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Abstract. The free energy of any system can be written as the supre-
mum of a functional involving an energy term and an entropy term.
Surprisingly, the limit free energy of mean-field spin glasses is expressed
as an infimum instead, a phenomenon sometimes called an inverted
variational principle. Using a stochastic-control representation of the
Parisi functional and convex duality arguments, we rewrite this limit
free energy as a supremum over martingales of a Wiener space.

1. Introduction and main result

Let h ∈ R and (βp)p⩾2 be a sequence of nonnegative real numbers such
that the function ξ(r) ∶= ∑p⩾2 β2

pr
p is finite for every r ∈ R. For every integer

N ⩾ 1, let (H ′N(σ))σ∈RN be the centered Gaussian field with covariance such

that, for every σ, τ ∈ RN ,

E[H ′N(σ)H ′N(τ)] = Nξ (σ ⋅ τ
N
) ,

and for every σ ∈ RN , let

HN(σ) ∶=H ′N(σ) + h
N

∑
i=1

σi.

The object of study of this paper is the limit free energy

(1.1) f ∶= lim
N→∞

1

N
E log( 1

2N
∑

σ∈{−1,1}N
exp(HN(σ))).

An explicit representation for this limit was conjectured in [32, 33, 34, 35, 24]
and then proved rigorously in [16, 39, 30, 31]. In order to state this result,
we denote by Pr([0,1]) the set of probability measures over [0,1]. For each
µ ∈ Pr([0,1]), we define Φµ = Φµ(t, x) ∶ [0,1] ×R → R to be the solution to
the backwards parabolic equation

(1.2) −∂tΦµ(t, x) =
ξ′′(t)
2
(∂2

xΦµ(t, x) + µ[0, t](∂xΦµ(t, x))
2) ,

with terminal condition

(1.3) Φµ(1, x) = log coshx.

Date: February 15, 2024.

1



2 JEAN-CHRISTOPHE MOURRAT

The Parisi formula states that the limit free energy f exists and is given by

(1.4) f = inf
µ∈Pr([0,1])

{Φµ(0, h) −
1

2
∫

1

0
tξ′′(t)µ[0, t]dt} .

It was shown in [3] that the variational problem in (1.4) admits a unique
minimizer. For “most” choices of ξ, this minimizer encodes the asymptotic
law of the overlap between two independent samples from the Gibbs measure
associated with the energy function HN , see [31, Corollaries 3.1 and 3.4].

Any expression of the form logE[exp(f(X))] can be rewritten as a supre-
mum over probability measures of an energy term and an entropy term, see
for instance [5, Corollaries 4.14 and 4.15]. Such a formulation has a clear
interpretation based on physical quantities or large-deviations considerations.
It would seem reasonable that aspects of this structure be preserved in the
limit of large system size, provided that we understand the asymptotics of
the relevant energy and entropy terms. It thus initially came as a surprise
that the expression in (1.4) takes the form of an infimum instead, and to this
day I am not aware of a compelling physical interpretation of this variational
problem. In fact, for more complex models with multiple types, such a
variational representation of the limit free energy is no longer valid in general,
see [26, Section 6].

The main goal of this paper is to give an alternative representation of the
limit free energy f as a supremum instead. In order to state the result, we
define, for every x ∈ R,

(1.5) ϕ(x) ∶= log cosh(x + h),

and let ϕ∗ denote the convex dual of ϕ, so that for every λ ∈ R,

ϕ∗(λ) ∶= sup
x∈R
(λx − ϕ(x)) ∈ R ∪ {+∞}.

A classical calculation yields that ϕ∗ is infinite outside of [−1,1], while for
every λ ∈ [−1,1],

ϕ∗(λ) = 1

2
[(1 + λ) log(1 + λ) + (1 − λ) log(1 − λ)] − λh.

Let P = (Ω, (Ft)t∈[0,1],P) be a filtered probability space. The σ-algebras
(Ft)t∈[0,1] are assumed to be complete, that is, they contain every subset
of any null-measure set. We also assume that P is sufficiently rich that
one can define a Brownian motion (Wt)t∈[0,1] over it (in particular, the
process W is adapted and has independent increments with respect to the
filtration (Ft)t∈[0,1]). We denote by Mart the space of bounded martingales
over P.
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Theorem 1 (un-inverted Parisi formula). The limit free energy f defined
in (1.1) is given by

(1.6) f = sup
α∈Mart

{E [α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)]

− 1

2
sup
t∈[0,1]

∫
1

t
ξ′′(s)(s −E[α2

s])ds}.

Moreover, there exists a unique α ∈Mart that realizes the supremum in (1.6).

