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Abstract. We study the free energy of mean-field multi-species spin
glasses with convex covariance function. For such models with D species,
the Parisi formula is known to be valid, and expresses the limit free energy
as a supremum over monotone probability measures on RD

+ . We show
here that one can transform this representation into a supremum over
all probability measures on RD

+ of a concave functional. We then deduce
that the Parisi formula admits a unique maximizer. Using convex-duality
arguments, we also obtain a new representation of the free energy as an
infimum over martingales in a Wiener space.
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2 THE CONVEX STRUCTURE OF THE PARISI FORMULA

1. Introduction

We study mean-field spin-glass models with multiple species. Fixing
an integer D ⩾ 1, we write [D] = {1, . . . ,D} to denote the set of different
species of spins. For each N ∈ N, we give ourselves (IN,d)d∈[D] a partition of
{1, . . . ,N}, and interpret each IN,d as the set of indices that belong to the

d-th species. For any two configurations σ,σ′ ∈ RN and d ∈ [D], we define
the overlap for the d-th species as

(1.1) RN,d(σ,σ′) =
1

N
∑

n∈IN,d

σnσ
′
n,

and we set

(1.2) RN(σ,σ′) = (RN,d(σ,σ′))d∈[D].

We give ourselves a function ξ ∶ RD → R and a centered Gaussian field
(HN(σ))σ∈[−1,+1]N with covariance

E [HN(σ)HN(σ′)] = Nξ (RN(σ,σ′)) .(1.3)

Throughout, we assume that the function ξ admits an absolutely convergent
power-series expansion and satisfies ξ(0) = 0, and we make the key assumption
that the function ξ is convex on RD

+ . The definitions of the free energy
and Gibbs measure of the spin glass require that we also choose a reference
probability measure. For each species d ∈ [D], we fix a probability measure πd

with support in [−1,1] that is not a Dirac mass, and let

(1.4) dPN(σ) = ⊗
d∈[D]

⊗
n∈IN,d

dπd(σn).

In words, when σ = (σ1, . . . , σN) is sampled according to PN , the coordinates
of σ are independent, and the law of σn is πd if n belongs to IN,d. For each
d ∈ [D], the proportion of spins that belong to the d-th species is given by

(1.5) λN,d = ∣IN,d∣/N, and we set λN = (λN,d)d∈[D] .

We assume throughout that for some λ∞ = (λ∞,d)d∈[D] ∈ (0,1)D, we have

(1.6) lim
N→∞

λN = λ∞.

The main object of study of this paper is the limiting value as N → +∞ of
the free energy defined for every t ⩾ 0 by

(1.7) FN(t, δ0) = −
1

N
E log∫ exp (

√
2tHN(σ) −Ntξ (RN(σ,σ)))dPN(σ).

The term −Ntξ (RN(σ,σ)) is introduced as a convenience to simplify the
expression of the limit. One possible way to remove it a posteriori is described
in [43]; we also point out that this term is constant if each πd is supported
in {−1,+1}. In (1.7), the second argument of FN is a Dirac mass at 0 ∈ RD,
and we will extend this function to more general arguments below.
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In order to state the Parisi formula for the limit of (1.7), we introduce
further notation. We write R+ = [0,+∞), and let P(RD

+ ) denote the set of
probability measures on RD

+ . We say that µ ∈ P(RD
+ ) is monotone when

there exists an increasing map q ∶ [0,1) → RD
+ such that µ = Law(q(U))

with U a uniform random variable in [0,1]. Here and throughout, the word
“increasing” (and likewise for “decreasing”) is understood in the sense of non-
strict inequalities, that is, we are asking here that q(t) − q(s) ∈ RD

+ for every
s ⩽ t ∈ [0,1). We denote by P↑(RD

+ ) the collection of monotone probability
measures on RD

+ . For every p ⩾ 1, we denote by Pp(RD
+ ) the set of probability

measures with finite p-th moment, by P∞(RD
+ ) the set of compactly supported

probability measures on RD
+ , and we set P↑p(RD

+ ) = P↑(RD
+ ) ∩ Pp(RD

+ ).
For all the models considered here, the Parisi formula is known to be valid

[4, 9, 13, 27, 46, 47, 60]. We give two versions of the Parisi formula, the first
one in (1.11) being the most classical, and the second one in (1.12) being
the one which will best clarify its relationship with the sequel. For each
ν ∈ P(RD

+ ) and d ∈ [D], we denote by νd the d-th marginal of ν; in other
words, νd is the image of ν through the mapping x↦ xd. The first term in
the Parisi formula is given, for each ν ∈ P↑1(R

D
+ ), by

(1.8) ψ(ν) =
D

∑
d=1

λ∞,dψd(νd),

where for each d ∈ [D], the function ψd is the cascade transform of the
reference measure πd defined precisely in (2.16) (see also Lemma 3.1 for an
alternative characterization). It follows from [2] that the functions ψ1, . . . , ψD

are each concave over P1(R+). The formula (1.8) therefore allows us to
extend ψ into a concave (but not strictly concave) function on all of P1(RD

+ ).
For every y ∈ RD, we set

(1.9) θ(y) = y ⋅ ∇ξ(y) − ξ(y),

(1.10) ξ∗(y) = sup
x∈RD+
{x ⋅ y − ξ(x)},

and similarly for (tξ)∗ for any t ⩾ 0. We note that for every t > 0, we have
(tξ)∗ = t ξ∗ ( ⋅ /t).

Theorem 1.1 (Parisi formula). For every t ⩾ 0, we have

lim
N→+∞

FN(t, δ0) = sup
µ∈P↑∞(RD+ )

{ψ((t∇ξ)(µ)) − t∫ θ dµ}(1.11)

= sup
ν∈P↑∞(RD+ )

{ψ(ν) − ∫ (tξ)∗ dν}(1.12)

where (t∇ξ)(µ) denotes the image of the measure µ through the mapping
x↦ t∇ξ(x).
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A measure µ ∈ P↑∞(RD
+ ) that realizes the supremum in (1.11) is usually

called a Parisi measure; this measure can often be interpreted as the asymp-
totic law of the overlap under the Gibbs measure (see [13, Corollary 8.7] or
[9, Theorem 1.4] for precise statements). The existence of a Parisi measure
can be obtained via coercivity and compactness arguments. For models with
a single species (D = 1), it was proved in [2] that the Parisi measure is unique.
Here we extend this result to all multi-species models.

Theorem 1.2 (Uniqueness of Parisi measure). For every t ⩾ 0, the supremum
in (1.12) is achieved at exactly one measure, say ν ∈ P↑∞(RD

+ ); and the
supremum in (1.11) is achieved at all measures µ ∈ P↑∞(RD

+ ) that satisfy
ν = (t∇ξ)(µ), and only at those measures.

As already noted, although the function ψ is initially only defined on
P↑1(R

D
+ ), the formula in (1.8) readily allows us to extend it into a concave

function defined on all of P1(RD
+ ). In order to show Theorem 1.2, we aim to

relax the maximization problem in (1.12) into one that is posed over all of
P∞(RD

+ ). In our extension to this variational problem, the last term in there
is replaced by the following optimal-transport cost. For every µ, ν ∈ P(RD

+ ),
we denote by Π(µ, ν) the set of all probability measures on RD

+ ×RD
+ with

first marginal µ and second marginal ν. For each t ⩾ 0 and µ, ν ∈ P(RD
+ ), we

set

Tt(µ, ν) = inf
π∈Π(µ,ν)

∫ (tξ)∗(y − x)dπ(x, y).(1.13)

In this introduction we have only defined FN(t, δ0) in (1.7), but below we

define FN(t, µ) for all (t, µ) ∈ R+ × P↑1(R
D
+ ), and we state our next results

for arbitrary arguments.

Theorem 1.3. For every (t, µ) ∈ R+ × P↑∞(RD
+ ), we have

(1.14) lim
N→+∞

FN(t, µ) = sup
ν∈P∞(RD+ )

{ψ(ν) − Tt(µ, ν)} .

Moreover, the functional inside the supremum in (1.14) is concave in ν.
Finally, there is exactly one measure ν ∈ P∞(RD

+ ) that is monotone and
realizes the supremum in (1.14).

Using convex-duality arguments inspired by [31, 42], we then deduce from
Theorem 1.3 a representation of the limit free energy as an infimum. We de-
note by X the set of functions χ ∶ RD

+ → R of the form χ(x) = ∑D
d=1 λ∞,dχd(xd)

where χ1, . . . , χD ∶ R+ → R are convex, 1-Lipschitz, increasing functions that
vanish at the origin. For every χ ∈ X, x ∈ RD

+ and t ⩾ 0, we let

ψ∗(χ) = inf
ν∈P↑1(R

D+ )
{∫ χdν − ψ(ν)}(1.15)
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and

Stχ(x) = sup
p∈RD+

{p ⋅ x + tξ(p) − χ∗(p)}(1.16)

= sup
y∈RD+

{χ(y) − (tξ)∗(y − x)} .(1.17)

In (1.16), the definition of χ∗ is as in (1.10). The equality between (1.16)
and (1.17) will be explained below in Lemma 5.12.

Theorem 1.4. For every (t, µ) ∈ R+ × P↑∞(RD
+ ), we have

(1.18) lim
N→+∞

FN(t, µ) = inf
χ∈X
{∫ Stχdµ − ψ∗(χ)} .

Finally, we describe a more concrete representation of the limit free energy
as an infimum over martingales. Let P = (Ω,F ,P) be a probability space
with associated expectation E, and let (F1(t))t⩾0, . . . , (FD(t))t⩾0 be an
independent family of filtrations over P. We assume that all these σ-algebras
are complete, that is, they all contain every subset of any null-measure set.
We also assume that the probability space is rich enough to accommodate for
the existence of independent Brownian motions (B1(t))t⩾0, . . . , (BD(t))t⩾0
that are adapted to the filtrations (F1(t))t⩾0, . . . , (FD(t))t⩾0 respectively.
We denote by Mart1, . . . , MartD the spaces of bounded martingales over P
with respect to the filtrations (F1(t))t⩾0, . . . , (FD(t))t⩾0 respectively, and
we set

(1.19) Mart =
D

∏
d=1

Martd.

For every α = (α1, . . . , αD) ∈ Mart, we define χα ∶ RD
+ → R such that for

every x = (x1, . . . , xD) ∈ RD
+ ,

(1.20) χα(x) =
D

∑
d=1

λ∞,d∫
xd

0
E [αd(t)2] dt.

We also define, for every t ⩾ 0 and x ∈ R,

(1.21) ϕd(t, x) = log∫ exp (xσ − t∣σ∣2) dπd(x),

and set, for every t ⩾ 0 and y ∈ R,

(1.22) ϕ∗d(t, y) = sup
x∈R
{x ⋅ y − ϕd(t, x)} .
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Theorem 1.5. For every t ⩾ 0, µ ∈ P↑∞(RD
+ ), and T = (T1, . . . , TD) ∈ RD

+
such that supp(µ) + t∇ξ([0,1]D) ⊆ ∏D

d=1[0, Td], we have

(1.23)

lim
N→+∞

FN(t, µ) = inf
α∈Mart

{
D

∑
d=1

λ∞,dE [ϕ∗d(Td, αd(Td)) −
√
2αd(Td)Bd(Td)]

− χα(T ) + ∫ Stχαdµ}.

In addition the infimum in (1.23) is reached at a unique α ∈Mart. This
martingale α is such that for every d ∈ [D] and almost every t ∈ [0, Td],
we have αd(t) = ∂xΦνd(t,Xd(t)), where ν is the unique monotone measure
that realizes the supremum in (1.14), Φνd is defined in (3.2) subject to the
terminal condition (3.3), and Xd is defined in (8.3).

Conjecture. We conjecture that Theorems 1.4 and 1.5 remain valid even
when the function ξ is not assumed to be convex on RD

+ , with the understand-
ing that Stχ is defined according to (1.16) (the equality of this quantity with
(1.17) would be lost in this case). To explain why, we start by recalling that
when ξ is convex over RD

+ , the limit free energy is known [9, 13, 16, 39, 43]
to converge to the unique viscosity solution to the Hamilton–Jacobi equation

(1.24)

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∂µf)dµ = 0 on R+ × P↑2(R
D
+ ),

f(0, ⋅) = ψ on P↑2(R
D
+ ).

The same result may also be valid in the case when ξ is non-convex, and partial
results in this direction were obtained in [9, 13, 16, 38, 40]. As discussed
more precisely in [31], the right-hand side of (1.18) can be interpreted as
a generalized version of the Hopf variational representation of the solution
to (1.24). In other words, there is a plausible heuristic argument connecting
the Hamilton–Jacobi equation (1.24) with the variational representation in
Theorem 1.4, and therefore also with that in Theorem 1.5; the idea being that
since ψ is concave, it can be represented as an infimum of affine functions,
and we expect the solution to the PDE to be the infimum of the solutions
started with these enveloping affine functions. One consequence of the results
presented here is a proof that when ξ is convex over RD

+ , the solution to the
Hamilton–Jacobi equation (1.24) can indeed be represented as the variational
formula in (1.18). We expect this link between the solution to (1.24) and
the variational representations in Theorems 1.4 and 1.5 to remain valid even
when the function ξ is no longer assumed to be convex. In addition to
being interesting on its own, this new representation could be helpful to
complement the lower bound obtained in [38, 40] with the reverse bound.
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Proof ideas. For the choice of µ = δ0, and in view of (1.12), the task of
showing (1.14) boils down to showing that

(1.25) sup
ν∈P↑∞(RD+ )

{ψ(ν) − ∫ (tξ)∗ dν} = sup
ν∈P∞(RD+ )

{ψ(ν) − ∫ (tξ)∗ dν} .

For each measure ν ∈ P(RD
+ ), there is a unique measure ν↑ that has the

same marginals as ν and is a monotone measure. Due to the equality of the
marginals and (1.8), we have that ψ(ν) = ψ(ν↑), so surely the most natural
idea for showing (1.25) would be to assert that

(1.26) ∫ (tξ)∗dν↑ ⩽ ∫ (tξ)∗dν.

We show in Proposition 4.1 that the inequality (1.26) is indeed valid when
D = 2 and ∇ξ(0) = 0. However, we also show in Remark 4.3 that the
inequality (1.26) is false in general, so another strategy must be developed
towards the proof of our main results.

