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Abstract

We consider the problem of recovering the community structure in the stochastic block
model with two communities. We aim to describe the mutual information between the ob-
served network and the actual community structure in the sparse regime, where the total num-
ber of nodes diverges while the average degree of a given node remains bounded. Our main
contributions are a conjecture for the limit of this quantity, which we express in terms of a
Hamilton-Jacobi equation posed over a space of probability measures, and a proof that this
conjectured limit provides a lower bound for the asymptotic mutual information. The well-
posedness of the Hamilton-Jacobi equation is obtained in our companion paper. In the case
when links across communities are more likely than links within communities, the asymp-
totic mutual information is known to be given by a variational formula. We also show that our
conjectured limit coincides with this formula in this case.

1 Introduction and main results

The stochastic block model is the simplest generative model for networks with a community struc-
ture. It was first introduced in the machine learning and statistics literature [34, 37, 70, 71] but soon
emerged independently in a variety of other scientific disciplines. In the theoretical computer sci-
ence community it is often termed the planted partition model [16, 18, 32] while the mathematics
literature often refers to it as the inhomogeneous random graph model [15]. Since its introduction,
the stochastic block model has become a test bed for clustering and community detection algo-
rithms used in social networks [59], protein-to-protein interaction networks [27], recommendation
systems [44], medical prognosis [69], DNA folding [19], image segmentation [68] and natural lan-
guage processing [8] among others. In this paper we focus on the sparse stochastic block model
with two communities which we now describe.

Consider N individuals belonging to exactly one of two communities; it will be convenient to
describe the communities using vectors of ±1 with the agreement that people with the same label
belong to the same group. In this way, a vector

σ
∗ =

(
σ
∗
1 , . . . ,σ

∗
N
)
∈ ΣN = {−1,+1}N (1.1)

can be used to encode the two communities. The labels σ∗i ∼ P∗ are taken to be i.i.d. Bernoulli
random variables with probability of success p ∈ (0,1) and expectation m,

p = P∗(1) = P{σ∗i = 1} and m = Eσ
∗
1 = 2p−1. (1.2)
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The case p= 1/2 is termed the symmetric stochastic block model, and for reasons that will become
apparent below has received the greatest attention. The assignment vector σ∗ follows a product
distribution,

σ
∗ ∼ P∗N = (P∗)⊗N , (1.3)

so the expected sizes of the communities are N p and N(1− p). Using the assignment vector σ∗, a
random undirected graph GN = (Gi j)i, j≤N with vertex set {1, . . . ,N} is constructed by stipulating
that an edge between node i and node j is present with conditional probability

P
{

Gi j = 1|σ∗
}
=

{
aN if σ∗i = σ∗j
bN if σ∗i 6= σ∗j

(1.4)

for some aN ,bN ∈ (0,1) independently of all other edges. In other words, the probability that an
edge is present between node i and node j depends only on whether or not the individuals i and j
belong to the same community. To express (1.4) more succinctly, it is convenient to introduce the
average and the gap of aN and bN ,

cN =
aN +bN

2
and ∆N =

aN−bN

2
∈ (−cN ,cN), (1.5)

in such a way that
P{Gi j = 1|σ∗}= cN +σ

∗
i σ
∗
j ∆N . (1.6)

The data GN = (Gi j) is said to be sampled from the stochastic block model, and the inference task
is to recover the assignment vector σ∗ as accurately as possible given the graph GN . In the case
when ∆N ≤ 0, it is more likely for an edge to be present between nodes in different communities and
the model is called disassortative. When ∆N > 0 connections are more likely between individuals
in the same community and the model is termed assortative.

Recently, the stochastic block model has attracted much renewed attention. On a practical
level, we mention for instance extensions allowing for overlapping communities [7] that have
proved to be a good fit for real data sets in massive networks [35]. On a theoretical level, the
predictions put forth in [29] using deep but non-rigorous statistical physics arguments have been
particularly stimulating. The theoretical study of the stochastic block model has seen significant
progress in two main directions: exact recovery and detection. The exact recovery task aims to
determine the regimes of aN and bN for which there exists an algorithm that completely recovers
the two communities with high probability. Of course, a necessary condition for exact recovery is
connectivity of the random graph GN ; this makes exact recovery impossible in the sparse regime.
The sharp threshold for exact recovery was obtained in [2, 52], where it was shown that in the sym-
metric dense regime, p = 1/2, aN = a log(N)/N and bN = b log(N)/N, exact recovery is possible,
and efficiently so, if and only if

√
a−
√

b≥ 2. On the other hand, the detection task is to construct
a partition of the graph GN that is positively correlated with the assignment vector σ∗ with high
probability. The sharp threshold for detection in the sparse regime was obtained in [47, 50, 53],
where it was shown that in the symmetric sparse regime, p = 1/2, aN = a/N and bN = b/N, de-
tection is solvable, and efficiently so, if and only if (a− b)2 > 2(a+ b). Notice that detection is
much easier in the asymmetric case [20]. Indeed, the expected degree of node i conditional on its
community membership is given by

E[deg(i)|σ∗i ] = (N−1)(cN +m∆Nσ
∗
i ), (1.7)
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so meaningful information about the community structure is revealed from the degrees of nodes.
Despite this clear picture regarding the thresholds for exact recovery and detection in the set-

ting of two communities, several questions remain open. In this paper, we focus on the problem of
quantifying exactly how much information about the communities can be recovered by observing
the graph GN . The mutual information between the assignment vector σ∗ and the random graph GN
is defined by

I(GN ;σ
∗) = E log

P(GN ,σ
∗)

P(GN)P(σ∗)
= E log

P(GN |σ∗)
P(GN)

. (1.8)

The asymptotic value of this mutual information has been computed in the dense regime [9, 30, 42]
and the sparse disassortative regime [4, 28]. Its determination in the assortative sparse regime has
proved more challenging. After we posted a first version of this paper to the arXiv, this problem
was resolved in [72] in the case p = 1/2, building upon the earlier works [3, 39, 51, 54]. The
approach developed there does not generalize well to more complex models such as when more
than two communities are present [36]. In contrast, our aim here is to propose a new approach
to the analysis of the community detection problem that would be robust to model modifications.
We will discuss in much greater detail the relationship between these very recent works and our
contribution near the end of the introduction; see also [1, 5, 6] for more on problems with more
than two communities.

Henceforth, we focus exclusively on the sparse stochastic block model with

cN =
c
N

and ∆N =
∆

N
(1.9)

for some c > 0 and some non-zero ∆ ∈ (−c,c). The case ∆ = 0 is trivial since it corresponds to the
case where the graph GN and the assignment vector σ∗ are independent. The probability (1.6) that
an edge is present between node i and node j becomes

P{Gi j = 1|σ∗}=
c+∆σ∗i σ∗j

N
(1.10)

for the family of conditionally independent Bernoulli random variables GN = (Gi j). The expected
degree of any node i remains bounded with N,

Edeg(i) =
N−1

N

(
c+∆m2), (1.11)

so we are indeed in the sparse regime. The likelihood of the model is given by

P
{

GN = (Gi j)|σ∗ = σ
}
= ∏

i< j

(c+∆σiσ j

N

)Gi j
(

1−
c+∆σiσ j

N

)1−Gi j
=

exp
(
H◦N(σ)

)
N∑i< j Gi j

, (1.12)

while Bayes’ formula implies that the posterior of the model is the Gibbs measure

P
{

σ
∗ = σ |GN = (Gi j)

}
=

exp
(
H◦N(σ)

)
P∗N(σ)∫

ΣN
exp
(
H◦N(τ)

)
dP∗N(τ)

(1.13)
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associated with the Hamiltonian

H◦N(σ) = ∑
i< j

log
[(

c+∆σiσ j
)Gi j
(

1−
c+∆σiσ j

N

)1−Gi j
]
. (1.14)

Moreover, up to an error vanishing with N and a simple additive constant, the normalized mutual
information (1.8) coincides with the free energy

F◦N =
1
N
E log

∫
ΣN

expH◦N(σ)dP∗N(σ). (1.15)

Indeed, (1.12) and Bayes’ formula imply that

I(GN ;σ
∗) =

(
N
2

)
E log(c+∆σ

∗
1 σ
∗
2 )

G12
(

1−
c+∆σ∗1 σ∗2

N

)1−G12
−NF◦N . (1.16)

Averaging with respect to the randomness of G12 and Taylor expanding the logarithm reveals that

1
N

I(GN ;σ
∗) =

1
2
E
(
c+∆σ

∗
1 σ
∗
2
)

log
(
c+∆σ

∗
1 σ
∗
2
)
− c

2
− ∆m2

2
−F◦N +O

(
N−1). (1.17)

To study the mutual information (1.8), we take the perspective of statistical physics and instead
focus on the free energy (1.15). Notice that the mutual information between two independent ran-
dom variables is zero, so for ∆ = 0, the free energy is found by setting the right-hand side of (1.17)
equal to zero.

For technical reasons, it will be convenient to modify the free energy (1.15) without chang-
ing its limiting value. Conditionally on σ∗, the modified Hamiltonian will be a sum of independent
random variables, and the sum will be over a Poisson-distributed number of terms. The main advan-
tage of this construction is that we can then conveniently vary the continuous parameter encoding
the Poisson random variable, and in particular study derivatives with respect to this parameter. To
be more precise, we introduce a random variable Π1 ∼ Poi

(N
2

)
as well as an independent family

of i.i.d. random matrices (Gk)k∈N each having conditionally independent entries (Gk
i, j)i, j≤N taking

values in {0,1} with conditional distribution

P
{

Gk
i, j = 1|σ∗

}
=

c+∆σ∗i σ∗j
N

. (1.18)

Given a collection of random indices (ik, jk)k∈N sampled uniformly at random from {1, . . . ,N}2,
independently of the other random variables, we define the Hamiltonian HN on ΣN by

HN(σ) = ∑
k≤Π1

log
[(

c+∆σikσ jk
)Gk

ik , jk

(
1−

c+∆σikσ jk
N

)1−Gk
ik , jk

]
, (1.19)

and write
FN =

1
N
E log

∫
ΣN

expHN(σ)dP∗N(σ) (1.20)

for its associated free energy. We show in Appendix A that the difference between the free energies
in (1.15) and (1.20) tends to 0 as N tends to infinity. Together with (1.17), this implies that

1
N

I(GN ;σ
∗) =

1
2
E
(
c+∆σ

∗
1 σ
∗
2
)

log
(
c+∆σ

∗
1 σ
∗
2
)
− c

2
− ∆m2

2
−FN +oN(1). (1.21)
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The problem of finding the asymptotic value of the mutual information (1.8) has therefore been
reduced to the task of determining the limit of the free energy (1.20). The main contributions of
this work are the conjecture that

lim
N→∞

FN = f (1,0), (1.22)

where f (t,µ) is the solution to an infinite-dimensional Hamilton-Jacobi equation defined in (1.41),
and a proof that f (1,0) provides an upper bound for the limit of the free energy; the matching lower
bound will remain open.

To motivate and define the infinite-dimensional Hamilton-Jacobi equation (1.41), we will in-
troduce an “enriched” free energy functional by transforming the free energy (1.20) into a function
of a “time” variable t ≥ 0 and a non-negative measure µ . The “time” variable will be used to vary
the intensity of the Poisson point process Π1 appearing in the Hamiltonian (1.19). We introduced
the Hamiltonian HN to replace H◦N in order to allow for convenient integration-by-parts-like cal-
culations as we study derivatives with respect to this parameter t. The non-negative measure µ

will be decomposed as µ = sµ for s ≥ 0 and a probability measure µ . It will be used to consider
a situation in which we also observe the graph of connections of a simpler setting in which each
individual i can form connections with its own set of neighbour candidates. To be more specific,
each individual i will have an independent number Poi(sN) of neighbour candidates indexed by
the pairs (i,k) for k ≤ Poi(sN). Each candidate neighbour (i,k) will be independently assigned a
random “type” xi,k sampled from the distribution µ , and an edge will be present between individual
i and its candidate neighbour (i,k) with probability N−1(c+∆σ∗i xi,k). In the inference problem, the
“types” xi,k are revealed to the statistician. The lack of interactions between individuals makes this
piece of information much simpler to understand than the original community detection problem
we aim to make progress upon. In total, this allows us to define an “enriched” free energy, function
of t and µ , and the quantity in (1.20) can then be recovered by evaluating this enriched free energy
at t = 1 and µ = 0. We next aim to study whether variations in the t variable can be suitably com-
pensated by variations in the µ variable, leaving the free energy roughly constant. More precisely,
we hope to discover that the derivative in t of this functional can be expressed, up to a small error,
as a function of its derivative in µ . On a heuristic level, one can see that this indeed seems to be
possible, as will be clarified below. Combining ideas from the theory of viscosity solutions with the
multi-overlap concentration result in [14], we will be able to prove one inequality between the limit
free energy and the solution to the partial differential equation that arises. Although we expect the
converse bound to also be valid, significant technical challenges prevent us from proving it at the
moment. The difficulty is that the control we have on the “small error” appearing in the equation
at finite N is relatively weak. In particular, we cannot show, and do not expect, that it becomes
small as N tends to infinity for each individual choice of t and µ . On the other hand, controlling
the error after we perform a small averaging over t and µ is possible, but does not suffice for the
identification of the limit.

Let us now define the enriched free energy precisely. Denote by Pr[−1,1] the set of probabil-
ity measures on [−1,1], and given µ ∈ Pr[−1,1], consider a sequence x = (xi,k) of i.i.d. random
variables with law µ . For each s > 0 and i ≥ 1, let Πi,s ∼ Poi(sN) be independent over i ≥ 1, and
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introduce the Hamiltonian on ΣN ,

H̃s,µ
N (σ) = ∑

i≤N
∑

k≤Πi,s

log
[(

c+∆σixi,k
)G̃x

i,k
(

1−
c+∆σixi,k

N

)1−G̃x
i,k
]
, (1.23)

where the random variables (G̃x
i,k) are independent with conditional distribution

P
{

G̃x
i,k = 1|σ∗,x

}
=

c+∆σ∗i xi,k

N
. (1.24)

As alluded to above, this is the Hamiltonian associated with the task of inferring the signal σ∗ from
the data

D̃ s,µ
N =

(
Πi,s,(xi,k)k≤Πi,s,(G̃i,k)k≤Πi,s

)
i≤N , (1.25)

in the sense that the Gibbs measure associated with H̃s,µ
N is the conditional law of σ∗ given the

data D̃ s,µ
N (as in the identity (1.13) for the Hamiltonian H◦N and the data GN). For each t ≥ 0, let

Πt ∼ Poi t
(N

2

)
, and consider a time-dependent version of the Hamiltonian (1.19) defined on ΣN by

Ht
N(σ) = ∑

k≤Πt

log
[(

c+∆σikσ jk
)Gk

ik , jk

(
1−

c+∆σikσ jk
N

)1−Gk
ik , jk

]
. (1.26)

Notice that this is the Hamiltonian associated with the task of inferring the signal σ∗ from the data

D t
N =

(
Πt ,(ik, jk)k≤Πt ,(G

k
ik, jk)k≤Πt

)
. (1.27)

We now introduce an enriched Hamiltonian on ΣN ,

H̃t,s,µ
N (σ) = Ht

N(σ)+ H̃s,µ
N (σ), (1.28)

and denote by

F̃N(t,s,µ) =
1
N
E log

∫
ΣN

exp H̃t,s,µ
N (σ)dP∗N(σ) (1.29)

its associated free energy. Observe that F̃N(1,0,µ) = FN and that (1.28) is the Hamiltonian asso-
ciated with inferring the signal σ∗ from the data

D̃ t,s,µ
N = (D t

N ,D̃
s,µ
N ), (1.30)

where the randomness in these two data sets is taken to be independent conditionally on σ∗. To ob-
tain a Hamilton-Jacobi equation, it will be convenient to reinterpret the enriched free energy (1.29)
as a function of the time-parameter t > 0 and a finite measure µ; the parameter s will become the
total mass of this finite measure. We denote by Ms the space of signed measures on [−1,1],

Ms =
{

µ | µ is a signed measure on [−1,1]
}
, (1.31)

and by M+ the cone of non-negative measures on this interval,

M+ =
{

µ ∈Ms | µ is a non-negative measure
}
. (1.32)

6



We follow the convention that a signed measure can only take finite values, and in particular, every
µ ∈M+ must have finite total mass. This implies that every non-zero measure µ ∈M+ induces a
probability measure,

µ =
µ

µ[−1,1]
∈ Pr[−1,1]. (1.33)

Given a measure µ ∈M+, we define the Hamiltonian Ht,µ
N on ΣN by

Ht,µ
N (σ) = H̃t,µ[−1,1],µ

N (σ), (1.34)

where H̃0,0
N = 0 for the zero measure by continuity. The free energy associated with this Hamilto-

nian is given by
FN(t,µ) = F̃N

(
t,µ[−1,1],µ

)
, (1.35)

and once again FN = FN(1,0), where 0 denotes the zero measure. The free energy in (1.35) will
be termed the enriched free energy, and in Section 2 we will show that, up to a “small error”, it
satisfies an infinite-dimensional Hamilton-Jacobi equation which we now describe.

Introduce the function g : [−1,1]→ R defined by

g(z) = (c+∆z)
(

log(c+∆z)−1
)
= (c+∆z) log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
zn− c (1.36)

as well as the cone of functions

C∞ =

{
Gµ : [−1,1]→ R | Gµ(x) =

∫ 1

−1
g(xy)dµ(y) for some µ ∈M+

}
(1.37)

and the non-linearity C∞ : C∞→ R given by

C∞(Gµ) =
1
2

∫ 1

−1
Gµ(x)dµ(x). (1.38)

This non-linearity is well-defined by the Fubini-Tonelli theorem (see equations (1.6)-(1.7) in [31]).
Given a function f : [0,∞)×M+→ R and measures µ,ν ∈M+, we denote by Dµ f (t,µ;ν) the
Gateaux derivative of the function f (t, ·) at the measure µ in the direction ν ,

Dµ f (t,µ;ν) = lim
ε→0

f (t,µ + εν)− f (t,µ)
ε

. (1.39)

We will say that the Gateaux derivative of f admits a density at the measure µ ∈M+ if there exists
a bounded measurable function x 7→ Dµ f (t,µ,x) defined on the interval [−1,1] with

Dµ f (t,µ;ν) =
∫ 1

−1
Dµ f (t,µ,x)dν(x) (1.40)

for every measure ν ∈M+. We will often abuse notation and identify the density Dµ f (t,µ, ·)
with the Gateaux derivative Dµ f (t,µ). In Section 2 we will show that, up to an error vanishing
with N, the Gateaux derivative of the enriched free energy is indeed of the form Gµ∗ for some
µ∗ ∈M+. In fact, the measure µ∗ is the law of the Gibbs average of a uniformly sampled spin
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coordinate for the Gibbs measure associated with the Hamiltonian (1.28). We will also argue that,
if this Gibbs measure satisfies suitable overlap concentration properties, then the time derivative
of the free energy is essentially given by

∫ 1
−1 g(xy)dµ∗(x)dµ∗(y). In short, assuming the validity

of these overlap concentration properties, we are led to believe that the large-N limit of the free
energy (1.35) should satisfy the infinite-dimensional Hamilton-Jacobi equation{

∂t f (t,µ) = C∞

(
Dµ f (t,µ)

)
on R>0×M+,

f (0,µ) = ψ(µ) on M+,
(1.41)

where the initial condition ψ : M+→ R is the limit of FN(0, ·) and can be readily computed, see
Lemma 3.1. The well-posedness of this equation is established in [31], and leads to the conjecture
that the enriched free energy converges to the solution to this equation. Remembering (1.21), this
translates into a conjecture for the asymptotic mutual information.

Conjecture 1. If f denotes the unique viscosity solution to the infinite-dimensional Hamilton-
Jacobi equation (1.41), then the limit of the free energy (1.20) is given by

lim
N→∞

FN = f (1,0). (1.42)

In particular, the asymptotic value of the mutual information (1.8) is

lim
N→∞

1
N

I(GN ;σ
∗) =

1
2
E
(
c+∆σ

∗
1 σ
∗
2
)

log
(
c+∆σ

∗
1 σ
∗
2
)
− c

2
− ∆m2

2
− f (1,0). (1.43)

The main result of this paper is a proof of the upper bound in Conjecture 1.

Theorem 1.1. Denote by f the unique viscosity solution to the infinite-dimensional Hamilton-
Jacobi equation (1.41). For every t ≥ 0 and µ ∈M+, the limit of the enriched free energy (1.35)
satisfies the upper bound limsupN→∞ FN(t,µ)≤ f (t,µ). In particular, the free energy (1.20) sat-
isfies the upper bound

limsup
N→∞

FN ≤ f (1,0). (1.44)

Although the matching lower bound still remains open, we give some support in favor of
Conjecture 1 by proving that, in the disassortative regime, it matches the variational formula for
the asymptotic free energy obtained in [28]. (The condition p = 1/2 was also assumed in [28].)
We state this formula using the notation in [13], where a more direct proof is obtained using an
interpolation argument and a cavity computation. Denote by

Mp =

{
µ ∈ Pr[−1,1] |

∫ 1

−1
xdµ = m

}
(1.45)

the set of probability measures with mean m = 2p−1, and introduce the functional P : Mp→ R
defined by

P(µ) = ψ(µ)+
c
2
+

∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2), (1.46)

where x1 and x2 are independent samples from the probability measure µ .
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Theorem 1.2. In the disassortative sparse stochastic block model with ∆≤ 0, the limit of the free
energy (1.20) is given by

lim
N→∞

FN = sup
µ∈Mp

P(µ) = f (1,0). (1.47)

Our results generalize immediately to the case in which the measure P∗ is arbitrary with
compact support, with the understanding that the link probabilities are given by (1.10). We also
believe that they generalize without much change to settings with more than two communities,
although we have not checked every technical detail.

Before closing this introduction, we discuss alternatives to the conjecture and the approach
proposed in this paper. It will facilitate this discussion to point out that the proof of Theorem 1.2
also yields that when ∆≤ 0, we can identify the limit of FN(t,µ) for every t ≥ 0 and µ ∈M+ as

lim
N→∞

FN(t,µ) = f (t,µ) = sup
ν∈Pr[−1,1]

(
ψ(µ + tν)− t

2

∫ 1

−1
Gν(y)dν(y)

)
, (1.48)

where we recall that Gν is defined in (1.36)-(1.37). The identity (1.48) also remains valid if we
take the supremum over all ν ∈M+, and it is at times convenient to operate over variables that can
vary freely inside a cone.

Concerning the limit of the free energy, one may hope that the formulas given in (1.47)
and (1.48) in the case ∆ ≤ 0 remain valid in general. It seems difficult to identify the exact range
of validity of these formulas. We would be surprised if they hold for arbitrary measures P∗, but we
could not quickly find a counter-example. We are however confident that these formulas will not
generalize to settings with more than two communities.

To see this, we rely on the fact that the problem of identifying the limit of the free energy
becomes simpler in the dense regime. Indeed, if the average degree of a node diverges as N tends
to infinity, then central-limit-theorem effects take place, and one can equivalently study a fully-
connected model with Gaussian noise [30, 42]. Such models have been studied extensively [10, 11,
12, 21, 22, 23, 24, 38, 42, 43, 45, 46, 48, 49, 55, 56, 66, 67]. In this setting, a formula analogous to
(1.47)-(1.48) is known to be valid as long as the relevant non-linearity is convex; but in general, one
needs to modify this formula into a “sup-inf” formulation. Possibly the simplest setting in which
this happens is for the problem in which we observe a rank-one matrix of the form XYT plus noise,
where X and Y are two vectors with i.i.d. coordinates. In this setting, the non-linearity replacing C∞

in (1.41) is the mapping (x,y) 7→ xy, which is non-convex. The functional to be optimized over as
in (1.48) would look like ψ(x0 + tx,y0 + ty)− t

2xy. Finding counter-examples to the formula is
made relatively easy by considering candidates with, say, x = 0; in this case, the counter-term xy
vanishes, so we can freely choose y as large as desired to maximize the ψ functional and obtain a
contradiction. A similar phenomenon also occurs in the context of spin glasses, and a more precise
discussion of this point can be found in Subsection 6.2 of [57].

Coming back to the sparse setting investigated in this paper, we can leverage this observation
to demonstrate that the formulas (1.47) or (1.48) will also be invalid in general. To give a concrete
example, consider the following scenario, which can be thought of as a problem with four com-
munities, or as a bipartite version of the two-community problem. We first color the N nodes in
red or blue, say with groups of sizes about N/2. We think of this coloring as fixed, e.g. the red
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nodes are the first bN/2c indices in {1, . . . ,N}, and it is perfectly known to the statistician. Next,
we attribute ±1 labels to each node independently, possibly with different biases according to the
color of the node. Finally, we draw links between nodes i and j according to the formula in (1.10),
with the additional constraint that only links between nodes of different colors are allowed. The
task is to study the asymptotic behavior of the mutual information between the ±1 labels and the
observed graph. This problem is constructed in such a way that, in the limit of diverging average
degree, it reduces to the problem of observing a noisy version of XYT, as discussed in the previous
paragraph — the vectors X and Y contain the ±1 labels of the red and blue nodes respectively.
Using the results of [30, 42] to justify the large-degree approximation, or possibly even directly,
we are confident that we can then produce counter-examples to the formulas (1.47) and (1.48).