Theorem 1 is a consequence of a representation of the optimizers of (1.4)
and (1.6) as a dual pair in a saddle-point problem. For every µ ∈ Pr([0,1])
and α ∈Mart, we define

(1.7) Γ(µ,α) ∶= E[α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)

− 1

2
∫

1

0
ξ′′(t)µ[0, t](t − α2

t )dt].

Theorem 2 (saddle-point problem for optimizers). Let µ ∈ Pr([0, 1]) denote
the unique minimizer of (1.4), and let α ∈Mart denote the unique maximizer
of (1.6). The limit free energy (1.1) is given by

(1.8) f = Γ(µ,α) = inf
µ∈Pr([0,1])

sup
α∈Mart

Γ(µ,α) = sup
α∈Mart

inf
µ∈Pr([0,1])

Γ(µ,α).

Moreover, the following two properties of µ and α are valid and, taken
together, characterize the pair (µ,α) uniquely in Pr([0,1]) ×Mart.

(1) The support of µ is a subset of the set of maximizers of the mapping

(1.9) {
[0,1] → R

t ↦ ∫
1
t ξ′′(s)(s −E[α2

s])ds.

(2) Letting (Xt)t∈[0,1] be the strong solution to

(1.10) {
X0 = h,
dXt = ξ′′(t)µ[0, t]∂xΦµ(t,Xt)dt +

√
ξ′′(t)dWt,

we have, for every t ∈ [0,1],

(1.11) αt = ∂xΦµ(t,Xt) = ∂xΦµ(0, h) + ∫
t

0

√
ξ′′(s)∂2

xΦµ(s,Xs)dWs.

For each measure µ ∈ Pr([0,1]), the Parisi formula (1.4) can be used to
obtain an upper bound on the limit free energy f . In particular, we can write
a first replica-symmetric upper bound obtained by imposing the support of µ
to be a singleton, and then progress along the hierarchy of replica symmetry
breaking by allowing the support of µ to contain two elements, then three
elements, etc. Using the characterization above, we can associate to each
µ ∈ Pr([0,1]) a corresponding lower bound on the free energy, as described
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in the next theorem. This result could for instance facilitate the construction
of certified numerical approximations of the limit free energy.

Theorem 3 (RSB lower bound). For every µ ∈ Pr([0,1]), we have

(1.12) 0 ⩽ Φµ(0, h)−
1

2
∫

1

0
tξ′′(t)µ[0, t]dt− f ⩽ 1

2
∫ (gµ(t)− inf

[0,1]
gµ)dµ(t),

where the function gµ is such that, letting (Xt)t∈[0,1] be the strong solution to

(1.13) {
X0 = h,
dXt = ξ′′(t)µ[0, t]∂xΦµ(t,Xt)dt +

√
ξ′′(t)dWt,

we have for every t ∈ [0,1] that

(1.14) gµ(t) ∶= ∫
1

t
ξ′′(s) (E [(∂xΦµ(s,Xs))2] − s) ds.

Moreover, the right-hand side of (1.12) is zero if and only if µ ∈ Pr([0, 1]) is
the unique minimizer to (1.4).

I expect that similar results can be proved for models with soft spins, using
for instance [27, Proposition 3.2] and [28, Corollary 1.3]. The formulas for
the limit free energy given in [29] and [28] in this case are of a form similar
to the infimum in (1.4), but with an additional parameter dependence that
we then maximize over; this last step is meant to control the norm of the
configuration σ ∈ RN and is in line with classical large-deviations theory. A
generalization of Theorem 1 to this case would allow us to write the limit
free energy as a simple supremum instead.

The present paper is inspired by a number of earlier works which we now
briefly review. In [22], a dual problem was identified for the ground state
energy of spherical models, and then extended to a similar representation
for the free energy at any temperature in [23]. In this context, the Parisi
formula for the limit free energy can be rewritten in a form called the Crisanti-
Sommers formula. This formula is simpler to manipulate than (1.4), and
in particular, it is manifestly convex in the variable µ. The dual problem
identified in [22, 23] takes the form of an obstacle problem.