Our approach consists instead of a careful analysis of the optimizers of
the variational formula in (1.14). First, recall that the definition of Stχ from
(1.17) implies that for every x, y ∈ RD

+ ,

(1.27) χ(y) − Stχ(x) ⩽ (tξ)∗(y − x),
with equality when y is a maximizer in (1.17). From this, we check in
Lemma 6.4 that

(1.28) ∫ Stχdµ = sup
ν∈P∞(RD+ )

{∫ χdν − Tt(µ, ν)} .

Letting ν ∈ P∞(RD
+ ) denote a maximizer of (1.14), and χ denote the derivative

of ψ at ν, we observe that, thanks to the convexity of the mapping ν ↦
Tt(µ, ν), we have that

(1.29) ∫ χdν − Tt(µ, ν) = sup
ν∈P∞(RD+ )

{∫ χdν − Tt(µ, ν)} ,

and thus, in view of (1.28), that

(1.30) ∫ χdν − ∫ Stχdµ = Tt(µ, ν).

Denoting by π the optimal transport plan from µ to ν, the previous display
tells us that the inequality (1.27) is in fact an equality for dπ-almost every
(x, y). Heuristically, we then want to exploit certain monotonicity properties
of the mappings ∇χ and ∇Stχ to deduce that if µ is monotone, then so is ν.
The details are a bit more subtle, as it may well be that the measure ν itself
is actually not monotone, and we need to smear out the measure µ in order
to effectuate this transfer of monotonicity, but we ultimately show that we
can build a maximizing measure for (1.14) that is indeed monotone whenever
µ itself is monotone. The bulk of the technical work consists in showing that
∇χ and ∇Stχ satisfy the desired monotonicity properties. Once Theorem 1.3
is shown, we obtain Theorem 1.2 as a direct consequence, while the proofs of
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Theorems 1.4 and 1.5 rely on convex-duality arguments that are inspired by
[31, 42].

Related works. The Parisi formula was initially predicted using the non-
rigorous replica method in the case of the Sherrington-Kirkpatrick model
(i.e. for D = 1, ξ(r) = r2, and P1 = 1

2(δ1 + δ−1)) in [36, 50, 51, 52, 53], and
was later proved rigorously in [27, 60]. A more conceptual proof based on
the ultrametricity of the Gibbs measure was later developed [45, 46], and
allowed all models with a single type of spins (D = 1) to be covered. This
ultrametricity property was further leveraged in order to identify the limit
free energy of spin glasses with multiple types and convex ξ [4, 47, 48, 49].
One key ingredient of the proof consists in showing that, up to a small
perturbation of the energy function, the overlaps between the different types
of spins must synchronize with one another; in other words, the joint law
of the overlaps must be a monotone measure. Theorem 1.3 shows that one
can in fact relax the final optimization problem into a “desynchronized” one,
where the measure is no longer constrained to be monotone. Concurrent
developments for spherical models include [17, 59] for models with a single
type of spins, and [5] for multi-type models. For models with additional
symmetries, the limit formula may in certain cases be simplified into an
expression corresponding to an effective single-type model [6, 7, 10, 30, 41].

Models with non-convex ξ are less well-understood, and even the existence
of the limit free energy is not proved in general. Yet, under the assumption
that the limit free energy exists, its value has been identified in [57, 58] for
all spherical models in the case when ξ is a monomial. Still for spherical
models, the case of D = 2 and ξ(x, y) = xy has been obtained unconditionally
in [1, 3], and the cases of ξ(x, y) = xpyq and ξ(x1, . . . , xD) = x1⋯xD have
also been obtained unconditionally for particular choices of the parameter
λ∞ in [7, 19].

Outside of these cases, even stating an appropriate conjecture for the
limit free energy is a non-trivial task. Indeed, several possible candidate
variational formulas for the limit free energy, inspired by the classical Parisi
formula, were shown to be invalid in [38, Section 6]. A candidate for the limit
free energy, defined in terms of the solution to a Hamilton-Jacobi equation,
was proposed in [16, 38, 39, 40], and this candidate was shown there to be a
lower bound for the limit free energy. Under the assumption that the limit
free energy exists, a representation of this limit in terms of a critical point
of an explicit functional was also found in [9, 13]. This description is in the
spirit of the cavity fixed-point equations appearing in the physics literature.
It does not completely characterize the limit however, as there may be more
than one critical point in general.

As discussed around (1.24), and despite the negative results of [38, Sec-
tion 6], we now believe that there is in fact a plausible candidate variational
formula for the limit free energy for non-convex ξ. The point is that it does
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not take a form similar to the classical Parisi formula, but rather a form as in
(1.23). Such alternative “un-inverted” formulas first appeared in the context
of models with a single type of spins in [42], and were further developed
in [31], with results close to Theorem 1.4 for vector spin glasses. A key
ingredient for our analysis as well as in [42] is the fact that the function ψ is
concave. This was first proved for models with a single type of spins in [2];
the uniqueness of the Parisi measure was also obtained there in this case.
For spherical models, the uniqueness of the Parisi measure can be seen more
directly, and a similar convex-duality analysis was performed in [33, 34]. We
also mention that for vector spin glasses with convex ξ, the uniqueness of
the Parisi measure was shown to be valid in [11] provided that the measure
argument µ does not charge any single point.

These “un-inverted” formulas are in turn inspired by a series of works
concerning the construction of efficient algorithms that aim to identify
configurations σ in the support of PN such that HN(σ) is as large as possible.
For many models, an explicit quantity ALG was identified as a variational
formula analogous to the Parisi formula, such that the following holds. On the
one hand, there exists an efficient algorithm that outputs a configuration σ
in the support of PN such that HN(σ)/N is approximately equal to ALG.
On the other hand, for any ε > 0, if an algorithm is Lipschitz continuous
with respect to its entries, then it cannot reliably output a configuration σ
in the support of PN such that HN(σ)/N exceeds ALG + ε. Whether or not
this quantity ALG coincide with the limit of supσ∈suppPN

HN(σ) depends on
the choice of ξ. At least for models with a single type, this quantity ALG
can also be written as an “un-inverted” formula very similar to that found
in [42].

An algorithm that indeed achieves the correct value ALG was first put
forward in [56] for spherical models with a single type of spins. The algorithm
is based on a Hessian ascent. Using a different approach based on approximate
message passing algorithms, this result was extended to models with ±1 spins
in [21, 37, 54]. For models with ±1 spins, a Hessian-ascent algorithm was also
constructed in [35]. The converse statement, that no Lipschitz algorithm can
identify configurations with energy exceeding ALG, is based on the notion of
overlap gap property [24, 25, 26, 29]. Remarkably, the identification of this
threshold ALG has been extended to spherical models with multiple types,
including for models with non-convex ξ for which the limit free energy is not
currently known [28, 29].

Organization of the paper. In Section 2, we define the enriched free
energy FN(t, µ) for arbitrary arguments (t, µ) ∈ R+ × P1(R+). In Section 3,
we study properties of ψ(µ) = limN→∞ FN(0, µ), including its regularity and
concavity and the decomposition in (1.8). In particular, we show that the
derivative of ψ at any measure is an element of the set X defined above (1.15).
In Section 4, we focus on the two-species case (D = 2) with no external field
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(∇ξ(0) = 0), and show (1.26) in this particular case, leading to a simple proof
of (1.25), with some long but unsurprising proof deferred to Appendix A.
Section 5 is focused on the proof that ∇Stχ satisfies the desired monotonicity
properties whenever χ ∈ X. We show that the mapping (t, x) ↦ Stχ(x) can
be interpreted as the solution to a Hamilton-Jacobi equation, and we rely on
this property to obtain the desired result. Section 6 contains the proofs of
(1.28) and (1.30). We also show that the variational problems appearing in
(1.12) and (1.14) are equal. We complete the proofs of Theorems 1.1 to 1.4
in Section 7. Finally, we develop a more explicit dual representation of ψ
and use it to prove Theorem 1.5 in Section 8.

2. Definition of the enriched free energy

The goal of this section is to give a precise definition of the enriched free
energy FN(t, µ). We start by giving a definition of this quantity in the case
when the measure µ ∈ P↑(RD

+ ) has a finite support. For every x, y ∈ RD, we
write x ⩽ y when y − x ∈ RD

+ . Let K ∈ N and let µ ∈ P↑(RD
+ ) be of the form

(2.1) µ =
K

∑
k=0
(ζk+1 − ζk)δqk with marginals µd =

K

∑
k=0
(ζk+1 − ζk)δqk,d

for each d ∈ [D], where ζk and qk = (qk,d)d∈[D] satisfy

0 = q−1,d ⩽ q0,d < q1,d < ⋅ ⋅ ⋅ < qK,d,(2.2)

0 = ζ0 < ζ1 < ⋅ ⋅ ⋅ < ζK < ζK+1 = 1.(2.3)

The construction of FN(t, µ) involves a random probability measure with
ultrametric properties called the Poisson–Dirichlet cascade. We briefly
introduce this object and refer to [46, Section 2.3] or [20, Section 5.6] for a
more detailed explanation. We define

(2.4) A = N0 ∪N1 ∪ ⋅ ⋅ ⋅ ∪NK

with the understanding that N0 = {∅}. We think of A as a tree rooted at
∅ such that each vertex of depth k <K has countably many children. For
each k < K and α = (n1, . . . , nk) ∈ Nk, the children of α are the vertices of
the form

(2.5) αn = (n1, . . . , nk, n) ∈ Nk+1.

The depth of α = (n1, . . . , nk) is denoted by ∣α∣ = k and for every l ⩽ k, we
write

(2.6) α∣l = (n1, . . . , nl)

to denote the ancestor of α at depth l. Given two leaves α,β ∈ NK , we denote
by α∧β the generation of the most recent common ancestor of α and β, that
is

(2.7) α ∧ β = sup{k ⩽K ∶ α∣k = β∣k}.
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We attach an independent Poisson process to each non-leaf vertex α ∈ A with
intensity measure

(2.8) x−1−ζ∣α∣+1dx.

We order increasingly the points of those Poisson processes and denote them
by uα1 ⩾ uα2 ⩾ . . . . For every α ∈ NK , we set wα = ∏K

k=1 uα∣k and define

(2.9) vα =
wα

∑β∈NK wβ
.

The Poisson–Dirichlet cascade associated to (ζk)1⩽K+1 in (2.3) is the random
probability measure on NK (the leaves of the tree A) whose weights are given
by (vα)α∈NK .

Now, let (vα)α∈NK be the Poisson–Dirichlet cascade associated to (ζk)1⩽K+1
in (2.3), chosen to be independent of HN . Let (zβ,d)β∈A,d∈[D] be a family of
independent standard Gaussian variables. We choose (zβ,d)β∈A independent

of (vα)α∈NK and HN . For every α ∈ NK , we set

(2.10) wµd(α) =
K

∑
k=0
(qk,d − qk−1,d)1/2zα∣k,d

with (qk,d)0⩽k⩽K given in (2.2). The centered Gaussian process (wµd(α))α∈NK

has the following covariance structure

(2.11) E [wµd(α)wµd(α′)] = qα∧α′,d.

Let (ωµd
n )n∈N be i.i.d. copies of ωµd . For each N ∈ N, we define

Wµ
N(σ,α) = ∑

d∈[D]
∑

n∈IN,d

wµd
n (α) ⋅ σn(2.12)

which is a centered Gaussian process with covariance

E [Wµ
N(σ,α)W

µ
N(σ

′, α′)] = Nqα∧α′ ⋅RN(σ,σ′).(2.13)

For t ∈ R+ and µ given in (2.1), we define the enriched Hamiltonian

Ht,µ
N (σ,α) =

√
2tHN(σ) − tNξ (RN(σ,σ)) +

√
2Wµ

N(σ,α) −NqK ⋅RN(σ,σ),

where HN is given as in (1.3). We define

(2.14) FN(t, µ) = −
1

N
E log∫ ∑

α∈NK

exp (Ht,µ
N (σ,α)) vαdPN(σ).

The expression in the previous display is Lipschitz with respect to (t, µ).
More precisely, for every t, t′ ∈ R+ and every µ,µ′ of the form in (2.1), we
have

(2.15) ∣FN(t, µ) − FN(t′, µ′)∣ ⩽W1(µ,µ′) + ∣t − t′∣ sup
∣a∣⩽1
∣ξ(a)∣,

where W1 denotes the Wasserstein L1 distance between µ and µ′. This is
borrowed from [9, Proposition 4.1], where the term W1(µ,µ′) is written as

∫
1
0 ∣q(s) − q

′(s)∣ds with µ
d= Law(q(U)) and µ′ d= Law(q′(U)) for a uniform
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random variable U over [0, 1]. The equality between the two expressions can
be obtained from a straightforward modification of [40, Proposition 2.5].

As a consequence, the free energy FN admits a unique Lipschitz extension
to R+ × P↑1(R

D
+ ).

Given wµd in (2.10) and πd in (1.4), each ψd appearing in (1.8) is given
by

ψd(µd) = −E log∫ ∑
α∈NK

exp (
√
2wµd(α)τ − qK,dτ

2) vαdπd(τ)(2.16)

at every µ of the form in (2.1). A similar property as in (2.15) holds for

ψd and thus ψd can be extended to P↑1(R+) = P1(R+). By an invariance
property of (να)α∈NK (see e.g. [20, Corollary 5.26] and [9, Lemma 4.11]), we
have

FN(0, µ) = ∑
d∈[D]

λN,dψd(µd), ∀µ ∈ P↑1(R
D
+ ).(2.17)

Therefore, due to (1.6) and (1.8), we have

lim
N→∞

FN(0, µ) = ψ(µ), ∀µ ∈ P↑1(R
D
+ ).(2.18)

In order to state the Parisi formula for FN(t, µ) at a general measure µ, we
introduce the following notation. Let Q be the collection of càdlàg increasing
maps q ∶ [0,1) → RD

+ , and let U denote a uniform random variable on [0,1].
For any q ∈ Q, we write

Lq = Law(q(U)) ∈ P↑(RD
+ ).(2.19)

We also set Q∞ = Q ∩L∞([0,1);RD). It is clear that q ↦ Lq is a bijection

from Q to P↑(RD
+ ), and also from Q∞ to P↑∞(RD

+ ). The following is a
restatement of [9, Proposition 6.1] which adapts [13, Proposition 8.1] from
the setting of vector spin glasses. It generalizes (1.11) in Theorem 1.1.