For fully-connected models with possibly non-convex non-linearities such as the XYT exam-
ple, the limit of the free energy was identified in the form of a “sup-inf” formula; see [21] for the
most general results. Translating this result into our present context would suggest that the limit
free energy might be given by

sup
ρ∈M+

inf
ν∈M+

(
ψ(ν)+

∫ 1

−1
Gρ(y)d(µ−ν)(y)+ t

∫ 1

−1
Gρ(y)dρ(y)

)
. (1.49)

The key ingredient for showing the validity of the corresponding formula in the dense regime is
that the enriched free energy is a convex function of its parameters in this case. In our setting, the
question would translate into whether the mapping (t,µ) 7→ FN(t,µ) is convex. However, it was
shown in [41] that this mapping is in fact not convex in the sparse regime, even in the limit of
large N. This non-convexity property not only breaks down the proof strategy of [21]; in fact, we
can leverage it to assert that the quantity (1.49) can therefore not be the limit of the free energy
in this case. Indeed, the expression in (1.49) is a supremum over ρ of affine functions of (t,µ); it
therefore follows that the whole expression is convex in (t,µ). By [41], it is therefore not possible
that the expression in (1.49) be the limit of the free energy.

To sum up, if we aim for a formula that is robust to model changes, then both (1.48) and (1.49)
can be ruled out. We do not know of alternative candidate variational formulas for the limit of the
free energy. This situation seems analogous to that encountered in the context of spin glasses with
possibly non-convex interactions, as discussed in Section 6 of [57].

We now turn to a discussion of the recent works [3, 36, 39, 51, 54, 72]. Noticing that the graph
GN locally looks like a tree, these works aim to leverage a connection between community detec-
tion and a process of broadcasting on trees. We briefly describe the latter problem on a regular tree
for convenience. We first attribute a random ±1 random variable σ∗ to the root node. Then, recur-
sively and independently along each edge, we “broadcast” it to each child node, by flipping the sign
of the spin with some fixed probability δ ∈ (0,1). One basic question is to determine the mutual
information between the spin σ∗ attributed to the root node and the spins on all the nodes at a given
depth, in the limit of large depth. A fruitful variant of this question consists in adding a “survey”
of all nodes, by randomly revealing the spins attached to each node independently with some fixed
probability ε . If, in the limit of large depth, the knowledge of the spins on all the leaf vertices does
not bring meaningful additional information on σ∗ on top of surveying compared with surveying
alone, then one can directly relate the mutual information between σ∗ and the survey to the mu-
tual information in the community detection problem; in this case, one may speak of “boundary
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irrelevance”. To decide whether boundary irrelevance holds, one can study the evolution of the log-
likelihood ratio between the two hypotheses σ∗ =±1 upon revealing the boundary information at
a given depth. One can indeed calculate the law of this quantity recursively as the depth varies, by
iterating a fixed map called the “BP operator”. In order to establish the property of boundary irrel-
evance, it then essentially suffices to show that this BP operator admits a unique non-trivial fixed
point. Building upon earlier works, it was recently established in [72] that this uniqueness property
holds for the setting corresponding to the detection of two balanced communities, p = 1/2. As a
byproduct, this yields a full identification of the limit of the mutual information (1.8) in this case.
The uniqueness of a non-trivial fixed point to the BP operator has subsequently been shown to be
false in general for models with more than two communities [36].

We now point out some connections between the present paper and this series of works, and
discuss how our approach might ultimately be able to circumvent the difficulties associated with
the possible existence of multiple fixed points to the BP operator. To start with, recall that the func-
tion ψ is the limit of FN(0, ·), which itself corresponds to a simple inference problem in which there
is no interaction between the nodes {1, . . . ,N}. We can therefore identify this object explicitly, see
Lemma 3.1. From Remark 3.2, we can also identify a mapping Γ : M+→ Pr[−1,1] such that for
every µ ∈M+, we have Dµψ(µ, ·) = GΓ(µ). This mapping is closely related to the BP operator
discussed above, and is described as follows. Let σ∗ be sampled according to P∗, and conditionally
on σ∗, let Π(µ) denote a Poisson point process with intensity measure (c+∆σ∗x)dµ(x). Then the
probability measure Γ(µ) is defined to be the law of the random variable∫

Σ1
σ exp(−∆σ

∫ 1
−1 xdµ)∏x∈Π(µ)(c+∆σx)dP∗(σ)∫

Σ1
exp(−∆σ

∫ 1
−1 xdµ)∏x∈Π(µ)(c+∆σx)dP∗(σ)

. (1.50)

Notice next that the condition for the measure ν to be a critical point in the variational problem on
the right side of (1.48) can be written as

Gν = Dµψ(µ + tν , ·). (1.51)

At least when ∆< 0, the mapping ν 7→Gν is also injective, so the relation (1.51) can be equivalently
written as

ν = Γ(µ + tν). (1.52)

Restricting to the case of (t,µ) = (1,0), this boils down to finding fixed points of the mapping Γ.
That there is a connection between the variational formula in Theorem 1.2 and some BP fixed
point equation has already been observed in [28, 29] and elsewhere. The less classical question is
to relate this to the Hamilton-Jacobi equation (1.41) for arbitrary ∆. In finite dimensions, Hamilton-
Jacobi equations can be solved for short times using the method of characteristics. Moreover, the
slope of the characteristic line is computed by evaluating the gradient of the non-linearity at the
gradient of the initial condition. In our context, the characteristic line emanating from a measure
ν ∈M+ is the trajectory

t ′ 7→ (t ′,ν− t ′Γ(ν)), (1.53)

for t ′ varying in R≥0. As long as characteristic lines emanating from different choices of ν do
not intersect each other, we can then calculate the value of the solution along each characteristic
line using the equation and the fact that the gradient of the solution remains constant along each
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line [33]. The condition (1.52) turns out to be equivalent to asking that the characteristic line em-
anating from µ + tν passes through the point (t,µ), since the latter condition can be written as
µ = µ + tν− tΓ(µ + tν). In other words, for each fixed (t,µ), there is a simple one-to-one corre-
spondence between the fixed points to (1.52) and the characteristic lines that pass through (t,µ).
The formula for prescribing the value of the solution along a characteristic line starting from µ+tν
is then as in the supremum in (1.48). As long as t is sufficiently small that the equation (1.52) has
a unique solution for each µ , this gives us a clear procedure for computing the solution to (1.40).
Once characteristic lines start to intersect each other, the viscosity solution to (1.41) aggregates
these conflicting trajectories in a physically reasonable way, and our conjecture is that the free
energy FN is tracking this in the limit of large N.

Another alternative to the conjecture proposed here would be that the limit of the free en-
ergy is the maximal value one gets by plugging every possible solution of the fixed-point equa-
tion (1.52) into the functional inside the supremum in (1.48). But in view of the discussion in
the previous paragraph, counter-examples to the variational formula in (1.48) seem to produce
counter-examples to this possibility as well.

To conclude this introduction, we give a brief outline of the paper. In Section 2 we show that,
up to an error vanishing with N, the enriched free energy (1.35) satisfies the infinite-dimensional
Hamilton-Jacobi equation (1.41), provided that all multi-overlaps concentrate. The derivative com-
putations that lead to the Hamilton-Jacobi equation are similar in spirit to those in Lemma 6 of [61],
with some new ideas required to compute the Gateaux derivative. Section 3 is devoted to estab-
lishing the well-posedness of the infinite-dimensional Hamilton-Jacobi equation (1.41) using the
results in [31], which in turn follows ideas from [25, 26, 58, 57]. In Section 4, a finitary version of
the multi-overlap concentration result in [14] is combined with the strategy introduced in [58, 57]
to prove Theorem 1.1. The final section is devoted to the proof of Theorem 1.2. Using the Hopf-Lax
formula established in [31], the variational expression in (1.47) is shown to coincide with the right
side of (1.47), and we can thus appeal to Theorem 1.1 to obtain an upper bound for the limit free
energy. The matching lower bound is obtained through an interpolation argument taken from [13].
So as to not disrupt the flow of the paper, a number of technical arguments have been postponed to
the appendices. In Appendix A, it is shown that the free energy functionals (1.15) and (1.20) are
asymptotically equivalent. The proof relies on the binomial-Poisson approximation. Appendix B
is devoted to proving that a perturbed version of the enriched free energy (1.35) is self-averaging,
in the sense that the unaveraged free energy concentrates around its average value. This concen-
tration result plays an important part in the proof of Theorem 1.1 and relies upon the generalized
Efron-Stein inequality [17]. In Appendix C, a finitary version of the multi-overlap concentration
result in [14] is established. In addition to being finitary, the most notable difference between our
multi-overlap result and that in [14] is that we show multi-overlap concentration for any pertur-
bation parameter satisfying a condition that may be verified in practice, as opposed to obtaining
multi-overlap concentration on average over the set of perturbation parameters. This additional
control on the choice of parameters is essential in the proof of Theorem 1.1.

Acknowledgements. We would like to warmly thank Dmitry Panchenko and Jean Barbier for
sharing their notes [13] on the free energy in the disassortative sparse stochastic block model with
us, which provided us with a very useful starting point and helped us with many of the computations
in Section 2.
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2 The Hamilton-Jacobi equation

In this section, we compute the derivative of the enriched free energy (1.35) with respect to t ≥ 0
and µ ∈M+. This will allow us to see that, up to an error vanishing with N, the enriched free
energy heuristically satisfies (1.41). It will be convenient to write 〈·〉 for the average with respect
to the Gibbs measure associated with the Hamiltonian (1.34). This means that for any bounded and
measurable function f = f (σ1, . . . ,σn) of finitely many replicas,

〈 f (σ1, . . . ,σn)〉= 〈 f 〉=
∫

Σn
N

f (σ1, . . . ,σn)∏`≤n expHt,µ
N (σ `)dP∗N(σ

`)(∫
ΣN

expHt,µ
N (σ)dP∗N(σ)

)n . (2.1)

In this notation, the replicas σ1, . . . ,σn represent i.i.d. samples under the random measure 〈·〉. By
construction, we have that

〈 f (σ1)〉= E
[

f (σ∗)
∣∣D t,µ

N
]
, (2.2)

where D t,µ
N = D̃

t,µ[−1,1],µ
N is the data defined in (1.30).

Our computations will be considerably simplified by the Nishimori identity. This identity will
allow us to freely interchange one replica σ ` by the signal σ∗ when taking an average with respect
to all sources of randomness, thus avoiding a cascade of new replicas as we differentiate the free en-
ergy. This identity states that, for every bounded and measurable function f = f (σ1, . . . ,σn,D t,µ

N )
of finitely many replicas and the data,

E
〈

f
(
σ

1,σ2, . . . ,σn,D t,µ
N
)〉

= E
〈

f
(
σ
∗,σ2, . . . ,σn,D t,µ

N
)〉
. (2.3)

This can be first verified for functions of product form using (2.2), and then extended to all bounded
and measurable functions by a monotone class argument.

We now turn our attention to the computation of the time derivative of the enriched free
energy (1.35). We fix a finite measure µ ∈M+ and proceed as in Lemma 6 of [61]. For each
parameter λ > 0 and every integer m≥ 0, we denote by

π(λ ,m) =
λ m

m!
exp(−λ ) (2.4)

the mass attributed to the atom m by a Poi(λ ) distribution. It will be convenient to set the conven-
tion that π(λ ,−1) = 0. We write

HN,m(σ) = ∑
k≤m

log
[(

c+∆σikσ jk
)Gk

ik , jk

(
1−

c+∆σikσ jk
N

)1−Gk
ik , jk

]
(2.5)

for the Hamiltonian (1.19) conditional on there being m terms in the sum, and introduce the parti-
tion function

ZN,m =
∫

ΣN

exp
(

HN,m(σ)+ H̃µ[−1,1],µ
N (σ)

)
dP∗N(σ). (2.6)

In this notation, the enriched free energy (1.35) may be expressed as

FN(t,µ) =
1
N ∑

m≥0
π

(
t
(

N
2

)
,m
)
E logZN,m. (2.7)
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To take the time derivative of this expression, we will rely upon the simple fact that

∂λ π(λ ,m) = π(λ ,m−1)−π(λ ,m). (2.8)

Lemma 2.1. For any t > 0 and µ ∈M+,

∂tFN(t,µ) =
1
2
E
(
c+∆〈σiσ j〉

)
log
(
c+∆〈σiσ j〉

)
− ∆m2

2
− c

2
+O(N−1), (2.9)

where the indices i, j ∈ {1, . . . ,N} are uniformly sampled independently of all other sources of
randomness.

Proof. To simplify notation, let λ (t) = t
(N

2

)
. Leveraging (2.8) to differentiate the right-hand side

of (2.7) yields

∂tFN(t,µ) =
1
N

(
N
2

)
∑

m≥0

(
π(λ (t),m−1)−π(λ (t),m)

)
E logZN,m

=
1
N

(
N
2

)
∑

m≥0
π(λ (t),m)E log

ZN,m+1

ZN,m
. (2.10)

Denote by i, j ∈ {1, . . . ,N} uniformly sampled indices, and write Gi, j for a random variable with
conditional distribution (1.18). These random variables are taken to be independent of all other
sources of randomness and of each other. Since

ZN,m+1
d
=
∫

ΣN

(
c+∆σiσ j

)Gi, j
(

1−
c+∆σiσ j

N

)1−Gi, j
exp
(

HN,m(σ)+Hµ[−1,1],µ
N (σ)

)
dP∗N(σ),

it follows by (2.10) and the definition of the Gibbs average in (2.1) that

∂tFN(t,µ) =
1
N

(
N
2

)
E log

〈(
c+∆σiσ j

)Gi, j
(

1−
c+∆σiσ j

N

)1−Gi, j
〉
.

Remembering the explicit form of the conditional distribution (1.18), and averaging with respect
to the randomness of Gi, j reveals that

∂tFN(t,s,µ) =
1
2
E
(
c+∆σ

∗
i σ
∗
j
)

log〈c+∆σiσ j〉

+
N
2
E
(

1−
c+∆σ∗i σ∗j

N

)
log
〈

1−
c+∆σiσ j

N

〉
+O(N−1),

Taylor expanding the logarithm and keeping only first order terms reduces this to

∂tFN(t,µ) =
1
2
E
(
c+∆σ

∗
i σ
∗
j
)

log〈c+∆σiσ j〉−
∆

2
E〈σiσ j〉−

c
2
+O(N−1)

=
1
2
E
(
c+∆σ

∗
i σ
∗
j
)

log〈c+∆σiσ j〉−
∆

2
Eσ
∗
i σ
∗
j −

c
2
+O(N−1)

=
1
2
E
(
c+∆σ

∗
i σ
∗
j
)

log
(
c+∆〈σiσ j〉

)
− ∆m2

2
− c

2
+O(N−1),

where the second equality uses the Nishimori identity (2.3) and the third equality uses the fact
that i and j are distinct with overwhelming probability. Noticing that the Gibbs average 〈σiσ j〉 is a
measurable function of the data by (2.2), and applying the Nishimori identity (2.3) completes the
proof. �
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To compare (2.9) with the Gateaux derivative of the enriched free energy which we will com-
pute below, it will be convenient to Taylor expand the logarithm. This will make the dependence
of the time-derivative of the enriched free energy on the multi-overlaps

R`1,...,`n =
1
N ∑

i≤N
σ
`1
i · · ·σ

`n
i (2.11)

associated with the enriched Hamiltonian (1.34) explicit. Here (σ `) denotes a sequence of i.i.d.
replicas sampled from the Gibbs measure (2.1). To simplify notation, we will write R[n] = R1,...,n.

Corollary 2.2. For any t > 0 and µ ∈M+,

∂tFN(t,µ) =
1
2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
− c

2
+O(N−1). (2.12)

Proof. A Taylor expansion of the logarithm shows that

log
(
c+∆〈σiσ j〉

)
= log(c)+ log

(
1+

∆

c
〈σiσ j〉

)
= log(c)−∑

n≥1

(−∆/c)n

n
〈σiσ j〉n.

Together with the Nishimori identity (2.3) this implies that

E
(
c+∆〈σiσ j〉

)
log
(
c+∆〈σiσ j〉

)
=
(
c+∆m2) log(c)

−∑
n≥1

(−∆/c)n

n
E
(
c+∆〈σiσ j〉

)
〈σiσ j〉n. (2.13)

Averaging with respect to the randomness of the uniformly sampled indices i, j∈{1, . . . ,N} reveals
that

E
(
c+∆〈σiσ j〉

)
〈σiσ j〉n = cE

〈
R2
[n]

〉
+∆E

〈
R2
[n+1]

〉
.

Remembering that |∆| < c and noticing that E〈R2
1〉 = m2 +O(N−1) by the Nishimori identity, it

follows that

∑
n≥1

(−∆/c)n

n
E
(
c+∆〈σiσ j〉

)
〈σiσ j〉n

=−∆E
〈
R2

1
〉
+ c ∑

n≥2

(
(−∆/c)n

n
− (−∆/c)n

n−1

)
E
〈
R2
[n]

〉
+O(N−1)

=−∆m2− c ∑
n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
+O(N−1).

Substituting this into (2.13) and invoking Lemma 2.1 completes the proof. �

The computation of the Gateaux derivative of the enriched free energy (1.35) at a measure
µ ∈M+ in the direction of a probability measure ν ∈ Pr[−1,1],

DµFN(t,µ;ν) = lim
ε→0

FN(t,µ + εν)−FN(t,µ)
ε

, (2.14)
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is slightly more involved. It will be useful to compute the derivative of the free energy (1.29) with
respect to the parameter s ≥ 0 first. Fix a probability measure µ ∈ Pr[−1,1] and a time t ≥ 0. For
each i≤ N write

H̃s,i
N,m(σ) = ∑

j 6=i
∑

k≤Π j,s

log
[(

c+∆σ jx j,k
)G̃x

j,k
(

1−
c+∆σ jx j,k

N

)1−G̃x
j,k
]

+ ∑
k≤m

log
[(

c+∆σixi,k
)G̃x

i,k
(

1−
c+∆σixi,k

N

)1−G̃x
i,k
]

(2.15)

for the Hamiltonian (1.23) conditional on the i’th Poisson sum containing m terms, and denote by

Zs,i
N,m =

∫
ΣN

exp
(
Ht

N(σ)+ H̃s,i
N,m(σ)

)
dP∗N(σ) (2.16)

its associated partition function. In this notation, the free energy (1.29) may be expressed as

F̃N(t,s,µ) =
1
N ∑

m≥0
π(sN,m)E logZs,i

N,m. (2.17)

Lemma 2.3. For any t > 0, s > 0 and µ ∈ Pr[−1,1],

∂sF̃N(t,s,µ) = E
(
c+∆〈σi〉xi

)
log
(
c+∆〈σi〉xi

)
− c−∆mEx1 +O(N−1), (2.18)

where the index i ∈ {1, . . . ,N} is uniformly sampled and the random variables (xi) are sampled
from the measure µ independently of all other sources of randomness.

Proof. Conditioning on the number of terms in each of the Poisson sums that appear in the defini-
tion of the free energy (1.29) and leveraging the product rule as well as equations (2.17) and (2.8),
we see that

∂sF̃N(t,s,µ) =
1
N ∑

i≤N
∑

m≥0
∂sπ(sN,m)E logZs,i

N,m = ∑
i≤N

∑
m≥0

π(sN,m)E log
Zs,i

N,m+1

Zs,i
N,m

. (2.19)

For each i≤N, denote by xi a sample from the measure µ , and write G̃x
i for a random variable with

conditional distribution (1.24). These random variables are taken to be independent for different
values of i≤ N, and independent of all other sources of randomness. Since

Zs,i
N,m+1

d
=
∫

ΣN

(
c+∆σixi

)G̃x
i
(

1− c+∆σixi

N

)1−G̃x
i
exp
(
Ht

N(σ)+ H̃s,i
N,m(σ)

)
dP∗N(σ), (2.20)

it follows by (2.19) and the definition of the Gibbs average in (2.1) that

∂sF̃N(t,s,µ) = ∑
i≤N

E log
〈(

c+∆σixi
)G̃x

i
(

1− c+∆σixi

N

)1−G̃x
i
〉
. (2.21)
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Remembering the explicit form of the conditional distribution (1.18) reveals that

∂sF̃N(t,s,µ) =
1
N ∑

i≤N
E
(
c+∆σ

∗
i xi
)

log〈c+∆σixi〉

+ ∑
i≤N

E
(

1− c+∆σ∗i xi

N

)
log
〈

1− c+∆σixi

N

〉
.

Taylor expanding the logarithm and keeping only first order terms reduces this to

∂sF̃N(t,s,µ) =
1
N ∑

i≤N
E
(
c+∆σ

∗
i xi
)

log〈c+∆σixi〉− c− ∆

N ∑
i≤N

ExiE〈σi〉+O(N−1)

=
1
N ∑

i≤N
E
(
c+∆σ

∗
i xi
)

log
(
c+∆〈σi〉xi

)
− c−∆mEx1 +O(N−1),

where the second equality uses the Nishimori identity (2.3). Noticing that the Gibbs average 〈σi〉
is a measurable function of the data by (2.2) and applying the Nishimori identity (2.3) completes
the proof. �

Before leveraging this result to compute the Gateaux derivative (2.14), we begin with some
distributional identities which will simplify the calculation. Fix a finite measure µ ∈M+ and a
probability measure ν ∈ Pr[−1,1]. Let s = µ[−1,1] and fix ε > 0. Introduce the measure λ =
µ + εν and observe that

λ =
λ

s+ ε
=

s
s+ ε

µ +
ε

s+ ε
ν . (2.22)

Denote by (xi,k) i.i.d. random variables sampled from the measure µ , and write (yi,k) for i.i.d. ran-
dom variables sampled from the measure ν . Given i.i.d. random variables (wi,k) with distribution
Ber( s

s+ε
), notice that by (2.22) the random variables

zi,k = x
wi,k
i,k y

1−wi,k
i,k (2.23)

are i.i.d. with distribution λ . In particular, if (G̃z
i,k) are independent random variables with condi-

tional distribution (1.24), the Hamiltonian (1.23) may be expressed as

H̃s+ε,λ
N (σ)

d
= ∑

i≤N
∑

k≤Πi,s+ε

log
[(

c+∆σizi,k
)G̃z

i,k
(

1−
c+∆σizi,k

N

)1−G̃z
i,k
]
. (2.24)

This identity will allow us to linearize the enriched free energy (1.35) upon realizing that

FN(t,µ + εν) = F̃N
(
t,s+ ε,λ

)
. (2.25)

To make the computation as clear as possible, it will be convenient to introduce additional notation.
In the same spirit as (2.15), for each i≤ N, write

H̃s,i,+
N,m (σ) = H̃s,i

N,m + log
[(

c+∆σiyi
)G̃y

i
(

1− c+∆σiyi

N

)1−G̃y
i
]

(2.26)
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for the Hamiltonian (1.23) conditional on the i’th Poisson sum containing m+1 terms one of which
is sampled from the measure ν . Denote by

Zs,i,+
N,m =

∫
ΣN

exp
(
Ht

N(σ)+ H̃s,i,+
N,m (σ)

)
dP∗N (2.27)

its associated partition function. It will be useful to record the following consequence of Taylor’s
theorem, ( s

s+ ε

)
∑i≤N mi

= 1− ε

s+ ε
∑
i≤N

mi +o(ε), (2.28)

as well as the elementary identity,

mπ(λ ,m) = λπ(λ ,m−1). (2.29)

Lemma 2.4. For any t > 0, µ ∈M+ and ν ∈ Pr[−1,1],

DµFN(t,µ;ν) = E
(
c+∆〈σi〉yi

)
log
(
c+∆〈σi〉yi

)
+NE

(
1− c+∆〈σi〉yi

N

)
log
(

1− c+∆〈σi〉yi

N

)
(2.30)

where the index i ∈ {1, . . . ,N} is uniformly sampled and the random variables (yi) are sampled
from the measure ν independently of all other sources of randomness.

Proof. Leveraging (2.24), conditioning on the number of random variables (wi,k) that are equal to
one and using (2.28), we see that

F̃N(t,s+ ε,λ ) = F̃N(t,s+ ε,µ)− ε

s+ ε
∑
i≤N

∑
m≥0

mπ((s+ ε)N,m)
1
N
E logZs+ε,i

n,m

+
ε

s+ ε
∑
i≤N

∑
m≥0

(m+1)π((s+ ε)N,m+1)
1
N
E logZs+ε,i,+

N,m +o(ε).

Keeping in mind (2.29), this simplifies to

F̃N
(
t,s+ ε,λ

)
= F̃N(t,s+ ε,µ)

+ ε ∑
i≤N

∑
m≥0

π
(
(s+ ε)N,m

)(
E log

Zs+ε,i,+
N,m

Zs+ε,i
N,m

−E log
Zs+ε,i

N,m+1

Zs+ε,i
N,m

)
+o(ε). (2.31)

For each i≤ N, denote by xi a sample from the measure µ and by yi a sample from the measure ν .
Write G̃x

i and G̃y
i for random variables with conditional distribution (1.24). These random variables

are taken to be independent for different values of i ≤ N, and independent of all other sources of
randomness. Combining (2.31) with (2.20) and the distributional identity

Zs+ε,i,+
N,m

d
=
∫

ΣN

(
c+∆σiyi

)G̃y
i
(

1− c+∆σiyi

N

)1−G̃y
i
exp
(
Ht

N(σ)+ H̃s+ε,i
N,m (σ)

)
dP∗N(σ)
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yields

F̃N(t,s+ ε,λ ) = F̃N(t,s+ε,µ)+ ε ∑
i≤N

E log
〈(

c+∆σiyi
)G̃y

i
(

1− c+∆σiyi

N

)1−G̃y
i
〉

− ε ∑
i≤N

E log
〈(

c+∆σixi
)G̃x

i
(

1− c+∆σixi

N

)1−G̃x
i
〉
+o(ε). (2.32)

Together with (2.21), this implies that

DµFN(t,µ;ν) = lim
ε→0

F̃N(t,s+ ε,λ )− F̃N(t,s+ ε,µ)

ε
+∂sFN(t,s,µ)

= ∑
i≤N

E log
〈(

c+∆σiyi
)G̃y

i
(

1− c+∆σiyi

N

)1−G̃y
i
〉
.