Another series of inspiring works relates to the design of efficient algo-
rithms that identify spin configurations whose energy is as high as possible.
Important progress on this question was achieved in [38] for spherical models.
In this context, the energy value reached by the algorithm can be written
explicitly as a simple function of ξ. The approach was then generalized to the
models we consider here in [25, 10, 36], in the form of an approximate message
passing algorithm with some tunable parameters. The asymptotic energy
value reached by the algorithm can be described by an explicit formula, and
optimizing over the free parameters gives us a variational formula for the best
possible value ALG reached by this class of algorithms. This optimization
problem has a structure similar to that in (1.6). In particular, a key insight of
[38] is to consider algorithms that proceed via orthogonal increments, which
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in the limit yield martingales which we seek to optimize over as in (1.6). The
ground state energy can be represented as a Parisi-type formula analogous to
(1.4), see [4], and it was shown in [10] that the original formulation of ALG
as a supremum admits a dual representation that is similar to this Parisi
formula for the ground state, the only difference being that the minimization
is carried over a larger set. Closely related works include [14, 19, 20] where
it is shown that a large class of algorithms will fail to find a configuration
with energy exceeding ALG; see also [13, 15] for surveys. A method for
sampling the Gibbs measure that may also be related to the present work
was introduced in [11]. Other related works include [1, 17, 18], where these
optimization and sampling problems were investigated in detail for more
analytically tractable models whose thermodynamics was derived in [9, 7, 8].

The starting point for the proofs of Theorems 1 and 2 is a representation
of the function Φµ as the value function of a problem of stochastic control,
which was introduced and developed in [6, 3, 21]. One of the main features
of this representation is that it makes the convexity of the mapping µ↦ Φµ

transparent, while I am not aware of any alternative method for verifying
this convexity property. We then seek a dual to the minimization problem
in (1.4), in the sense of convex analysis, and the functional Γ naturally
appears. The interchange of the infimum and supremum in (1.8) requires
some care, since for fixed µ, the functional Γ(µ, ⋅) is not concave in general
(although it is in the high-temperature regime ξ′′(1) ⩽ 1). We proceed by
enlarging the probability space so as to “randomize” our choice of martingale,
as in the construction of Nash equilibria with mixed strategies. Justifying
that the supremum in (1.6) is achieved requires yet another enlargement of
the probability space. However, we can then identify this optimizer explicitly
according to (1.11), and in particular observe that it is measurable with
respect to the filtration of Brownian motion, and so we can ultimately
conclude that these enlargements of the probability space were not necessary
after all.

2. Proofs

We start by stating the representation of Φµ alluded to above and due
to [6, 3, 21]. In order to do so, we let

(2.1) W ∶= (C([0,1]), (Ft)t∈[0,1],P)

be the canonical Wiener space, with canonical random variable (Wt)t∈[0,1]
and with associated expectation E. The σ-algebras (Ft)t∈[0,1] are assumed
to be complete. We denote by Mart the space of bounded martingales
over W , and by Prog the space of bounded progressive processes over W . By
[6, 3, 21], the quantity Φµ(0, h) defined in (1.2)-(1.3) admits the variational
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representation

(2.2) Φµ(0, h) = sup
α∈Prog

E [ϕ(∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt)

− 1

2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt] ,

and as a consequence, the Parisi formula (1.4) can be rewritten as

(2.3) f = inf
µ∈Pr([0,1])

sup
α∈Prog

E [ϕ(∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt)

− 1

2
∫

1

0
ξ′′(t)µ[0, t] (α2

t + t) dt] .

The supremum in (2.2) can be interpreted as a stochastic control problem.
Using this interpretation, it was shown in [6, 3, 21] that the supremum
in (2.2) is achieved, and an explicit description of the unique maximizer was
given. It is relatively classical to verify that these results remain valid even
if we enlarge the probability space and possibly allow for the control α to
depend on additional randomness. Notice however that it is less classical
to verify that the supremum on the right side of (1.6) does not depend on
the choice of probability space, or to verify that the supremum is achieved,
so it will be important for our purposes to be careful about such aspects.
In the next lemma, we therefore restate the identity (2.2) in the generic
probability space P (not necessarily the Wiener space W ), and describe
precisely the identity of the maximizer. We denote by Prog the space of
bounded progressive processes over the probability space P.

Lemma 2.1 (variational representation of Φµ [6, 3, 21]). For every µ ∈
Pr([0,1]), we have

(2.4) Φµ(0, h) = sup
α∈Prog

E [ϕ(∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt)

− 1

2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt] .

Moreover, let (Xt)t∈[0,1] be the strong solution to

(2.5) {
X0 = h,
dXt = ξ′′(t)µ[0, t]∂xΦµ(t,Xt)dt +

√
ξ′′(t)dWt.

A stochastic process α ∈ Prog achieves the supremum in (2.4) if and only if
it satisfies, for almost every t ∈ [0,1] with µ[0, t] > 0,

(2.6) αt = ∂xΦµ(t,Xt) = ∂xΦµ(0, h) + ∫
t

0

√
ξ′′(s)∂2

xΦµ(s,Xs)dWs.