Proposition 2.1 (Parisi formula). For every t ⩾ 0 and q ∈ Q∞, denoting
µ = Lq ∈ P↑∞(RD

+ ), we have

lim
N→+∞

FN(t, µ) = sup
p∈Q∞

{ψ (Lq+t∇ξ(p)) − t∫ θ dLp} .(2.20)

In (2.20), the notation ∇ξ(p) stands for the path s ↦ ∇ξ(p(s)), and

∫ θdLp can be explicitly written as ∫
1
0 θ(p(s))ds. The right-hand side in

(2.20) can be connected to the unique solution of a Hamilton–Jacobi equation
[13, 38, 39, 40, 43].

3. Properties of the enriched free energy at infinite
temperature

In this section, we derive useful properties of ψ. Due to the decomposition
in (1.8), we mostly focus on the study of ψd for each d ∈ [D].
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3.1. Properties of ψd. We fix d ∈ [D], and use the following notation in
this subsection:

π○ = πd and ψ○ = ψd.(3.1)

For ν ∈ P(R+), we denote by t↦ ν(t) = ν([0, t]) its cumulative distribution
function, which is a right-continuous increasing function taking values in
[0,1]. When ν ∈ P∞(R+), we denote by

ν−1(1) = inf{t ∈ R+ ∶ 1 ⩽ ν(t)}
the right endpoint of the support of ν. For ν ∈ P∞(R+), we consider the
backward parabolic equation

−∂tΦν(t, x) = ∂2xΦν(t, x) + ν(t) (∂xΦν)2 (t, x)(3.2)

with (t, x) ranging in [0, ν−1(1)] ×R, and with the terminal condition

Φν(ν−1(1), x) = log∫ exp (xσ − ν−1(1)σ2)dπ○(σ), ∀x ∈ R.(3.3)

We call the equation (3.2) the Parisi PDE associated with ν. The fact that
the function Φν is well-defined can be found in [32]. When the support of
ν is finite, one can use the Cole-Hopf transform to solve (3.2) on each time
sub-interval of [0, ν−1(1)) on which ν(⋅) is constant; and then one can argue
by continuity to build Φν for arbitrary ν (see for instance [20, Section 6.5]).
We extend Φν to R+ ×R by setting

Φν(t, x) = log∫ exp (xσ − tσ2)dπ○(σ), ∀(t, x) ∈ [ν−1(1),∞) ×R.(3.4)

A simple computation reveals that this extension also satisfies the equa-
tion (3.2) on [ν−1(1),∞) × R. We call Φν ∶ R+ × R → R the Parisi PDE
solution associated with ν ∈ P∞(R+). We summarize the basic properties of
the Parisi PDE solution in the following lemma.

Lemma 3.1 (Regularity of Parisi PDE). For every ν ∈ P∞(R+) and k ∈ N =
{1,2, . . .}, the derivative ∂kxΦν exists everywhere and is bounded uniformly
over ν, t, x. In particular, ∣∂xΦν ∣ ⩽ 1 everywhere. For every k ∈ N∪ {0}, there
is a constant Ck such that for every ν, ν′ ∈ P∞(R+) and (t, x) ∈ R+ ×R, we
have

∣∂kxΦν(t, x) − ∂kxΦν′(t, x)∣ ⩽ Ck ∫
∞

t
∣ν(τ) − ν′(τ)∣dτ.(3.5)

For every ν ∈ P1(R+), we have

ψ○(ν) = −Φν(0,0).(3.6)

Proof. First, assume ν, ν′ ∈ P∞(R+). For each ν, there is an explicit ex-
pression for Φν given in [12, Lemma 4.5 and Remark 4.6] (with D = 1 and
L(t) = t for t ∈ R+ therein, and with ν and P1 substituted for α and µ
therein). In particular, both (3.3) and (3.4) are satisfied. The relation to the
initial condition as in (3.6) is given in [12, Lemma 5.4]. The fact that Φν

satisfies the equation and the regularity of Φν are from [12, Proposition 4.7].
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The particular case ∣∂xΦν ∣ ⩽ 1 follows from [12, Proposition 4.7 (3)] and the
fact that π○ is supported in [−1,1]. The inequality (3.5) then allows us to
extend the results to every ν, ν′ ∈ P1(R+). To extend (3.6), we also use the
continuity of ψ○. □

We now recall the concavity of ψ○ originally due to [2].

Lemma 3.2 (Concavity of ψ○). The function ψ○ ∶ P1(R+) → R is concave;
that is, for every ν, ν′ ∈ P1(R+) and λ ∈ [0,1], we have ψ○((1 − λ)ν + λν′) ⩾
(1 − λ)ψ○(ν) + λψ○(ν′).

The restriction of ψ○ to P∞(R+) is strictly concave; that is, for every
distinct ν, ν′ ∈ P∞(R+) and λ ∈ (0,1), we have ψ○((1 − λ)ν + λν′) > (1 −
λ)ψ○(ν) + λψ○(ν′).

Proof. By the Lipschitzness of ψ○ in ν discussed in the previous section
(or implied by (3.5) and (3.6)), it suffices to prove the strict concavity on
P∞(R+). Fix any distinct ν and ν′ ∈ P∞(R+). By (3.4), we can fix any T >
ν−1(1), ν′−1(1) so that Φν and Φν′ both satisfy the Parisi PDE (3.2) on [0, T ]×
R with the same terminal condition equal to x↦ log ∫ exp(x ⋅σ−Tσ2)dπ○(σ).
Then, the concavity follows from (3.6) and the strict convexity of ν ↦ Φν(0, 0)
on the set of probability measures with support in [0, T ], which is available
from a straightforward modification of [2, Theorem 4 (i)]. □

In order to determine the derivative of ψ○, we introduce an adjoint equation
to the Parisi PDE, for each ν ∈ P1(R+). Let P ∶ R+ × R → R be the one-
dimensional heat kernel, namely

(3.7) P (t, x) = 1√
4πt

e−
x2

4t .

Since ∂xΦν is bounded due to Lemma 3.1, we can use a Picard fixed-point
argument in a suitable function space to build a function uν ∶ R+ ×R → R
such that, for every (t, x) ∈ R+ ×R,

uν(t, x) = P (t, x) + ∫
t

0
∫
R
∂xP (t − s, x − y)uν(s, y) (2ν(s)∂xΦν(s, y))dyds.

In other words, the function uν is a mild solution to

⎧⎪⎪⎨⎪⎪⎩

∂tuν = ∂2xuν − 2ν(t)∂x (uν∂xΦν) , on R+ ×R,
uν(0, ⋅) = δ0, on R,

(3.8)

where δ0 is the Dirac mass at zero. One can verify that uν is also a weak
solution to this equation. From the mild solution formulation, one can check
that uν and its derivatives in x have exponential decay in x, which allows for
integration by parts. We also recognize that (3.8) is a Kolmogorov equation
and thus uν(t, ⋅) can be interpreted as the probability density function of a
stochastic process at time t. Therefore, uν also satisfies

uν ⩾ 0 and ∫ uν(t, x)dx = 1, ∀t ∈ R+.(3.9)
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We use the properties of uν to prove the next two lemmas.

Lemma 3.3 (Derivative of ψ○). Let ν, ν′ ∈ P1(R+) and let νε = (1− ε)ν + εν′
for ε ∈ [0,1]. We have

d

dε
ψ○(νε)∣ε=0 = ∫

∞

0
χ(t)d(ν′ − ν)(3.10)

where

χ(t) = ∫
t

0
∫
R
(∂xΦν(τ, x))2 uν(τ, x)dxdτ, ∀t ∈ R+.(3.11)

Notice that the right-hand side in (3.10) is well-defined and finite since
the first moments of ν′ and ν exist and ∣χ(t)∣ ⩽ t due to ∫ uν(τ, x)dx = 1 and
the boundedness of ∣∂xΦν ∣ ⩽ 1 given by Lemma 3.1.

Proof. For simplicity, we write Φε = Φνε and u = uν . For any T > 0, we set
Cε(T ) = ∫ Φε(T,x)u(T,x)dx. Using u(0, ⋅ ) = δ0 and integrating by parts
(or more precisely appealing to the weak formulation of (3.8)), we have

Φε(0,0) = ∫
R
Φε(0, x)u(0, x)dx = Cε(T ) − ∫

T

0
∫
R

d

dt
(Φεu)dxdt.

Using the equations satisfied by Φε and u in (3.2) and (3.8), we have

d

dt
(Φεu) = −u∂2xΦε − νεu(∂xΦε)2 +Φε∂

2
xu − 2νΦε∂x(∂xΦ0u).

Integrating this in x and using integration by parts, we can cancel the
second-order terms and get

Φε(0,0) = Cε(T ) + ∫
T

0
∫
R
(νεa2ε − 2νaεa0)u

where we used the shorthand aε = ∂xΦε. Then, we have

Φε(0,0) −Φ0(0,0) − (Cε(T ) −C0(T )) = ∫
T

0
∫
R
(νεa2ε − 2νaεa0 + νa20
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∎

)u

We can rearrange ∎ = (νε − ν)a20 − (νε − ν)(a2ε − a20) + ν0(aε − a0)2 and we
argue that the last two terms are of order O(ε2) uniformly in ε, t, x. Indeed,
this follows from the facts that νε − ν = O(ε) by definition, that aε − a0 =
O(∣νε − ν∣L1) = O(ε) due to (3.5), and that aε, a0 = O(1) by Lemma 3.1.
Using this and νε − ν = ε(ν′ − ν), we get ∎ = ε(ν′ − ν)a20 +O(ε2) uniformly in
ε, t, x. Inserting this to the above display we get

Φε(0,0) −Φ0(0,0) − (Cε(T ) −C0(T )) = ε∫
T

0
∫
R
(ν′ − ν)a20u +O(ε2)

(3.11)= ε∫
T

0
(ν′ − ν)χ̇ +O(ε2)

(IBP)= −ε∫
T

0
χd(ν′ − ν) + ε (ν′(T ) − ν(T ))χ(T ) + +O(ε2).
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In the last step, we used the fact that χ(0) = 0. Using this relation and
ψ○(νε) = −Φν(0,0) (due to (3.6)), we can obtain (3.10) by first sending
T →∞ and then ε→ 0 provided that we can show that, for any fixed ε,

lim
T→∞

(Cε(T ) −C0(T )) = 0,(3.12)

lim
T→∞

(ν′(T ) − ν(T ))χ(T ) = 0.(3.13)

Hence, it remains to verify them. Using the definition of Cε(T ), the estimate
in (3.5) (with k = 0), and ∫ u(T,x)dx = 1, we have

∣Cε(T ) −C0(T )∣ ⩽ c0ε∫
∞

T
∣ν(τ) − ν′(τ)∣dτ

for some constant c0. Since ∫
∞
0 ∣ν(τ) − ν

′(τ)∣dτ is finite as it is equal to
W1(ν, ν′), the right-hand side vanishes as T →∞, which verifies (3.12). To
see (3.13), we start by recalling that ∣χ(t)∣ ⩽ t as explained below Lemma 3.3.
Hence, we have

∣(ν′(T ) − ν(T ))χ(T )∣ ⩽ T (1 − ν′(T )) + T (1 − ν(T )).

Let X be a random variable with law ν. We have T (1 − ν(T )) = TP(X >
T ) ⩽ E[X1X>T ]. Since ν has finite first moment, the dominated convergence
theorem implies limT→∞ T (1 − ν′(T )) = 0. The other term can be treated
similarly and thus we obtain (3.13). As explained previously, now that (3.12)
and (3.13) are verified, the proof is complete. □

Lemma 3.4 (Properties of χ). Let ν ∈ P1(R+) and let χ ∶ R+ → R be given
as in (3.11). Then, χ(0) = 0 and χ is increasing, 1-Lipschitz, and convex.

Proof. Due to χ̇ ⩾ 0 evidently from (3.11), χ is increasing. By Lemma 3.1,
∣∂xΦν ∣ ⩽ 1 everywhere. Using this and (3.9), we have ∣χ̇∣ ⩽ 1 and thus χ is
1-Lipschitz. To show that χ is convex, we compute χ̈. For brevity of notation,
we write Φ = Φν , u = uν , and ∫ = ∫R dx. Using the equations satisfied by Φ
and u as in (3.2) and (3.8) and integration by parts (IBP), we can compute

χ̈ = d

dt
∫ (∂xΦ)2u = ∫ (2∂t∂xΦ(u∂xΦ) + (∂xΦx)2∂tu)

(IBP)= ∫ (−2∂tΦ∂x(u∂xΦ) + (∂xΦ)2∂tu)

(3.2)(3.8)= ∫ (2 (∂2xΦ + ν(∂xΦ)2)∂x(u∂xΦ) + (∂xΦ)2 (∂2xu − 2ν∂x(u∂xΦ)))

= ∫ (2∂2xΦ∂x(u∂xΦ) + (∂xΦ)2∂2xu)
(IBP)= ∫ 2(∂2xΦ)2u

(3.9)
⩾ 0.

Therefore, χ is convex, completing the proof. □

3.2. Properties of ψ. Using the decomposition in (1.8), we obtain the
Lipschitzness, concavity, and differentiability of ψ as stated below. For each
p ⩾ 1, let Wp be the Wasserstein Lp metric over probability measures on a
Euclidean space that will be clear from the context.
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Recall that for any ν ∈ P(RD
+ ) and d ∈ [D], we denote by νd ∈ P(R+) its

d-th marginal. Due to (2.15) and (2.18), we have, for all ν, ν′ ∈ P1(RD
+ ),

∣ψ(ν) − ψ(ν′)∣ ⩽W1(ν, ν′).(3.14)

Proposition 3.5 (Concavity of ψ). The function ψ is concave on P1(RD
+ ).