Notice that the Gibbs averages in (2.32) depend on ε , so in taking this limit we have implicitly
used the fact that this dependence is continuous. Proceeding exactly as in the proof of Lemma 2.3
(after display (2.21)) completes the proof. �

To compare (2.30) with the time-derivative of the enriched free energy in Corollary 2.2 it will
be convenient to once again Taylor expand the logarithm. We will write

DµFN(t,µ,x) = E
(
c+∆〈σi〉x

)
log
(
c+∆〈σi〉x

)
+NE

(
1− c+∆〈σi〉x

N

)
log
(

1− c+∆〈σi〉x
N

)
(2.33)

for the density of the Gateaux derivative DµFN(t,µ). Taylor expanding the logarithm shows that

DµFN(t,µ,x) = E
(
c+∆〈σi〉x

)
log
(
c+∆〈σi〉x

)
− c−∆mx+O(N−1). (2.34)

Corollary 2.5. For every t > 0 and µ ∈M+,

DµFN(t,µ,x) =
(
c+∆mx

)
log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
E〈R[n]〉xn− c+O(N−1). (2.35)

Proof. Fix ν ∈ Pr[−1,1]. A Taylor expansion of the logarithm shows that

E
(
c+∆〈σi〉yi

)
log
(
c+∆〈σi〉yi

)
=
(
c+∆mEy1

)
log(c)

−∑
n≥1

(−∆/c)n

n
E
(
c+∆〈σi〉yi

)
yn

i 〈σi〉n, (2.36)

where we have used that yi is sampled from ν ∈ Pr[−1,1] and is independent of all other sources
of randomness. Since |∆|< c and E〈σi〉= m by the Nishimori identity,

∑
n≥1

(−∆/c)n

n
E
(
c+∆〈σi〉yi

)
yn

i 〈σi〉n = ∑
n≥1

(−∆/c)n

n

(
cEyn

i E〈σi〉n +∆Eyn+1
i E〈σi〉n+1)

=−∆EyiE〈σi〉+ c ∑
n≥2

(
(−∆/c)n

n
− (−∆/c)n

n−1

)
Eyn

i E〈σi〉n

=−∆mEy1− c ∑
n≥2

(−∆/c)n

n(n−1)
E〈R[n]〉Eyn

i .

Substituting this into (2.36) and recalling (2.34) completes the proof. �
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This result implies that the Gateaux derivative density (2.33) is close to an element in the cone
of functions (1.37). Indeed, if µ∗ = L (〈σi〉) denotes the law of the Gibbs average of a uniformly
sampled spin coordinate, then (2.34) may be formally rewritten as

DµFN(t,µ,x)'
∫ 1

−1
g(xy)dµ

∗(y) = Gµ∗(x), (2.37)

using the Nishimori identity (2.3) to assert that E〈σi〉= m. It follows by another application of the
Nishimori identity that

C∞

(
DµFN(t,µ)

)
' 1

2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
(
E〈R[n]〉

)2− c
2
. (2.38)

Comparing this with the expression in Corollary 2.2, and assuming the approximate concentration
of all the multi-overlaps,

E〈R2
[n]〉 '

(
E〈R[n]〉

)2
, (2.39)

reveals that, up to a small error, the enriched free energy (1.35) formally satisfies the infinite-
dimensional Hamilton-Jacobi equation (1.41),

∂t f (t,µ) = C∞(Dµ f (t,µ)) on R>0×M+. (2.40)

As already mentioned in the introduction, the difficulty in making this informal derivation
rigorous is that we do not expect the concentration of the multi-overlaps (2.39) to be valid for each
choice of the parameters t and µ . On the positive side, the arguments in [14] reveal that the con-
centration of the multi-overlaps can be enforced through a small perturbation of the Hamiltonian
which does not affect the limit of the free energy, for most values of the perturbation parameters.
Yet, the solution theory to Hamilton-Jacobi equations is rather sensitive to details, and in particu-
lar, this control “for most values” or after a suitable local averaging is not sufficient to allow us to
conclude. The next section will clarify the nature of this solution theory.

3 Well-posedness of the Hamilton-Jacobi equation

In this section, we leverage the main result in [31] to establish the well-posedness of the infinite-
dimensional Hamilton-Jacobi equation (1.41). The first order of business will be to identify the
initial condition in (1.41). For each integer N ≥ 1, let

ψN(µ) = FN(0,µ) = F̃N(0,µ[−1,1],µ), (3.1)

and notice that the initial condition ψ : M+→ R in (1.41) should be the limit of the initial con-
ditions (ψN). Following [13], we will first compute this limit for discrete measures µ ∈M+, and
later show that the convergence may be extended to all measures in M+ through a density argu-
ment. Given a measure µ ∈M+, it will be convenient to write Π±(µ) for the generalized Poisson
point process with mean measure (c±∆x)dµ(x) on [−1,1]. By generalized Poisson process we
mean that an atom a ∈ [−1,1] with µ({a}) > 0 is counted with independent Poisson multiplicity
having mean (c±∆a)µ({a}). It turns out that the limit of the initial conditions (3.1) is given by
an appropriate average with respect to the randomness of the generalized Poisson point processes
Π±(µ), which we denote by E as usual.
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Lemma 3.1. For any discrete measure µ ∈M+, the sequence (ψN(µ)) converges to

ψ(µ) =−µ[−1,1]c+ pE log
∫

Σ1

exp(−µ[−1,1]∆σ Ex1) ∏
x∈Π+(µ)

(c+∆σx)dP∗(σ)

+(1− p)E log
∫

Σ1

exp(−µ[−1,1]∆σ Ex1) ∏
x∈Π−(µ)

(c+∆σx)dP∗(σ), (3.2)

where x1 has law µ .

Remark 3.2. From this lemma and its extension to any µ ∈M+ proved in Proposition 3.6 below,
one can also show that for every µ ∈M+, the density of the Gateaux derivative Dµψ(µ) is

Dµψ(µ,x) = pE〈c+∆σx〉+ log〈c+∆σx〉+
+(1− p)E〈c+∆σx〉− log〈c+∆σx〉−− c−∆mx, (3.3)

where 〈·〉± denote the Gibbs averages given by

〈 f (σ)〉± :=

∫
Σ1

f (σ)exp(−µ[−1,1]∆σ Ex1)∏x∈Π±(µ)(c+∆σx)dP∗(σ)∫
Σ1

exp(−µ[−1,1]∆σ Ex1)∏x∈Π±(µ)(c+∆σx)dP∗(σ)
. (3.4)

Proof of Lemma 3.1. Since µ ∈M+ is a discrete measure, it may be expressed as

µ = ∑
`≤K

p`δa`

for some integer K ≥ 1, some atoms a` ∈ [−1,1] and some weights p` ≥ 0. Let s = µ[−1,1], and
introduce independent Poisson random variables Πi,s ∼ Poi(sN) in such a way that

ψN(µ) =
1
N ∑

i≤N
E log

∫
Σ1

exp ∑
k≤Πi,s

log
[
(c+∆σxi,k)

G̃x
i,k

(
1−

c+∆σxi,k

N

)1−G̃x
i,k
]

dP∗(σ),

where (xi,k) are i.i.d. random variables with law µ . Since each of the expectations in this average
is the same,

ψN(µ) = E log
∫

Σ1

exp ∑
k≤Π1,s

log
[
(c+∆σxk)

G̃x
k

(
1− c+∆σxk

N

)1−G̃x
k
]

dP∗(σ), (3.5)

where (xk) are i.i.d. random variables with law µ and G̃x
k has conditional distribution (1.24) for

i = 1 and x1,k is replaced by xk. To simplify this further, introduce the random index sets

I0 =
{

k ≤Π1,s | G̃x
k = 0

}
and I1 =

{
k ≤Π1,s | G̃x

k = 1
}
.

Decomposing the sum in (3.5) according to the partition {k ≤ Π1,s} = I0 tI1 and applying
Taylor’s theorem to the logarithm reveals that

ψN(µ) = E log
∫

Σ1
∏

k∈I1

(c+∆σxk)exp
(
− ∆σ

N ∑
k∈I0

xk

)
dP∗(σ)−

( c
N
+O

(
N−2))E|I0|.
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Conditionally on σ∗, Π1,s and (xk), the random variable |I0| is a sum of Bernoulli random vari-
ables with probability of success 1− c+∆σ∗1 xk

N . It therefore has mean

E|I0|= EΠ1,sE
(

1−
c+∆σ∗1 x1

N

)
= sN

(
1− c+∆mEx1

N

)
(3.6)

and variance bounded by

Var|I0|= EΠ1,sE
(

1−
c+∆σ∗1 x1

N

)(c+∆σ∗1 x1

N

)
≤ s(c+ |∆|). (3.7)

Using (3.6) and introducing the random index sets I `
1 = {k ∈I1 | xk = a`} reveals that

ψN(µ) = E log
∫

Σ1
∏
`≤K

∏
k∈I `

1

(c+∆σa`)exp
(
− ∆σ

N ∑
k∈I0

xk

)
dP∗(σ)− cs+O

(
N−1).

Observe that for any σ ∈ Σ1,

E
∣∣∣− ∆σ

N ∑
k∈I0

xk +∆σsEx1

∣∣∣≤ |∆|sE ∣∣∣ 1
Ns ∑

k∈I0

xk−Ex1

∣∣∣
≤ |∆|sE

∣∣∣ 1
Ns ∑

k≤Ns
xk−Ex1

∣∣∣+ ∆

N

(
Var|I0|+ |E|I0|−Ns|

)
where we have used the fact that |xk| ≤ 1 and Jensen’s inequality in the second inequality. Recalling
(3.7) and invoking the strong law of large numbers shows that

ψN(µ) = E log
∫

Σ1

exp(−∆σsEx1) ∏
`≤K

∏
k∈I `

1

(c+∆σa`)dP∗(σ)− cs+oN(1). (3.8)

The Poisson coloring theorem (see Chapter 5 in [40]) implies that |I `
1 | is a Poisson random vari-

able with mean

EΠ1,s ·P{G̃x
1 = 1,x1 = a`}= sN ·

c+∆σ∗1 a`
N

·µ(a`) =
(
c+∆σ

∗
1 a`
)
µ(a`),

so averaging (3.8) over the randomness of σ∗ yields

ψN(µ) =−cs+ pE log
∫

Σ1

exp(−∆σsEx1) ∏
x∈Π+(µ)

(c+∆σx)dP∗(σ)

+(1− p)E log
∫

Σ1

exp(−∆σsEx1) ∏
x∈Π−(µ)

(c+∆σx)dP∗(σ)+oN(1).

This completes the proof. �

To extend this convergence to all measures in M+, we will rely upon the continuity of the
functional (3.2) with respect to the Wasserstein distance on the space of probability measures,

W (P,Q) = sup
{∣∣∣∫ 1

−1
h(x)dP(x)−

∫ 1

−1
h(x)dQ(x)

∣∣∣ | ‖h‖Lip ≤ 1
}

(3.9)

= inf
{∫

[−1,1]2
|x− y|dν(x,y) | ν ∈ Pr

(
[−1,1]2

)
has marginals P and Q

}
. (3.10)
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Here ‖·‖Lip denotes the Lipschitz semi-norm

‖h‖Lip = sup
x 6=x′∈[−1,1]

|h(x)−h(x′)|
|x− x′|

(3.11)

defined on the space of functions h : [−1,1]→R. This continuity will be obtained as a consequence
of the following uniform bound on the spatial derivatives of the Gateaux derivative density (2.33).

Lemma 3.3. For every N large enough (relative to c), µ ∈M+, t ≥ 0 and x ∈ [−1,1],∣∣DµFN(t,µ,x)
∣∣≤ 2c

(
2+ |log(2c)|+ |log(c−|∆|)|

)
, (3.12)∣∣∂xDµFN(t,µ,x)

∣∣≤ c
(
1+ |log(2c)|+ |log(c−|∆|)|

)
. (3.13)

Proof. Recall from (2.33) that

DµFN(t,µ,x) = E
(
c+∆〈σi〉x

)
log
(
c+∆〈σi〉x

)
+NE

(
1− c+∆〈σi〉x

N

)
log
(

1− c+∆〈σi〉x
N

)
.

It follows by a direct computation that

∂xDµFN(t,µ,x) = ∆E〈σi〉 log
(
c+∆〈σi〉x

)
−∆E〈σi〉 log

(
1− c+∆〈σi〉x

N

)
.

Since all spin configuration coordinates are bounded by one and |∆|< c, Taylor’s theorem implies
that for N large enough,∣∣DµFN(t,µ,x)

∣∣≤ 2c
(
2+ |log(2c)|+ |log(c−|∆|)|

)
,∣∣∂xDµFN(t,µ,x)

∣∣≤ c
(
1+ |log(2c)|+ |log(c−|∆|

)
|
)
.

Notice that the choice of N only depends on c as x ∈ [−1,1] and |∆| < c. This completes the
proof. �

Lemma 3.4. The initial condition ψN satisfies the Lipschitz bound

|ψN(P)−ψN(Q)| ≤ c
(
1+ |log(2c)|+ |log(c−|∆|)|

))
W (P,Q) (3.14)

for all probability measures P,Q ∈ Pr[−1,1].

Proof. The fundamental theorem of calculus and the definition of the Gateaux derivative in (1.39)
imply that

ψN(P)−ψN(Q) =
∫ 1

0

d
dt

ψN
(
Q+ t(P−Q)

)
dt =

∫ 1

0
DµψN

(
Q+ t(P−Q);P−Q

)
dt.

Since the Gateaux derivative of the initial condition admits a continuously differentiable density,

|ψN(P)−ψN(Q)| ≤
∫ 1

0

∣∣∣∫ 1

−1
ft(x)dP(x)−

∫ 1

−1
ft(x)dQ(x)

∣∣∣dt
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for the continuously differentiable function ft(x) = DµψN(Q+ t(P−Q),x). The mean value the-
orem and (3.13) reveal that ‖ ft‖Lip ≤ c

(
1+ |log(2c)|+ |log(c−|∆|)|

)
. It follows by definition of

the Wasserstein distance (3.9) that

|ψN(µ)−ψN(ν)| ≤ c
(
1+ |log(2c)|+ |log(c−|∆|)|

)
W (P,Q).

This completes the proof. �

Lemma 3.5. The functional ψ : M+→ R defined by (3.2) is continuous with respect to the weak
convergence of measures. This means that for any sequence of measures (µn) ⊂M+ converging
weakly to a measure µ ∈M+, we have

lim
N→∞

ψ(µn) = ψ(µ). (3.15)

Proof. To alleviate the exposition, we will instead prove the continuity of the functional

ψ
1(µ) = E log

∫
Σ1

exp(−µ[−1,1]∆σ Ex1) ∏
x∈Π+(µ)

(c+∆σx)dP∗(σ)

with respect to the weak convergence of measures. Up to an additive constant, the asymptotic
initial condition ψ(µ) is the weighted average of ψ1(µ) and another functional of the same form
whose continuity can be established using an identical argument, so this suffices. For each measure
µ ∈M+ introduce the Hamiltonian

H(σ ,µ) =−∆σ

∫ 1

−1
xdµ(x)+ ∑

x∈Π+(µ)

(c+∆σx)

in such a way that the asymptotic initial condition is its associated free energy,

ψ
1(µ) = E log

∫
Σ1

expH(σ ,µ)dP∗(σ).

Consider a sequence of measures (µn)⊂M+ converging weakly to a measure µ ∈M+, and let Πn
and Π be independent Poisson random variables with means µn[−1,1] and µ[−1,1], respectively.
Introduce a collection (Xn

k ,Xk)k∈N of i.i.d. random vectors with joint law ν ∈ Pr
(
[−1,1]2

)
having

marginals µn and µ . In this way, the coordinates (Xn
k )k∈N are i.i.d. with law µn, the coordinates

(Xk)k∈N are i.i.d. with law µ , and we have the equalities in distribution

∑
x∈Π+(µn)

(c+∆σx) d
= ∑

k≤Πn

(
c+∆σXn

k
)

and ∑
x∈Π+(µ)

(c+∆x) d
= ∑

k≤Π

(
c+∆σXk

)
.

It follows that for any σ ∈ Σ1,

|H(σ ,µn)−H(σ ,µ)| ≤ |∆|
∣∣∣∫ 1

−1
xdµn(x)−

∫ 1

−1
xdµ(x)

∣∣∣+ c
∣∣Πn−Π

∣∣+ |∆|∣∣∣ ∑
k≤Πn

Xn
k − ∑

k≤Π

Xk

∣∣∣,
and therefore,∣∣ψ1(µn)−ψ

1(µ)
∣∣≤ |∆|∣∣∣∫ 1

−1
xdµn(x)−

∫ 1

−1
xdµ(x)

∣∣∣+ cE
∣∣Πn−Π

∣∣+ |∆|E ∣∣∣ ∑
k≤Πn

Xn
k − ∑

k≤Π

Xk

∣∣∣.
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To simplify this further, define the random variable Π′n = min(Πn,Π), introduce a Poisson random
variable Π′′n independent of all other sources of randomness with mean |µn[−1,1]−µ[−1,1]|, and
define the collection of random variables (Zn

k ) by

Zn
k =

{
Xn

k if Π′n = Π

Xk otherwise
.

The basic properties of Poisson random variables and the fact that |Zn
k | ≤ 1 imply that

∣∣ψ1(µn)−ψ
1(µ)

∣∣≤ c|∆|
∣∣∣∫ 1

−1
xd(µn−µ)(x)

∣∣∣+ cEΠ
′′
n + |∆|E ∑

k≤Π′′n

∣∣Zn
k

∣∣+ |∆|E ∑
k≤Π′n

∣∣Xn
k −Xk

∣∣
≤ c
(∣∣∣∫ 1

−1
xd(µn−µ)(x)

∣∣∣+2EΠ
′′
n +EΠ

′
n

∫
[−1,1]2

|x− y|dν(x,y)|
)
.

Taking the infimum over all couplings ν ∈ Pr
(
[−1,1]2

)
with marginals µn and µ reveals that for

n large enough,

∣∣ψ1(µn)−ψ
1(µ)

∣∣≤ c
(∣∣∣∫ 1

−1
xd(µn−µ)(x)

∣∣∣+2
∣∣µn[−1,1]−µ[−1,1]

∣∣+3µ[−1,1]W
(
µn,µ

))
,

where we have used that EΠ′n ≤ EΠ +EΠn ≤ 3µ[−1,1] for n large enough as µn converges
weakly to µ . Letting n tend to infinity and recalling that the Wasserstein distance (3.10) metrizes
the weak convergence of probability measures completes the proof. �

Proposition 3.6. For any measure µ ∈M+, the sequence (ψN(µ)) converges to (3.2).

Proof. Consider a sequence (µn)n≥1 of discrete measures such that µn[−1,1] = µ[−1,1] for all
n ≥ 1 and µn → µ with respect to the Wasserstein distance (3.9). By the triangle inequality and
Lemma 3.4,∣∣ψ(µ)−ψN(µ)

∣∣≤ ∣∣ψ(µ)−ψ(µn)
∣∣+ ∣∣ψ(µn)−ψN(µn)

∣∣+ ∣∣ψN(µn)−ψN(µ)
∣∣

≤
∣∣ψ(µ)−ψ(µn)

∣∣+ ∣∣ψ(µn)−ψN(µn)
∣∣

+ c
(
1+ |log(2c)|+ |log(c−|∆|)|

)
W
(
µn,µ

)
where we have used the fact that µn[−1,1] = µ[−1,1]. Combining Lemma 3.5 with Lemma 3.1 to
let N→ ∞ and then n→ ∞ completes the proof. �

This result identifies the initial condition for the infinite-dimensional Hamilton-Jacobi equa-
tion (1.41). We may now leverage the main result in [31] to establish the well-posedness of this
infinite-dimensional Hamilton-Jacobi equation. Before we do this, let us introduce the notation
used in [31]; for more details and motivation regarding this notation, we encourage the reader to
consult [31]. Given an integer K ≥ 1, we write

DK =
{

k =
i

2K | −2K ≤ i < 2K
}

(3.16)

25



for the set of dyadic rationals on [−1,1] at scale K. We index vectors using the set of dyadic
rationals, writing x = (xk)k∈DK ∈ RDK

≥0 for a non-negative sequence with values in R≥0 indexed by
the dyadic rationals DK . More generally, given two sets A and B, we write AB for the set of
functions from B to A. We denote the set of discrete measures supported on the dyadic rationals
at scale K in the interval [−1,1] by

M
(K)
+ =

{
µ ∈M+ | µ =

1
|DK| ∑

k∈DK

xkδk for some x = (xk)k∈DK ∈ RDK
≥0

}
, (3.17)

and we project a general measure µ ∈M+ onto M
(K)
+ via the mapping

x(K)(µ) =
(
|DK|µ

[
k,k+2−K))

k∈DK
∈ RDK

≥0 , (3.18)

whose inverse assigns to each x ∈ RDK
≥0 the measure

µ
(K)
x =

1
|DK| ∑

k∈DK

xkδk ∈M
(K)
+ . (3.19)

We identify any real-valued function f : R≥0×M
(K)
+ → R with the function

f (K)(t,x) = f
(
t,µ(K)

x
)

(3.20)

defined on R≥0×RDK
≥0 , and we identify the projection of the initial condition with the function

ψ
(K)(x) = ψ

(
µ
(K)
x
)

(3.21)

defined on RDK
≥0 . The Gateaux derivative of a real-valued function f : R≥0×M

(K)
+ → R at the

measure µ ∈M
(K)
+ becomes the gradient |DK|∇ f (K)(t,x(K)(µ)) by duality. Indeed,

Dµ f (t,µ;ν) =
d

dε

∣∣∣
ε=0

f (K)(t,x(K)(µ)+ εx(K)(ν)) = ∇ f (K)(t,x(K)(µ)) · x(K)(ν) (3.22)

for any direction ν ∈M
(K)
+ . We fix b > 0 large enough so the modified kernel

g̃b(z) = g(z)+b (3.23)

is strictly positive, and we introduce the symmetric matrices

G(K) =
1
|DK|2

(
g(kk′)

)
k,k′∈DK

and G̃(K)
b =

1
|DK|2

(
g̃b(kk′)

)
k,k′∈DK

(3.24)

in RDK×DK . We also define the projected cone

C̃b,K =
{

G̃(K)
b x ∈ RDK | x ∈ RDK

≥0

}
, (3.25)

the projected non-linearity C̃b,K : C̃b,K → R given by

C̃b,K
(
G̃(K)

b x
)
=

1
2

G̃(K)
b x · x = 1

2|DK|2 ∑
k,k′∈DK

g̃b(kk′)xkxk′, (3.26)
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and the closed convex set

K=1,K =
{

G(K)x ∈ RDK | x ∈ RDK
≥0 and |||x|||1 = a

}
. (3.27)

We will measure quantities in the normalized `1 and `1,∗ norms,

|||x|||1 =
1
|DK| ∑

k∈DK

|xk| and |||y|||1,∗ = max
k∈DK
|DK||yk|, (3.28)

and it will be convenient to write

BK,R =
{

y ∈ RDK | |||y|||1,∗ ≤ R
}

(3.29)

for the ball of radius R > 0 centered at the origin with respect to the normalized-`1,∗ norm in RDK .
Recall that a function h : Rd → R is said to be non-decreasing if h(y)≤ h(y′) for all y,y′ ∈ Rd with
y′− y ∈ Rd

≥0. Proposition 2.3 in [31] will give the existence of a uniformly Lipschitz continuous
and non-decreasing non-linearity H̃b,K,R which agrees with C̃b,K on the ball C̃b,K ∩BK,R, and we
will define the solution to the infinite-dimensional Hamilton-Jacobi equation (1.41) by

f (t,µ) = lim
K→∞

(
f̃ (K)
b,R

(
t,x(K)(µ)

)
−b|||x(K)(µ)|||1−

bt
2

)
, (3.30)

where f̃ (K)
b,R : [0,∞)×RDK

≥0 → R is the unique solution to the Hamilton-Jacobi equation

∂t f̃ (K)(t,x) = H̃b,K,R
(
∇ f̃ (K)(t,x)

)
on R>0×RDK

>0 (3.31)

subject to the projection of the initial condition ψ̃b : M+→ R defined by

ψ̃b(µ) = ψ(µ)+b
∫ 1

−1
dµ. (3.32)

The fact that the function f defined by (3.30) does not depend on the choice of the constants b ∈R
and R > 0 sufficiently large is established in Proposition 3.14, while the existence and uniqueness
of the appropriate notion of solution to the Hamilton-Jacobi equation (3.31) is established in Propo-
sition 3.12. In order to prove these propositions, we will rely on some results from [31]. To appeal
to these results, we must start by verifying that the initial condition ψ satisfies a certain number of
hypotheses introduced there. To state these hypotheses, given a closed convex set K ⊂ RDK , write

K ′ = K +BK,2−K/2 (3.33)

for the neighbourhood of radius 2−K/2 around K in the normalized-`1,∗ norm, and denote by

TV(µ,ν) = sup
{
|µ(A)−ν(A)| | A is a measurable subset of [−1,1]

}
(3.34)

the total variation distance on M+. A non-differential criterion for the gradient of a Lipschitz
continuous function to lie in a closed convex set is given in Proposition B.2 of [31].
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H1 The initial condition ψ : M+→ R is Lipschitz continuous with respect to the total variation
distance (3.34),

|ψ(µ)−ψ(ν)| ≤ ‖ψ‖Lip,TVTV(µ,ν) (3.35)

for all measures ν ,µ ∈M+.