Proof. We learn from [3, Theorem 3] or [21, Lemma 18] that the repre-
sentation (2.4) is valid if we replace Prog by the space of processes that
are progressively measurable with respect to the σ-algebra generated by
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the Brownian motion W ; or equivalently, if the probability space P is the
canonical Wiener space W . An examination of the proofs given there in fact
also yields the identity (2.4) in the more general context considered here.
For the reader’s convenience, we briefly justify this here as well. Since the
supremum in (2.4) is over a potentially larger set than the one considered in
[3, 21], it suffices to show that for every α ∈ Prog, we have

(2.7) Φµ(0, h) ⩾ E [ϕ(∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt)

−1
2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt] .

We therefore fix α ∈ Prog and for every t ∈ [0,1], set

Yt ∶= h + ∫
t

0
ξ′′(s)µ[0, s]αs ds + ∫

t

0

√
ξ′′(s)dWs.

Using the regularity properties of Φµ shown in [21, Theorem 4], we can apply
Itô’s formula to get that

Φµ(1, Y1) = Φµ(0, h) + ∫
1

0
∂tΦµ(t, Yt)dt + ∫

1

0
∂xΦµ(t, Yt)dYt

+ 1

2
∫

1

0
∂2
xΦµ(t, Yt)d⟨Y ⟩t.

Taking the expectation, we obtain that

E[Φµ(1, Y1)] = Φµ(0, h) +E∫
1

0
(∂tΦµ(t, Yt)

+ ξ′′(t)
2
(2µ[0, t]αt∂xΦµ(t, Yt) + ∂2

xΦµ(t, Yt)) )dt.

By (1.2) and [21, Theorem 1], for almost every t ∈ [0,1], we have for every
x ∈ R that

−∂tΦµ(t, x) =
ξ′′(t)
2
(∂2

xΦµ(t, x) + µ[0, t](∂xΦµ(t, x))
2)

= ξ′′(t)
2

sup
a∈R
(∂2

xΦµ(t, x) + 2µ[0, t]a∂xΦµ(t, x) − µ[0, t]a2)

⩾ ξ′′(t)
2
(∂2

xΦµ(t, x) + 2µ[0, t]αt∂xΦµ(t, x) − µ[0, t]α2
t ) .(2.8)

Combining this with the previous display, we infer that

E[Φµ(1, Y1)] ⩽ Φµ(0, h) +
1

2
∫

1

0
ξ′′(t)µ[0, t]E[α2

t ]dt.

In view of (1.3) and (1.5), this is (2.7), so the proof of (2.4) is complete.

The second identity in (2.6) is a consequence of Itô’s formula and the
regularity properties of Φµ given in [21, Theorem 4]. The results of [3,
Theorem 3] and [21, Lemma 18] only state that (2.6) is a sufficient condition
for optimality, but again the proofs in fact yield that they are also necessary.
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This is also apparent from the argument given above, by an examination of
the case of equality in (2.8). □

One key point of the representation in (2.4) is that it is manifestly convex
in µ. In our next step, we rewrite this convex function as a supremum of
affine functions.

Lemma 2.2 (Supremum of affine functionals). For every µ ∈ Pr([0,1]), we
have

(2.9) Φµ(0, h)

= sup
α∈Mart

E [1
2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt + α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)] .

Moreover, there exists a unique maximizer to the variational problem in (2.9).
Letting (Xt)t∈[0,1] be the solution to (2.5), this unique maximizer α ∈Mart
must satisfy (2.6) for every t ∈ [0,1].

Proof. We decompose the proof into two steps.

Step 1. Let X ∈ L2(P). In this step, we show that

(2.10) E[ϕ(X)] = sup
λ∈L∞(P)

E [λX − ϕ∗(λ)] ,

and that the supremum in (2.10) is achieved at λ ∈ L∞(P) if and only if
λ = ϕ′(X).

By the biconjugation theorem, we have that for every x ∈ R,
(2.11) ϕ(x) = sup

λ∈R
(λx − ϕ∗(λ)) .

In particular, we have for every x,λ ∈ R that

(2.12) ϕ(x) + ϕ∗(λ) ⩾ λx,
and thus

E[ϕ(X)] ⩾ sup
λ∈L∞(W )

E [λX − ϕ∗(λ)] .