Furthermore, for every ν, ν′ ∈ P1(RD
+ ), if there exists d ∈ [D] such that νd ≠ ν′d

and νd, ν
′
d ∈ P∞(R+), then we have, for every λ ∈ (0,1),

(3.15) ψ (λν′ + (1 − λ)ν) > λψ(ν′) + (1 − λ)ψ(ν).

Proof. This follows from the decomposition in (1.8) and Lemma 3.2 stating
that each ψd is concave on P1(R+) and strictly concave on P∞(R+). □

Note that the function ψ is not strictly concave on P∞(RD
+ ) since it

is possible for ν, ν′ ∈ P∞(RD
+ ) to satisfy ν ≠ ν′ while νd = ν′d for every

d ∈ {1, . . . ,D}. However, the following is true.

Lemma 3.6 (Monotone measures characterized by marginals). Let ν, ν′ ∈
P↑(RD

+ ). Then, ν = ν′ if and only if νd = ν′d for all d ∈ [D].

Proof. By the definition of monotone measures (see the paragraph be-
low (1.7)), there are two increasing maps q,q′ ∶ [0,1] → RD

+ such that
ν = Law(q(U)) and ν′ = Law(q(U)) where U is a uniform random variable
in [0,1]. Then, νd = ν′d is equivalent to qd = q′d a.e. on [0,1). The desired
result follows from the simple observation that q = q′ if and only if qd = q′d
for all d ∈ [D]. □

The set P↑∞(RD
+ ) is not convex when D > 1, so it does not make sense

to talk about concavity or strict concavity of ψ on P↑∞(RD
+ ). Yet we have

the following result, which is an immediate corollary of Proposition 3.5 and
Lemma 3.6.

Corollary 3.7 (“Strict concavity” of ψ on P↑∞(RD
+ )). For any two distinct

ν, ν′ ∈ P↑∞(RD
+ ) and λ ∈ (0,1), we have

(3.16) ψ (λν′ + (1 − λ)ν) > λψ(ν′) + (1 − λ)ψ(ν).

We define

X = {χ ∶ RD
+ → R∣ χ(x) = ∑

D
d=1 λ∞,dχd(xd), ∀x ∈ RD

+ , where χd(0) = 0,
χd is increasing, 1-Lipschitz, and convex on R+

} .

(3.17)

Proposition 3.8 (Differentiability of ψ). For every ν ∈ P1(RD
+ ), there is

χ ∈ X such that, for every ν′ ∈ P1(RD
+ ), we have

d

dε
ψ ((1 − ε)ν + εν′) ∣

ε=0
= ∫

RD+
χd (ν′ − ν) .(3.18)
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Proof. This follows from the decomposition in (1.8) and Lemma 3.3 for the
differentiability of each ψd, with Lemma 3.4 ensuring the desired properties
of each of the χd in the decomposition of χ. □

4. Models with two species

In this section, we present relatively simple proofs of Theorems 1.3 and
Theorem 1.4 in the special case of models with two species (D = 2) with no
external field (∇ξ(0) = 0) and µ = δ0. The proofs we give later of the general
versions of these theorems do not make any reference to the results of this
section, so one can skip this entire section if so enclined. Nevertheless, we
find it interesting to also present this comparatively simpler argument, and
also to explain why it does not generalize to models with more than two
species.

Given µ ∈ P(R2
+), recall that we write µ1 and µ2 to denote its marginals.

Letting F1 and F2 be the cumulative distribution functions of µ1 and µ2
respectively, and U be a uniform random variable on [0,1], we set µ↑ =
Law(F−11 (U), F −12 (U)). This defines a mapping from P(R2

+) to P↑(R2
+), and

we observe that µ = µ↑ if µ ∈ P↑(R2
+). The fundamental idea is the following

observation.

Proposition 4.1. Suppose that D = 2 and that ∇ξ(0) = 0. For every
µ ∈ P(R2

+), we have

(4.1) ∫ ξ∗dµ↑ ⩽ ∫ ξ∗dµ.

As will be explained in more details shortly, Proposition 4.1 allows us to
rewrite the supremum in (1.12) as

(4.2)

sup
ν∈P↑∞(R2+)

{ψ(ν) − ∫ (tξ)∗ dν} = sup
ν∈P∞(R2+)

{ψ(ν) − ∫ (tξ)∗ dν↑}

= sup
ν∈P∞(R2+)

{ψ(ν) − ∫ (tξ)∗ dν} ,

which is key to establishing Theorems 1.3 and 1.4 in this particular case.
The key ingredient of the proof of Proposition 4.1 is the following.

Proposition 4.2. Suppose that D = 2 and that ∇ξ(0) = 0. For all real
numbers a ⩽ a′ and b ⩽ b′, we have

(4.3) ξ∗(a, b) + ξ∗(a′, b′) ⩽ ξ∗(a′, b) + ξ∗(a, b′).

The condition (4.3) is an integrated version of the claim that the mixed
second derivatives of ξ∗ are non-positive, i.e. ∂a∂bξ

∗(a, b) ⩽ 0. Heuristically,
the mappings ∇ξ and ∇ξ∗ are inverse of one another, and thus the Hessian of
ξ∗ at (a, b) should be the inverse of the matrix A = ∇ξ2(∇ξ∗(a, b)). Moreover,
the assumption that ξ must allow for the existence of a Gaussian random
field satisfying (1.3) imposes some constraints on ξ [40, Proposition 6.6].
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In particular, the Hessian of ξ must be a symmetric positive semi-definite
matrix with nonnegative coefficients, and thus we should have

∂2abξ
∗(a, b) = −det(A)−1A12 ⩽ 0.

Relying on this heuristic, we give a rigorous proof of Proposition 4.2 in
Appendix A.

Proof of Proposition 4.1. This follows from Proposition 4.2 and [40, Propo-
sition 2.5] applied to c(a, b) = ξ∗(a, b). (We point out that the sentence
“Examples of functions satisfying the condition (2.16) include any convex
function of x − y.” in [40, Remark 2.5] is actually false, as explained below
some convex functions fail to satisfy [40, (2.16)].) □

Remark 4.3. We now give an example with D = 3 of an admissible function
ξ ∶ R3 → R for which Proposition 4.1 is invalid. Consider ξ(x) = x⋅Ax

2 where

A =
⎛
⎜
⎝

6 2 1
2 5 3
1 3 4

⎞
⎟
⎠
.

The function ξ ∶ R3 → R thus defined satisfies

EHN(σ)HN(τ) = ξ (
σ1 ⋅ τ1
N

,
σ2 ⋅ τ2
N

,
σ3 ⋅ τ3
N
)

provided that we set

HN(σ) =
1√
N

N

∑
i,j=1

3

∑
d,d′=1

(Add′)1/2Jd,d′
i,j σdiσd′j ,

where the Jd,d′
i,j are independent standard Gaussian random variables. We

observe that A is positive definite, as can be checked using Sylvester’s criterion
on the positivity of the leading principal minors, so the function ξ is convex
on R3. We have

A−1 = 1

57

⎛
⎜
⎝

11 −5 1
−5 23 −16
1 −16 26

⎞
⎟
⎠
.

Note that (A−1)13 > 0. Let V = ∇ξ(R3
+), we have that ∇ξ(x) = Ax so

V = {Ax∣x ∈ R3
+}. Using that ξ∗(∇ξ(x)) = x ⋅ ∇ξ(x) − ξ(x) (proved below in

(5.7) in any dimension), we see that for every y ∈ V ,

ξ∗(y) = y ⋅A
−1y

2
.

In particular ξ∗ is differentiable on the interior of V and ∇2ξ∗(y) = A−1. Now
let (e1, e2, e3) denote the canonical basis of R3 and let us fix y0 in the interior
of V . For ε > 0 small enough we have that the points y0 + εe1, y0 + εe3 and
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y0 + εe1 + εe3 all belong to the interior of V . Let µ be the uniform measure
on {y0, y0 + εe1, y0 + εe3}, we have

µ↑ = 1

3
(2δy0 + δy0+εe1+εe3) .

In particular,

∫ ξ∗dµ↑ − ∫ ξ∗dµ

= 1

3
(ξ∗(y0) + ξ∗(y0 + εe1 + εe3) − ξ∗(y0 + εe1) − ξ∗(y0 + εe1))

= 1

3
∫

1

0
∫

1

0
∂13ξ

∗(y0 + tεe1 + sεe3)dtds.

Since ∂13ξ
∗ > 0 on the interior of V , we obtain

∫ ξ∗dµ↑ > ∫ ξ∗dµ,

as announced. □

We now prove Theorem 1.3 when D = 2, ∇ξ(0) = 0 and µ = δ0 by relying on
Proposition 4.1. As a consequence, we will be able to deduce that Theorem 1.4
also holds at D = 2 and µ = δ0.

Recall from (2.17) that every ν ∈ P↑1(R
2
+), we have

(4.4) ψ(ν) = λ∞,1ψ1(ν1) + λ∞,2ψ2(ν2),
where ψd is the Parisi functional associated to πd. The right-hand side of the
previous display is well defined even when ν is not monotone, in particular
this gives an extension of the functional ψ to P1(R2

+).

Proof of Theorem 1.3 when D = 2, ∇ξ(0) = 0 and µ = δ0. Let ν ∈ P∞(R2
+).

Since ν and ν↑ have the same marginals, we have ψ(ν) = ψ(ν↑). Thus
according to Proposition 4.1 we have

ψ(ν) − ∫ ξ∗dν ⩽ ψ(ν↑) − ∫ ξ∗dν↑.

This implies

sup
ν∈P∞(R2+)

{ψ(ν) − ∫ ξ∗dν} ⩽ sup
ν∈P↑∞(R2+)

{ψ(ν) − ∫ ξ∗dν} .

Since the other bound is trivial,

sup
ν∈P∞(R2+)

{ψ(ν) − ∫ ξ∗dν} = sup
ν∈P↑∞(R2+)

{ψ(ν) − ∫ ξ∗dν} .

We use Theorem 1.1 to conclude that (1.14) holds at µ = δ0.
From Lemma 3.2, we have that ψ1 and ψ2 are (strictly) concave on P∞(R+)

and the map ν ↦ ∫ ξ∗dν is affine, thus the function inside the supremum in
(1.14) is concave in ν.

Finally, by contradiction, assume that there are two distinct monotone
probability measures ν and ν′ that reach the supremum in (1.14). Consider



THE CONVEX STRUCTURE OF THE PARISI FORMULA 21

ν′′ = ν+ν′
2 ∈ P∞(R

2
+) (note that ν′′ may not be monotone). Since ν ≠ ν′ and

ν, ν′ ∈ P↑(R2
+), we must have ν1 ≠ ν′1 or ν2 ≠ ν′2. Since ψ1 and ψ2 are strictly

concave on P∞(R+), this yields

ψ(ν′′) = ψ1 (
ν1 + ν′1

2
) + ψ2 (

ν2 + ν′2
2
)

> ψ1(ν1) + ψ1(ν′1)
2

+ ψ2(ν2) + ψ2(ν′2)
2

= ψ(ν) + ψ(ν
′)

2
.

By (1.14) at µ = δ0, we thus have

lim
N→+∞

FN(t, δ0) =
1

2
(ψ(ν) − ∫ ξ∗dν + ψ(ν′) − ∫ ξ∗dν′)

< ψ(ν′′) − ∫ ξ∗dν′′

⩽ sup
ρ∈P∞(R2+)

{ψ(ρ) − ∫ ξ∗dρ′}

= lim
N→+∞

FN(t, δ0).

This is a contradiction. Therefore there is exactly one probability measure ν
that reaches the supremum in (1.14). □

Recall the definition of X from (3.17). For every χ ∈ X, we define Stχ
according to (1.17).

Proof of Theorem 1.4 when D = 2, ∇ξ(0) = 0, and µ = δ0. We assume, with-
out loss of generality, that t = 1. According to [31, Lemma 4.1], we have
that

(4.5) ψd(νd) = inf
χd

{∫ χddνd − (ψd)∗(χd)} ,

where the infimum is taken over all χd ∶ R+ → R that are 1-Lipschitz,
increasing, convex functions that vanish at the origin and where we have
defined

(ψd)∗(χd) = inf
νd∈P1(R+)

{∫ χddνd − ψd(νd)} .

It then follows that

ψ(ν) = ψ1(ν1) + ψ2(ν2)

= inf
χ1

{∫ χ1dν1 − (ψ1)∗(χ)} + inf
χ2

{∫ χ2dν2 − (ψ2)∗(χ)}

= inf
χ∈X
{∫ χdν − ψ∗(χ)} .
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Plugging this into the formula of Theorem 1.3 at µ = δ0, we obtain

lim
N→+∞

FN(t, δ0) = sup
µ∈P∞(R2+)

inf
χ∈X
{∫ χdν − ψ∗(χ) + ∫ ξ∗dν} .

The sets P∞(R2
+) and X are both convex. In addition, X is compact with

respect to convergence in the local uniform topology. Furthermore, for every
ν ∈ P∞(R2

+), the map χ↦ ∫ (χ− ξ∗)dν −ψ∗(χ) is convex on X and for every
χ ∈ X, the map ν ↦ ∫ (χ − ξ∗)dν − ψ∗(χ) is concave on P∞(R2

+). According
to Sion’s min-max theorem [55], we obtain

lim
N→+∞

FN(t, δ0) = inf
χ∈X

sup
ν∈P∞(R2+)

{∫ χdν − ψ∗(χ) + ∫ ξ∗dν} .

According to (1.17), we have

sup
ν∈P∞(R2+)

{∫ (χ − ξ∗)dν} = sup
x∈R2+
{χ(x) − ξ∗(x)} = S1χ(0).

we obtain

lim
N→+∞

FN(t, δ0) = inf
χ∈X
{S1χ(0) − ψ∗(χ)} ,

as desired. □

5. Stability of RD
+ -convexity under HJ semigroup

We now return to the general setting where D and ∇ξ(0) are arbitrary, as
is the case everywhere except in the previous section. For every χ ∶ RD

+ → R,
t ⩾ 0 and x ∈ RD

+ , we define

(5.1) Stχ(x) = sup
y∈RD+

{χ(y) − (tξ)∗(y − x)} ,

as was announced in (1.17). The fact that this quantity is equal to that
in (1.16) for every χ ∈ X will be a consequence of Lemma 5.12 proved below.
The first result of this section is an analysis of the optimizers in (5.1).