H2 The initial condition ψ : M+→ R has the property that each of the projected initial condi-
tions has its gradient in the set K ′

=1,K ,

∇ψ
(K) ∈ L∞

(
Rd
≥0;K ′

=1,K
)
. (3.36)

H3 The initial condition ψ : Pr[−1,1]→ R is Lipschitz continuous with respect to the Wasser-
stein distance (3.9),

|ψ(P)−ψ(Q)| ≤ ‖ψ‖Lip,WW (P,Q) (3.37)

for all probability measures P,Q ∈ Pr[−1,1].

Lemma 3.7. The initial condition ψ in (3.2) satisfies (H1)-(H3).

Proof. Recall that Lemma 3.3 implies the existence of a constant C > 0 which depends only on c
and ∆ such that for every integer N ≥ 1, µ ∈M+ and t ≥ 0,∣∣DµFN(t,µ,x)

∣∣≤C and
∣∣∂xDµFN(t,µ,x)

∣∣≤C. (3.38)

To establish (H1) notice that for every integer N ≥ 1 and µ,ν ∈M+,

ψN(µ)−ψN(ν) =
∫ 1

0
DµψN

(
ν + t(µ−ν); µ−ν

)
dt =

∫ 1

0

∫ 1

−1
ft(x)d

(
µ−ν

)
(x)dt

for the continuously differentiable function ft(x) = DµψN
(
ν + t(µ−ν),x

)
. To bound this integral

by the total variation distance, let η = µ − ν ∈Ms, and use the Hahn-Jordan decomposition to
write η = η+−η− for measures η+,η− ∈M+ with the property that for some measurable set
D⊂ [−1,1] and all measurable sets E ⊂ [−1,1],

η
+(E) = η(E ∩D)≥ 0 and η

−(E) =−η(E ∩Dc)≥ 0.

The triangle inequality and the first bound in (3.38) imply that

|ψN(µ)−ψN(ν)| ≤
∣∣∣∫ 1

0

∫ 1

−1
ft(x)dη

+(x)
∣∣∣+ ∣∣∣∫ 1

0

∫ 1

−1
ft(x)dη

−(x)
∣∣∣

≤C
(
η
+[−1,1]+η

−[−1,1]
)

≤ 2CTV(µ,ν).

Using Proposition 3.6 to let N tend to infinity establishes (H1). To prove (H2) notice that by (3.22)
and (2.34), for every y ∈ RDK

≥0 , there exists some probability measure µ∗ ∈ Pr[−1,1] with

∂xkψ
(K)
N (y) =

1
|DK|

DµψN
(
µ
(K)
y ,k

)
=

1
|DK|

Gµ∗(k)+O
(
N−1).
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If µ∗K = µ
(K)

x(K)(µ∗)
∈M

(K)
+ denotes the projection of µ∗ onto M

(K)
+ , then the mean value theorem

implies that

|Gµ∗(k)−Gµ∗K
(k)| ≤ ∑

k′∈DK

∫ k′+2−K

k′
|g(ky)−g(kk′)|dµ

∗(y)≤ ‖g
′‖∞

2K ,

where we have used that µ∗K(k
′) = µ∗[k′,k′+2−K) for every dyadic k′ ∈DK . This means that

∂xkψ
(K)
N (y) =

1
|DK|

Gµ∗K
(k)+O

(
2−2K)+O

(
N−1)= G(K)x(K)(µ∗K)k +O

(
2−2K)+O

(
N−1)

so, for K large enough, we have ∇ψ
(K)
N (y) = w+O

(
N−1) for some w ∈K ′

=1,K . At this point fix
c ∈R and x,x′ ∈ Rd with (x′−x) ·z≥ c for every z ∈K ′

=1,K . The fundamental theorem of calculus
reveals that

ψ
(K)
N (x′)−ψ

(K)
N (x) =

∫ 1

0
∇ψ

(K)
N
(
tx′+(1− t)x

)
· (x′− x)dt ≥ c+O

(
N−1).

Using Proposition 3.6 to let N tend to infinity shows that ψ(K)(x′)−ψ(K)(x)≥ c and Proposition
B.2 in [31] gives (H2). Finally, (H3) is a consequence of Lemma 3.4 and Proposition 3.6. This
completes the proof. �

This result allows us to invoke Proposition 2.3 in [31] to extend the non-linearity C̃b,K in
(3.26). It will be convenient to write Mb = max[−1,1] g̃b and mb = min[−1,1] g̃b > 0.

Proposition 3.8. For every R > 0, there exists a non-decreasing non-linearity H̃b,K,R : RDK → R
which agrees with C̃b,K on C̃b,K ∩BK,R and satisfies the Lipschitz continuity property∣∣H̃b,K,R(y)− H̃b,K,R(y′)

∣∣≤ 8RMb

m2
b
|||y− y′|||1,∗ (3.39)

for all y,y′ ∈ RDK .

The well-posedness of the Hamilton-Jacobi equation (3.31) is the content of Theorem 1.1
in [31]. Before stating this result, let us remind the reader of the notion of a viscosity solution and
introduce some more notation.

Definition 3.9. An upper semi-continuous function u : [0,∞)×RDK
≥0 → R is said to be a viscosity

subsolution to (3.31) if, given any φ ∈C∞
(
(0,∞)×RDK

>0
)

with the property that u−φ has a local
maximum at (t∗,x∗) ∈ (0,∞)×RDK

>0 ,(
∂tφ − H̃b,K,R(∇φ)

)
(t∗,x∗)≤ 0. (3.40)

Definition 3.10. A lower semi-continuous function v : [0,∞)×RDK
≥0 → R is said to be a viscosity

supersolution to (3.31) if, given any φ ∈C∞
(
(0,∞)×RDK

>0
)

with the property that v−φ has a local
minimum at (t∗,x∗) ∈ (0,∞)×RDK

>0 ,(
∂tφ − H̃b,K,R(∇φ)

)
(t∗,x∗)≥ 0. (3.41)
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Definition 3.11. A continuous function f ∈C
(
[0,∞)×RDK

≥0
)

is said to be a viscosity solution to
(3.31) if it is both a viscosity subsolution and a viscosity supersolution to (3.31).

Given functions h : RDK
≥0 → R and u : [0,∞)×RDK

≥0 → R, define the semi-norms

|||h|||Lip,1 = sup
x 6=x′∈RDK

≥0

|h(x)−h(x′)|
|||x− x′|||1

and [u]0 = sup
t>0

x∈RDK
≥0

|u(t,x)−u(0,x)|
t

. (3.42)

Introduce the space of functions with Lipschitz initial condition that grow at most linearly in time,

L=
{

u : [0,∞)×RDK
≥0 → R | u(0, ·) is Lipschitz continuous and [u]0 < ∞

}
, (3.43)

and its subset of uniformly Lipschitz functions,

Lunif =
{

u ∈ L | sup
t≥0
|||u(t, ·)|||Lip,1 < ∞

}
. (3.44)

Combining Theorem 1.1 with the arguments leading to the second conclusion of Lemma 6.1
in [31] gives the following well-posedness result for the Hamilton-Jacobi equation (3.31).

Proposition 3.12. For every R > 0, the Hamilton-Jacobi equation (3.31) admits a unique viscosity
solution f̃ (K)

b,R ∈ Lunif subject to the initial condition ψ̃
(K)
b . Moreover, the solution has its gradient

in the closed convex set K̃ ′
=1,K ,

∇ f̃ (K)
b,R ∈ L∞

(
[0,∞)×RDK

≥0 ;K̃ ′
=1,K

)
, (3.45)

and it satisfies the Lipschitz bound

sup
t>0
||| f̃ (K)

b,R (t, ·)|||
Lip,1

= |||ψ̃(K)
b |||Lip,1 ≤ ‖ψ̃b‖Lip,TV. (3.46)

In addition to this existence and uniqueness result, it will be important to record the following
comparison principle for the projected Hamilton-Jacobi equation (3.31). This comparison principle
is a consequence of Corollary A.12 in [31].

Lemma 3.13. If u,v ∈ Lunif are respectively a continuous subsolution and a continuous superso-
lution to (3.31), then

sup
R≥0×R

DK
≥0

(
u(t,x)− v(t,x)

)
= sup

RDK
≥0

(
u(0,x)− v(0,x)

)
. (3.47)

The existence of the limit (3.30) defining f (t,µ) is a consequence of Theorems 1.2 and 1.4 in [31].

Proposition 3.14. Let b ∈ R be such that the kernel g̃b defined in (3.23) is positive on [−1,1], let
ψ̃b be defined by (3.32), and for each integer K ≥ 1 and R > ‖ψ̃b‖Lip,TV, denote by f̃ (K)

b,R the unique
viscosity solution to the Hamilton-Jacobi equation (3.31) subject to the initial condition ψ̃

(K)
b . The

limit (3.30) exists, is finite and is independent of R and b. This limit is defined to be the solution to
the infinite-dimensional Hamilton-Jacobi equation (1.41).

To establish Theorem 1.1, the idea will be to show that the enriched free energy (1.35) is
essentially a viscosity subsolution to the infinite-dimensional Hamilton-Jacobi equation (1.41).
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4 The free energy upper bound

In this section, we combine the computations in Section 2 with the arguments in [57] to essentially
show that the enriched free energy (1.35) is a viscosity subsolution to the infinite-dimensional
Hamilton-Jacobi equation (1.41). This equation is given a precise meaning by Proposition 3.14.
As alluded to in Section 2, we will perturb the enriched Hamiltonian (1.34) to enforce the con-
centration of all the multi-overlaps (2.11) without changing the limit of the associated free energy.
The perturbation Hamiltonian we will now describe was introduced in [14] to prove a general
multi-overlap concentration result whose finitary version we establish in Appendix C.

Fix an integer K+ which will be chosen sufficiently large in the course of this section, and
write λ = (λ0,λ1, . . . ,λK+) for a perturbation parameter with λ0 ∈ [1/2,1] and λk ∈ [2−k−1,2−k]
for 1 ≤ k ≤ K+. Given a sequence (εN) with εN = Nγ for some −1/8 < γ < 0 and a standard
Gaussian vector Z0 = (Z0,1, . . . ,Z0,N) in RN , introduce the Gaussian perturbation Hamiltonian

Hgauss
N (σ ,λ0) = H0 = ∑

i≤N

(
λ0εNσ

∗
i σi +

√
λ0εNZ0,iσi

)
(4.1)

associated with the task of recovering the signal σ∗ from the data

Y gauss =
√

λ0εNσ
∗+Z0. (4.2)

Notice that
1≥ εN → 0 and NεN → ∞. (4.3)

Similarly, consider a sequence (sN) with sN = Nη for 4/5 < η < 1 in such a way that

sN

N
→ 0 and

sN√
N
→ ∞. (4.4)

Fix a sequence of i.i.d. random variables (πk) with Poi(sN) distribution as well as a sequence
e = (e jk) of random variables with Exp(1) distribution. For every j ≤ πk, sample i.i.d. random
indices i jk uniformly from the set {1, . . . ,N}, and define the exponential perturbation Hamiltonian
by

Hk = ∑
j≤πk

(
log(1+λkσi jk

)
−

λke jkσi jk

1+λkσ∗i jk

)
and Hexp

N (σ) = ∑
1≤k≤K+

Hk. (4.5)

Observe that this is the Hamiltonian associated with the task of recovering the signal σ∗ from the
independently generated data

Y exp
jk =

e jk

1+λkσ∗i jk

(4.6)

for j ≤ πk and k ≥ 1. Introduce the perturbed Hamiltonian

HN(σ ,λ ) = Ht,µ
N (σ)+Hgauss

N (σ ,λ0)+Hexp
N (σ ,λ ) (4.7)

as well as its associated free energy

Fpert
N (t,µ,λ ) =

1
N
E log

∫
ΣN

expHN(σ ,λ )dP∗N(σ). (4.8)
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Since the Gibbs measure associated with the Hamiltonian in (4.7) is still a conditional expectation
as in (2.2), it will still satisfy the Nishimori identity (2.3). An essential property of the perturbation
Hamiltonians (4.1) and (4.5) is that they do not affect the asymptotic behavior of the enriched free
energy (1.35).

Lemma 4.1. For every t > 0, µ ∈M+ and λ , the enriched free energy (1.35) and the perturbed
free energy (4.8) are asymptotically equivalent,

lim
N→∞

∣∣Fpert
N (t,µ,λ )−FN(t,µ)

∣∣= 0. (4.9)

Proof. A direct computation reveals that∣∣Fpert
N (t,µ,λ )−FN(t,µ)

∣∣≤ 1
N
E max

σ∈ΣN

∣∣Hgauss
N (σ ,λ0)

∣∣+ 1
N
E max

σ∈ΣN

∣∣Hexp
N (σ ,λ )

∣∣.
For any spin configuration σ ∈ ΣN ,∣∣Hgauss

N (σ ,λ0)
∣∣≤ NεN +

√
εN ∑

i≤N
|Z0,i|

while ∣∣Hexp
N (σ ,λ )

∣∣≤ ∑
1≤k≤K′

∑
j≤πk

(
log(1+λk)+

λke jk

1−λk

)
.

Since these bounds are uniform in σ , it follows that∣∣Fpert
N (t,µ,λ )−FN(t,µ)

∣∣≤ εN +
√

εN EZ0,1 +
sN

N ∑
k≥1

(
log(1+λk)+

λk

1−λk

)
.

The third term was obtained by taking the expectation with respect to the randomness of e first and
then with respect to the randomness of (πk). Leveraging (4.3) and (4.4) to let N tend to infinity
completes the proof. �

With this result in mind, we abuse notation and redefine the perturbed free energy (4.8),

FN(t,µ,λ ) =
1
N

log
∫

ΣN

expHN(σ ,λ )dP∗N(σ) and FN(t,µ,λ ) = EFN(t,µ,λ ). (4.10)

For every integer K ≥ 1 and x ∈ RDK
≥0 , we denote by

F(K)
N (t,x,λ ) = FN

(
t,µ(K)

x ,λ
)

and F(K)
N (t,x,λ ) = EF(K)

N (t,x,λ ) (4.11)

the finite-dimensional projections of these perturbed free energy functionals. In the same spirit
as (3.30), given b ∈ R such that the kernel g̃b defined in (3.23) is positive on [−1,1], introduce
translated versions of these free energy functionals,

F ′N(t,µ,λ ) = FN(t,µ,λ )+b
∫ 1

−1
dµ +

bt
2

and F ′N(t,µ,λ ) = EF ′N(t,µ,λ ). (4.12)
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For every integer K ≥ 1 and x ∈ RDK
≥0 , we denote by

F ′(K)
N (t,x,λ ) = F ′N

(
t,µ(K)

x ,λ
)

and F ′(K)
N (t,x,λ ) = EF ′(K)

N (t,x,λ ) (4.13)

the finite-dimensional projections of these modified free energy functionals. Similarly, we write

F(K)
N (t,x) = FN

(
t,µ(K)

x
)

and F ′(K)
N (t,x) = F(K)

N (t,x)+b|||x|||1 +
bt
2

(4.14)

for the finite-dimensional projections of the enriched free energy (4.12) and its translation accord-
ing to (3.30). Combining Lemmas 2.1, 2.4 and 3.1 with the Arzela-Ascoli theorem, it is possible
to extract a subsequential limit F̃(K) from the sequence defined by (4.14) for varying N. Passing to
a further subsequence and using a diagonalization argument, it is also possible to ensure that

F̃(K)(t,x) = limsup
N→∞

F ′(K)
N (t,x) (4.15)

for all (t,x) ∈ (0,∞)×RDK
≥0 . The key to establishing Theorem 1.1 will be to show that, in some

sense, the subsequential limit F̃(K) is an approximate subsolution to the Hamilton-Jacobi equa-
tion (3.31) for some R > ‖ψ̃b‖Lip,TV +‖g̃b‖∞ +‖g̃′b‖∞ +1 which will remain fixed throughout this
section.

We fix a smooth function φ ∈C∞
(
(0,∞)×RDK

>0
)

with the property that the difference F̃(K)−φ

achieves a local maximum at some point (t∞,x∞) ∈ (0,∞)×RDK
>0 . Recalling that the index K+

controls the number of terms in the perturbation Hamiltonian (4.5), we introduce the parameter

λ∞ =

(
1,2−1,2−2, . . . ,2−K+

)
+
(
2−1,2−2,2−3, . . . ,2−K+−1)

2
(4.16)

as well as the smooth function

φ̃(t,x,λ ) = φ(t,x)+(t− t∞)2 +‖x− x∞‖2
2 +‖λ −λ∞‖2

2. (4.17)

It is clear that (t,x,λ ) 7→ F̃(K)(t,x)− φ̃(t,x,λ ) has a strict local maximum at (t∞,x∞,λ∞). Arguing
as in the proof of Lemma 4.1 shows that (t,x,λ ) 7→ F ′(K)

N (t,x,λ ) converges to (t,x,λ ) 7→ F̃(K)(t,x)
locally uniformly. It is therefore possible to find a sequence (tN ,xN ,λN) which converges to the
point (t∞,x∞,λ∞) and has the property that (t,x,λ ) 7→ F ′(K)

N (t,x,λ )− φ̃(t,x,λ ) attains a local max-
imum at (tN ,xN ,λN). More precisely, it is possible to find a constant C < ∞ which is allowed to
depend on K, K+, t∞, x∞ and the function φ such that(

F ′(K)
N − φ̃

)
(tN ,xN ,λN)

= sup
{(

F ′(K)
N − φ̃

)
(t,x,λ ) | |t− tN |+‖x− xN‖2 +‖λ −λN‖2 ≤C−1

}
. (4.18)

We will use such a constant C < ∞ at various places in this proof, and we understand that its value
may need to be increased as we proceed; the important point is that it does not depend on N. The
choices of λ∞ in (4.16) and x∞ ∈ RDK

>0 ensure that when N is large enough (λN)k ∈ (2−k−1,2−k)
for 0≤ k ≤ K+ and xN ∈ RDK

>0 . Increasing C < ∞ if necessary, it is therefore possible to guarantee
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that for N large enough the supremum on the right-hand side of (4.18) is taken over triples (t,x,λ )
with t > 0, x ∈ RDK

>0 and λk ∈ [2−k−1,2−k] for 1≤ k ≤ K+. It follows that

∂t

(
F ′(K)

N − φ̃

)
(tN ,xN ,λN) = 0, ∇x

(
F ′(K)

N − φ̃

)
(tN ,xN ,λN) = 0 (4.19)

and
∇λ

(
F(K)

N − φ̃

)
(tN ,xN ,λN) = ∇λ

(
F ′(K)

N − φ̃

)
(tN ,xN ,λN) = 0. (4.20)

The majority of this section will be devoted to using the second equality in (4.20) in conjunction
with the main result in Appendix C to show the concentration of a finite but very large number
of the multi-overlaps (2.11). We will then combine this finitary multi-overlap concentration result
with the computations in Section 2 to establish the following crucial result.

Lemma 4.2. Fix R > ‖ψ̃b‖Lip,TV +‖g̃b‖∞ +‖g̃′b‖∞ +1. For every ε > 0, there exists a choice of
integer K+ ≥ 1 in the perturbed Hamiltonian (4.7) with the property that for any integer K ≥ 1, it
is possible to find a constant Eε,K with

limsup
N→∞

∣∣∣(∂tF
′(K)
N − H̃b,K,R

(
∇xF ′(K)

N

))
(tN ,xN ,λN)

∣∣∣≤ Eε,K (4.21)

and limε→0 limK→∞ Eε,K = 0.

For the time being, let us prove Theorem 1.1 assuming Lemma 4.2.

Proof of Theorem 1.1 assuming Lemma 4.2. Given ε > 0, invoke Lemma 4.2 to find an integer
K+ ≥ 1 in the perturbed Hamiltonian (4.7) with the property that for any integer K ≥ 1, it is
possible to find a constant Eε,K with

limsup
N→∞

∣∣∣(∂tF
′(K)
N − H̃b,K,R

(
∇xF ′(K)

N

))
(tN ,xN ,λN)

∣∣∣≤ Eε,K (4.22)

and limε→0 limK→∞ Eε,K = 0. Given an integer K ≥ 1, the idea will be to show that the test function
φ ∈C∞

(
(0,∞)×RDK

>0
)

introduced above satisfies the subsolution condition in (3.40) for the non-
linearity H̃b,K,R at the point of contact (t∞,x∞) up to the small error Eε,K . This will mean that
the subsequential limit F̃(K) of the modified free energy (4.14) is a viscosity subsolution to the
Hamilton-Jacobi equation (3.31) up to a small error. More precisely, the function

F̃(K)
ε = F̃(K)− tEε,K (4.23)

will be a viscosity subsolution to (3.31). This observation will allow us to leverage the comparison
principle in Lemma 3.13 to bound the limit superior of the enriched free energy (1.35) by the solu-
tion f to the infinite-dimensional Hamilton-Jacobi equation (1.41) constructed in Proposition 3.14.
We proceed in two steps.
Step 1: F̃(K)

ε subsolution.
Since xN → x∞ assume without loss of generality that (xN)⊂ RDK

>0 . It follows by (4.19) that(
∂t φ̃ − H̃b,K,R

(
∇xφ̃

))
(tN ,xN ,λN) =

(
∂tF
′(K)
N − H̃b,K,R

(
∇xF ′(K)

N

))
(tN ,xN ,λN),
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so letting N tend to infinity and combining the definition of φ̃ with (4.22) yields(
∂t φ̃ − H̃b,K,R

(
∇xφ̃

))
(t∞,x∞)≤ Eε,K.

This shows that the function (4.23) satisfies the subsolution condition in (3.40).
Step 2: comparison principle.
The comparison principle in Lemma 3.13 gives the upper bound

F̃(K)(t,x)≤ f̃ (K)
b,R (t,x)+ tEε,K. (4.24)

We have implicitly used that F̃(K) and f̃ (K)
b,R are continuous and have the same initial condition by

Proposition 3.6. We have also used that they both belong to the solution space Lunif by Proposi-
tion 3.12, (2.1), (2.4) and a simple application of the mean value theorem. With (4.24) in mind, fix
a finite measure µ ∈M+, and introduce the discrete measure

µ
(K) = µ

(K)

x(K)(µ)

defined in (3.19). It is readily verified that µ
(K)→ µ with respect to the Wasserstein distance

(3.9). Moreover, an identical argument to that in Lemma 3.4 leveraging the second bound in (3.13)
reveals that

FN(t,µ)≤C′µ[−1,1]W
(
µ,µ(K)

)
+F(K)

N
(
t,x(K)(µ)

)
for some constant C′ that depends only on c. We use the letter C′ instead of C to emphasize that the
constant C′ does not depend on K. Letting N tend to infinity, recalling (4.14), (4.15) and leveraging
(4.24) yields

limsup
N→∞

FN(t,µ)≤C′µ[−1,1]W
(
µ,µ(K)

)
+ f̃ (K)

b,R

(
t,x(K)(µ)

)
−b|||x(K)(µ)|||1−

bt
2
+ tEε,K.

