+, then the
map t 7→ f (t,0) is differentiable at t = 0.

Proof. We fix t <C−1, and denote by νt ∈Mp the unique fixed point of the operator Γt,0. Observe
that

f (t,0)− f (0,0) = Pt,0(ν0)−P0,0(ν0)+Pt,0(νt)−Pt,0(ν0). (6.9)

On the one hand,

Pt,0(ν0)−P0,0(ν0) = ψ(tν0)−ψ(0)− t
2

∫ 1

−1
Gν0(y)dν0(y). (6.10)

On the other hand, if νu,t := (1−u)ν0+uνt , then the fundamental theorem of calculus implies that

Pt,0(νt)−Pt,0(ν0) =
∫ 1

0
Dµ Pt,0(νu,t ;νt −ν0)du =

∫ 1

0

∫ 1

−1
Dµ Pt,0(νu,t ,x)d(νt −ν0)(x)du.

A direct computation reveals that for all u ∈ [0,1] and x ∈ [−1,1],

Dµ Pt,0(νu,t ,x) = t
(
Dµψ(tνu,t ,x)−Gνu,t (x)

)
.

Together with the mean value theorem and the derivative bound on the density of the initial condi-
tion’s Gateaux derivative implied by (2.22), this means that there exists a constant L > 0 such that
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the map fu,t(x) := Dµ Pt,0(νu,t ,x) is Lipschitz continuous with ∥ fu,t∥Lip ≤ Lt. It follows by defi-
nition of the Wasserstein distance (2.1) and the Lipschitz continuity of the map t 7→ νt established
in Lemma 6.2 that, up to redefining the constant L,

|Pt,0(νt)−Pt,0(ν0)| ≤ Lt2.

Together with (6.9)-(6.10), this implies that the map t 7→ f (t,0) is differentiable at the origin with

∂t f (0,0) = Dµψ(0;ν0)−
1
2

∫ 1

−1
Gν0(y)dν0(y).

This completes the proof. ■

7 Critical point selection

In this section, we argue that we do not expect the variational formula

lim
N→+∞

FN(t,µ) = sup
ν∈Mp

Pt,µ(ν) (7.1)

to hold for the general sparse stochastic block model. More precisely, we will argue that it does not
generalize to a bipartite version of the stochastic block model which we now describe.

To motivate the definition of the bipartite version of the stochastic block model, consider a
group of N students indexed by the elements {1, . . . ,N} and N tutors also indexed by the elements
{1, . . . ,N}. Each individual is assigned to an in-person group or a virtual group, depending on
whether they prefer in-person or virtual classes. The idea is to match students preferring in-person
instruction with tutors willing to deliver it, and similarly for students preferring virtual instruction.
An allocation of the 2N students and tutors into the two groups can be identified with a vector

(x,y) := ((x1,x2, . . . ,xN),(y1,y2, . . . ,yN)) ∈ Σ
2
N , (7.2)

where x ∈ ΣN encodes the allocation of students, y ∈ ΣN denotes the allocation of tutors, the label
+1 represents the group preferring in-person instruction, and the label −1 represents the group
preferring virtual instruction. We will assume that the labels Xi ∼ PX and Yi ∼ PY are taken to be
i.i.d. from two probability measures PX and PY on Σ1. This means that the vector (X ,Y ) is sampled
from the product distribution

PX
N ⊗PY

N := (PX)⊗N ⊗ (PY )⊗N . (7.3)

Using the assignment vector (X ,Y ), a random undirected bipartite graph GN := (Gi j)i, j≤N with
vertex sets {1, . . . ,N} and {1, . . . ,N} is constructed by stipulating that an edge between nodes
i, j ∈ {1, . . . ,N} in different groups is present with conditional probability

P{Gi, j = 1 | X ,Y} :=
c+∆XiYj

N
, (7.4)
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where c > 0 and ∆ ∈ (−c,c)\{0} are fixed parameters. The likelihood of the model is given by

P
{

GN = (Gi j)i, j≤N | X = x,Y = y
}
=

N

∏
i, j=1

(c+∆XiYj

N

)Gi j
(

1−
c+∆XiYj

N

)1−Gi j
, (7.5)

so Bayes’ formula implies that the posterior of the model is the Gibbs measure

P
{

X = x,Y = y | GN = (Gi j)i, j≤N
}
=

expHN(x,y)∫
Σ2

N
expHN(x′,y′)dPX

N (x′)dPY
N (y′)