Proposition 5.1. Assume that ξ∗ is differentiable on RD
+ . Let χ ∶ RD

+ → R
be a Lipschitz function. Let t > 0 and x, y ∈ RD

+ be such that

(5.2) χ(y) − Stχ(x) − (tξ)∗(y − x) = 0.

If x ∈ (0,+∞)D and x is a differentiable point of Stχ, then we have

∇Stχ(x) = ∇(tξ)∗(y − x).(5.3)

If y ∈ (0,+∞)D and y is a differentiable point of χ, then we have

∇χ(y) = ∇(tξ)∗(y − x).(5.4)

In particular, if the two conditions hold at the same time, then we have

∇Stχ(x) = ∇χ(y).(5.5)
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Before showing this, we derive in the next three lemmas basic properties
of ξ and ξ∗ that will be useful throughout the rest of the paper. We say that
a function ς ∶ RD → R is superlinear on RD

+ provided that, for every M > 0,
there is R > 0 such that

inf
x∈RD+ ∶ ∣x∣⩾R

ς(x)
∣x∣
⩾M.(5.6)

Lemma 5.2. The function ξ∗ is superlinear on RD
+ . In addition, if we

assume that ξ is superlinear on RD
+ , then ξ

∗ is also continuous. The same
holds for (tξ)∗ for any t > 0.

Proof. The function ξ is continuous so it is locally bounded. For every r > 0,
let Mr denote the supremum of ∣ξ∣ on the ball of radius r centered at 0.
Letting y ∈ RD

+ and setting x = ry/∣y∣ in the supremum below, we get that

ξ∗(y) = sup
x∈RD+

{x ⋅ y − ξ(x)} ⩾ r∣y∣ −Mr.

Then (5.6) follows from the last display. Let us now further assume that ξ is
superlinear. In this case, we have that for every y ∈ RD

+ ,

lim
∣x∣→+∞
x∈RD+

(x ⋅ y − ξ(x)) = −∞.

This implies that ξ∗ < +∞ on RD. Hence, ξ∗ is a convex function on RD taking
only finite values and thus ξ∗ is continuous (see e.g. [20, Proposition 2.9]). □

Lemma 5.3. If ξ is superlinear on RD
+ and strictly convex on RD

+ , then ξ
∗

is differentiable on RD.

Proof. Let M > 0 be arbitrary and let R > 0 be such that (5.6) holds
for ξ. Let y ∈ RD be such that ∣y∣ ⩽ M . For every ∣x∣ ⩾ R, we have
x ⋅ y − ξ(x) ⩽ ∣x∣(∣y∣ −M) ⩽ 0. Hence,

ξ∗(y) = sup
∣x∣⩽R
{x ⋅ y − ξ(x)} .

Since ξ is assumed to be strictly convex, the variational problem in the
previous display admits exactly one maximizer. It then follows from the
envelope theorem [20, Theorem 2.21] that ξ∗ is differentiable on RD. □

Lemma 5.4. For every x ∈ RD
+ , we have

(5.7) ξ∗(∇ξ(x)) = x ⋅ ∇ξ(x) − ξ(x).
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Furthermore, if ξ is strongly convex on RD
+ , then we have for every x, y ∈ RD

+
that

∇ξ∗(∇ξ(x)) = x,(5.8)

∇ξ(∇ξ∗(y)) − y ∈ RD
+ ,(5.9)

∇ξ∗(y) ⋅ (∇ξ(∇ξ∗(y)) − y) = 0,(5.10)

ξ∗(∇ξ(∇ξ∗(y))) = ξ∗(y).(5.11)

Remark 5.5. When ξ is strongly convex on RD
+ , note that thanks to (5.8) we

have in particular that for every y ∈ ∇ξ(RD
+ ),

(5.12) ∇ξ(∇ξ∗(y)) = y.

Proof. Let x ∈ RD
+ , we start by proving (5.7). By definition of ξ∗, it is clear

that the left-hand side is larger than the right-hand side. To prove the other
inequality, let x′ ∈ RD

+ , by convexity of ξ we have

ξ(λx′ + (1 − λ)x) ⩽ λξ(x′) + (1 − λ)ξ(x).
Rearranging and letting λ → 0 we get ∇ξ(x) ⋅ (x′ − x) ⩽ ξ(x′) − ξ(x), in
particular

x′ ⋅ ∇ξ(x) − ξ(x′) ⩽ x ⋅ ∇ξ(x) − ξ(x).
Taking the supremum over x′ ∈ RD

+ in the previous display, we obtain
ξ∗(∇ξ(x)) ⩽ x ⋅ ∇ξ(x) − ξ(x), which thus completes the proof of (5.8).

Since ξ is assumed to be strongly on RD
+ , it is superlinear on RD

+ and
strictly convex on RD

+ , so by Lemma 5.3, the function ξ∗ is differentiable on
RD. For x ∈ RD

++ we can differentiate (5.7) to obtain

∇2ξ(x)∇ξ∗(∇ξ(x)) = ∇2ξ(x)x.

Since ξ is assumed to be strongly convex on RD
+ , the matrix ∇2ξ(x) is positive

definite and the previous display implies (5.8) for x ∈ RD
++, which we can then

extend to x ∈ RD
+ by continuity.

We now turn to proving (5.9) and (5.10). Let y ∈ RD
++, by definition we

have

ξ∗(y) = sup
x∈RD+

{x ⋅ y − ξ(x)} .

Let M > 0 and assume that ∣y∣ ⩽M . Since ξ is assumed to be superlinear,
there exists R > 0 such that (5.6) holds for ξ and we have that for ∣x∣ > R,

x ⋅ y − ξ(x) ⩽ ∣x∣(∣y∣ −M) < 0.
Therefore,

ξ∗(y) = sup
x∈RD+
∣x∣⩽R

{x ⋅ y − ξ(x)} .

In addition since ξ is assumed to be strongly convex on RD
+ , there is a

unique maximizer xopt(y) ∈ RD
+ in the variational formula of the above
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display. According to the envelope theorem [20, Theorem 2.21] we have
∇ξ∗(y) = xopt(y). It follows that for every x ∈ RD

+ ,

ξ(xopt(y)) = xopt(y) ⋅ y − ξ∗(y)
⩽ xopt(y) ⋅ y − (x ⋅ y − ξ(x)).

Rearranging, we obtain

ξ(x) ⩾ ξ(xopt(y)) + y ⋅ (x − xopt(y)).

Chosing x = xopt(y) + ted for t > 0 and letting t→ 0 in the previous display,
we obtain (5.9). Furthermore, if xopt,d(y) > 0 for some d ∈ [D], then we can
also take t < 0 in the previous construction (provided that t is small enough)
and this yields ∂xd

ξ(xopt(y)) = yd. Therefore for every d ∈ [D], we have that
the d-th coordinate of ∇ξ∗(y) is 0 or the d-th coordinate of ∇ξ(∇ξ∗(y)) − y
is 0, and this yields (5.10) for y ∈ RD

++. By continuity, we obtain (5.9) and
(5.10) as announced.

Finally, by a similar proof as for (5.7), we have for every y ∈ RD
+ that

ξ(∇ξ∗(y)) = y ⋅ ∇ξ∗(y) − ξ∗(y).

From this, (5.7) and (5.10), we deduce that

ξ∗(∇ξ(∇ξ∗(y))) = ∇ξ∗(y) ⋅ ∇ξ(∇ξ∗(y)) − ξ(∇ξ∗(y))
= ∇ξ∗(y) ⋅ ∇ξ(∇ξ∗(y)) − (y ⋅ ∇ξ∗(y) − ξ∗(y))
= ξ∗(y) + ∇ξ∗(y) ⋅ (∇ξ(∇ξ∗(y)) − y)
= ξ∗(y),

and thus, (5.11) is proved. □

In the proof of Proposition 5.1 as well as later on, we make use of the
following simple fact:

x, y ∈ RD
+ Ô⇒ ∣y − x∣ − ∣(y − x)+∣ ⩽ ∣x∣.(5.13)

Indeed, we have

∣y − x∣ − ∣(y − x)+∣ ⩽ ∣y − x − (y − x)+∣ ⩽ (
D

∑
d=1
(yd − xd)210⩽yd<xd

)
1
2 ⩽ ∣x∣.

We also need the following definition.

Definition 5.6 (RD
+ -increasing). For any k ∈ N, we say that a function

χ ∶ RD
+ → Rk is RD

+ -increasing when for every x, y ∈ RD
+ we have

(5.14) χ(x + y) ⩾ χ(x).

The inequality (5.14) is interpreted in the sense that χ(x + y) −χ(x) ∈ Rk
+.

We may at times also make use of this notion for functions that are defined
almost everywhere, in which case we ask that (5.14) be satisfied for almost
every x, y ∈ RD

+ .
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We record the following last preparatory step, which will be used more
crucially in the proof of Proposition 5.10 below. For every y ∈ RD, we set

y+ = (yd1yd⩾0)1⩽d⩽D .(5.15)

Lemma 5.7. Let ς ∶ RD
+ → R be an RD

+ -increasing function, and for every
y ∈ RD, let

(5.16) ς∗(y) = sup
x∈RD+

{x ⋅ y − ς(x)} .

For every y ∈ RD, we have ς∗(y) = ς∗(y+).

Proof. Let y ∈ RD. Since the supremum in the definition of ς∗ in (5.16) is
taken over RD

+ , we have that ς∗ is RD
+ -increasing and thus ς∗(y) ⩽ ς∗(y+).

For each x ∈ RD
+ , we set x̂ = (xd1yd⩾0)1⩽d⩽D. We observe that x̂ ⋅ y = x ⋅ y+.

Moreover, since ς is RD
+ -increasing, we have ς(x) ⩾ ς(x̂). Hence, for every

x ∈ RD
+ , we have

x ⋅ y+ − ς(x) ⩽ x̂ ⋅ y − ς(x̂) ⩽ ς∗(y),

which implies ς∗(y+) ⩽ ς∗(y). □

Proof of Proposition 5.1. Assume that x ∈ (0,+∞)D and that x is a differ-
entiable point of Stχ. Using that (tξ)∗ is superlinear on RD

+ (Lemma 5.2),
Lemma 5.7, and (5.13), we can verify that, for each fixed x ∈ RD

+ , (tξ)∗( ⋅ −x)
is superlinear on RD

+ . Hence, for x
′ sufficiently close to x, we can see that

the variational formula (5.1) for Stχ(x′) attains its maximum in a com-
pact set. By (5.2), y is a maximizer of the formula for Stχ(x). Hence, we
can apply the envelope theorem (e.g. see [20, Theorem 2.21]) to see that
∇xStχ(x) = ∇x (χ(y) − (tξ)∗(y − x)), which gives (5.3).

Next, assume that y ∈ (0,+∞)D is a differentiable point of χ. Since y is a
maximizer of the formula (5.1) for Stχ(x), we have

∇y (χ(y) − (tξ)∗(y − x)) = 0,

which gives (5.4). Lastly, (5.5) immediately follows from (5.3) and (5.4). □

We now turn to the main objective of this section. As discussed around
(1.30), we will be interested in the case when χ is the derivative of ψ at
some measure ν, and the main technical ingredients needed in the proofs of
our main results involve certain monotonicity properties of ∇χ and ∇Stχ.
More precisely, we are particularly interested in asserting that χ and Stχ are
RD
+ -convex, where the notion of RD

+ -convexity is defined as follows.

Definition 5.8 (RD
+ -convexity). We say that a function χ ∶ RD

+ → R is
RD
+ -convex when for every x, y, z ∈ RD

+ we have

(5.17) χ(x + y + z) − χ(x + z) ⩾ χ(x + y) − χ(x).
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When χ ∶ RD
+ → R is Lipschitz, one can check that χ is RD

+ -convex if and
only if ∇χ is RD

+ -increasing.

Recalling the definition of X from (3.17), we already know from Propo-
sition 3.8 that the derivative of ψ at any point in P1(RD

+ ) is a function χ
that belongs to X, and this implies in particular that χ is indeed RD

+ -convex.
The main result of this section is as follows.

Proposition 5.9. For every χ ∈ X and t ⩾ 0, the function Stχ is RD
+ -convex.

In order to prove Proposition 5.9, we will rely on the fact that the mapping
(t, x) ↦ Stχ(x) can be interpreted as the solution to a Hamilton–Jacobi
equation. We find it clearer to state some results in a slightly more general
setting. Let H ∶ RD

+ → R be a locally Lipschitz function and ϕ ∶ RD
+ → R

be a Lipschitz function. Thanks to [15], we know that when ϕ and H are
RD
+ -increasing, the Hamilton–Jacobi equation

(5.18)

⎧⎪⎪⎨⎪⎪⎩

∂tu −H(∇u) = 0 on (0,+∞) ×RD
+

u(0, ⋅) = ϕ

admits a unique viscosity solution. Moreover, by [15, Proposition 6.2], when
H is further assumed to be convex and bounded from below, this unique
viscosity solution can be represented as the following version of the Hopf-Lax
formula

(5.19) u(t, x) = sup
y∈RD+
{ϕ(x + y) − (tH)∗(y)},

where (tH)∗(x) = supp∈RD+ {x ⋅ p − tH(p)} denotes the convex dual of tH as

defined in (5.16). We show that, under exactly the same assumptions on H
and ϕ, one can represent the solution using another version of the Hopf-Lax
representation.

Proposition 5.10. Let ϕ ∶ RD
+ → R be an RD

+ -increasing and Lipschitz func-
tion, and let H ∶ RD

+ → R be a locally Lipschitz function that is RD
+ -increasing,

convex and bounded below. The unique RD
+ -increasing and Lipschitz viscosity

solution u of

⎧⎪⎪⎨⎪⎪⎩

∂tu −H(∇u) = 0 on (0,+∞) ×RD
+ ,

u(0, ⋅) = ϕ,
(5.20)

satisfies, for every (t, x) ∈ [0,+∞) ×RD
+ ,

(5.21) u(t, x) = sup
x′∈RD+

{ϕ(x′) − (tH)∗(x′ − x)}.