Invoking Lemma 4.2 and Proposition 3.14 to let K tend to infinity and then ε tend to zero completes
the proof. �

The rest of this section is devoted to the proof of Lemma 4.2 which will be obtained by com-
bining the computations of Section 2 with the main result of Appendix C to show the concentration
of a finite but very large number of the multi-overlaps (2.11). In the notation of [14], for any per-
turbation parameter λ , let

λ0,N = εNλ0, (4.25)

and introduce the quantities

L0 =
H ′

0
NεN

, where H ′
0 = ∂λ0Hgauss

N (σ ,λ0) = εN

(
σ ·σ∗+ σ ·Z0

2
√

λ0,N

)
, (4.26)

Lk =
H ′

k
sN

, where H ′
k = ∂λk

Hexp
N (σ ,λ ) = ∑

j≤πk

σi jk

(
1

1+λkσi jk

−
e jk

(1+λkσ∗i jk
)2

)
(4.27)
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for 1≤ k ≤ K+. The importance of these quantities stems from the fact that

∂λ0F(K)
N (t,x,λ ) =

1
N

〈
H ′

0
〉
, ∂

2
λ0

F(K)
N (t,x,λ ) =

1
N

(〈
(H ′

0 −〈H ′
0 〉)2〉− ε2

N

4λ
3/2
0,N

〈σ〉 ·Z0

)
, (4.28)

∂λk
F(K)

N (t,x,λ ) =
1
N

〈
H ′

k
〉
, ∂

2
λk

F(K)
N (t,x,λ ) =

1
N

(〈
(H ′

k −〈H ′
k 〉)2〉+〈H ′′

k
〉)

(4.29)

for 1≤ k ≤ K+ while

∂λkλ jF
(K)
N (t,x,λ ) =

1
N

(
〈H ′

j H
′

k 〉−〈H ′
j 〉〈H ′

k 〉
)

(4.30)

for 0≤ j 6= k ≤ K+. Here, and for the remainder of this section, the Gibbs average 〈·〉 will always
be associated with the perturbed Hamiltonian (4.7) evaluated at a triple (t,x,λ ) which will be clear
from the context. It will also be convenient to record that for 1≤ k ≤ K+,

H ′′
k = ∂

2
λk

Hexp
N (σ ,λ ) = ∑

j≤πk

(
− 1

(1+λkσi jk)
2 +2

σi jkσ∗i jk
e jk

(1+λkσ∗i jk
)3

)
and

∣∣E〈H ′′
k
〉∣∣≤CsN . (4.31)

To obtain the concentration of the multi-overlaps (2.11) we will show the concentration (C.8)
of the quantities Lk for the Gibbs measure with parameters given by the contact point (tN ,xN ,λN).
This concentration will be deduced from the fact that the averaged free energy is being “touched
from above” by a smooth function at the contact point, thereby constraining its Hessian at this
point, together with the concentration of the free energy F(K)

N about its average F(K)
N . Due to the

constraint on the Hessian at the contact point, we will be able to extend the concentration result on
the free energy into an estimate on the concentration of its gradient. We decompose this argument
into a series of four lemmas: the first two essentially bound the Hessian of the perturbed free energy
(4.11) from above and from below; the third leverages the free energy concentration result in
Appendix B to estimate the uniform Lp-distance between the quenched and averaged free energies
(4.11); while the fourth extends this to a control on the gradient of the free energy.

Lemma 4.3. For any perturbation parameter λ with ‖λ‖2 ≤C−1,

F(K)
N (tN ,xN ,λN +λ )−F(K)

N (tN ,xN ,λN)−λ ·∇λ F(K)
N (tN ,xN ,λN)≤C‖λ‖2

2. (4.32)

Proof. Fix a perturbation parameter λ with ‖λ‖2 ≤C−1, and notice that (4.18) gives

F ′(K)
N (tN ,xN ,λN +λ )−F ′(K)

N (tN ,xN ,λN)≤ φ̃(tN ,xN ,λN +λ )− φ̃(tN ,xN ,λN).

On the other hand, Taylor’s formula with integral remainder implies that

F ′(K)
N (tN ,xN ,λN +λ )−F ′(K)

N (tN ,xN ,λN)

= λ ·∇λ F ′(K)
N (tN ,xN ,λN)+

∫ 1

0
(1− s)λ ·∇2

λ
F ′(K)

N (tN ,xN ,λN + sλ )λ ds, (4.33)
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and similarly,

φ̃(tN ,xN ,λN +λ )− φ̃(tN ,xN ,λN)

= λ ·∇λ φ̃(tN ,xN ,λN)+
∫ 1

0
(1− s)λ ·∇2

λ
φ̃(tN ,xN ,λN + sλ )λ ds.

Combining (4.19) with the chain rule shows that λ ·∇λ φ̃(tN ,xN ,λN) = λ ·∇λ F ′(K)
N (tN ,xN ,λN), and

therefore∫ 1

0
(1− s)λ ·∇2

λ
F ′(K)

N (tN ,xN ,λN + sλ )λ ds≤
∫ 1

0
(1− s)λ ·∇2

λ
φ̃(tN ,xN ,λN + sλ )λ ds

≤C‖λ‖2
2.

Substituting this into (4.33) gives

F(K)
N (tN ,xN ,λN +λ )−F(K)

N (tN ,xN ,λN) = F ′(K)
N (tN ,xN ,λN +λ )−F ′(K)

N (tN ,xN ,λN)

≤ λ ·∇λ F ′(K)
N (tN ,xN ,λN)+C‖λ‖2

2

= λ ·∇λ F(K)
N (tN ,xN ,λN)+C‖λ‖2

2.

This completes the proof. �

Lemma 4.4. There exists a random variable X with EX2 ≤ C such that, for all perturbation
parameters λ with ‖λ‖2 ≤C−1,

F(K)
N (tN ,xN ,λN +λ )−F(K)

N (tN ,xN ,λN)−λ ·∇λ F(K)
N (tN ,xN ,λN)≥−X‖λ‖2

2. (4.34)

Proof. Since tN and xN remain fixed throughout, write F(K)
N (λ ) for F(K)

N (tN ,xN ,λ ). Introduce the
function

h(λ ) = F(K)
N (λ )−

√
λ0,N

N ∑
i≤N
|Z0,i|+

1
N ∑

1≤k≤K+

∑
j≤πk

(
8λ

2
k e jk− log(1−λk)

)
. (4.35)

Leveraging (4.28) and Hölder’s inequality, one can see that

∂
2
λ0

h(λ ) =
1
N

〈
(H ′

0 −〈H ′
0 〉)2〉− ε2

N

4Nλ
3/2
0,N

〈σ〉 ·Z0 +
ε2

N

4Nλ
3/2
0,N

∑
i≤N
|Z0,i| ≥

1
N

〈
(H ′

0 −〈H ′
0 〉)2〉.

Using (4.29) and (4.31) reveals that for 1≤ k ≤ K+,

∂
2
λk

h(λ ) =
1
N

〈
(H ′

k −〈H ′
k 〉)2〉

+
1
N

〈
∑

j≤πk

(
− 1

(1+λkσi jk)
2 +2

σi jkσ∗i jk
e jk

(1+λkσ∗i jk
)3 +16e jk +

1
(1−λk)2

)〉
.

Since λk ≤ 1/2 and all spin configuration coordinates are bounded by one, it is actually the case
that

∂
2
λk

h(λ )≥ 1
N

〈
(H ′

k −〈H ′
k 〉)2〉.
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Together with (4.30), this shows that ∇2
λ

h is positive definite and therefore h is convex. It follows
that for any perturbation parameter λ with ‖λ‖2 ≤C−1,

h(λN +λ )≥ h(λN)+λ ·∇λ h(λN).

Remembering the definition of h in (4.35), this shows that the left-hand side of (4.34) is bounded
from below by

1
N

(√
(λN)0,N +λ0,N−

√
(λN)0,N−

λ0,N

2
√

(λN)0,N

)
∑
i≤N
|Z0,i|

+
1
N ∑

1≤k≤K+

∑
j≤πk

8e jk

(
(λN)

2
k +2λk(λN)k−

(
(λN)k +λk

)2
)

+
1
N ∑

1≤k≤K+

∑
j≤πk

(
log
(

1− (λN)k−λk

1− (λN)k

)
+

λk

1− (λN)k

)
.

Increasing C if necessary, Taylor’s theorem with differential remainder gives a perturbation param-
eter λ̃ with λ̃k ∈ [2−k−1,2−k] for 0≤ k≤K+ whose value might not be the same at each occurrence
such that √

(λN)0,N +λ0,N−
√

(λN)0,N−
λ0,N

2
√

(λN)0,N
=−

(λ0,N)
2

8λ̃
3/2
0,N

≥−
√

εNλ
2
0 ≥−λ

2
0

(λN)
2
k +2λk(λN)k−

(
(λN)k +λk

)2
=−λ

2
k

log
(

1− (λN)k−λk

1− (λN)k

)
+

λk

1− (λN)k
=−

λ 2
k

2(1− λ̃k)2
≥−2λ

2
k .

It follows that the left-hand side of (4.34) is bounded from below by

−
λ 2

0
N ∑

i≤N
|Z0,i|−

1
N ∑

1≤k≤K+

λ
2
k ∑

j≤πk

(8e jk +2)≥−X‖λ‖2
2

for the random variable

X =
1
N ∑

i≤N
|Z0,i|+

1
N ∑

1≤k≤K+

∑
j≤πk

(8e jk +2).

Using the Cauchy-Schwarz inequality, taking the average with respect to the randomness of (e jk)
before the average with respect to the randomness of (πk) and remembering (4.4) shows that

EX2 ≤ C
N2

(
E
(

∑
i≤N
|Z0,i|

)2
+ ∑

1≤k≤K+

E
(

∑
j≤πk

(8e jk +2)
)2
)

≤ C
N2

(
NE|Z0,1|+(N2−N)E|Z0,1Z0,2|+ ∑

1≤k≤K+

Eπk ∑
j≤πk

(8e jk +2)2
)

≤ C
N2

(
N2 + s2

N + sN
)
≤C.

This completes the proof. �
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Lemma 4.5. For every M > 0 small enough, p∈ [1,∞) and ε > 0, there exists C <∞ not depending
on N such that (

E sup
‖λ‖∞≤M

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣p) 1
p

≤CN−
1
2+ε . (4.36)

Proof. Let 0<M < 1/2 be small enough so that (λN +λ )k ∈ [2−k−1,2−k] for 0≤ k≤K+ whenever
‖λ‖∞ ≤M, and for each perturbation parameter λ introduce the random variable

Y (λ ) =
1
N ∑

0≤k≤K+

|〈H ′
k 〉|,

where the Gibbs average is associated with the perturbed Hamiltonian (4.7) evaluated at the triple
(tN ,xN ,λN + λ ). The relevance of these random variables stems from the fact that by the mean
value theorem, (4.28) and (4.29), for every λ ,λ ′ in the `∞-ball of radius M,∣∣F(K)

N (tN ,xN ,λN +λ )−F(K)
N (tN ,xN ,λN +λ

′)
∣∣≤C sup

‖η‖∞≤M
Y (η)‖λ −λ

′‖1.

Averaging this inequality also shows that for every λ ,λ ′ in the `∞-ball of radius M,∣∣F(K)
N (tN ,xN ,λN +λ )−F(K)

N (tN ,xN ,λN +λ
′)
∣∣≤ E sup

‖η‖∞≤M
Y (η)‖λ −λ

′‖1

These two bounds imply that for any even integer q≥ 2,

E sup
‖λ‖∞≤M

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣q ≤ E sup
λ∈Aε

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣q
+Cε

qE sup
‖λ‖∞≤M

Y (λ )q

for Aε = εZ1+K+ ∩{‖λ‖∞ ≤ M}. Indeed, every λ is at most at distance ε(K++ 1) from an ele-
ment in Aε with respect to the `1-norm. Bounding the supremum over Aε by the sum over Aε and
invoking the free energy concentration result in Proposition B.4 shows that

E sup
‖λ‖∞≤M

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣q ≤C|Aε |N−
q
2 +Cε

qE sup
‖λ‖∞≤M

|Y (λ )|q. (4.37)

To bound the moments of sup‖λ‖∞≤M|Y (λ )| fix 1≤ k ≤ K+. Hölder’s inequality and (4.27) reveal
that

E sup
‖λ‖∞≤M

|〈H ′
k 〉|q ≤ E sup

‖λ‖∞≤M

∣∣∣∣ ∑
j≤πk

1
1− (λN +λ )k

+
e jk

(1− (λN +λ )k)2

∣∣∣∣q
≤ E

∣∣∣∣ ∑
j≤πk

4(1+ e jk)

(1−2M)2

∣∣∣∣q ≤ Eπ
q−1
k ∑

j≤πk

∑
j≤πk

∣∣∣∣ 4(1+ e jk)

(1−2M)2

∣∣∣∣q
≤CEπ

q
k ,
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where the last inequality is found by averaging over the randomness of (e jk). Similarly (4.26) and
Hölder’s inequality give

E sup
‖λ‖∞≤M

|〈H ′
0 〉|q ≤ ε

q
N E sup
‖λ‖∞≤M

∣∣∣∣|σ ·σ∗|+ |σ ·Z0|
2ε

q/2
N ((λN)0 +λ0)q/2

∣∣∣∣q
≤Cε

q
N

(
Nq +

2qE|σ ·Z0|q

2ε
q/2
N (1−2M)q

)
≤Cε

q
2
N Nq.

Combining these two inequalities with Lemma B.2 and recalling the choices (4.3) and (4.4) of εN
and sN shows that

E sup
‖λ‖∞≤M

|Y (λ )|q ≤C. (4.38)

Substituting this into (4.37) and noticing that |Aε | is of order ε−(K++1) yields

E sup
‖λ‖∞≤M

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣q ≤C
(
ε
−(K++1)N−

q
2 + ε

q).
Taking 1/q’th powers and choosing ε = N−

q
2(q+K++1) gives(

E sup
‖λ‖∞≤M

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣q) 1
q

≤CN−
q

2(q+K++1) .

Notice that the power on the right-hand side can be made arbitrarily close to −1
2 by taking q large

enough. Invoking Jensen’s inequality completes the proof. �

Lemma 4.6. For every ε > 0, there exists a constant C < ∞ not depending on N such that

E
∥∥∥∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

∥∥∥2

2
≤CN−

1
2+ε . (4.39)

Proof. Given µ ∈ [0,C−1], consider the random perturbation parameter

λ = µ ·
∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)∥∥∥∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

∥∥∥
2

.

Combining Lemma 4.3 with Lemma 4.4 shows that(
F(K)

N −F(K)
N

)
(tN ,xN ,λN +λ )−

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

≥ µ

∥∥∥∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

∥∥∥
2
− (C+X)‖λ‖2

2.

Rearranging, squaring and taking expectations yields

µ
2E
∥∥∥∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

∥∥∥2

2
≤C

(
E sup
‖λ‖∞≤C−1

∣∣∣(F(K)
N −F(K)

N

)
(tN ,xN ,λN +λ )

∣∣∣2 +µ
4
)
,
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where we have used the fact that EX2 ≤C and ‖λ‖2 = µ . Invoking Lemma 4.5 gives

E
∥∥∥∇λ

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

∥∥∥2

2
≤C

(
1

N1−2ε µ2 +µ
2
)
.

Optimizing over µ leads to the choice µ = N−
1
4+

ε

2 and completes the proof. �

Lemma 4.7. For any 1≤ k ≤ K+, there exists a constant C < ∞ not depending on N such that

E
〈
(L0−E〈L0〉)2〉≤CN−

1
4 and E

〈
(Lk−E〈Lk〉)2〉≤CN−

1
20 . (4.40)

Here, the Gibbs average 〈·〉 is associated with the perturbed Hamiltonian (4.7) evaluated at the
contact point (tN ,xN ,λN).

Proof. A direct computation using (4.28) shows that

N2
ε

2
N E
〈
(L0−E〈L0〉)2〉= E

〈
(H ′

0 −〈H ′
0 〉)2〉+E

(
〈H ′

0 〉−E〈H ′
0 〉
)2

= N∂
2
λ0

F(K)
N (tN ,xN ,λN)+

ε2
N

4λ
3/2
0,N

E〈σ〉 ·Z0

+N2E
(

∂λ0

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

)2
.

It follows by Lemma 4.3 and Lemma 4.6 that for any ε > 0,

E
〈
(L0−E〈L0〉)2〉≤ C

N2ε2
N

(
N +Nε

2− 3
2

N +N2− 1
2+ε

)
=C

(
N2|γ|−1 +N

3
2 |γ|−1 +N2|γ|+ε− 1

2

)
.

Remembering that−1/8 < γ < 0 gives the first bound in (4.40). To establish the second bound, fix
1≤ k ≤ K+. A direct computation using (4.29) yields

s2
N E
〈
(Lk−E〈Lk〉)2〉= E

〈
(H ′

k −〈H ′
k 〉)2〉+E

(
〈H ′

k 〉−E〈H ′
k 〉
)2

= N∂
2
λk

F(K)
N (tN ,xN ,λN)−E〈H ′′

k 〉

+N2E
(

∂λk

(
F(K)

N −F(K)
N

)
(tN ,xN ,λN)

)2
.

Invoking (4.31), Lemma 4.3 and Lemma 4.6 reveals that for any ε > 0,

E
〈
(Lk−E〈Lk〉)2〉≤ C

s2
N

(
N + sN +N

3
2+ε

)
=C

(
N1−2η +N−η +N

3
2+ε−2η

)
.

Choosing ε = 1/20, and recalling that −1/8 < γ < 0 and 4/5 < η < 1 completes the proof. �

This result implies the fundamental assumption (C.8) in Appendix C. Combining this with
Lemma C.1, Lemma C.2 and Proposition C.3 and fixing ε > 0, it is possible to find δ > 0 so the
statement of Proposition C.6 holds. In particular, setting K+ = bδ−1c in the perturbed Hamiltonian
(4.7) ensures that

E
〈
(R[m]−E〈R[m]〉)2〉≤ ε (4.41)

for 1≤ m≤ bε−1c. Together with the computations in Section 2, this multi-overlap concentration
allows us to finally give a proof of Lemma 4.2.
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Proof of Lemma 4.2. To alleviate notation, we always implicitly assume that F(K)
N and its deriva-

tives are evaluated at the contact point (tN ,xN ,λN). The definition of the modified free energy in
(4.12) and Corollary 2.2 reveal that

∂tF
′(K)
N =

1
2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
− c

2
+

b
2
+O(N−1). (4.42)

On the other hand, the duality relation (3.22), the definition of the modified free energy in (4.12)
and Corollary 2.5 imply that for any k ∈DK ,

∂xkF ′(K)
N =

1
|DK|

((
c+∆mk

)
log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
E〈R[n]〉kn− c+b

)
+O(N−1).

If we denote by µ∗=L (〈σi〉) the law of the Gibbs average of a uniformly sampled spin coordinate,
then the Nishimori identity (2.3) and the definition of g̃b in (3.23) allow us to rewrite this as

∂xkF ′(K)
N =

1
|DK|

∫ 1

−1
g̃b(ky)dµ

∗(y)+O
(
N−1).

The mean value theorem shows that

|DK|
∣∣∣ 1
|DK|

∫ 1

−1
g̃b(ky)dµ

∗(y)− G̃(K)
b x(K)(µ∗)k

∣∣∣≤ ∑
k′∈DK

∫ k′+2−K

k′
|g̃b(ky)− g̃b(kk′)|dµ

∗(y)

≤
‖g̃′b‖∞

2K ,

which means that

|||∇xF ′(K)
N − G̃(K)

b x(K)(µ∗)|||1,∗ ≤
‖g̃′b‖∞

2K +O
(
N−1).

In particular,

|||G̃(K)
b x(K)(µ∗)|||1,∗ ≤ |||∇xF ′(K)

N |||1,∗+
‖g̃′b‖∞

2K +O
(
N−1)≤ ‖g̃b‖∞ +‖g̃′b‖∞ +O

(
N−1)≤ R

for N large enough. Remembering that H̃b,K,R coincides with C̃b,K on C̃b,K ∩BK,R and leveraging
the Lipschitz continuity of H̃b,K,R in Proposition 3.8 gives∣∣∣H̃b,K,R

(
∇xF ′(K)

N

)
− C̃b,K

(
G̃(K)

b x(K)(µ∗)
)∣∣∣≤ 8RMb‖g̃′b‖∞

2Km2
b

+O
(
N−1).

Another application of the mean value theorem shows that∣∣∣C̃b,K
(
G̃(K)

b x(K)(µ∗)
)
− 1

2

∫ 1

−1

∫ 1

−1
g̃b(xy)dµ

∗(y)dµ
∗(x)

∣∣∣≤ ‖g̃′b‖∞

2K ,

while a direct computation using the Nishimori identity (2.3) reveals that

1
2

∫ 1

−1
g̃b(xy)dµ

∗(y)dµ
∗(x) =

1
2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
(
E〈R[n]〉

)2− c
2
+

b
2
.
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It follows by (4.42) that up to an error vanishing with N,∣∣∣∂tF
′(K)
N − H̃K,R

(
∇xF ′(K)

N

)∣∣∣≤ ∣∣∣c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
(R[n]−E〈R[n]〉)2〉∣∣∣+ 8RMb‖g̃′b‖∞

2Km2
b

+
‖g̃′‖∞

2K .

Invoking the multi-overlap concentration (4.41), noticing that the multi-overlaps are bounded by
one and using the formula for the sum of a geometric series implies that, up to an error vanishing
with N,∣∣∣∂tF

′(K)
N − H̃K,R

(
∇xF ′(K)

N

)∣∣∣≤ εc2

2(c−|∆|)
+

c
2 ∑

n≥bε−1c

(
|∆|/c

)n
+

8RMb‖g̃′b‖∞

2Km2
b

+
‖g̃′‖∞

2K .

Defining Eε,K to be the right-hand side of this expression completes the proof. �

5 The disassortative sparse stochastic block model

In this section, we leverage Theorem 1.1 to recover the known variational formula for the sparse
stochastic block model in the disassortative regime, ∆ ≤ 0. The idea will be to apply Theorem
1.5 in [31] to the infinite-dimensional Hamilton-Jacobi equation (1.41) and obtain an infinite-
dimensional Hopf-Lax formula. This Hopf-Lax formula will coincide with the standard variational
formula obtained in [13, 28] and stated in Theorem 1.1. The key insight will be that in the disas-
sortative setting, for b large enough, the function g̃b in (3.23) is such that∫ 1

−1

∫ 1

−1
g̃b(xy)dµ(x)dµ(y)≥ 0 (5.1)

for every signed measures µ ∈Ms. This assumption is equivalent to the non-negative definiteness
of each of the matrices G̃(K)

b and to the convexity of each of the projected non-linearities (3.26).

Lemma 5.1. If ∆ ≤ 0 and b is large enough, then the function g̃b : [−1,1]→ R defined in (3.23)
satisfies (5.1).

Proof. By a simple approximation argument, it suffices to establish (5.1) for a discrete signed
measure of the form

µ =
1
|DK| ∑

k∈DK

xkδk

for some x ∈ RDK . For such a measure,∫ 1

−1

∫ 1

−1
g̃b(xy)dµ(x)dµ(y) =

1
|DK|2 ∑

k,k′∈DK

g̃b(kk′)xkxk′ = xT G̃(K)
b x,

so (5.1) is equivalent to the non-negative definiteness of each of the matrices G̃(K)
b . Observe that

for any k,k′ ∈DK ,(
G̃(K)

b

)
kk′ =

1
|DK|2

g̃b(kk′) =
1
|DK|2

(
b+ c log(c)− c+∆kk′ log(c)+ c ∑

n≥2

(−∆/c)n

n(n−1)
(kk′)n

)
.
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If we introduce the vectors k = (k)k∈DK and ι = (1)k∈DK , and write �n for the n-fold Hadamard
product on the space of DK×DK matrices, this implies that

G̃(K)
b =

1
|DK|2

(
(b+ c log(c)− c)ιι

T +∆ log(c)kkT + ∑
n≥2

(−∆/c)n

n(n−1)
(
kkT)�n

)
= lim

M→∞
G̃(K)

b,M

for the matrix

G̃(K)
b,M =

1
|DK|2

(
(b+ c log(c)− c)ιι

T +∆ log(c)kkT + ∑
2≤n≤M

(−∆/c)n

n(n−1)
(
kkT)�n

)
.

Choosing b > 2c|log(c)|+ c ensures that the first two terms in this sum define a non-negative
definite matrix. Using that ∆ ≤ 0 and the Schur product theorem, we see that the matrix G̃(K)

b,M
is a positive linear combination of non-negative definite matrices, and is therefore non-negative
definite. Noticing that the limit of non-negative definite matrices is again non-negative definite
completes the proof. �

This result allows us to apply Theorem 1.5 in [31] to the infinite-dimensional Hamilton-Jacobi
equation (1.41) and obtain a variational formula for its solution. To state this formula concisely,
through a slight abuse of notation, introduce the functional P : R>0×M+×M+→ R defined by

P(t,µ,ν) = ψ(µ + tν)− t
2

∫ 1

−1
Gν(y)dν(y). (5.2)

Theorem 1.5 in [31] and (H2) imply that the unique solution to the infinite-dimensional Hamilton-
Jacobi equation (1.41) is given by the Hopf-Lax formula

f (t,µ) = sup
ν∈Pr[−1,1]

P(t,µ,ν) (5.3)

for every t > 0 and µ ∈M+. Combining this representation formula with Theorem 1.1 and a simple
interpolation argument taken from [13], we now prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.1 and the Hopf-Lax formula (5.3), the limit of the free en-
ergy (1.20) satisfies the upper bound

limsup
N→∞

FN ≤ sup
ν∈Pr[−1,1]

P(1,0,ν), (5.4)

where 0 denotes the zero measure. To show that the right-hand side of this expression may be
bounded by the supremum of the functional (1.46) over measures µ ∈Mp, for b > 1 large enough
so the function g̃b defined in (3.23) is strictly positive on [−1,1] and each integer N ≥ 1, introduce
the functional P̃b,N : R≥0×M+×M+→ R defined by

P̃b,N(t,µ,ν) = ψ̃b,N(µ + tν)− t
2

∫ 1

−1
G̃b,ν(y)dν(y).

Here ψ̃b,N : M+→ R denotes the initial condition

ψ̃b,N(µ) = ψN(µ)+b
∫ 1

−1
dµ
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and G̃b,ν : [−1,1]→ R denotes the function

G̃b,ν(x) =
∫ 1

−1
g̃b(xy)dν(y).