As a supremum of convex and lower semi-continuous functions, the func-
tion ϕ∗ is convex and lower semi-continuous. Since ϕ∗ is in fact strictly
convex on its effective domain [−1,1], for each x ∈ R, there exists a unique
λ ∈ R such that

(2.13) ϕ(x) + ϕ∗(λ) = λx.
Since the derivative of ϕ∗ diverges at the endpoints of the interval [−1, 1], this
unique λ must lie in the open interval (−1, 1). Similarly, for each λ ∈ (−1, 1),
there exists a unique x ∈ R such that the identity (2.13) is realized, and
recall that we always have (2.12) in general. In short, the condition (2.13) is
equivalent to the statement that ϕ′(x) = λ, and in particular, for every x ∈ R,

ϕ(x) = ϕ′(x)x − ϕ∗(ϕ′(x)).
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This yields (2.10) and the fact that the unique maximizer is λ = ϕ′(X).

Step 2. We let (Xt) be the solution to (2.5), and for every t ∈ [0,1], we let

α̂t ∶= ∂xΦµ(t,Xt) = ∂xΦµ(0, h) + ∫
t

0

√
ξ′′(s)∂2

xΦµ(s,Xs)dWs.

Using (1.3) and (1.5), we notice that

(2.14) α̂1 = ϕ′(X1 − h) = ϕ′ (∫
1

0
ξ′′(t)µ[0, t]α̂t dt + ∫

1

0

√
ξ′′(t)dWt) .

By the result of the previous step and Lemma 2.1, we can rewrite Φµ(0, h)
in the form of

(2.15) sup
α∈Prog

sup
λ∈L∞(P)

E [λ(∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt)

−ϕ∗(λ) − 1

2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt] .

Moreover, the choice of α = α̂ and λ = α̂1 realizes the supremum. Also, by
Lemma 2.1, the random variable

∫
1

0
ξ′′(t)µ[0, t]αt dt + ∫

1

0

√
ξ′′(t)dWt

does not depend on the choice of optimizer α in (2.15). The result of the
previous step and (2.14) therefore also yield that the choice of λ = α̂1 is
necessary for any maximizing pair (α,λ) of (2.15). If we also impose the
maximizing pair to be such that α ∈Mart and α1 = λ, then by the martingale
property this yields that α = α̂. In the case when these additional constraints
are imposed, the functional we optimize over in (2.15) reduces to that in (2.9),
so the proof is complete. □

By (1.4) and Lemma 2.2, this already shows that

(2.16) f = inf
µ∈Pr([0,1])

sup
α∈Mart

Γ(µ,α).

Since the minimization problem over µ is in fact the same as that in (1.4), it
is achieved at the same optimal µ and only there, by [3]. Moreover, once µ
is fixed, the maximization over α is achieved at the optimal α described by
Lemma 2.2 and only there.

Our next goal is to justify the interversion of the infimum and supremum
in (2.16). For every bounded measurable f ∶ [0,1] → R, we observe the
integration by parts

(2.17) ∫
1

0
f(s)µ[0, s]ds = ∫

1

0
f(s)∫ 1{t⩽s} dµ(t)ds

= ∫ ∫
1

t
f(s)dsdµ(t).
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It will be convenient to use this observation and rewrite (2.16) as

(2.18) f = inf
µ∈Pr([0,1])

sup
α∈Mart

E [α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)

+ 1

2
∫ ∫

1

t
ξ′′(s)(α2

s − s)dsdµ(t)] .

Lemma 2.3 (Interchanging inf and sup). Let

(2.19) K0 ∶= {(E [α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)] , (E[α2

t ])t∈[0,1]) ∣

α ∈Mart, E[ϕ∗(α1)] < +∞},

and let K be the closure of the convex hull of K0 with respect to the topology
of the space R ×L1([0,1]). The limit free energy (1.1) is given by

(2.20) f = sup
(χ,γ)∈K

{χ + 1

2
inf

t∈[0,1]∫
1

t
ξ′′(s)(γs − s)ds}.

Proof of Lemma 2.3. We can rewrite (2.18) in the form of

(2.21) f = inf
µ∈Pr([0,1])

sup
(χ,γ)∈K0

(χ + 1

2
∫ ∫

1

t
ξ′′(s)(γs − s)dsdµ(t)) .

Let us call G(µ,χ, γ) the functional between the large parentheses in (2.21).
For each µ, the functional G(µ, ⋅, ⋅) is affine, so the supremum in (2.21) is
not changed if we replace K0 by its convex hull. For every γ, ρ ∈ L1([0,1]),

(2.22) sup
t∈[0,1]

∣∫
1

t
ξ′′(s)(γs − s)ds − ∫

1

t
ξ′′(s)(ρs − s)ds∣

⩽ ξ′′(1)∫
1

0
∣γs − ρs∣ds.