Proof. We let RHS denote the right-hand side in (5.21). It is clear from
the standard Hopf-Lax representation in (5.19) that u ⩽ RHS. Let x′ ∈ RD

+ ,
we let y ∈ Rk

+ denote the vector whose coordinates are positive parts of the
coordinates of x′ −x. We have (tH)∗(y) = (tH)∗(x′ −x) by Lemma 5.7, and
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since (x + y) − x′ ∈ RD
+ , by monotonicity of ϕ we have ϕ(x′) ⩽ ϕ(x + y). This

yields

u(t, x) ⩾ ϕ(x + y) − (tH)∗(y) ⩾ ϕ(x′) + (tH)∗(x′ − x).
Taking the supremum over x′ ∈ RD

+ in the previous display, we obtain that
u(t, x) ⩾ RHS, and thus the result. □

Remark 5.11. The condition (1.3) puts some constraint on the function ξ.
In fact, as proved in [40, Proposition 6.6], the coefficients in the power series
expansion of ξ must be non-negative. This implies that both ξ and ∇ξ are
RD
+ -increasing on RD

+ and that ξ is RD
+ -convex on RD

+ . In particular, we can
indeed apply Proposition 5.10 to H = ξ∣RD+

and ϕ = χ for any χ ∈ X. □

A first consequence of this remark and the previous proposition is a simple
proof of the equality between (1.16) and (1.17).

Lemma 5.12. Let χ ∶ RD
+ → R be a Lipschitz, RD

+ -increasing and convex
function. We have

(5.22) sup
y∈RD+

{χ(y) − (tξ)∗(y − x)} = sup
p∈RD+
{p ⋅ x + tξ(p) − χ∗(p)}.

Proof. The Fenchel-Moreau theorem states that a function h ∶ RD → R
is convex and lower semi-continuous if and only it can be written as the
supremum of a family of affine functions. In [14], a similar result has been
proved for functions on RD

+ , more precisely a function h ∶ RD
+ → R is convex,

lower semi-continuous and RD
+ -increasing if and only if it satisfies

h(x) = sup
p∈RD+

{x ⋅ p − h∗(p)} ,

where h∗ is defined as in (5.16). From this, we have that

ξ(x) = sup
p∈RD+

{x ⋅ p − ξ∗(p)} ,

χ(x) = sup
p∈RD+

{x ⋅ p − χ∗(p)} ,

where again ξ∗ and χ∗ are defined as in (5.16). Thus, we can write

sup
p∈RD+
{p ⋅ x + tξ(p) − χ∗(p)}

= sup
p∈RD+

sup
x′∈RD+

{p ⋅ (x + x′) − (tξ)∗(x′) − χ∗(p)}

= sup
x′∈RD+

sup
p∈RD+

{p ⋅ (x + x′) − (tξ)∗(x′) − χ∗(p)}

= sup
x′∈RD+

{χ(x + x′) − (tξ)∗(x′)} .

The last line is then equal to the left side of (5.22) thanks to Proposition 5.10
and (5.19). □
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Another useful consequence of Proposition 5.10 is the following result.

Lemma 5.13 (Preservation of Lipschitzness by St). Let χ ∶ RD
+ → R be RD

+ -
increasing and Lipschitz. Let (St)t∈R+ be the semigroup introduced in (5.1)
and set C = supz∈RD+ ∶ ∣z∣⩽∥χ∥Lip

∣ξ(z)∣. For every t, t′ ∈ R+ and x,x′ ∈ RD
+ , we

have

∣Stχ(x) − St′χ(x′)∣ ⩽ C ∣t − t′∣ + ∥χ∥Lip ∣x − x′∣ .(5.23)

Proof. By Proposition 5.10 and Remark 5.11, the mapping (t, x) ↦ Stχ(x)
is the unique RD

+ -increasing and Lipschitz viscosity solution of the equation
described therein with the choices of H = ξ∣RD+

and ϕ = χ. The desired result

thus follows from [15, Theorem 1.2 (2a)]. □

Note that when D = 1 the notion of RD
+ -convexity coincides with the usual

notion of convexity. In this case it is clear from the alternative representation
of Stχ obtained in Lemma 5.12 that, for every χ ∈ X, we have that Stχ is
convex in the usual sense. In particular, when D = 1 Proposition 5.9 holds.
More generally, the following characterization of RD

+ -convexity holds.

Lemma 5.14. Let χ ∶ RD
+ → R be a continuous function that is C2 on

(0,+∞)D. We have that χ is RD
+ -convex if and only if for every x ∈ (0,+∞)D,

∇2χ(x) ∈ RD×D
+ .

Proof. Assume that χ is RD
+ -convex. Applying (5.17) to (x, ty, sy) and letting

s→ 0 and t→ 0, we obtain that for every x ∈ (0,+∞)D and every y, z ∈ RD
+ ,

y ⋅ ∇2χ(x)z ⩾ 0.

This exactly means that ∇2χ(x) ∈ RD×D
+ . Conversely, for x ∈ (0,+∞)D and

y, z ∈ RD
+ we have

(χ(x+y+z)−χ(x+z))−(χ(x+y)−χ(x)) = ∫
1

0
∫

1

0
y ⋅∇2χ(x+ty+sz)zdsdt.

Thus, if ∇2χ is RD×D
+ -valued, we obtain that the right-hand side of the

previous display is nonnegative and thus (5.17) holds. We then obtain (5.17)
for x ∈ RD

+ by continuity. □

To prove Proposition 5.9 we will make use of the following idea. Assume
that the map u ∶ (t, x) ↦ Stχ(x) is smooth and let w = ∇2u denote its
Hessian. We have

⎧⎪⎪⎨⎪⎪⎩

∂tw = ∇w∇ξ(∇u) +w∇2ξ(∇u)w on (0,+∞) ×RD
+

w(0, ⋅) = ∇2χ.

By Lemma 5.14, we have that w(0, ⋅) is RD×D
+ -valued. Furthermore, it can

be checked that the PDE in the previous display preserves positivity of the
coefficients of its solutions. Indeed, on the right-hand side the first term is
a plain transport term and the second term is of the form f(t, x,w(t, x))
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with f(t, x, z) ∈ RD×D
+ when z ∈ RD×D

+ , this is because the function ξ itself is
RD
+ -convex.

To make this observation rigorous we will have to pay attention to several
details. First, we will extend ξ and χ in order to work with PDEs on RD and
avoid boundary problems. Second, we will add a regularizing term of the
form ε∆u on the right hand-side in the Hamilton–Jacobi equation defining
Stχ, this will yield a family of approximations of Stχ that are smooth enough
to perform the computations sketched above.

Observe that every χ ∈ X is 1-Lipschitz, hence the function Stχ is RD
+ -

increasing thanks to (1.16) and 1-Lipschitz thanks to Lemma 5.13. Thus,
changing ξ outside the intersection of RD

+ with the ball of radius 1 in RD

does not affect Stχ, this is proved rigorously in [15, Theorem 1.2 (2) (c)].
Therefore, we have some freedom on choosing how to define ξ outside of
B(0,1) ∩RD

+ , and it will be convenient for our purposes to use this freedom
to modify ξ so that it becomes uniformly Lipschitz. Let L denote the largest
value taken by ∣∇ξ∣ on the set of x ∈ RD

+ such that ∑D
d=1 xd ⩽ 2D. For every

x ∈ RD
+ , let

ξreg(x) =
⎧⎪⎪⎨⎪⎪⎩

max{ξ(x), ξ(0) + 2L(∑D
d=1 xd −D)} if ∑D

d=1 xd ⩽ 2D
ξ(0) + 2L(∑D

d=1 xd −D) otherwise.

It can be checked (see [40, Proposition 6.8] and [16, Lemma 4.3]) that ξreg
coincides with ξ on B(0,1) ∩RD

+ , that ξreg is convex and Lipschitz on RD
+ ,

and that it is RD
+ -convex and RD

+ -increasing on RD
+ (this last property is

referred to as “proper” in the cited references).

We define ξ ∶ RD → R by setting

ξ(x) = ξreg(x+).

It can be easily checked that ξ is locally Lipschitz and convex. We let (St)t⩾0
denote the semigroup associated to the equation

∂tu − ξ(∇u) = 0 on (0+,∞) ×RD.

According to [15] or [20], the semigroup (St)t⩾0 is well-defined on the set of
Lipschitz functions RD → R.

Lemma 5.15. Let χ ∈ X, define χ ∶ RD → R by setting χ(x) = χ(x+). Then
χ is Lipschitz and convex on RD and we have for every (t, x) ∈ [0,+∞)×RD

+ ,

(5.24) Stχ(x) = Stχ(x).

Proof. In this proof, we let ξ∗reg denote the convex dual of ξreg with respect

to RD
+ , more precisely

ξ∗reg(y) = sup
x∈RD+

{x ⋅ y − ξreg(x)} .
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We also let ξ
∗
denote the convex dual of ξ with respect to RD, more precisely

ξ
∗(y) = sup

x∈RD

{x ⋅ y − ξ(x)} .

Step 1. We show that χ is Lipschitz, convex and RD
+ -increasing on RD.

Since χ ∈ X we have χ(x) = ∑D
d=1 χd(xd), where χd is the function which

coincides with χd on R+ and is constant taking the value χd(0) = 0 otherwise.
Therefore it suffices to show that χd is Lipschitz, convex and increasing on
R. Let λ1 ∈ R+ and λ2 ∈ R−, we have

∣χd(λ1) − χd(λ2)∣ = ∣χd(λ1) − χd(0)∣ ⩽ ∣λ1∣.

Now observe that ∣λ1∣ = λ1 ⩽ λ1 − λ2 = ∣λ1 − λ2∣, so

∣χd(λ1) − χd(λ2)∣ ⩽ ∣λ1 − λ2∣.

Now observe that the previous display clearly also holds when λ1, λ2 ∈ R+
or λ1, λ2 ∈ R−, thus χd is Lipschitz. In addition, χd is increasing on R as a
composition of increasing functions and χd is convex on R as the composition
of a convex function and a convex increasing function. In conclusion, χ is
Lipschitz, convex and RD

+ -increasing on RD.

Step 2. We show that for every x ∈ RD, ξ
∗(x) ⩾ ξ∗reg(x+) with equality when

x ∈ RD
+ .

Let x ∈ RD, using Lemma 5.7 in the last line we have

ξ
∗(x) = sup

y∈RD

{x ⋅ y − ξreg(y+)}

⩾ sup
y∈RD+

{x ⋅ y − ξreg(y)}

= ξ∗reg(x)
= ξ∗reg(x+).

This proves the first part of the statement. Now assume that x ∈ RD
+ . Since

x ⋅ y ⩽ x ⋅ y+ we have

ξ
∗(x) = sup

y∈RD

{x ⋅ y − ξreg(y+)} ⩽ sup
y∈RD

{x ⋅ y+ − ξreg(y+)} = ξ∗reg(x).

Step 3. We show that for every x ∈ RD
+ , Stχ(x) = Stχ(x).

Without loss of generality we assume that t = 1. Since ξreg and ξ are

convex on RD
+ and RD, we are simply going to verify that the Hopf-Lax

representations of S1χ(x) and S1χ(x) coincide. Let x ∈ RD
+ , thanks to the



32 THE CONVEX STRUCTURE OF THE PARISI FORMULA

equality case in the inequality from Step 2 we have

S1χ(x) = sup
y∈RD

{χ(x + y) − ξ∗(y)}

⩾ sup
y∈RD+

{χ(x + y) − ξ∗(y)}

= sup
y∈RD+

{χ(x + y) − ξ∗reg(y)}

= S1χ(x).
In addition, thanks to the sub-additivity of the positive part and the inequality
from Step 2, we have for every y ∈ RD that

x + y+ − (x + y)+ ∈ RD
+

−ξ∗(y) ⩽ −ξ∗reg(y+).

Since χ is RD
+ -increasing on RD according to Step 1, we have

χ(x + y) − ξ∗(y) ⩽ χ(x + y+) − ξ∗reg(y+) ⩽ S1χ(x).

Taking the supremum over y ∈ RD in the previous display, we obtain S1χ(x) ⩽
S1χ(x), thus the result. □

We can extend the notion of RD
+ -convexity to functions on RD by saying

that such a function is RD
+ -convex when (5.17) holds for every x ∈ RD and

y, z ∈ RD
+ .

Definition 5.16 (RD
+ -convexity on RD). We say that χ ∶ RD → R is RD

+ -
convex when for every x ∈ RD and y, z ∈ RD

+ , we have

(5.25) χ(x + y + z) − χ(x + z) ⩾ χ(x + y) − χ(x).

Remark 5.17. Reproducing the proof of Lemma 5.14, one can check that
a C2 function χ ∶ RD → R is RD

+ -convex if and only for every x ∈ RD,
∇2χ(x) ∈ RD×D

+ . □

Lemma 5.18. Let H ∶ RD → R and g ∶ RD → R be C∞ such that all the
derivatives of order ⩾ 1 of H are in L∞ and all the derivatives of order ⩾ 2
of g are in L∞. Consider the Cauchy problem

(5.26)

⎧⎪⎪⎨⎪⎪⎩

∂tu
ε −H(∇uε) = ε∆uε on (0,+∞) ×RD

uε(0, ⋅) = g.

There is exactly one function uε that is C∞ smooth with bounded derivatives
of order ⩾ 2 and that satisfies (5.26). Furthermore, if H and g are RD

+ -convex,
then for every t ⩾ 0, the function uε(t, ⋅) is RD

+ -convex.

The well-posedness of (5.26) is well known in many contexts and is a
basic result in the theory of viscosity solutions to Hamilton–Jacobi equations
[22, 23]. For a pedagogical and detailed proof of this result under some
slightly different boundedness assumptions, we refer to the lecture notes [8].
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In the usual approach to well-posedness, the main ingredient is Duhamel’s
formula which allows to show that the solutions of (5.26) are the fixed points
of a certain functional. For the sake of completeness, we explain in the proof
below how to adapt the estimates of [8, Section 3] yielding existence of a
fixed point.

Proof of Lemma 5.18. Up to modifying H and rescaling time, we can assume
without loss of generality that ε = 1. In this proof we will thus not explicitly
make the ε dependence of (5.26) apparent and simply write u instead of uε.
We let P denote the D-dimensional heat kernel, more precisely

P (t, x) = 1

(4πt)
D
2

e−
∣x∣2
4t .