By Theorem 1.5 in [31], there exists a probability measure ν̃ ∈ Pr[−1,1] which maximizes the
right-hand side of (5.4). It follows by Proposition 3.6 that

sup
ν∈Pr[−1,1]

P(1,0,ν) = lim
N→∞

P̃b,N(1,0, ν̃)−
b
2
≤ limsup

N→∞

sup
ν∈M+

P̃b,N(1,0,ν)−
b
2
. (5.5)

An identical argument to that in Lemma 5.1 of [31] gives a sequence of maximizing measures
(νN)⊂M+ with

sup
ν∈M+

P̃b,N(1,0,ν) = P̃b,N(1,0,νN). (5.6)

By Corollary 2.5 and (2.37), the Gateaux derivative density of the initial condition ψ̃b,N at the
measure νN is given by Dµ ψ̃b,N(νN , ·) = G̃b,ν∗N +O

(
N−1) for some measure ν∗N ∈Mp. Up to

adding errors of O(N−1) throughout, the proof of Theorem 1.3 in [31] applies and reveals that
each maximizer νN ∈M+ satisfies the approximate first order condition

Dµ ψ̃b,N(νN , ·) = G̃b,νN +O
(
N−1).

This means that
G̃b,ν∗N = Dµ ψ̃b,N(νN , ·)+O

(
N−1)= G̃b,νN +O

(
N−1).

Together with the definition of g̃b in (3.23), this implies that

(b+ c log(c)− c)
∫ 1

−1
dνN(y)+∆ log(c)

∫ 1

−1
ydνN(y)x+ c ∑

n≥2

(−∆/c)n

n(n−1)

∫ 1

−1
yn dνN(y)xn

= (b+ c log(c)− c)+∆ log(c)mx+ c ∑
n≥2

(−∆/c)n

n(n−1)

∫ 1

−1
yn dν

∗
N(y)x

n +O
(
N−1).

Since b > 1 and c log(c)− c≥−1, we must have∫ 1

−1
dνN(y) = 1+O

(
N−1) and

∫ 1

−1
yn dνN(y) =

∫ 1

−1
yn dν

∗
N(y)+O

(
N−1)

for all n≥ 2. We have used the fact that ∆ 6= 0 and accounted for the fact that c could be equal to one.
Applying the Prokhorov theorem and passing to a subsequence if necessary, it is therefore possible
to ensure that the sequences (νN) and (ν∗N) converge weakly to probability measures ν ∈ Pr[−1,1]
and ν∗ ∈Mp with ∫ 1

−1
yn dν(y) =

∫ 1

−1
yn dν

∗(y)

for all n 6= 1. Since the set of polynomials with degree one coefficient equal to zero form of a
sub-algebra of the space of continuous functions on the compact set [−1,1], the Stone-Weierstrass
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theorem implies that ν = ν∗ ∈Mp. Recalling that we denote νN for the probability measure in-
duced by νN , and arguing as in the proof of Lemma 3.7, we have∣∣ψ̃b,N(νN)− ψ̃b(ν

∗)
∣∣≤ ∣∣ψ̃b,N(νN)− ψ̃b,N(νN)

∣∣+ ∣∣ψ̃b,N(νN)− ψ̃b,N(ν
∗)
∣∣+ ∣∣ψ̃b,N(ν

∗)− ψ̃b(ν
∗)
∣∣

≤CTV(νN ,νN)+CW (νN ,ν
∗)+

∣∣ψ̃b,N(ν
∗)− ψ̃b(ν

∗)
∣∣,

for some constant C > 0 that depends only on c. Recalling that the Wasserstein distance (3.9)
metrizes the weak convergence of probability measures on [−1,1], observing that

TV(νN ,νN) =
∣∣1−νN [−1,1]

∣∣,
and using Proposition 3.6 and (5.6) to let N tend to infinity in (5.5) shows that

sup
ν∈Pr[−1,1]

P(1,0,ν)≤ limsup
N→∞

P̃b,N(1,0,νN)−
b
2
= ψ̃b(ν

∗)− 1
2

∫ 1

−1
G̃b,ν∗(y)dν

∗(y)− b
2

≤ sup
ν∈Mp

P(1,0,ν).

Substituting this upper bound into (5.4) yields

limsup
N→∞

FN ≤ sup
ν∈Mp

P(1,0,ν).

To express this upper bound in terms of the functional (1.46), fix ν ∈Mp and denote by x1 and x2
two independent samples from the probability measure ν . The definition of g in (1.36) implies that

P(1,0,ν) = ψ(ν)+
c
2
− 1

2
(
c+∆m2) log(c)− c

2 ∑
n≥2

(−∆/c)n

n(n−1)
(
Exn

1
)2
.

A Taylor expansion of the logarithm shows that

c ∑
n≥2

(−∆/c)n

n(n−1)
(
Exn)2

= E(c+∆x1x2) log(c+∆x1x2)−
(
c+∆m2) log(c)−∆m2 (5.7)

from which it follows that

P(1,0,ν) = ψ(ν)+
c
2
− 1

2
E(c+∆x1x2) log(c+∆x1x2)+

∆m2

2
= P(ν),

and therefore
limsup

N→∞

FN ≤ sup
ν∈Mp

P(ν).

This establishes the upper bound in (1.47). To prove the corresponding lower bound, we follow [13]
and proceed by interpolation. Given a measure ν ∈Mp, introduce the interpolating free energy

ϕ(t) = F̃N(t,1− t,ν) (5.8)
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for the free energy F̃N defined in (1.29). The derivative computations in Corollary 2.2 and Lemma 2.3
together with a computation identical to that in Corollary 2.5 imply that

ϕ
′(t) = ∂t F̃N(t,1− t,ν)−∂sF̃N(t,1− t,ν)

=
c
2
− 1

2
(
c+∆m2) log(c)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
R2
[n]

〉
− c ∑

n≥2

(−∆/c)n

n(n−1)
E〈R[n]〉Exn

1.

=
c
2
− 1

2
(
c+∆m2) log(c)− c

2 ∑
n≥2

(−∆/c)n

n(n−1)
(
Exn

1
)2

+
c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
(R[n]−Exn

1)
2〉.

It follows by (5.7) that

ϕ
′(t) =

c
2
+

∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2)+

c
2 ∑

n≥2

(−∆/c)n

n(n−1)
E
〈
(R[n]−Exn

1)
2〉.

Since the final term in this equality is non-negative, the fundamental theorem of calculus reveals
that

FN ≥ ψN(ν)+
c
2
+

∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2),

where we have used that ϕ(1) = FN and ϕ(0) = ψN(ν). Using Proposition 3.6 to let N tend to
infinity gives the lower bound

liminf
N→∞

FN ≥ ψ(ν)+
c
2
+

∆m2

2
− 1

2
E(c+∆x1x2) log(c+∆x1x2) = P(ν).

Taking the supremum over all measures ν ∈Mp completes the proof. �

A Asymptotic equivalence of free energy functionals

In this appendix we show that the free energy functionals F◦N and FN defined in (1.15) and (1.20),
respectively, are asymptotically equivalent. This will be a consequence of the binomial-Poisson
approximation. To state this result concisely, given a separable metric space S, recall the definition
of the total variation distance

TV(P,Q) = sup
{
|P(A)−Q(A)| | A is a measurable subset of S

}
(A.1)

between probability measures P,Q ∈ Pr(S). Approximating any measurable function with values
in S by a sequence of simple functions, one can check that the total variation distance admits the
dual representation

TV(P,Q) = sup
{∣∣∣∫ 1

−1
f (x)dP(x)−

∫ 1

−1
f (x)dQ(x)

∣∣∣ | f : S→ [0,1] measurable
}
. (A.2)

Using the Hahn-Jordan decomposition, it is also possible to show that

TV(P,Q) = inf
{
P{X 6= Y} | X ∼ P and Y ∼Q

}
. (A.3)
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We will use this result for discrete probability measures supported on the set of natural numbers
in which case this representation follows from the Kantorovich-Rubinstein theorem (see Theorem
4.15 in [65]). The binomial-Poisson approximation is an upper bound on the total variation distance
between the convolution of Bernoulli distributions and an appropriate Poisson distribution.

Lemma A.1. Consider independent Bernoulli random variables Xi ∼ Ber(pi) for i ≤ n, and let
λn = ∑i≤n pi. If Sn = ∑i≤n Xi and Πn ∼ Poi(λn), then

TV(Sn,Πn)≤∑
i≤n

p2
i . (A.4)

Proof. See Theorem 2.4 in [65]. �

Proposition A.2. The free energies (1.15) and (1.20) are asymptotically equivalent,

lim
N→∞

∣∣FN−F◦N
∣∣= 0. (A.5)

Proof. Introduce the Hamiltonians

H̃◦N(σ) = ∑
i< j

(
Gi j log(c+∆σiσ j)−

c+∆σiσ j

N

)
H̃N(σ) = ∑

k≤Π1

(
Gk

ik, jk log(c+∆σikσ jk)−
c+∆σikσ jk

N

)
on ΣN , and denote by

F̃◦N =
1
N
E log

∫
ΣN

exp H̃◦N(σ)dP∗N(σ) and F̃N =
1
N
E log

∫
ΣN

exp H̃N(σ)dP∗N(σ)

their associated free energy functionals. A Taylor expansion of the logarithm shows that for any
σ ∈ ΣN , ∣∣H◦N(σ)− H̃◦N(σ)

∣∣≤∑
i< j

∣∣∣c+∆σiσ j

N
− (1−Gi j)

(c+∆σiσ j

N

)∣∣∣+O(1)

≤ c+ |∆|
N ∑

i< j
Gi j +O(1)

and ∣∣HN(σ)− H̃N(σ)
∣∣≤ ∑

k≤Π1

∣∣∣c+∆σikσ jk
N

− (1−Gk
ik, jk)

(c+∆σikσ jk
N

)∣∣∣+O
(
Π1/N2)

≤ c+ |∆|
N ∑

k≤Π1

Gk
ik, jk +O

(
Π1/N2).

Since these bounds are uniform in σ ∈ ΣN and EΠ1 =
(N

2

)
,∣∣F◦N− F̃◦N

∣∣≤ c+ |∆|
N2 ∑

i< j
EGi j +O

(
N−1)≤ (c+ |∆|)2

N
+O

(
N−1)= O

(
N−1),

∣∣FN− F̃N
∣∣≤ c+ |∆|

N2 E ∑
k≤Π1

Gk
ik, jk +O

(
EΠ1/N3)≤ (c+ |∆|)2

N3 EΠ1 +O
(
N−1)= O

(
N−1).
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By the triangle inequality, it therefore suffices to show that

lim
N→∞

∣∣F̃N− F̃◦N
∣∣= 0. (A.6)

We now rewrite F̃N in a way that more closely resembles F̃◦N . For each pair i ≤ j introduce the
random index set

Ii, j =
{

k ≤Π1 | (ik, jk) = (i, j) or (ik, jk) = ( j, i)
}
,

and observe that

H̃N(σ) = ∑
i≤ j

∑
k∈Ii, j

(
Gk

ik, jk log(c+∆σikσ jk)−
c+∆σikσ jk

N

)
= ∑

i< j

(
G̃i, j log(c+∆σiσ j)−

c+∆σiσ j

N

)
−∑

i≤N

(
G̃i,i log(c+∆)− c+∆

N

)
for the random variables

G̃i, j = ∑
k∈Ii, j

Gk
i, j.

The Poisson coloring theorem (see Chapter 5 in [40]) implies that G̃i, j is a Poisson random variable
with mean

λ̃i, j = EΠ1 ·P{(i1, j1) = (i, j) or (i1, j1) = ( j, i)} ·P{G1
i, j = 1}=

{
N−1

N ·
c+∆σ∗i σ∗j

N if i < j,
N−1
2N ·

c+∆

N if i = j.

If we introduce the Hamiltonian

H̃ ′N(σ) = ∑
i< j

(
G̃i, j log(c+∆σiσ j)−

c+∆σiσ j

N

)
and its associated free energy

F̃ ′N =
1
N
E log

∫
ΣN

exp H̃ ′N(σ)dP∗N(σ),

then ∣∣F̃ ′N− F̃N
∣∣≤ |log(c+∆)|

N ∑
i≤N

E G̃i,i +
c+ |∆|

N
≤ |log(c+∆)|

N ∑
i≤N

λ̃i,i +
2c
N

= O
(
N−1).

Together with (A.6) and the triangle inequality, this means that it suffices to show that

lim
N→∞

∣∣F̃ ′N− F̃◦N
∣∣= 0. (A.7)

At this point, for any random vector Y = (Yi, j)i< j introduce the Hamiltonian

H̃N(σ ,Y ) = ∑
i< j

Yi, j log(c+∆σiσ j)
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and the measure
P̃∗N(σ) = exp

(
−∑

i< j

c+∆σiσ j

N

)
P∗N(σ).

Write
FN(Y ) =

1
N

log
∫

ΣN

exp H̃N(σ ,Y )dP̃∗N(σ) and F̃N(Y ) = EFN(Y )

for the associated free energy functionals, and denote by Πi, j a Poisson random variable with
distribution

Πi, j ∼ Poi
(c+∆σ∗i σ∗j

N

)
conditionally on σ∗. Observe that

∂Yi, jFN(Y ) =
1
N

〈
∂Yi, jH̃N(σ ,Y )

〉
=

1
N
〈log(c+∆σiσ j)〉 ≤

C
N

for some deterministic constant C > 0 that depends only on c. Here, the bracket 〈·〉 denotes the
Gibbs measure associated with the Hamiltonian H̃N(σ ,Y ). It follows by the mean value theorem
that ∣∣F̃ ′N− F̃N(Π)

∣∣= ∣∣F̃N(G̃)− F̃N(Π)
∣∣≤ C

N ∑
i< j

E
∣∣G̃i, j−Πi, j

∣∣
∣∣F̃N(Π)− F̃◦N

∣∣= ∣∣F̃N(Π)− F̃N(G)
∣∣≤ C

N ∑
i< j

E
∣∣Πi, j−Gi j

∣∣.
To bound the first of the sums observe that Πi, j

d
= G̃i, j +Π′i, j for a Poisson random variable with

distribution

Π
′
i, j ∼ Poi

(c+∆σ∗i σ∗j
N2

)
conditionally on σ∗. This means that∣∣F̃ ′N− F̃N(Π)

∣∣≤ C
N ∑

i< j
EΠ

′
i, j ≤

Cc
N

= O
(
N−1),

and therefore, ∣∣F̃ ′N− F̃◦N
∣∣≤ C

N ∑
i< j

E
∣∣Πi, j−Gi j

∣∣+O
(
N−1). (A.8)

If we write λi, j =
c+∆σ∗i σ∗j

N , then

E
∣∣Πi, j−Gi j

∣∣≤ E|Πi, j−Gi j
∣∣1{Πi, j ≥ 2}+E|Πi, j−Gi j

∣∣1{Πi, j ≤ 2}1{Πi, j 6= Gi j}
≤ EΠi, j1{Πi, j ≥ 2}+P{Πi, j ≥ 2}+3P{Πi, j 6= Gi j}
≤ 3P{Πi, j 6= Gi j}+O

(
λ

2
i, j
)
,

where we have used the fact that |Gi j| ≤ 1. Taking the infimum over all couplings of Πi, j and Gi j,
recalling the definition of the total variation distance in (A.3) and invoking the binomial-Poisson
approximation in Lemma A.1 shows that

E
∣∣Πi, j−Gi j

∣∣≤ 3TV
(
Πi, j,Gi j

)
+O

(
λ

2
i, j
)
= O

(
λ

2
i, j
)
= O

(
N−2).

Substituting this into (A.8) and letting N tend to infinity establishes (A.7). This completes the
proof. �
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B Concentration of the free energy

In this appendix we discuss the concentration of the free energy associated with the perturbed
Hamiltonian (4.7). For simplicity of notation, we will ignore the Hamiltonian (1.34) and focus
instead on the perturbed Hamiltonian

H ′N(σ) = Ht
N(σ)+Hgauss

N (σ)+Hexp
N (σ), (B.1)

where the randomness of each of the Hamiltonians (1.26), (4.1) and (4.5) is independent of the
randomness of the other Hamiltonians. The more general case is treated in an identical fashion but
the notation becomes too cumbersome for comfort. We will often need to make the dependence
of the perturbed Hamiltonian (B.1) on one of its sources of randomness σ∗, Πt , I1 = (ik, jk)k≤Πt ,
G = (Gk

ik, jk)k≤Πt , e = (e jk), Π′ = (πk)k≥0, I2 = (i jk) j≤Π′ and Z = (Z0,i)i≤N explicit. To do so, we
will abuse notation and write H ′N(X) when we want to study the dependence on the source of
randomness X . The main objects of study will be the free energy,

F ′N =
1
N

log
∫

expH ′N(σ)dP∗N(σ), (B.2)

and its average

F ′N =
1
N
E log

∫
expH ′N(σ)dP∗N(σ). (B.3)

For each even p≥ 2, we will bound the concentration function,

vN,p = sup
{
E
∣∣F ′N−F ′N

∣∣p | λk ∈ [2−k−1,2−k] for all k ≥ 0
}
, (B.4)

by means of the generalized Efron-Stein inequality (see Theorem 15.5 of [17]).

Lemma B.1 (Generalized Efron-Stein inequality). Let X = (X1, . . . ,Xn) and X ′ = (X ′1, . . . ,X
′
n) be

two independent copies of a vector of independent random variables, and let f : Rn → R be a
measurable function. Introduce the random variable Z = f (X), and for each 1 ≤ i ≤ n let Z′i =
f (X1, . . . ,Xi−1,X ′i ,Xi+1, . . . ,Xn). If q≥ 2, then

E|Z−EZ|q ≤CE
∣∣∣∑

i≤n
EX ′(Z−Z′i)

2
∣∣∣ q

2
, (B.5)

where C > 0 is a constant that depends only on q.

A key observation that will be used repeatedly without further explanation is the following:
given two sources of randomness X and X ′, a configuration-independent bound on the difference
of the Hamiltonians H ′N(X) and H ′N(X

′),

max
σ∈ΣN

∣∣H ′N(X)−H ′N(X
′)
∣∣≤ Y, (B.6)

gives a control by the possibly random Y on the difference of the free energy functionals F ′N(X)
and F ′N(X

′), ∣∣F ′N(X)−F ′N(X
′)
∣∣≤ Y

N
. (B.7)

The following bounds on the moments of Poisson and binomial random variables will also play
their part.
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Lemma B.2. If Π is a Poi(λ ) random variable for some λ ≥ 1 and k ≥ 2 is an integer, then

EΠ
k ≤Cλ

k and E
(
Π−EΠ)k ≤Cλ

bk/2c (B.8)

for some constant C > 0 that depends only on k.

Proof. Denote by
{

k
j

}
the number of ways to partition a k element set into j non-empty subsets.

In combinatorics, such numbers are known as Stirling numbers of the second kind, and they have
the property that for any integer m≥ 0,

mk = ∑
j≤k

{
k
j

}
(m) j, (B.9)

where (m) j = m(m−1) · · ·(m− j+1) is the falling factorial. The basic properties of the Poisson
distribution imply that

EΠ
k = ∑

m≥0
∑
j≤k

{
k
j

}
(m) j

λ m

m!
exp(−λ ) = ∑

j≤k

{
k
j

}
λ

j
∑

m≥ j

λ m− j

(m− j)!
exp(−λ ) = ∑

j≤k

{
k
j

}
λ

j

≤max(1,λ k)Bk,

where Bk denotes the k’th Bell number. This establishes the first bound in (B.8). We now prove by
induction that for each k≥ 2, the function Mk(λ ) = E(Π−EΠ)k is a polynomial of degree bk/2c.
The base case holds since M2(λ ) = VarΠ = λ , so assume the result holds for all 2≤ i≤ k. By the
product rule

M′k(λ ) =− ∑
m≥0

k(m−λ )k−1 λ m

m!
exp(−λ )+ ∑

m≥0
(m−λ )km

λ m−1

m!
exp(−λ )−Mk(λ )

=−kMk−1(λ )+ ∑
m≥0

(m−λ )k(m−λ +λ )
λ m−1

m!
exp(−λ )−Mk(λ )

=−kMk−1(λ )+
1
λ

(
Mk+1(λ )+λMk(λ )

)
−Mk(λ )

=−kMk−1(λ )+
1
λ

Mk+1(λ ).

Invoking the induction hypothesis shows that Mk+1(λ ) has degree max(bk/2c,1+ b(k− 1)/2c).
This completes the proof. �

Lemma B.3. If X is a Bin(n, p) random variable with np≥ 1 and k ≥ 1 is an integer, then

EXk ≤C(np)k (B.10)

for some constant C > 0 that depends only on k.
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Proof. Using (B.9) and identifying the probability density function of a Bin(n− j, p) shows that

EXk = ∑
m≤n

∑
j≤k

{
k
j

}
(m) j

n!
(n−m)!m!

pm(1− p)n−m

≤ ∑
j≤k

{
k
j

}
(np) j

∑
j≤m≤n

(n− j)!
(n−m)!(m− j)!

pm− j(1− p)n−m

≤max(1,(np)k)Bk,

where Bk denotes the k’th Bell number. This completes the proof. �

Proposition B.4. For any two sequences (εN) and (sN) satisfying (4.3) and (4.4) respectively and
every even p≥ 2,

vN,p ≤
C(1+ t p)

N p/2 (B.11)

for some constant C > 0 that depends only on p, c and ∆.

Proof. To alleviate notation, write C > 0 for a constant that depends only on p, c and ∆ whose
value might not be the same at each occurrence. Given a source of randomness X , write EX for the
average with respect to the randomness of X . The proof will rely upon the generalized Efron-Stein
inequality in Lemma B.1 and the fact that

E= Eσ∗EZ EΠ′EI2 EeEΠt EI1 EG |σ∗ .

Introduce the averaged free energy functionals

F̂ ′N = EΠt EI1 EG |σ∗ F ′N and F̃ ′N = EZ EΠ′EI2 Ee F̂ ′N

in such a way that

E
(
F ′N−F ′N

)p ≤C
(
E
(
F ′N− F̂ ′N

)p
+E

(
F̂ ′N− F̃ ′N

)p
+E

(
F̃ ′N−F ′N

)p
)
. (B.12)

We will now bound each of these terms separately.
Step 1: proving E

(
F ′N− F̂ ′N

)p
= O

(
(t/N)p/2).

We decompose this further into

E
(
F ′N− F̂ ′N

)p ≤C
(
E
(
F ′N−EG |σ∗ F ′N

)p
+E

(
EG |σ∗ F ′N−EI1 EG |σ∗ F ′N

)p

+E
(
EI1 EG |σ∗ F ′N− F̂ ′N

)p
)
=C

(
I + II + III

)
, (B.13)

and proceed to bound I, II and III individually. By the generalized Efron-Stein inequality

I ≤CE
∣∣∣∣ ∑
`≤Πt

EG (`)|σ∗
(

F ′N(G )−F ′N
(
G (`)

))2
∣∣∣∣p/2

,
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where
(
G̃(`)

i, j
)

i, j∈N is an independent copy of
(
G(`)

i, j
)

i, j∈N. Since |∆| < c and all spin configuration
coordinates are bounded by one,∣∣H ′N(G )−H ′N

(
G (`)

)∣∣≤ |log(c+∆σi`σ j`)|
∣∣G`

i`, j`− G̃`
i`, j`

∣∣
+
∣∣∣ log

(
1−

c+∆σi`σ j`
N

)∣∣∣∣∣G`
i`, j`− G̃`

i`, j`

∣∣≤C
∣∣G`

i`, j`− G̃`
i`, j`

∣∣.
It follows that

I ≤ C
N p E

∣∣∣ ∑
`≤Πt

EG (`)|σ∗
∣∣G`

i`, j`− G̃`
i`, j`

∣∣2∣∣∣p/2
≤ C

N p E
∣∣∣ ∑
`≤Πt

((
1− 2

N

)
G`

i`, j` +
1
N

)∣∣∣p/2

≤ C
N p

(
E
∣∣∣ ∑
`≤Πt

G`
i`, j`

∣∣∣p/2
+

1
N p/2 EΠ

p/2
t

)
.

Notice that ∑`≤Πt G`
i`, j` follows a Bin

(
Πt ,

c+∆σ∗i`
σ∗j`

N

)
distribution conditionally on Πt . Invoking

Lemma B.2 and Lemma B.3 yields

I ≤ C

N p+ p
2
EΠ

p/2
t ≤ Ct p/2

N p/2 . (B.14)

Another application of the generalized Efron-Stein inequality gives

II ≤ E
∣∣∣∣ ∑
`≤Πt

E
I

(`)
1

(
EG |σ∗ F ′N(I1)−EG |σ∗ F ′N

(
I

(`)
1
))2
∣∣∣∣p/2

,

where I
(`)

1 has an independent copy (i′`, j′`) of (i`, j`) at the `’th coordinate but otherwise coincides
with I1. Taylor expanding the logarithm and remembering that G`

i`, j` ∈ {0,1}, it is readily verified
that∣∣H ′N(I1)

∣∣≤ ∣∣G`
i`, j`

∣∣|log(c+∆σi`σ jl)|+
∣∣1−G`

i`, j`

∣∣∣∣∣ log
(

1−
c+∆σi`σ j`

N

)∣∣∣≤C
(∣∣G`

i`, j`

∣∣+ 1
N

)
.