The functional G(µ, ⋅, ⋅) is therefore continuous for the topology of R ×
L1([0,1]). We deduce that the supremum in (2.21) is not changed if we
replace K0 by K, that is,

(2.23) f = inf
µ∈Pr([0,1])

sup
(χ,γ)∈K

(χ + 1

2
∫ ∫

1

t
ξ′′(s)(γs − s)dsdµ(t)) .

We now argue that the set K0 is precompact. First, for every α ∈ Mart,
the condition E[ϕ∗(α1)] < +∞ is equivalent to the condition that α1 takes

values in [−1, 1] almost surely. As a result, if (χ(n), γ(n)) denotes a sequence

of elements of K0, we have that χ(n) and supt∈[0,1] ∣γ(n)(t)∣ are bounded

uniformly over n. We can therefore find a subsequence along which χ(n)

and γ
(n)
t converge for each t ∈ Q ∩ [0,1]. Using also that for each n, the

mapping t ↦ γ
(n)
t is non-decreasing, we deduce that (χ(n), γ(n)) converges
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in R ×L1([0,1]) along the subsequence. This shows that K0 is precompact,
and therefore that its closed convex hull K is compact, by [2, Theorem 5.35].

Endowing the space of probability measures Pr([0,1]) with the topology
of weak convergence turns this space into a compact set. Using again (2.22),
we see that G is jointly continuous. We have already used that for each
fixed µ ∈ Pr([0,1]), the mapping G(µ, ⋅, ⋅) is affine; and for each fixed
(χ, γ) ∈ R × L1([0,1]), the mapping G(⋅, χ, γ) is affine. By the minimax
theorem [12, 37], we can therefore exchange the infimum and the supremum
in (2.23) and obtain that

f = sup
(χ,γ)∈K

inf
µ∈Pr([0,1])

(χ + 1

2
∫ ∫

1

t
ξ′′(s)(γs − s)dsdµ(t)) .

The infimum is achieved for measures µ that are supported on minimizers of
the mapping

t↦ ∫
1

t
ξ′′(s)(γs − s)ds.

This yields the announced result. □

While Lemma 2.3 does indeed perform some interchange of infimum and
supremum, the expression of the optimization as a supremum over the
set K is not very satisfactory. The goal of the next lemma is to revert
this back to an optimization problem over the space of martingales. The
proof of this lemma will be simplified if we assume that the σ-algebra F0

of the probability space P is sufficiently rich, so that we can perform a
“randomization” operation on the space of martingales, as in the construction
of Nash equilibria. We could also show the next lemma directly without this
assumption, by showing that the “randomized” martingales we use can be
approximated arbitrarily closely by martingales that are measurable with
respect to the filtration generated by the Brownian motion W . Since we
will ultimately show that the supremum is in fact achieved at a martingale
that is measurable with respect to the filtration generated by W , there is
ultimately no loss in making this additional assumption here.

Lemma 2.4. Suppose that the σ-algebra F0 of the probability space P is
sufficiently rich that there exists an F0-measurable random variable that is
uniformly distributed over [0,1]. Then the identity (1.6) is valid.

Proof. Lemma 2.3 clearly implies that

(2.24) f ⩾ sup
α∈Mart

{E [α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)]

− 1

2
sup
t∈[0,1]

∫
1

t
ξ′′(s)(s −E[α2

s])ds},

so we only need to show the converse bound. Notice carefully that the
definition of K0 in (2.19) depends on the identity of the probability space P.
For the bound converse to (2.24), we will appeal to Lemma 2.3 applied to the
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case when the underlying probability space is the canonical Wiener space W .
We recall that we denote by E the expectation over W , and by Mart the
space of bounded martingales over W , while we denote by Mart the space
of bounded martingales over P. There is a canonical injection from Mart to
Mart given by α ↦ α ○W ; but the space Mart may be larger than Mart in
general. We let K0 be as in (2.19) but with the underlying probability space
being W , we let K1 be the convex hull of K0, and K be the closure of K1.
By (2.22), the representation in (2.20) is still valid if we replace K by K1.
Moreover, every element of (χ, γ) ∈ K1 can be represented in the form

(χ, γ) =
n

∑
i=1

ci (E [α(i)1 ∫
1

0

√
ξ′′(t)dWt − ϕ∗(α(i)1 )] , (E[(α

(i)
t )

2])
t∈[0,1]) ,

were c1, . . . , cn ∈ [0,1] are such that ∑i ci = 1 and α(1), . . . , α(n) ∈Mart take

values in [−1,1]. We identify the martingales α(1), . . . , α(n) with elements
of Mart through the injection α ↦ α ○W mentioned above. Notice that by
construction, the martingales α(1), . . . , α(n) are independent of F0. Under
our assumption on P, there exists an F0-measurable random variable N
such that for every i ∈ {1, . . . , n},

P [N = i] = ci.