Given two functions a, b ∶ RD → R, we let a ∗ b denote their additive convolu-
tion, namely

a ∗ b(x) = ∫
RD

a(y)b(x − y)dy.

Step 1. Existence and uniqueness of solutions to (5.26).

Given a C∞ function u ∶ R+ ×RD → R, we let for every t ⩾ 0

S(u)(t, ⋅) = P (t, ⋅) ∗ g + ∫
t

0
P (t − s, ⋅) ∗H(∇u(s, ⋅))ds.

We let u(−1) = 0 and for every k ⩾ 0, u(k) = S(u(k−1)). By construction of S,
for every k ⩾ 0, we have

(5.27)

⎧⎪⎪⎨⎪⎪⎩

∂tu
(k) −∆u(k) =H(∇u(k−1)) on (0,+∞) ×RD

u(k)(0, ⋅) = g.

Therefore, it suffices to show that the sequence (u(k))k⩾1 converges in an
appropriate sense to a function u to get the existence of a solution for
(5.26). To do so, let us fix T > 0. We will prove that for every n ⩾ 2,

the sequence (∇nu(k))k⩾1 is uniformly bounded on [0, T ] ×RD. From this

we will deduce that the sequence ((∂t,∇)2u(k))k⩾1 is uniformly bounded
on [0, T ] × RD. Since S(u)(0, ⋅) = g and ∇S(u)(0, ⋅) = ∇g, thanks to the
Arzelà–Ascoli theorem, those estimates will yield local uniform convergence
up to extraction of the sequence (∇nu(k))k⩾1 for all n ⩾ 0, which will conlude
the proof of existence of a solution with bounded derivatives of order ⩾ 2 for
(5.26).

We define

Ln(k, t) = ∥∇nu(k)(t, ⋅)∥L∞ .

We now explain how to prove bounds that are uniform in k ∈ N and t ∈ [0, T ]
for L2(k, t) following the proof of [8, Claim 3.6], those estimates can easily
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be generalized to any n ⩾ 2. Differentiating twice the recurrence relation
u(k) = S(u(k−1)), we have

∂d∂d′u
(k)

= P (t) ∗ ∂d∂d′g + ∫
t

0
∂d′P (t − s) ∗ (∇H(∇u(k−1))(s, ⋅) ⋅ ∇∂du(k−1)(s, ⋅))ds

There exists a constant c > 0 depending only on D such that ∥∇P (t)∥L1 ⩽
ct−1/2. Therefore it follows from Young’s inequality ∥a ∗ b∥L∞ ⩽ ∥a∥L1∥b∥L∞
and the previous display that

L2(k, t) ⩽ ∥∇2g∥L∞ + c∣∇H ∣∞∫
t

0

1√
t − s

L2(k − 1, s)ds.

After further manipulations of this inequality and induction on k, we obtain
the existence of a constant Λ > 0 depending only on D and ∣∇H ∣∞ such that

L2(k, t) ⩽ 2∥∇2g∥L∞eΛt.

More generally, by induction on n using a similar argument, we can show
that for every T > 0 and every n ⩾ 2 there exists C(n,T ) > 0 such that for
every k ∈ N and every t ∈ [0, T ],

Ln(k, t) ⩽ C(n,T ).

Those are the announced estimates for ∇nu(k). To convert this into estimates
for (∂t,∇)2u(k) we use (5.27) to deduce that

∂t∇u(k) = ∇2u(k)∇H(∇u(k)) + ∇∆u(k−1),

∂t∂tu
(k) = ∂t∇u(k) ⋅ ∇H(∇u(k)) + ∂t∆u(k−1).

In addition, using (5.27) once more we have

∂t∆u
(k−1) = ∑

i

∂i∇u(k−1) ⋅ ∇2H(u(k−1))∂i∇u(k−1) +∇H(∇u(k−1)) ⋅ ∇∆u(k−1)

+∆∆u(k−2).

Since ∇H ∈ L∞ and ∇2H ∈ L∞, it follows from the previous two displays and
our previous estimates that (∂t∇u(k))k⩾1 and (∂t∂tu(k))k⩾1 are uniformly

bounded on [0, T ]×RD. Therefore, ((∂t,∇)2u(k))k⩾1 is uniformly bounded on

[0, T ]×RD, so ((∂t,∇)u(k))k⩾1 is uniformly Lipschitz on [0, T ]×RD. Since at

t = 0, (∂t,∇)u(k)(0, ⋅) = (∆g +H(∇g),∇g), we deduce that ((∂t,∇)u(k))k⩾1
converges uniformly on [0, T ] ×RD thanks to the Arzelà-Ascoli theorem. In

addition, it follows from the uniform Lipschitzness that ((∂t,∇)u(k))k⩾1 is

locally uniformly bounded on [0, T ] ×RD, so (u(k))k⩾1 is uniformly locally

Lipschitz on [0, T ] × RD. Since u(k)(0, ⋅) = g, we can apply the Arzelà-

Ascoli theorem once more to obtain local uniform convergence of (u(k))k⩾1
on [0, T ] × RD. This concludes the existence part of the proof. For the
uniqueness part we can proceed as in the proof of [8, Theorem 3.2] but using
weighted Lp norms instead of the L∞ norm.
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Step 2. Let gα(x) = g(x)+α (∑D
d xd)

2
and let uα the unique solution of (5.26)

with initial condition gα. We show that for every t ⩾ 0, ∇2uα(t, ⋅) → ∇2u(t, ⋅)
pointwise up to extraction as α → 0.

To prove this, we perform estimates as in Step 1, but this time for

L̃n(k, t) = ∥∇nu(k)α (t, ⋅) − ∇nu(k)(t, ⋅)∥Lp(w),

with n = 1,2, where Lp(w) denotes the Lp space with weight w(x) = e−∣x∣
and ∥f∥Lp(w) = ∥fw∥Lp . In this context we can replace the usual Young
inequality by the following weighted version,

∥a ∗ b∥Lp(w) ⩽ ∥a∥L1(w)∥b∥Lp(w),

where w(x) = e∣x∣. This weighted inequality can be deduced from the usual
Young inequality after observing that w(x + y) ⩽ w(x)w(y), we refer to [44,
Theorem 2.4] for a full proof. As previously, this yields estimates that are
uniform in t ∈ [0, T ] and k ∈ N and that vanish in the limit α → 0. From this,
we obtain convergence of ∇2uα(t, ⋅) → ∇2u(t, ⋅) in Lp(w) and thus we obtain
pointwise convergence after extraction.

Step 3. We show that if H and g are RD
+ -convex, then for every t ⩾ 0, u(t, ⋅)

is RD
+ -convex.

According to Lemma 5.14 and Remark 5.17, it suffices to show that w = ∇2u
is RD×D

+ -valued. To do so, observe that the coefficients of w satisfy a system
of semilinear parabolic PDEs. More precisely, for every d, d′ ∈ {1, . . . ,D} we
let wdd′ denote the coefficient of index (d, d′) of w. Then, w is a classical
solution of

⎧⎪⎪⎨⎪⎪⎩

∂twdd′ =∆wdd′ + b(t, x) ⋅ ∇wdd′ + fdd′(t, x,w) on (0,+∞) ×RD

w(0, ⋅) = ∇2g,

where b(t, x) = ∇H(∇u(t, x)) and fdd′(t, x,w) = (w∇2H(∇u)w)
dd′ is the

coefficient of index (d, d′) of the matrix w∇2H(∇u)w. The key point here is
that since H is RD

+ -convex, for z ∈ RD×D
+ we have fdd′(t, x, z) ⩾ 0. Using this

we are going to show that wdd′ is nonnegative.

Let α > 0 and let wα = ∇2uα where uα is defined as in Step 2. The
function wα solves a system of semilinear parabolic PDEs as in the previous
display but with different b and f depending on α and with initial condition
wα(0, ⋅) = ∇2g + α1, where 1 is the D ×D matrix with all coefficients equal
to 1. Let

Tα = sup{t ⩾ 0 ∣ ∀x ∈ RD, ∀d, d′ ⩽D, wα
dd′(t, x) ⩾ 0}

denote the last time at which all the coefficients of wα(t, ⋅) are all nonnegative.
All the derivatives or order ⩾ 2 of uα are bounded, thus for every T > 0, we
have that wα(⋅, x) is uniformly Lipschitz in x on [0, T ]. Thus, it follows from



36 THE CONVEX STRUCTURE OF THE PARISI FORMULA

the fact that wα
dd′(0, x) ⩾ α, that Tα > 0. Then w

α
dd′ solves

⎧⎪⎪⎨⎪⎪⎩

∂tw
α
dd′ ⩾∆w

α
dd′ + bα(t, x) ⋅ ∇w

α
dd′ on (0, Tα) ×R

D

wα
dd′ ⩾ α.

In particular, we are now working with a plain linear parabolic PDEs. By
the comparison principle, we obtain that for every (t, x) ∈ (0, Tα) × RD,
wα
dd′(t, x) ⩾ α. Arguing by contradiction, we now assume that Tα < +∞. By

continuity, we have wα
dd′(Tα, x) ⩾ α. Using the same argument that yielded

Tα > 0, we obtain that wα
dd′ remains nonnegative for a small time after Tα,

and this contradicts the definition of Tα. In conclusion Tα = +∞ and for
every (t, x) ∈ (0,+∞) × RD, we have wα

dd′(t, x) ⩾ α. Finally, from Step 2,

we have that as α → 0, wα
dd′(t, x) → wdd′(t, x). Thus, w is RD×D

+ -valued, as
desired. □

Proof of Proposition 5.9. By Lemma 5.15 we know that Stχ is the restriction
to RD

+ of Stχ, therefore it suffices to prove that Stχ is RD
+ -convex. We will

prove that this result is a consequence of Lemma 5.18 by performing several
approximation procedures.

First, observe that for every δ > 0 the mollifications Hδ = ξ ∗ ηδ and
gδ = χ ∗ ηδ are RD

+ -convex and C∞. Since ξreg is linear outside a compact
set, Hδ satisfies the hypotheses of Lemma 5.18. On the other hand, the
function gδ may have unbounded derivatives of higher order. This can be
easily fixed by replacing χ by χR where, given R > 0, we let χd,R(λ) = χd(λ)
for λ ⩽ R and χd,R(λ) = χd(R)+λ−R otherwise and χR = ∑d χd,R. This way
we guarantee that outside of a large ball χR is linear and thus its derivatives
of all orders are bounded. Also note that since each χd is 1-Lipschitz and
convex, the extensions χd,R are also 1-Lipschitz and convex. In particular

χR is RD
+ -convex.

Step 1. Let H and g satisfying the hypotheses of Lemma 5.18 and such that
g is Lipschitz. We show that for every t ⩾ 0, u(t, ⋅) is RD

+ -convex, where u is
the unique vicosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tu −H(∇u) = 0 on (0,+∞) ×RD

u(0, ⋅) = g.

It is classical [22] that in the limit ε→ 0, the sequence of functions (uε)ε
from Lemma 5.18 converges to u. Since according to Lemma 5.18, for every
t ⩾ 0, uε(t, ⋅) is RD

+ -convex, it follows that u(t, ⋅) is RD
+ -convex.

Step 2. We show that for every t ⩾ 0, uR(t, ⋅) is RD
+ -convex, where uR is the

unique vicosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tuR − ξ(∇uR) = 0 on (0,+∞) ×RD

uR(0, ⋅) = χR.
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We can molify ξ and χR into Hδ and gR,δ. According to Step 1, the unique
viscosity solution uR,δ of

⎧⎪⎪⎨⎪⎪⎩

∂tuR,δ −Hδ(∇uR,δ) = 0 on (0,+∞) ×RD

uR,δ(0, ⋅) = gR,δ,

is RD
+ -convex at every fixed t. In addition Hδ → ξ and gR,δ → χR locally

uniformly as δ → 0. Therefore, any locally uniform limit of the sequence
(uR,δ)δ must be the unique viscosity solution of the equation defining uR
[18, Section 6]. Hence, since the sequence (uR,δ)δ is uniformly Lipschitz,
it follows from the Arzelà–Ascoli theorem that δ → 0, uR,δ → uR locally
uniformly. The desired result follows.

Step 3. We show that Stχ is RD
+ -convex.

The initial condition χR and χ coincide on B(0,R). Since the Hamilton–
Jacobi equation has finite speed of propagation [20, Exercise 3.8 and solution],
we have that uR(t, ⋅) and Stχ coincide on B(0,R−t/L) where L is a Lipschitz
constant of H. Hence, we have that uR(t, ⋅) → Stχ pointwise as R → +∞.
This allows to deduce the desired result from Step 2. □

6. Optimal transport and convex duality

In this section, we prove the key observations (1.28) and (1.30), and
use them with convex-duality arguments to show the identity between the
variational problems in (1.14) and (1.18).

We recall that Stχ was defined in (5.1), and that in (1.13) we have
introduced the quantity

Tt(µ, ν) = inf
π∈Π(µ,ν)

∫ (tξ)∗(y − x)dπ(x, y),(6.1)

which can be interpreted as the optimal transport cost from µ to ν with cost
function (x, y) ↦ (tξ)∗(y − x). As explained in [61, Chapter 1], Kantorovich
duality yields the dual representation

Tt(µ, ν) = sup
χ
{∫ χdν − ∫ Stχdµ} ,(6.2)

where the supremum on the right-hand side is taken over all functions
χ ∶ RD

+ → R that are in L1(ν) and are such that Stχ ∈ L1(µ). Observe that
here Tt(µ, ν) is represented as a supremum of affine functions in (µ, ν), in
particular this means that the mapping (µ, ν) ↦ Tt(µ, ν) is convex. This
dual representation motivates the following definition.

Definition 6.1 (Kantorovich potential). For every µ, ν ∈ P(RD
+ ), we say

that a function χ ∶ RD
+ → R is a Kantorovich potential from µ to ν (for the

cost function (x, y) ↦ (tξ∗)(y − x)) when χ ∈ L1(ν), Stχ ∈ L1(µ), and

(6.3) Tt(µ, ν) = ∫ χdν − ∫ Stχdµ.
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We can thus rephrase the identity (1.30) as saying that the function χ
is a Kantorovich potential. A key aspect of the proofs of our main results
is that the function χ appearing in (1.30) and in the surrounding informal
discussion is not only a Kantorovich potential, but also an element of the
set X defined in (3.17).