This means that
∣∣H ′N(I1)−H ′N

(
I

(`)
1 )
∣∣≤C

(
|G`

i`, j`|+ |G
`
i′`, j
′
`
|+ 1

N

)
, and therefore(

EG |σ∗ F ′N(I1)−EG |σ∗ F ′N
(
I

(`)
1
))2
≤ C

N2

(
EG |σ∗

∣∣G`
i`, j`

∣∣+EG |σ∗
∣∣G`

i′`, j
′
`

∣∣+ 1
N

)2
≤ C

N4 .

It follows that

II ≤ C
N2p EΠ

p/2
t ≤ Ct p/2

N p ≤
Ct p/2

N p/2 . (B.15)

A final application of the generalized Efron-Stein inequality reveals that

III ≤ E
∣∣∣EΠ′t

(
EI1 EG |σ∗ F ′N(Πt)−EI1 EG |σ∗ F ′N(Π

′
t)
)2
∣∣∣p/2

,

where Π′t is an independent copy of Πt . Slightly abusing notation and redefining Π′t to be the
maximum between Πt and Π′t , we see that∣∣H ′N(Π′t)−H ′N(Πt)

∣∣≤ ∑
Πt≤k≤Π′t

(∣∣Gk
ik, jk

∣∣|log(c+∆σikσ jk)|+
∣∣1−Gk

ik, jk

∣∣∣∣∣ log
(

1−
c+∆σikσ jk

N

)∣∣∣)
≤C ∑

Πt≤k≤Π′t

(∣∣Gk
ik, jk

∣∣+ 1
N

)
.
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It follows that∣∣EI1 EG |σ∗ F ′N(Πt)−EI1 EG |σ∗ F ′N(Π
′
t)
∣∣≤ C

N
EI1 EG |σ∗ ∑

Πt≤k≤Π′t

(∣∣Gk
ik, jk

∣∣+ 1
N

)
≤ C

N2 |Π
′
t−Πt |,

and by Jensen’s inequality and Lemma B.2,

III ≤ C
N2p E

∣∣EΠ′t
|Π′t−Πt |2

∣∣p/2 ≤ C
N2p E|Πt−EΠt |p ≤

Ct p/2

N p ≤
Ct p/2

N p/2 . (B.16)

Combining (B.13), (B.14), (B.15) and (B.16) reveals that E
(
F ′N− F̂ ′N

)p
= O

(
(t/N)p/2).

Step 2: proving E
(
F̂ ′N− F̃ ′N

)p
= O

(
N−p/2).

We decompose this further into

E
(
F̂ ′N− F̃ ′N

)p ≤C
(
E
(
F̂ ′N−Ee F̂ ′N

)p
+E

(
Ee F̂ ′N−EI2 Ee F̂ ′N

)p
+E

(
EI2 Ee F̂ ′N−EΠ′EI2 Ee F̂ ′N

)p

+E
(
EΠ′EI2 Ee F̂ ′N− F̃ ′N

)p
)
=C

(
I + II + III + IV

)
, (B.17)

and proceed to bound I, II, III and IV individually. By the generalized Efron-Stein inequality

I ≤ E
∣∣∣∣∑

k≥0
∑

j≤πk

Ee( jk)

(
F̂ ′N(e)− F̂ ′N

(
e( jk)))2

∣∣∣∣p/2

,

where e( jk) has an independent copy e′jk of e jk at the jk’th coordinate but otherwise coincides
with e. Since ∣∣H ′N(e)−H ′N

(
e( jk))∣∣≤ |λkσi jk |

|1+λkσ∗i jk
|
∣∣e jk− e′jk

∣∣≤ λk

1−λk

∣∣e jk− e′jk
∣∣,

and λk ∈ [2−k−1,2−k], we have

I ≤ C
N p E

∣∣∣∑
k≥0

1
2k ·

1
2k ∑

j≤πk

Ee′jk

∣∣e jk− e′jk
∣∣2∣∣∣p/2

.

It follows by two applications of Hölder’s inequality and Jensen’s inequality that

I ≤ C
N p E ∑

k≥0

( 1
2k ∑

j≤πk

Ee′jk

∣∣e jk− e′jk
∣∣2)p/2

≤ C
N p E ∑

k≥0

1

2
kp
2

π

p
2−1

k ∑
j≤πk

Ee′jk

∣∣e jk− e′jk
∣∣p.

Recalling that e jk ∼ Exp(1) while π jk ∼ Poi(sN) and invoking Lemma B.2 gives

I ≤ C
N p ∑

k≥0

1

2
kp
2

Eπ

p
2

k ≤C
( sN

N2

)p/2
≤ C

N p/2 . (B.18)

Similarly, by the generalized Efron-Stein inequality,

II ≤CE
∣∣∣∣∑

k≥0
∑

j≤πk

E
I

( jk)
2

(
Ee F̂ ′N(I2)−Ee F̂ ′N

(
I

( jk)
2
))2
∣∣∣∣p/2

,
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where I
( jk)

2 has an independent copy i′jk of i jk at the jk’th coordinate but otherwise coincides
with I2. By the mean value theorem,∣∣H ′N(I2)−H ′N

(
I

( jk)
2
)∣∣≤ |log(1+λkσi jk)− log(1+λkσi′jk

)|+λke jk

∣∣∣ σi jk

1+λkσ∗i jk

−
σi′jk

1+λkσ∗i′jk

∣∣∣
≤Cλk(1+ e jk).

It follows once again by two applications of Hölder’s inequality and Lemma B.2 that

II ≤ C
N p E ∑

k≥0

1

2
kp
2

π

p
2−1

k ∑
j≤πk

(1+ e jk)
p ≤C

( sN

N2

)p/2
≤ C

N p/2 . (B.19)

Another application of the generalized Efron-Stein inequality yields

III ≤CE
∣∣∣∣∑

k≥0
E

Π′(k)

(
EI2 Ee F̂ ′N(Π

′)−EI2 Ee F̂ ′N
(
Π
′(k)))2

∣∣∣∣p/2

,

where Π′(k) has an independent copy π ′k of πk at the k’th coordinate but otherwise coincides with Π′.
Slightly abusing notation and redefining Π′(k) to be the process with the larger k’th coordinate, we
see that ∣∣H ′N(Π′)−H ′N(Π

′(k))
∣∣≤ ∑

πk≤ j≤π ′k

∣∣∣ log(1+λkσi jk)−
λke jkσi jk

1+λkσ∗i jk

∣∣∣
≤ ∑

πk≤ j≤π ′k

(∣∣∣λkσi jk−
λke jkσi jk

1+λkσ∗i jk

∣∣∣+Cλ
2
k

)

≤ ∑
πk≤ j≤π ′k

(
λk

∣∣∣1− e jk

1+λkσ∗i jk

∣∣∣+Cλ
2
k

)

≤ λk ∑
πk≤ j≤π ′k

(
|1− e jk|+λk

1−λk
+Cλk

)
.

It follows by two applications of the Cauchy-Schwarz inequality that

III ≤ C
N p E ∑

k≥0

1

2
kp
2

(
∑

πk≤ j≤π ′k

(
|1− e jk|+λk

1−λk
+Cλk

))p

≤ C
N p E ∑

k≥0

1

2
kp
2

|πk−π
′
k|p−1

∑
πk≤ j≤π ′k

(
|1− e jk|+λk

1−λk
+Cλk

)p

≤ C
N p ∑

k≥0

1

2
kp
2

E|πk−π
′
k|p.

Since E|πk−π ′k|p ≤CE|πk−Eπk|p ≤ sp/2
N by Lemma B.2, this implies that

III ≤C
( sN

N2

)p/2
≤ C

N p/2 . (B.20)
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A final application of the generalized Efron-Stein inequality gives

IV ≤CE
∣∣∣∣∑

i≤N
EZ(i)

(
EΠ′EI2 Ee F̂ ′N(Z)−EΠ′EI2 Ee F̂ ′N

(
Z(i)))2

∣∣∣∣p/2

,

where Z(i) has an independent copy Z′i,0 of Zi,0 at the i’th coordinate but otherwise coincides with Z.
Combining Hölder’s inequality with the bound∣∣H ′N(Z)−H ′N

(
Z(i))∣∣≤√λ0εN

∣∣Zi,0−Z′i,0
∣∣

reveals that

IV ≤C
(

λ0εN

N

)p
E
∣∣∣∑

i≤N
EZ(i)

∣∣Zi,0−Z′i,0
∣∣2∣∣∣p/2

≤ C
N p N

p
2−1

∑
i≤N

E
∣∣Zi,0−Z′i,0

∣∣p ≤ C
N p/2 . (B.21)

Together with (B.17), (B.18), (B.19) and (B.20), this shows that E
(
F̂ ′N− F̃ ′N

)p
= O

(
N−p/2).

Step 3: proving E
(
F̃ ′N−F ′N

)p
= O

(
(t2/N)p/2)

Controlling the final term in (B.12) requires more care since F̃ ′N depends on σ∗ both through F ′N and
through the conditional expectation EG |σ∗ . To simplify notation, write E′ =EZ EΠ′EI2 EeEΠt EI1

in such a way that by the generalized Efron-Stein inequality

E
(
F̃ ′N−F ′N

)p ≤CE
∣∣∣∣ ∑
`≤N

E
σ∗,(`)

(
E′EG |σ∗ F ′N(σ

∗)−E′EG |σ∗,(`) F ′N
(
σ
∗,(`)))2

∣∣∣∣p/2

≤CE
∣∣∣∣ ∑
`≤N

E
σ∗,(`)

(
E′EG |σ∗ F ′N(σ

∗)−E′EG |σ∗ F ′N
(
σ
∗,(`)))2

∣∣∣∣p/2

+CE
∣∣∣∣ ∑
`≤N

E
σ∗,(`)

(
E′EG |σ∗ F ′N

(
σ
∗,(`))−E′EG |σ∗,(`) F ′N

(
σ
∗,(`)))2

∣∣∣∣p/2

=C(I + II), (B.22)

where σ∗,(`) has an independent copy σ̃∗` of σ∗` at the `’th coordinate but otherwise coincides
with σ∗. Since∣∣H ′N(σ∗)−H ′N(σ

∗,(l))
∣∣≤ λ0εN |σi|

∣∣σ∗` − σ̃
∗
`

∣∣+ ∑
k≥1

∑
j:i jk=`

∣∣∣∣ λke jkσ`

1+λkσ∗`
−

λke jkσ`

1+λkσ̃∗`

∣∣∣∣
≤ 2εN + ∑

k≥1
∑

j:i jk=`

2λ 2
k e jk

(1−λk)2 ,

and Ee jk = 1, the Fubini-Tonelli theorem and the basic properties of the multinomial distribution
imply that∣∣E′EG |σ∗ F ′N(σ

∗)−E′EG |σ∗ F ′N
(
σ
∗,(`))∣∣≤ 2εN

N
+

1
N
EΠ′ ∑

k≥1

2λ 2
k

(1−λk)2 EI2|{ j : ik = `}|

≤ 2
N
+

1
N2 EΠ′ ∑

k≥1

2λ 2
k

(1−λk)2 πk ≤
2
N
+

sN

N2 ≤
3
N
.
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It follows that

I ≤C
( N

N2

)p/2
=

C
N p/2 . (B.23)

To bound II we will use an interpolation argument. Fix 1≤ `≤ N and condition on all sources of
randomness other than G . For each u ∈ [0,1], G ∈ {0,1}Πt and k ≤Πt , let

P1,k
u (G) = Gk

(c+∆σ
∗,u
` σ∗jk

N

)
+(1−Gk)

(
1−

c+∆σ
∗,u
` σ∗jk

N

)
,

P2,k
u (G) = Gk

(c+∆σ
∗,u
` σ∗ik

N

)
+(1−Gk)

(
1−

c+∆σ
∗,u
` σ∗ik

N

)
,

P3
u (G) = Gk

(
c+∆(σ∗,u` )2

N

)
+(1−Gk)

(
1−

c+∆(σ∗,u` )2

N

)
,

where σ
∗,u
` = (1− u)σ∗` + uσ̃∗` . Write σ∗,u for the configuration with `’th coordinate σ

∗,u
` which

otherwise coincides with σ∗, and introduce the sets

I 1
1 = {k | ik = l and jk 6= l} I 3

1 = {k | ik = jk = l}
I 2

1 = {k | ik 6= l and jk = l} I 4
1 = {k | ik 6= l 6= jk}.

Denote G̃ = (Gk)k∈I 4
1

, G (k) = G \Gk, G̃ = (Gk)k∈I 4
1

and G(k) = G \Gk. Define the interpolating
free energy

ϕ(u) = ∑
G∈{0,1}Πt

F ′N
(
σ
∗,(`),G

)
P
{
G̃ = G̃|σ∗

}
· ∏

k∈I 1
1

P1,k
u (G) ∏

k∈I 2
1

P2,k
u (G) ∏

k∈I 3
1

P3,k
u (G)

in such a way that ϕ(1) = EG |σ∗ F ′N
(
σ∗,(`)

)
and ϕ(0) = EG |σ∗,(`) F ′N

(
σ∗,(`)

)
. By the product rule,

ϕ
′(u) = ∑

k∈∪i≤3I
i
1

∑
G∈{0,1}Πt

F ′N
(
σ
∗,(`),G

)
P
{
G (k) = G(k)|σ∗,u

}
(2Gk−1)

(
∆(σ̃∗` −σ∗` )(σ

∗
jk1{k∈I 1

1 }
+σ∗ik1{k∈I 2

1 }
+2σ

∗,u
` 1{k∈I 3

1 }
)

N

)

= ∑
k∈I 1

1

Dk
∆(σ̃∗` −σ∗` )σ

∗
jk

N
+ ∑

k∈I 2
1

Dk
∆(σ̃∗` −σ∗` )σ

∗
ik

N

+ ∑
k∈I 3

1

Dk
2∆
(
(1−u)σ∗` +uσ̃∗`

)
(σ̃∗` −σ∗` )

N

for Dk = EG (k)|σ∗,u F ′N
(
σ∗,(`),G (k),Gk = 1

)
−EG (k)|σ∗,u F ′N

(
σ∗,(`),G (k),Gk = 0

)
. Since∣∣H ′N(G (k),Gk = 1

)
−H ′N

(
G (k),Gk = 0

)∣∣≤ ∣∣∣ log(c+∆σikσ jk)− log
(

1−
c+∆σikσ jk

N

)∣∣∣≤C,

we have |Dk| ≤ C
N , so the fundamental theorem of calculus yields∣∣EG |σ∗ F ′N
(
σ
∗,(`))−EG |σ∗,(`) F ′N

(
σ
∗,(l))∣∣≤ sup

u∈(0,1)
|ϕ ′(u)| ≤ C

N2

(
|I 1

1 |+ |I 2
1 |+ |I 3

1 |
)
.
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It follows by the basic properties of the binomial distribution that(
E′EG |σ∗ F ′N

(
σ
∗,(`))−E′EG |σ∗,(`) F ′N

(
σ
∗,(`)))2

≤ C
N4 ∑

1≤i≤3

(
EΠt |I

i
1|
)2

=
C
N4 ∑

1≤i≤3

(
EΠt

Πt

N

)2

≤ Ct2

N2 ,

and thus

II ≤C
(

Nt2

N2

)p/2

=
Ct p

N p/2 . (B.24)

Combining (B.22), (B.23) and (B.24) reveals that E
(
F̃ ′N −F ′N

)p
= O

(
(t2/N)p/2). Together with

(B.12), step 1 and step 2 this completes the proof. �

C Multi-overlap concentration

In this appendix we prove a finitary version of the main result in [14] regarding the concentration
of the multi-overlaps (2.11). Instead of focusing on the stochastic block model (1.19) or (1.34), we
will work in the general setting of optimal Bayesian inference; this presents no additional difficulty,
and we suspect that our restatement of the multi-overlap concentration result in [14] will be useful
for the analysis of other statistical inference models.

Let us describe a general optimal Bayesian inference model following [14]. We consider a
ground-truth signal σ∗ ∈ ΣN = {−1,+1}N with independent coordinates generated from a prior
distribution P∗,

σ
∗ ∼ P∗ = ∏

i≤N
P∗i . (C.1)

We suppose that the data D = D(σ∗) is sampled conditionally on the unknown signal σ∗ from a
probability distribution Pout,

D ∼ Pout{·|σ∗}. (C.2)

The inference task is to recover the signal σ∗ as accurately as possible given the data D under the
assumption that the likelihood Pout and the prior P∗ are known to the statistician. In this setting the
posterior of the model can be written explicitly. Indeed, if

HN(σ) = logPout
{
D |σ∗ = σ

}
(C.3)

denotes the Hamiltonian or log-likelihood of the model, then the Gibbs measure or posterior dis-
tribution of the model is given by Bayes’ formula,

GN(dσ) = P{σ∗ ∈ dσ |D}= expHN(σ)P∗(dσ)∫
expHN(τ)P∗(dτ)

. (C.4)

In addition to working in the context of optimal Bayesian inference, we will assume that the Hamil-
tonian (C.3) satisfies symmetry between sites. This means that for any permutation ρ of the spin
indices,

P{σ∗ ∈ dσ |D} d
= P{ρ(σ∗) ∈ dσ |D}. (C.5)
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Notice that both the stochastic block model (1.19) and its enriched version (1.34) fall into the
setting we have just described. For instance, in the enriched stochastic block model we have P∗i =
Ber(p) and D = D̃ t,µ[−1,1],µ , where the data D̃ t,s,µ was defined in (1.30).

The concentration of the multi-overlaps (2.11) associated with the Hamiltonian (C.3) will be
enforced through a small perturbation which will not affect the limit of the associated free energy
(1.20). Recall the choice of the sequences (εN) and (sN) satisfying (4.3) and (4.4), respectively.
Fix an integer K+ ≥ 1, and for each perturbation parameter λ ∈ R1+K+ with λk ∈ [2−k−1,2−k] for
0 ≤ k ≤ K+ recall the definition of the perturbation Hamiltonians (4.1) and (4.5). Introduce the
perturbed Hamiltonian

HN(σ ,λ ) = HN(σ)+Hgauss
N (σ ,λ0)+Hexp

N (σ ,λ ), (C.6)

where the randomness of each Hamiltonian is independent of the randomness of the other Hamil-
tonians. The multi-overlaps associated with this perturbed Hamiltonian are defined as in (2.11),

R`1,...,`n =
1
N ∑

i≤N
σ
`1
i · · ·σ

`n
i , (C.7)

where (σ `) denotes a sequence of i.i.d. replicas sampled from the Gibbs measure 〈·〉 associated
with the perturbed Hamiltonian (C.6). It is actually these multi-overlaps that will be shown to
concentrate. The proof of Lemma 4.1 shows that the free energy functionals associated with the
Hamiltonians (C.3) and (C.6) are asymptotically equivalent; for our purposes these two Hamilto-
nians can therefore be thought to describe the same model.

To establish the concentration of the multi-overlaps (C.7) we will closely follow the argu-
ments in [14]. The authors in [14] obtain the concentration of the multi-overlaps (C.7) for some
perturbation parameter λ by showing that it holds on average over the set of admissible pertur-
bation parameters. In the proof of Theorem 1.1 we will need to be able to obtain multi-overlap
concentration for a specific perturbation parameter. Following the strategy in [14], we will propose
a verifiable condition on a perturbation parameter λ which ensures the concentration of its asso-
ciated multi-overlaps. To be more precise, we will obtain the concentration of the multi-overlaps
(C.7) up to a small error for any sequence of perturbation parameters (λ N) with

lim
N→∞

E
〈
(Lk−E〈Lk〉)2〉= 0. (C.8)

The quantities Lk are defined in (4.26) and (4.27) for 0 ≤ k ≤ K+, and, through a slight abuse of
notation, we have written 〈·〉 for the Gibbs average with respect to the perturbed Hamiltonian (C.6)
associated with the perturbation parameters (λ N). If necessary, we will write 〈·〉N to emphasize the
dependence of this Gibbs measure on N.

We begin by showing that (C.8) implies the concentration of the magnetization R1 and of the
overlap R1,2; the former will be immediate from the Nishimori identity (2.3) while the latter will
follow from a standard application of the Gaussian integration by parts formula (see Lemma 1.4
in [60]).

Lemma C.1. For any integer N ≥ 1,

E
〈
(R1−E〈R1〉)2〉≤ 1

N
. (C.9)
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Proof. Applying the Nishimori identity reveals that

E
〈
(R1−E〈R1〉)2〉= 1

N2 ∑
i≤N

E
(
σ
∗
i −Eσ

∗
i
)2 ≤ 1

N
.

This completes the proof. �

Lemma C.2. For any integer N ≥ 1,

E
〈
(R1,2−E〈R1,2〉)2〉≤ 4E

〈
(L0−E〈L0〉)2〉. (C.10)

Proof. The proof is taken from the Appendix of [14], and it consists in testing the concentration of
the overlap R1,∗ =

σ ·σ∗
N against the Hamiltonian L0 by means of the Gaussian integration by parts

formula. Using (4.26) shows that

E
〈
(R1,∗−E〈R1,∗〉)(L0−E〈L0〉)

〉
= E

〈
R1,∗(R1,∗−E〈R1,∗〉)

〉
+

1
2N
√

λ0,N
E
〈
R1,∗(σ ·Z0−E〈σ ·Z0〉)

〉
. (C.11)

The Gaussian integration by parts formula and the Nishimori identity imply that

E〈σ ·Z〉= N
√

λ0,N
(
1−E〈R1,∗〉

)
and E

〈
R1,∗σ ·Z

〉
= N

√
λ0,N

(
E〈R1,∗〉−E〈R1,∗〉2

)
.

Substituting these two equalities into (C.11) reveals that

E
〈
(R1,∗−E〈R1,∗〉)(L0−E〈L0〉)

〉
=

1
2
E
〈
(R1,∗−〈R1,∗〉)2〉+ 1

2
E
〈
(R1,∗−E〈R1,∗〉)2〉.

(There seems to be a sign error in equation (5.2) of [14].) It follows by the Nishimori identity that

E
〈
(R1,∗−E〈R1,∗〉)(L0−E〈L0〉)

〉
≥ 1

2
E
〈
(R1,2−E〈R1,2〉)2〉.

Invoking the Cauchy-Schwarz inequality and the Nishimori identity completes the proof. �

The concentration of the multi-overlaps (C.7) is considerably more complicated to obtain, and
follows from the Franz-de Sanctis identities described in [14]. The first section of this appendix
will be devoted to establishing this implication. In the second section we will prove a finitary
version of the multi-overlap concentration result in [14] which will be uniform over an appropriate
class of random probability measures. This uniformity plays its part in the proof Lemma 4.2.

C.1 Franz-de Sanctis identities

The Franz-de Sanctis identities may be thought of as the Ghirlanda-Guerra identities of optimal
Bayesian inference. A random probability measure which satisfies the Ghirlanda-Guerra identities
must have an ultrametric support; a deep insight which leads to the appearance of the intricate
Poisson-Dirichlet probability cascades in many spin glass models [60]. The Franz-de Sanctis iden-
tities enforce a much simpler and more rigid structure on a random probability measure which we
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will describe in due course. To state these identities, it will be convenient to fix a uniform index
i ∈ {1, . . . ,N} and an exponential random variable e∼ Exp(1) independent of all other sources of
randomness, and introduce the random variables

yik =
e

1+λkσ∗i
, θ

`
ik = log(1+λkσ

`
i )−λkyikσ

`
i , and d`

ik =
yikσ `

i
1+λkσ∗i

(C.12)

for 1≤ k ≤ K+.

Proposition C.3 (Franz-de Sanctis identities in inference). For any 1 ≤ k ≤ K+ and any function
fn of finitely many spins on n replicas and of the signal σ∗ with ‖ fn‖L∞ ≤ 1,∣∣∣∣E 〈 fnd1

ik exp
(

∑`≤n θ `
ik

)
〉

〈exp(θik)
〉n−E〈 fn〉E

〈dik exp(θik)〉
〈exp(θik)〉

∣∣∣∣≤(2E
〈
(Lk−E〈Lk〉)2〉+ 16

sN

)1/2

. (C.13)

The Franz-de Sanctis identities are proved in a similar fashion to the Ghirlanda-Guerra identities
by testing the concentration of the quantities

L̃k =
1
sN

∑
j≤πk

σi jke jk

(1+λkσ∗i jk
)2 (C.14)

defined for 1 ≤ k ≤ K+ against an arbitrary function of finitely many spins and of the signal σ∗.
Notice that L̃k is none other than the second term in the sum defining each Lk in (4.27). The
reason for focusing only on the second term is that the first term concentrates automatically by
the Nishimori identity. This is the content of Proposition 3.4 in [14] which we reproduce here for
completeness. We present a slightly simpler proof than that in [14] which was kindly shared with
us by Dmitry Panchenko.