For every t ∈ [0,1], we set

βt ∶= α(N)t .

Since N is F0-measurable and the martingales α(1), . . . , α(n) are independent
of F0, we see that β ∈Mart, and a direct calculation gives that

(E [β1∫
1

0

√
ξ′′(t)dWt − ϕ∗(β1)] , (E[(βt)2])t∈[0,1]) = (χ, γ).

So we have shown that every pair (χ, γ) ∈ K1 can be represented in the form
above. Since we have also observed that

f = sup
(χ,γ)∈K1

{χ + 1

2
inf

t∈[0,1]∫
1

t
ξ′′(s)(γs − s)ds},

and recalling also (2.24), we obtain the result. □

We continue by showing the existence of a martingale that achieves the
supremum in (1.6), at the cost of possibly changing the probability space
again.

Lemma 2.5 (Existence of maximizing martingale). There exists a probability
space P such that the identity (1.6) is valid and the supremum appearing
there is achieved.
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Proof. Let P be a probability space satisfying the assumption of Lemma 2.4,
and let (α(n))n∈N be a sequence of elements of Mart such that

f = lim
n→∞{E [α

(n)
1 ∫

1

0

√
ξ′′(t)dWt − ϕ∗(α(n)1 )]

+ 1

2
inf

t∈[0,1]∫
1

t
ξ′′(s)(E[(α(n)s )2] − s)ds}.

For n sufficiently large, the martingale α(n) must take values in [−1,1]. In
particular, for each t ∈ [0,1], the family of random variables (α(n)t )n∈N is
tight. By Prokhorov’s theorem, we can therefore find a subsequence (kn)n∈N,
a probability space P = (Ω,F ,P) and random variables (W, (αt)t∈Q∩[0,1])
over P such that for every integer ℓ ⩾ 1, t1, . . . , tℓ ∈ Q ∩ [0,1], and bounded
continuous function G ∶ C([0,1]) ×Rℓ → R,

(2.25) lim
n→∞E [G(W,α

(kn)
t1

, . . . , α
(kn)
tℓ
)] = E [G(W,αt1 , . . . , αtℓ)] .

Without loss of generality we assume from now on that the convergence
above is valid along the full sequence, that is, we can take kn = n. For
every t ∈ [0,1], we let F t be the σ-algebra on P generated by the random
variables (Ws)s⩽t and (αs)s∈Q∩[0,t]. The process W is a Brownian motion
with respect to this filtration, and (αt)t∈Q∩[0,1] is a martingale with respect

to (F t)t∈Q∩[0,1]. We extend α by setting, for every t ∈ [0,1],

αt ∶= E [α1 ∣ F t] .

This turns α into a martingale with respect to the filtration (F t)t∈[0,1].
Since α

(n)
1 takes values in [−1,1] and ϕ∗ is continuous over this interval, we

have that
lim
n→∞E[ϕ∗(α(n)1 )] = E [ϕ

∗(α1)] .

In order to control the continuity of the linear mapping W ↦ ∫
1
0

√
ξ′′(t)dWt,

we introduce the notation

ζ(t) ∶=
√
ξ′′(t).

We observe that ζ is continuously differentiable on [0, 1] whenever ξ′′(0) ≠ 0
or ξ′′(0) = ξ′′′(0) = 0, while in all cases, we can find a constant C < ∞ such
that for every t ∈ (0,1],

ζ ′(t) ⩽ Ct−1/2.
Integrating by parts (or applying Itô’s formula), we have that

ζ(1)W1 = ∫
1

0
ζ ′(t)Wt dt + ∫

1

0
ζ(t)dWt,

and in particular, for a possibly larger value of the constant C < ∞, we have
that for every W ∈ C([0,1]),

∣∫
1

0
ζ(t)dWt∣ ⩽ C∥W ∥L∞([0,1]).
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From this, (2.25), the fact that α
(n)
1 takes values in [−1,1], and an approxi-

mation argument, we deduce that

lim
n→∞E [α(n)1 ∫

1

0

√
ξ′′(t)dWt] = E [α1∫

1

0

√
ξ′′(t)dWt] .

It also follows from (2.25) that for every t ∈ Q ∩ [0,1],

lim
n→∞E[(α(n)t )

2] = E[α2
t ].

Since the paths t↦ E[(α(n)t )2] and t↦ E[α2
t ] are non-decreasing, one can

extend this convergence to all points of continuity of the latter mapping,
which form a subset of [0,1] of full measure. Using also (2.22), we deduce
that

lim
n→∞ inf

t∈[0,1]∫
1

t
ξ′′(s)(E[(α(n)s )2] − s)ds = inf

t∈[0,1]∫
1

t
ξ′′(s)(E[α2

s] − s)ds.