(7.6)

associated with the Hamiltonian on Σ2
N defined by

H◦
N(x,y) :=

N

∑
i, j=1

log
[
(c+∆xiy j)

Gi j
(

1−
c+∆xiy j

N

)1−Gi j
]
. (7.7)

The free energy corresponding to this Hamiltonian is

F◦
N :=

1
N
E log

∫
Σ2

N

expH◦
N(x,y)dPX

N (x)dPY
N (y). (7.8)

As in Section 1, it will be convenient to modify the free energy (7.8) without changing its limiting
value, and then enrich it so that it depends on a time parameter t ≥ 0 and measure parameters
µ1,µ2 ∈ M+. For each t ≥ 0, we introduce a random variable Πt ∼ Poi(tN2) as well as an inde-
pendent family of i.i.d. random matrices (Gk)k≥1 each having conditionally independent entries
(Gk

i, j)i, j≤N taking values in {0,1} with conditional distribution

P
{

Gk
i, j = 1 | X ,Y

}
:=

c+∆XiYj

N
. (7.9)

Given a collection of random indices (ik, jk)k≥1 sampled uniformly at random from {1, . . . ,N}2,
independently of the other random variables, we define the time-dependent Hamiltonian Ht

N on Σ2
N

by

Ht
N(x,y) := ∑

k≤Πt

log
[(

c+∆xiky jk
)Gk

ik , jk

(
1−

c+∆xiky jk
N

)1−Gk
ik , jk

]
, (7.10)

and denote by

FN(t) :=
1
N
E log

∫
ΣN

expHt
N(x,y)dPX

N (x)dPY
N (y) (7.11)

its corresponding free energy. This is the Hamiltonian associated with the task of inferring the
signal (X ,Y ) from the data

D t
N :=

(
Πt ,(ik, jk)k≤Πt ,(G

k
ik, jk)k≤Πt

)
. (7.12)

Given µ1,µ2 ∈M+, we consider sequences (Λi(Nµ1))i≤N and (Λi(Nµ2))i≤N of independent Pois-
son point processes with intensity measures Nµ1 and Nµ2, and we define the measure-dependent

46



Hamiltonian Hµ1,µ2
N on Σ2

N by

Hµ1,µ2
N (x,y) := ∑

i≤N
∑

z∈Λi(Nµ1)

log
[(

c+∆xiz
)Gz,X

i
(

1− c+∆xiz
N

)1−Gz,X
i
]

+ ∑
i≤N

∑
z∈Λi(Nµ2)

log
[(

c+∆yiz
)Gz,Y

i
(

1− c+∆yiz
N

)1−Gz,Y
i
]
, (7.13)

where (Gz,X
i )i≤N and (Gz,Y

i )i≤N are conditionally independent random variables taking values in
{0,1} with conditional distributions

P{Gz,X
i = 1 | X ,z} :=

c+∆Xiz
N

and P{Gz,Y
i = 1 | Y,z} :=

c+∆Yiz
N

. (7.14)

This measure-dependent Hamiltonian is the Hamiltonian associated with the task of inferring the
signal (X ,Y ) from the data

Dµ1,µ2
N :=

(
Λi(Nµ1),(G

z,X
i )z∈Λi(Nµ1),Λi(Nµ2),(G

z,Y
i )z∈Λi(Nµ2)

)
i≤N . (7.15)

Finally, for each (t,µ1,µ2) ∈ R≥0 ×M 2
+, we introduce the enriched Hamiltonian

Ht,µ1,µ2
N (x,y) := Ht

N(x,y)+Hµ1,µ2
N (x,y) (7.16)

as well as its associated free energy

FN(t,µ1,µ2) :=
1
N
E log

∫
Σ2

N

expHt,µ1,µ2
N (x,y)dPX

N (x)dPY
N (y). (7.17)

The Hamiltonian (7.16) is associated with the inference of the signal (X ,Y ) from the data

D t,µ1,µ2
N := (D t

N ,D
µ1,µ2
N ), (7.18)

where the randomness in these two datasets is taken to be independent conditionally on (X ,Y ). As
usual, we write ⟨·⟩ for the Gibbs average associated with the Hamiltonian (7.16). This means that
for any bounded and measurable function f = f (x1,y1 . . . ,xn,yn) of finitely many replicas,

⟨ f ⟩ :=

∫
Σ2n

N
f (x1,y1, . . . ,xn,yn)∏ℓ≤n expHt,µ1,µ2

N (xℓ,yℓ)dPX
N (xℓ)dPY

N (y
ℓ)(∫

Σ2
N

expHt,µ1,µ2
N (x,y)dPX

N (x)dPY
N (y)

)n . (7.19)

The enriched free energy in (7.17) is the main object of study in the bipartite stochastic block
model much in the same way as the enriched free energy (1.22) was the main object of study in the
two-community stochastic block model.