Lemma C.4. For any 1≤ k ≤ K+ and every large enough N ≥ 1,

E
〈(

L̃k−E〈L̃k〉
)2
〉
≤ 2E

(
〈Lk−E〈Lk〉)2〉+ 16

sN
. (C.15)

Proof. Introduce the quantity

g(σ ,πk) = ∑
j≤πk

σi jk

1+λkσi jk

in such a way that L̃k = s−1
N g(σ ,πk)−Lk. Write Var for the variance with respect to the measure

E〈·〉. Since the variance of a sum of two random variables is bounded by twice the sum of the
variance of each of the random variables,

Var
(
L̃k
)
≤ 2
(

Var(Lk)+
1
s2

N
Var(g)

)
. (C.16)

By the Nishimori identity and a direct computation,

Var
(
g(σ ,πk)

)
= E

(
∑

j≤πk

σ∗i jk

1+λkσ∗i jk

)2

−
(
E ∑

j≤πk

σ∗i jk

1+λkσ∗i jk

)2

. (C.17)
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Recalling that the coordinates of the signal σ∗ are i.i.d. and averaging with respect to the random-
ness of the indices (i jk) reveals that

E
(

∑
j≤πk

σ∗i jk

1+λkσ∗i jk

)2

=
1
N
E ∑

j, j′≤πk

1
(1+λkσ∗1 )

2 +
N2−N

N
E ∑

j, j′≤πk

σ∗1 σ∗2
(1+λkσ∗1 )(1+λkσ∗2 )

≤
4Eπ2

k
N

+Eπ
2
k

(
E

σ∗1
1+λkσ∗1

)2
,

where we have used that σ2
1 = 1 and λk ≤ 1/2. Similarly,(
E ∑

j≤πk

σ∗i jk

1+λkσ∗i jk

)2

=
(
Eπk

)2
(
E

σ∗1
1+λkσ∗1

)2
.

Substituting these two bounds into (C.17), recalling (4.4) and choosing N large enough yields

Var
(
g(σ ,πk)

)
≤

4Eπ2
k

N
+Var(πk)

(
E

σ∗1
1+λkσ∗1

)2
≤ 8sN .

Plugging this into (C.16) completes the proof. �

Proof of Proposition C.3. We follow the proof of Theorem 3.3 in [14]; we will not give full details,
and instead encourage the interested reader to consult [14]. The Cauchy-Schwarz inequality and
the fact that ‖ fn‖L∞ ≤ 1 imply that

∣∣E〈 fnL̃k(σ
1)
〉
−E〈 fn〉E

〈
L̃k(σ)

〉∣∣≤ E
〈
( fn−〈 fn〉)2〉1/2E

〈(
L̃k−E〈L̃k〉

)2
〉1/2

≤ E
〈(

L̃k−E〈L̃k〉
)2
〉1/2

.

By Lemma C.4 it is therefore sufficient to prove that

E
〈

fnL̃k(σ
1)
〉
= E
〈 fnd1

ik exp
(

∑`≤n θ `
ik

)
〉

〈exp(θik)〉n
and E

〈
L̃k(σ)

〉
= E
〈dik exp(θik)〉
〈exp(θik)〉

. (C.18)

Since πk is independent of all other sources of randomness, taking the expectation with respect to
this random variable first shows that

E
〈

fnL̃k(σ
1)
〉
= ∑

r≥1

sr−1
N

(r−1)!
exp(−sN)E

〈
fnD1

1k
〉

πk=r, (C.19)

where D1
1k = σ1

i1k
e1k/(1+λkσ∗i1k

)2. To simplify this expression, we will isolate the first replica σ1

appearing in each of the averages. It will be convenient to introduce the quantities

Θ
`
jk = log(1+λkσ

`
i jk
)−

λke jkσ `
i jk

1+λkσ∗i jk

and H r−1
k (σ `) = ∑

2≤ j≤r
Θ
`
jk
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as well as the partially perturbed Hamiltonian

H ′N(σ) = HN(σ)+Hgauss
N (σ)+ ∑

1≤k′≤K+
k′ 6=k

Hk′, (C.20)

where Hk is defined in (4.5). Denoting by 〈·〉′πk=r the Gibbs measure corresponding to the Hamil-
tonian H ′N(σ)+H r−1

k (σ `), we have

E
〈

fnD1
1k
〉

πk=r = EEi1k Ee1k

〈 fnD1
1k exp

(
∑`≤n Θ`

1k

)
〉′πk=r

(〈exp(Θ1k)〉′πk=r)
n (C.21)

for each r ≥ 1. Since the uniform random variable i1k and the exponential random variable e1k no
longer appear in the Gibbs average 〈·〉′πk=r, we may replace them by a uniform random variable
i ∈ {1, . . . ,N} and an exponential random variable e∼ Exp(1) independent of all other sources of
randomness as in the statement of the theorem. To emphasize this change, we also replace D1

1k and
Θ`

1k by d1
ik = σ1

i e/(1+λkσ∗i )
2 and θ `

ik = log(1+λkσ `
i )−λkσ `

i e/(1+λkσ∗i ), respectively. Notice
that this matches the definitions in (C.12). In this new notation (C.21) reads

E
〈

fnD1
1k
〉

πk=r = E
〈 fnd1

ik exp
(

∑`≤n θ `
ik

)
〉′πk=r

(〈exp(θik)〉′πk=r)
n .

Substituting this into (C.19) and making the change of variables m = r−1 reveals that

E
〈

fnL̃k(σ
1)
〉
= ∑

m≥0

sm
N

m!
exp(−sN)E

〈 fnd1
ik exp

(
∑`≤n θ `

ik

)
〉′

πk=m+1

(〈exp(θik)〉′πk=m+1)
n .

Notice that whenever πk =m+1, the Hamiltonian defining the Gibbs average 〈·〉′
πk=m+1 is given by

H ′N(σ)+H m
k (σ). This Hamiltonian has the same distribution as the Hamiltonian in (B.1) defining

the original Gibbs average 〈·〉πk=m. It follows that

E
〈

fnL̃k(σ
1)
〉
= ∑

m≥0

sm
N

m!
exp(−sN)E

〈 fnd1
ik exp

(
∑`≤n θ `

ik

)
〉πk=m

(〈exp(θik)〉πk=m)n = E
〈 fnd1

ik exp
(

∑`≤n θ `
ik

)
〉

〈exp(θik)〉n
.

This is the first equality in (C.18). The second equality in (C.18) is obtained by taking n = 1 and
f1 = 1 in the first equality. This completes the proof. �

Applying this result along a sequence of perturbation parameters (λ N) satisfying (C.8) reveals
that

lim
N→∞

∣∣∣E 〈 fnd1
ik exp

(
∑`≤n θ `

ik

)
〉N

〈exp(θik)〉nN
−E〈 fn〉N E

〈dik exp(θik)〉N
〈exp(θik)〉N

∣∣∣= 0 (C.22)

for any 1 ≤ k ≤ K+ and any function fn of finitely many spins on n replicas and of the signal σ∗

with ‖ fn‖L∞ ≤ 1. Observing that the denominators 〈exp(θik)〉N do not depend on the signal σ∗, it is
possible to use the Nishimori identity (2.3) to replace all occurrences of the signal σ∗ in (C.22) by
another replica. For convenience of notation we will denote this new replica by σ� to distinguish
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it from the signal σ∗ and at the same time not occupy any specific index. The equations in (C.22)
now read

lim
N→∞

∣∣∣EE�
〈 fnd1

ik exp
(

∑`≤n θ `
ik

)
〉N

〈exp(θik)〉nN
−EE�〈 fn〉N EE�

〈dik exp(θik)〉N
〈exp(θik)〉N

∣∣∣= 0, (C.23)

where E� denotes the Gibbs average with respect to the replica σ� only, the bracket 〈·〉N denotes
the Gibbs average with respect to all other standard replicas, the function fn depends on finitely
many spins on the n standard replicas and on σ�, and, with some abuse of notation,

yik =
e

1+λkσ�i
, θ

`
ik = log(1+λkσ

`
i )−λkyikσ

`
i , and d`

ik =
yikσ `

i
1+λkσ�i

(C.24)

with λk = λ N
k for 1≤ k ≤ K+. We now simplify (C.23) for functions fn that do not depend on the

spin coordinate indexed by 1. Introduce the collection of functions

Fn =
{

functions fn of finitely many spins σ
`
i ,σ

�
i with 2≤ i≤ N

of the n standard replicas (σ `)`≤n and the special replica σ
� with ‖ fn‖L∞ ≤ 1

}
(C.25)

and the quantities

yk =
e

1+λkσ�1
, θ

`
k = log(1+λkσ

`
1)−λkykσ

`
1 , and d`

k =
ykσ `

1
1+λkσ�1

. (C.26)

For functions fn ∈ Fn, the symmetry between sites (C.5) and the fact that i ∈ {2, . . . ,N} with
overwhelming probability in the limit, allow us to replace the uniform random index i∈ {1, . . . ,N}
by the index 1. The Franz de-Sanctis identities together with assumption (C.8) therefore have the
following important implication.

Corollary C.5 (Asymptotic Franz-de Sanctis identities in inference). If (C.8) holds, then for every
1≤ k ≤ K+ and all functions fn ∈ Fn,

lim
N→∞

∣∣∣EE�
〈 fnd1

k exp
(

∑`≤n θ `
k

)
〉N

〈exp(θk)〉nN
−EE�〈 fn〉N EE�

〈dk exp(θk)〉N
〈exp(θk)〉N

∣∣∣= 0. (C.27)

C.2 Finitary multi-overlap concentration

The finitary version of the multi-overlap concentration result in [14] will be uniform over an ap-
propriate class of random probability measures which we now describe. For each integer N ≥ 1
consider the set of random probability measures on ΣN thought of as a subset of {−1,0,1}N,

GN =
{

G | G is a random probability measure on ΣN×{0}N
}
, (C.28)

and say that a measure G ∈ GN satisfies symmetry between sites if, for any sequence of i.i.d.
replicas (σ `)`≥1 sampled from G, (

σ
`
i )i,`≥1

d
=
(
σ

ρ2(`)
ρ1(i)

)
i,`≥1 (C.29)
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for any permutation ρ1 on the finite set {1, . . . ,N} and any permutation ρ2 of finitely many indices.
Denote by G s

N the subset of GN which satisfies symmetry between sites. Notice that each Gibbs
measure GN defined by (C.4) can be thought of as an element of GN by setting σi = 0 when i > N
for any replica σ ∈ ΣN sampled from GN . In this way, the symmetry between sites in (C.29) and
(C.5) coincide, so in fact GN ∈ G s

N . This identification also suggests that the appropriate notion of
the multi-overlap (C.7) for a random probability measure G ∈ GN should be

R`1,...,`n =
1
N ∑

i≤N
σ
`1
i · · ·σ

`n
i , (C.30)

where (σ `) denotes a sequence of i.i.d. replicas sampled from the Gibbs measure G. Denoting by
〈·〉G the average with respect to the random probability measure G we may now sate the main result
of this appendix.

Proposition C.6. For every ε > 0 there exists δ > 0 such that the following holds. Let N ≥ bδ−1c
and G ∈ GN be a random probability measure such that for all 1 ≤ k ≤ K+ = bδ−1c and any
function fn ∈ Fn,

E
〈
(R1−E〈R1〉G)2〉

G ≤ δ , E
〈
(R1,2−E〈R1,2〉G)2〉

G ≤ δ , (C.31)∣∣∣EE�
〈 fnd1

k exp
(

∑`≤n θ `
k

)
〉G

〈exp(θk)〉nG
−EE�〈 fn〉GEE�

〈dk exp(θk)〉G
〈exp(θk)〉G

∣∣∣≤ δ . (C.32)

Then for any 1≤ m≤ bε−1c, we have

E
〈
(R1,...,m−E〈R1,...,m〉G)2〉

G ≤ ε. (C.33)

The proof proceeds by contradiction and closely follows Section 3.5 and Section 3.7 of [14].
Suppose there exists some ε > 0 such that no matter the choice of δ > 0, it is always possible to
find some integer N = N(δ )≥ bδ−1c and some random probability measure G = G(δ ) ∈ GN with

E
〈
(R1−E〈R1〉G)2〉

G ≤ δ , E
〈
(R1,2−E〈R1,2〉G)2〉

G ≤ δ , (C.34)∣∣∣EE�
〈 fnd1

k exp
(

∑`≤n θ `
k

)
〉G

〈exp(θk)〉nG
−EE�〈 fn〉GEE�

〈dk exp(θk)〉G
〈exp(θk)〉G

∣∣∣≤ δ (C.35)

for any 1≤ k ≤ K+ = bδ−1c and any fn ∈ Fn for which there exists some 1≤ m = m(δ )≤ bε−1c
with

E
〈
(R1,...,m−E〈R1,...,m〉G)2〉

G > ε. (C.36)

Applying the Prokhorov theorem on the compact metric space {−1,0,+1}N2
and noticing that

there are only finitely many choices for m = m(δ ), it is possible to find a subsequence with δ → 0
along which the distribution of the array

(
σ `

i
)

i,`≥1 under the averaged Gibbs measure E〈·〉G(δ ) con-
verges in the sense of finite dimensional distributions and along which (C.34), (C.35) and (C.36)
hold for every k ≥ 1 and a fixed 1 ≤ m ≤ bε−1c. Since N(δ )→ ∞ and G(δ ) ∈ GN , in the limit,
the distribution of spins will be a measure on {−1,+1}N2

which will inherit the symmetry be-
tween sites (C.29). By the Aldous-Hoover representation (see Theorem 1.4 in [60]), this symmetry
implies the existence of some function σ : [0,1]4→{−1,+1} with(

σ
`
i )i,`≥1

d
=
(
σ(w,u`,vi,xi,`)

)
i,`≥1, (C.37)
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where w, (u`), (vi) and (xi,`) are i.i.d. uniform random variables on [0,1]. Since σ takes values in
{−1,+1}, the distribution of the array (σ `

i ) is encoded by the function

σ(w,u,v) = Exi,` σ(w,u,v,xi,`) =
∫ 1

0
σ(w,u,v,x)dx. (C.38)

Indeed, the last coordinate xi,` is a dummy variable that corresponds to flipping a biased coin to
generate a Bernoulli random variable with expected value σ(w,u,v). To clarify this further, let du
and dv denote Lebesgue measure on [0,1], and define the random probability measure

G = Gw = du◦
(
u 7→ σ(w,u, ·)

)−1 (C.39)

on the space of functions of v ∈ [0,1],

H = L2([0,1], dv
)
∩
{
‖σ‖L∞ ≤ 1

}
, (C.40)

equipped with the topology of L2([0,1], dv). As described in Section 2 of [64], the whole process
of generating spins can be broken into the following steps:

(i) generate the asymptotic Gibbs measure G = Gw using the uniform random variable w;

(ii) consider an i.i.d. sequence σ
` = σ(w,u`, ·) of replicas from G, which are functions in H;

(iii) plug in i.i.d. uniform random variables (vi)i≥1 to obtain the array σ
`(vi) = σ(w,u`,vi);

(iv) finally, use the random variables (xi,`) to generate (σ `
i ) by flipping a coin with expected

value σ
`(vi),

σ
`
i = 21

{
xi,` ≤

1+σ
`(vi)

2

}
−1. (C.41)

This suggests that the asymptotic Gibbs average should be the average with respect to the random
variables (u`) and (xi,`) that depend on the replica indices, which we will denote by

〈·〉= E(u`),(xi,`) . (C.42)

We can also expect the asymptotic multi-overlap to be given by

R∞
`1,...,`n

(w,(u` j) j≤n) = Ev ∏
j≤n

σ(w,u` j ,v) =
∫ 1

0
∏
j≤n

σ(w,u` j ,v)dv. (C.43)

This intuition is confirmed by the two following results adapted from Section 3.5 and the Appendix
in [14].

Lemma C.7. For any finite set of n replicas and every collection {C`}`≤n of finite indices,

lim
δ→0

E∏
`≤n

〈
∏
i∈C`

σ
`
i

〉
G(δ )

= Ew,(vi) ∏
`≤n

〈
∏
i∈C`

σ
`
i

〉
. (C.44)
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Proof. Let C = {(i, `) | `≤ n and i∈C`}. By definition of weak convergence in the sense of finite-
dimensional marginal distributions,

lim
δ→0

E∏
`≤n

〈
∏
i∈C`

σ
`
i

〉
G(δ )

= lim
δ→0

E
〈

∏
(i,`)∈C

σ
`
i

〉
G(δ )

= E ∏
(i,`)∈C

σ(w,u`,vi,xi,`).

Recalling the notation (C.42),

E ∏
(i,`)∈C

σ(w,u`,vi,xi,`) = Ew,(vi) ∏
`≤n

E(u`) ∏
i∈C`

E(xi,`)σ(w,u`,vi,xi,`) = Ew,(vi) ∏
`≤n

〈
∏
i∈C`

σ
`
i

〉
.

as required. �

Lemma C.8. For any collection of sets {Li}i≥1 only finitely many of which are non-empty,

lim
δ→0

E
〈

∏
i≥1

RLi

〉
G(δ )

= Ew

〈
∏
i≥1

R∞
Li

〉
. (C.45)

Proof. Write N ≥ bδ−1c for the unique integer with G(δ ) ∈ GN and suppose without loss of gen-
erality that the sets Li for i≤ j are non-empty while the sets Li for i > j are empty. From (C.30),

E
〈

∏
i≥1

RLi

〉
G(δ )

=
1

N j ∑
i1,...,i j

E
〈

∏
`1∈L1

· · · ∏
` j∈L j

σ
`1
i1 · · ·σ

` j
i j

〉
G(δ )

.

The number of terms in this sum for which at least two of the indices i1, . . . , i j are equal is of order
N j−1 and is therefore negligible in the limit. Moreover, the symmetry between sites (C.29) implies
that whenever i1, . . . , i j are all distinct

E
〈

∏
`1∈L1

· · · ∏
` j∈L j

σ
`1
i1 · · ·σ

` j
i j

〉
G(δ )

= E
〈

∏
`1∈L1

· · · ∏
` j∈L j

σ
`1
1 · · ·σ

` j
j

〉
G(δ )

= E
〈

∏
i≥1

∏
`∈Li

σ
`
i

〉
G(δ )

.

(This seems to fix a small typo in the second-to-last display of the Appendix in [14]). Combining
these two observations shows that

lim
δ→0

E
〈

∏
i≥1

RLi

〉
G(δ )

= Ew,(u`)∏
i≥1

Evi ∏
`∈Li

Exi,` σ(w,u`,vi,xi,`) = Ew,(u`)∏
i≥1

R∞
Li
.

This completes the proof. �

In the notation of (C.42) and (C.43), the asymptotic version of (C.34) and (C.35) therefore
reads

E〈(R1
∞)2〉=

(
E〈R∞

1 〉
)2
, E〈(R∞

1,2)
2〉=

(
E〈R∞

1,2〉
)2 (C.46)

EE�
〈 fnd1

k exp
(

∑`≤n θ `
k

)
〉

〈exp(θk)〉n
= EE�〈 fn〉EE�

〈dk exp(θk)〉
〈exp(θk)〉

(C.47)

for any k ≥ 1 and any function fn ∈ Fn, while the asymptotic version of (C.36) becomes

E
〈
(R∞

1,...,m−E〈R∞
1,...,m〉)2〉> ε (C.48)
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for some 1 ≤ m ≤ bε−1c. We now derive the two most important consequences of the identities
in (C.46) and (C.47) that will allow us to establish multi-overlap concentration. On the one hand,
the concentration of the overlap E〈(R∞

1,2)
2〉= (E〈R∞

1,2〉)2 implies that the system lies in a “thermal
pure state” and that the function σ(w,u,v) is therefore almost surely independent of u. The proof
of this fact is taken from Theorem 3.1 in [62].

Lemma C.9. If E〈(R∞
1,2)

2〉= (E〈R∞
1,2〉)2, then for almost all u,v,w ∈ [0,1],

σ(w,u,v) = Eu σ(w,u,v). (C.49)

Proof. Denote by · the inner product on the Hilbert space (C.40),

σ
1 ·σ2 = Ev σ

1(w,u1,v)σ2(w,u2,v) = R∞
1,2,

and observe that

0 = Ew,(u`)
(
R∞

1,2
)2−Ew,(u`)R∞

1,2R∞
3,4 = Ew Var(u`)σ

1 ·σ2.

It follows that for almost all w ∈ [0,1], the inner product σ
1 ·σ2 of any two replicas sampled from

the Gibbs measure Gw is constant almost surely. In other words, the measure Gw is concentrated
on a single function which may depend on w. This completes the proof. �

The second identity in (C.46) therefore implies that, instead of the equality in distribution
(C.37), we actually have (

σ
`
i
)

i,`≥1
d
=
(
σ(w,vi,xi,`)

)
i,`≥1 (C.50)

for any function σ : [0,1]3→{−1,+1} such that
∫ 1

0 σ(w,v,x)dx = σ(w,v). In particular, the Gibbs
average (C.42) simplifies to

〈·〉= E(xi,`) (C.51)

while the multi-overlap (C.43) becomes

R∞
`1,...,`n

(w) = Ev ∏
j≤n

σ(w,v) = Ev
(
σ(w,v)n)= ∫ 1

0
σ(w,v)n dv. (C.52)

On the other hand, the asymptotic Franz-de Sanctis identities in (C.47) imply the following decou-
pling property of the asymptotic Gibbs measure. This is lemma 3.5 in [14].

Lemma C.10 (A decoupling lemma). Fix λ ∈ {λk | k ≥ 1}. If e1,e2 are independent Exp(1) ran-
dom variables and, for j = 1,2,

y j =
e j

1+λσ�j
, θ j = log(1+λσ j)−λy jσ j, and d j =

y jσ j

1+λσ�j
, (C.53)

then

EE�
〈d1 exp(θ1)d2 exp(θ2)〉
〈exp(θ1)exp(θ2)〉

= EE�
〈d1 exp(θ1)〉
〈exp(θ1)〉

EE�
〈d2 exp(θ2)〉
〈exp(θ2)〉

. (C.54)
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Proof. The idea is to combine a technical truncation argument with the Weierstrass approximation
theorem and an application of (C.47) to the function fn+1 = d1

2 exp∑`≤n+1 θ `
2 ; we encourage the

interested reader to consult [14]. �

We are finally in a position to contradict (C.48) and prove Proposition C.6. The calculations
are very similar in spirit to those in [63, 64], and are taken from Theorem 2.2 in [14].

Proof of Proposition C.6. We follow the proof of Theorem 2.2 in [14]; we will not give full details,
and instead encourage the interested reader to consult [14]. Recall from (C.50) that σ j = σ(w,v j,x j)
and σ�j = σ(w,v j,x�j). Since all random variables indexed by j = 1,2 are independent, if we denote
by E|w = E(e j),(v j),x j,x�j

the conditional expectation given w and we introduce the random variable

Y (w) = E|w
〈d1 exp(θ1)〉
〈exp(θ1)〉

= E|w
y1

1+λσ�1

〈σ1 exp(θ1)〉
〈exp(θ1)〉

,

which depends implicitly on λ through y1 and θ1, then (C.54) reads

E
(
E|w
〈d1 exp(θ1)〉
〈exp(θ1)〉

)(
E|w
〈d2 exp(θ2)〉
〈exp(θ2)〉

)
−
(
E
〈d1 exp(θ1)〉
〈exp(θ1)〉

)(
E
〈d2 exp(θ2)〉
〈exp(θ2)〉

)
= EVar|wY (w)

= 0.

This means that Y =EY almost surely. To exploit this fact, through a slight abuse of notation, write
σ for σ1 and observe that conditionally on σ�1 ,

Y (w) = E|w
∫

∞

0
〈exp(−λσy)〉〈σ(1+λσ)exp(−λyσ)〉

〈(1+λσ)exp(−λyσ)〉
yexp(−y)dy.

Using the analyticity of both

gw : γ 7→ gw(γ) = E|w
∫

∞

0
〈exp(−γσy)〉〈σ(1+ γσ)exp(−γyσ)〉

〈(1+ γσ)exp(−γyσ)〉
yexp(−y)dy

for a fixed w as well as its w-expectation Egw(γ), it is possible to deduce that Y (w) = EY for all λ

in a small neighbourhood of the origin. With this in mind, introduce the random variable

Z(w) = E|w
∫

∞

0
〈σ(1+λσ)exp(−λσ)〉yexp(−y)dy

which is deterministic by the first identity in (C.46). This implies that the random variable

X(w) =
Z(w)−Y (w)

λ
= E|w

∫
∞

0
〈σ exp(−λyσ)〉〈σ(1+λσ)exp(−λyσ)〉

〈(1+λσ)exp(−λyσ)〉
yexp(−y)dy

is deterministic for all λ in a small neighbourhood of the origin. In particular, all its λ -derivatives
are also independent of w. We will now deduce from this observation that all multi-overlaps con-
centrate. Given n≥ 1, applying ∂ n

∂λ n to the denominator in the expression inside the integral defining
X and evaluating at λ = 0 yields the term

n!R1,...,n+2Ee(e−1)n,
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where e is an Exp(1) random variable. Since Ee(e− 1)n = E(e− 1)n+1 +E(e− 1)n > 0 for all
n ≥ 1, the term obtained by applying all derivatives to the denominator in the expression inside
the integral defining X produces the multi-overlap R∞

1,...,n+2. If along the way we apply a derivative
of λ to any factor other than the denominator, this will not create a new replica, so all those
terms will produce a linear combination of multi-overlaps on strictly less than n+2 replicas which
by induction we assume to be independent of w. This establishes the concentration of all multi-
overlaps and contradicts (C.48) thus completing the proof. �
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Ann. Inst. Henri Poincaré Probab. Stat., 58(2):755–793, 2022.

[25] H.-B. Chen and J. Xia. Hamilton-Jacobi equations from mean-field spin glasses. arXiv e-
prints, 2022.

[26] H.-B. Chen and J. Xia. Hamilton-Jacobi equations with monotone nonlinearities on convex
cones. arXiv e-prints, 2022.

72



[27] J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein interaction
network. Bioinformatics, 22(18):2283–2290, 2006.

[28] A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborová. Information-theoretic thresholds
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