In conclusion, we have constructed a martingale α over P such that

f = E [α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)] +

1

2
inf

t∈[0,1]∫
1

t
ξ′′(s)(E[α2

s] − s)ds.

Since the converse inequality (2.24) is valid on every probability space, this
completes the proof. □

We are now ready to prove the main results of this paper.

Proof of Theorems 1 and 2. Let P be a probability space such that the
conclusion of Lemma 2.5 is valid. We denote by α ∈ Mart a martingale
that achieves the supremum in (1.6), and we denote by µ ∈ Pr([0,1]) the
probability measure that achieves the infimum in (1.4). We have already
observed in (2.16) and in the paragraph below it that by [3], there is exactly
one such choice of µ, and

f = inf
µ∈Pr([0,1])

sup
α∈Mart

Γ(µ,α) = sup
α∈Mart

Γ(µ,α),

while Lemma 2.5 and the integration by parts (2.17) state that

f = sup
α∈Mart

inf
µ∈Pr([0,1])

Γ(µ,α) = inf
µ∈Pr([0,1])

Γ(µ,α).

In particular, for every µ ∈ Pr([0,1]) and α ∈Mart, we have

Γ(µ,α) ⩽ f and f ⩽ Γ(µ,α),
and thus f = Γ(µ,α) and
(2.26) Γ(µ,α) ⩽ Γ(µ,α) ⩽ Γ(µ,α).
The first optimality condition in (2.26) and Lemma 2.2 imply that α must
be as described in the statement of Theorem 2. Notice that this martingale
is measurable with respect to the filtration generated by the Brownian
motion W . In other words, there exists α̂ ∈Mart such that the martingale
α ∈Mart is the image of α̂ under the canonical injection α ↦ α○W from Mart



UN-INVERTING THE PARISI FORMULA 15

to Mart (recall that Mart denotes the space of bounded martingales over
the Wiener space W ). The martingale α̂ has a canonical image in the space
of bounded martingales of every probability space P under consideration in
Theorem 1. Recalling also from (2.24) that the converse inequality is valid
in every probability space, this completes the proof of Theorem 1. The fact
that the support of µ is a subset of the set of maximizers of the mapping
in (1.9) is a consequence of the second optimality condition in (2.26) and
the integration by parts in (2.17). To show that the properties (1) and (2) in
the statement of Theorem 2 characterize the pair (µ,α) uniquely, we observe
that these conditions imply that (2.26) is valid for very µ ∈ Pr([0,1]) and
α ∈Mart, using again the integration by parts (2.17) and Lemma 2.2, so we
must have

f = inf
µ∈Pr([0,1])

sup
α∈Mart

Γ(µ,α) ⩾ inf
µ∈Pr([0,1])

Γ(µ,α) = Γ(µ,α)

as well as

f = sup
α∈Mart

inf
µ∈Pr([0,1])

Γ(µ,α) ⩽ sup
α∈Mart

Γ(µ,α) = Γ(µ,α).

Hence f = Γ(µ,α), the probability measure µ must be the unique minimizer
of (1.4), and the martingale α must be the unique maximizer of (1.6). □

Proof of Theorem 3. Let µ ∈ Pr([0,1]), let (Xt)t⩾0 be the strong solution
to (2.5), let α ∈Mart be such that (2.6) holds for every t ∈ [0, 1], and let gµ
be such that, for every t ∈ [0,1],

gµ(t) ∶= ∫
1

t
ξ′′(s)(E[α2

s] − s)ds.

By Lemma 2.2, we have that

Φµ(0, h) = E [
1

2
∫

1

0
ξ′′(t)µ[0, t]α2

t dt + α1∫
1

0

√
ξ′′(t)dWt − ϕ∗(α1)] .

Combining this with Theorem 1 yields that

f ⩾ Φµ(0, h) −
1

2
∫

1

0
ξ′′(t)µ[0, t]E[α2

t ]dt +
1

2
inf
[0,1]

gµ.

The integration by parts (2.17) therefore yields the second inequality in (1.12);
we recall that the first one follows from (1.4). By Theorem 2, if we choose µ
to be the minimizer of (1.4), then the support of µ is a subset of the set
of minimizers of gµ, so the right-hand side of (1.12) vanishes in this case.
Conversely, if µ ∈ Pr([0, 1]) is such that the right-hand side of (1.12) vanishes,
then it must clearly be the unique minimizer of (1.4). □
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