To show that the variational formula (7.1) does not generalize to the setting of the bipartite
stochastic block model, we focus on the case with

PX := Ber(1/2) and PY := Ber(p) (7.20)
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for some p ̸= 1/2. This means that the labels Xi are centered while the labels Yi each have non-zero
mean

m := 2p−1 ̸= 0. (7.21)

Arguing as in Theorem 1.1, it can be shown that, if the sequence of enriched free energies (FN)N≥1
converges pointwise to some limit f : R≥0 ×M 2

+ → R, then this limit free energy is given by
evaluating the functional Pt,µ1,µ2 : M 2

+ → R defined by

Pt,µ1,µ2(ν1,ν2) := ψX(µ1 + tν1)+ψY (µ2 + tν2)− t
∫ 1

−1

∫ 1

−1
g(xy)dν1 dν2 (7.22)

at some critical point (ν1,ν2)∈M1/2×Mp of this functional. The initial conditions ψX : M+ →R
and ψY : M+ → R are given by (1.27) for the priors PX and PY , respectively. The generalization
of the variational formula (7.1) would then be that for all (t,µ1,µ2) ∈ R≥0 ×M 2

+, we have

lim
N→+∞

FN(t,µ1,µ2) = sup
ν1∈M1/2

sup
ν2∈Mp

Pt,µ1,µ2(ν1,ν2). (7.23)

We now argue that this formula cannot hold for small t > 0.

Proposition 7.1. If ∆ > 0, c > e and m is sufficiently small, then the variational formula (7.23) for
µ1 = µ2 = 0 does not hold in a neighborhood of t = 0.

Proof. The strategy will be to show that the time derivative of the limit free energy at the origin,
which can be shown to exist through similar arguments to those in the proof of Corollary 6.3, does
not agree with the time derivative implied by the variational formula (7.23). Determining the time
derivative of the enriched free energy (7.17) can be done through a similar computation to that in
[18, Lemma 2.1], and reveals that for all (t,µ1,µ2) ∈ R≥0 ×M 2

+,

∂tFN(t,µ1,µ2) = E
(
c+∆⟨xiy j⟩

)
log
(
c+∆⟨xiy j⟩

)
− c+O(N−1).

The assumption that X is centered and independent of Y has played its part. Together with the fact
that the Gibbs measure associated with the parameters (t,µ1,µ2) = (0,0,0) is simply the average
with respect to the prior PX ⊗PY and an analogue of Proposition 2.3, this implies that the time
derivative of the limit free energy f : R≥0 ×M 2

+ → R at the origin is given by

∂t f (0,0,0) = E(c+∆E(X1Y1)) log(c+∆E(X2Y2))− c = c log(c)− c. (7.24)

On the other hand, the validity of the variational formula (7.23) in a neighborhood of t = 0 implies
that for any t > 0 in such a neighborhood,

f (t,0,0)− f (0,0,0)
t

≥
Pt,0,0(δ0,δm)

t
=

ψX(tδ0)+ψY (tδm)− tg(0)
t

=
ψY (tδm)

t
,

where we have used that f (0,0,0) = 0 and ψX(tδ0) = tg(0) = t(c log(c)−c). Letting t tend to zero
and recalling the expression (5.1) for the directional derivative of the asymptotic initial condition
gives the lower bound

∂t f (0,0,0)≥ DµψY (0;δm) = E⟨c+∆εm⟩∗ log⟨c+∆εm⟩∗− c−∆m2.
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Noticing that the Gibbs average ⟨·⟩∗ is simply the average with respect to the prior PY and Taylor-
expanding the logarithm implies that

∂t f (0,0,0)≥ (c+∆m2) log(c+∆m2)− c−∆m2 = c log(c)− c+∆m2 log(c)+O(m4).

Whenever m is small enough, c > e and ∆ > 0, we therefore have

∂t f (0,0,0)> c log(c)− c.

This contradicts (7.24) and completes the proof. ■
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