Recall the collection X defined in (3.17). For ψ appearing in (1.8), we
define

(6.4) ψ∗(χ) = inf
ν∈P1(RD+ )

{∫ χdν − ψ(ν)} , ∀χ ∈ X.

For every (t, µ) ∈ R+ × P1(RD
+ ), we set

g(t, µ) = inf
χ∈X
{∫ Stχdµ − ψ∗(χ)}(6.5)

h(t, µ) = sup
ν∈P1(RD+ )

{ψ(ν) − Tt(µ, ν)} .(6.6)

Proposition 6.2. We have h = g on R+ × P1(RD
+ ). Moreover, at every

(t, µ) ∈ R+ × P1(RD), there is a maximizer ν of h(t, µ) in (6.6) and a
minimizer χ of g(t, µ) in (6.5) such that χ is the derivative of ψ at ν given
by Proposition 3.8.

To prove this, we start with some preliminary results.

Lemma 6.3 (Existence of maximizers in (6.6)). For every t ∈ R+ and
µ ∈ P1(RD

+ ), the variational formula of h(t, µ) in (6.6) achieves its maximum
at some ν ∈ P1(RD

+ ). Moreover, there is an optimal π ∈ Π(µ, ν) such that
Tt(µ, ν) = ∫ (tξ)∗(y − x)dπ(x, y).

Proof. Step 1. We show that Tt(µ, ν) and W1(µ, ν) must be bounded for
near maximizers ν. Recall the notation y+ in (5.15) for y ∈ RD. According
to Lemma 5.2, we have that ξ∗ is superlinear on RD

+ . Since (tξ)∗ = tξ∗( ⋅ /t),
(tξ)∗ is also superlinear on RD

+ . Since Tt(µ,µ) = 0, the supremum in (6.6)
can be restricted to those measures ν ∈ P1(RD

+ ) such that

ψ(ν) − Tt(µ, ν) ⩾ ψ(µ).(6.7)

We start by showing that for every ν ∈ P1(RD
+ ) satisfying (6.7), we have that

W1(µ, ν) ⩽ C. The Lipschitzness of ψ in (3.14) together with (6.7) yields

Tt(µ, ν) ⩽W1(µ, ν).(6.8)

For ε > 0, let π ∈ Π(µ, ν) be a nearly optimal coupling for Tt(µ, ν) such that

∫ (tξ)∗(y − x)dπ(x, y) ⩽ Tt(µ, ν) + ε. Let (X,Y ) be a random variable with
law π. Then, we can obtain from the above display that

E [(tξ)∗(Y −X)] ⩽ E [∣X − Y ∣] + ε.(6.9)
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We choose M > 1 and let R be such that (5.6) holds with ς substituted with
(tξ)∗. By this and Lemma 5.7, we have

(tξ)∗(Y −X) ⩾M ∣(Y −X)+∣ on the event ∣(Y −X)+∣ ⩾ R.(6.10)

Also by (5.13), we have

∣X − Y ∣ = ∣Y −X ∣ − ∣(Y −X)+∣ + ∣(Y −X)+∣ ⩽ ∣X ∣ + ∣(Y −X)+∣.(6.11)

Using these and ∣(Y −X)+∣1∣(Y −X)+∣<R ⩽ R, we get

ME [∣(Y −X)+∣] −MR
(6.10)
⩽ E [(tξ)∗(Y −X)]

(6.9)
⩽ E [∣X − Y ∣] + ε

(6.11)
⩽ E[∣X ∣] +E [∣(Y −X)+∣] + ε.

In the first inequality in the display, we also used that (tξ)∗ ⩾ −tξ(0) = 0.
Rearranging, we arrive at

E [∣(Y −X)+∣] ⩽
E[∣X ∣] +MR + ε

M − 1
.(6.12)

This along with (5.13) implies that E[∣Y −X ∣] is bounded by some constant C.
Hence, we conclude that for every ν satisfying (6.7), we have Tt(µ, ν) ⩽
W1(µ, ν) ⩽ C, where we used (6.8) in the first inequality.

Step 2. Let (νn)n∈N be a maximizing sequence of (6.6), namely,

lim
n→∞
(ψ(νn) − Tt(µ, νn)) = h(t, µ).(6.13)

Our goal is to extract a maximizer from its subsequential limits. We can
choose the sequence (νn)n∈N such that (6.7) holds for every n. By the
previous step, we have that Tt(µ, νn) ⩽W1(µ, νn) ⩽ C for every n. Fix any
ε > 0, since Tt(µ, νn) has to be finite, we can choose a nearly optimal coupling
πn ∈ Π(µ, νn) with ∫ (tξ)∗(y − x)dπn(x, y) ⩽ Tt(µ, νn) + ε. Since µ ∈ P1(RD

+ )
and W1(µ, νn) ⩽ C, the first moments of νn are bounded uniformly in n.
Hence, by passing to a subsequence and invoking Skorokhod’s representation
theorem, we may assume that there is a sequence (Xn, Yn)n∈N of random
variables satisfying Law(Xn, Yn) = πn and that (Xn, Yn) converges almost
surely to some (X,Y ). Clearly, we have µ = Law(X) since µ = Law(Xn) for
every n. We need that (Xn, Yn)n∈N also converges to (X,Y ) in L1, which
together with the above follows from the uniform integrability of the second
marginal:

lim
r→∞

sup
n

E [∣Yn∣1∣Yn∣⩾r] = 0.(6.14)

We postpone the proof of this fact and first use the L1-convergence to find a
maximizer.

Let ν = Law(Y ) and consequently, we have ν ∈ P1(RD
+ ). Then, the

L1-convergence together with the Lipschitzness of ψ in (3.14) implies

lim
n→∞

ψ(νn) = ψ(ν).(6.15)
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On the other hand, the function (tξ)∗ is lower semi-continuous as a supremum
of continuous functions, thus it follows from Fatou’s lemma that (recall that
(tξ)∗ ⩾ −tξ(0) = 0 is bounded from below)

E [(tξ)∗(Y −X)] ⩽ lim inf
n→∞

E [(tξ)∗(Yn −Xn)] ,

which further yields

Tt(µ, ν) ⩽ E [(tξ)∗(Y −X)] ⩽ lim inf
n→∞

Tt(µ, νn) + ε.

This along with (6.15) gives

ψ(ν) − Tt(µ, ν) ⩾ ψ(ν) −E [(tξ)∗(Y −X)] ⩾ lim sup
n→∞

ψ(νn) − Tt(µ, νn) − ε

(6.13)= h(t, µ) − ε
(6.6)
⩾ ψ(ν) − Tt(µ, ν) − ε.

Since ε is arbitrary, we conclude that ν maximizes (6.6) and Tt(µ, ν) =
E [(tξ)∗(Y −X)], implying that π is an optimal coupling for Tt(µ, ν).

Step 3. It remains to verify (6.14). We need the following simple fact: for
real numbers r ⩾ 0 and a, b, c ⩾ 0 satisfying a ⩽ b + c, we have

a1a⩾4r ⩽ 2b1b⩾r + 2c1c⩾r,(6.16)

which follows from the fact that

a1a⩾4r ⩽ (b + c)1a⩾4r = b1a⩾4r, b⩾r + b1a⩾4r, b<r + c1a⩾4r, c⩾r + c1a⩾4r, c<r

⩽ b1b⩾r + a
41a⩾4r + c1c⩾r + a

41a⩾4r.

Simple applications of (6.16) are

∣Yn∣1∣Yn∣⩾4r ⩽ 2∣Xn∣1∣Xn∣⩾r + 2∣Xn − Yn∣1∣Xn−Yn∣⩾r,

∣Xn − Yn∣1∣Xn−Yn∣⩾4r ⩽ 2∣Xn∣1∣Xn∣⩾r + 2∣(Yn −Xn)+∣1∣(Yn−Xn)+∣⩾r,

where we used the triangle inequality in the first line and (5.13) in the second
line. Due to Law(Xn) = µ independent of n, from the above display, we can
see that (6.14) follows if we can show

lim
r→∞

sup
n

E [∣(Yn −Xn)+∣1∣(Yn−Xn)+∣⩾r] = 0.(6.17)

By the choice of νn and πn, we have E [(tξ)∗(Yn −Xn)] ⩽ Tt(µ, νn)+ε ⩽ C+ε.
Recall that, for any M > 1, we can find R such that (6.10) holds. Hence, for
r > R, we have

E [∣(Yn −Xn)+∣1∣(Yn−Xn)+∣⩾r] ⩽M
−1E [(tξ)∗(Yn −Xn)] ⩽M−1(C + ε)

uniformly in n. This implies (6.17) and completes the proof. □

We now show (1.28).

Lemma 6.4. Let χ ∶ RD
+ → R be a Lipschitz and RD

+ -increasing function and
let (St)t∈R+ be given as in (5.1). For every (t, µ) ∈ R+ × P1(RD

+ ), we have

(6.18) ∫ Stχdµ = sup
ν∈P1(RD+ )

{∫ χdν − Tt(µ, ν)} .
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Remark 6.5. When χ ∈ X, we can also write Stχ from (5.1) as

(6.19) Stχ(x) = sup
x′ ∈RD+

x′−x ∈ t∇ξ([0,1]D)

{χ(x′) − (tξ)∗(x′ − x)} .

To see this, observe first that if p ∈ RD
+ is a maximizer in (1.16), then

p ∈ [0,1]D. This is because χ∗(p) = +∞ when p ∈ RD
+ ∖ [0,1]D (recall that

χ∗ is defined as in (1.10)). Now given p a maximizer in (1.16), we have

Stχ(x) = x ⋅ p − χ∗(p) + tξ(p)
= (x + t∇ξ(p)) ⋅ p − χ∗(p) − t(∇ξ(p) ⋅ p − ξ(p))
= (x + t∇ξ(p)) ⋅ p − χ∗(p) − tξ∗(∇ξ(p))
⩽ sup

q
{(x + t∇ξ(p)) ⋅ q − χ∗(q)} − tξ∗(∇ξ(p))

= χ(x + t∇ξ(p)) − (tξ)∗(t∇ξ(p)).

On the third line, we used that ξ∗(∇ξ(p)) = ∇ξ(p) ⋅ p − ξ(p), which can be
deduced from the definition of ξ∗ in (1.10) (see (1.9) and (7.25)). This means
that y = x + t∇ξ(p) is a maximizer in (5.1), and this proves (6.19).

Using (6.19) in place of (5.1) in the proof of Lemma 6.4 below yields that
(6.18) remains valid when the supremum is taken over ν ∈ P1(RD

+ ) with the
added condition that ν is supported in supp(µ) + t∇ξ([0,1]D). □

Proof of Lemma 6.4. Using the definition of St in (5.1), we can get

1

K

K

∑
k=1

Stχ(xk) = sup
y∈(RD+ )K

{ 1

K

K

∑
k=1

χ(yk) −
1

K

K

∑
k=1
(tξ)∗(yk − xk)} .

Let ΠK(x, ⋅ ) be the set of probability measures π on RD
+ ×RD

+ of the form
π = 1

K ∑
K
k=1 δ(xk,yk) with y ∈ (R

D
+ )K . For π ∈ ΠK(x, ⋅ ), let π2 be the second

marginal of π on RD
+ . The previous display can be written as

(6.20)
1

K

K

∑
k=1

Stχ(xk) = sup
π∈ΠK(x, ⋅ )

{∫ χdπ2 − ∫ (tξ)∗(b − a)dπ(a, b)} .

Now, we let µ ∈ P1(RD
+ ) and choose a sequence (xK)K⩾1 in (RD

+ )K such
that µ is limit of 1

K ∑
K
k=1 δxK

k
in law. Setting x = xK in the previous display

and letting K → +∞, we claim that we can get

(6.21) ∫ Stχdµ = sup
π∈Π1(µ, ⋅ )

{∫ χdπ2 − ∫ (tξ)∗(y − x)dπ(x, y)} ,

where Π1(µ, ⋅ ) denotes the set of probability measures π on RD
+ ×RD

+ such
that π has a finite first moment and its first marginal satisfies π1 = µ.
Assuming the validity of this for now, writing Π1(µ, ν) for the set of couplings
between µ and ν, and replacing “supπ∈Π1(µ,⋅)” by “supν∈P1(RD+ ) supπ∈Π1(µ,ν)”

we obtain (6.18) from (6.21) as desired.
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Now, we verify (6.21). Using the definition of Stχ in (5.1), we can deduce
that the inequality “⩾” in (6.21) holds. We focus on the other direction.
Let xK be given as above (6.21). Let πK ∈ ΠK(xK , ⋅ ) be a near maximizer
of (6.20) satisfying

∫ Stχdπ
K
1 ⩽K−1 + ∫ χdπK2 − ∫ (tξ)∗(y − x)dπK(x, y).(6.22)

Let (XK , YK) be a pair of RD-valued random variables with law equal to
πK . Due to the choice of xK , the law of XK converges to µ ∈ P1(RD

+ ). By
choosing xK suitably, we may assume that

sup
K

E[∣XK ∣] < ∞.(6.23)

In the notation of random variables, we can rewrite (6.22) as

E [Stχ(XK)] ⩽K−1 +E [χ(YK)] −E [(tξ)∗(YK −XK)] .(6.24)

Since Stχ and χ are Lipschitz (see Lemma 5.13), there is a constant C > 0
such that, for every x, y,

∣Stχ(x)∣ + ∣χ(y)∣ ⩽ C(1 + ∣x∣ + ∣y − x∣).

This along with (6.24) gives

E [(tξ)∗(YK −XK)] ⩽K−1 +C(1 +E[∣XK ∣] +E[∣YK −XK ∣]).

We can use this condition to substitute the one in (6.9) and follow the
ensuing steps there (using the superlinearity of (tξ)∗ on RD

+ by choosing M
sufficiently large) to reach an upper bound on E[∣(YK −XK)+∣] similar to
the one in (6.12). Using (6.23) and (5.13), we can deduce

sup
K

E[∣YK −XK ∣] < ∞ and sup
K

E [(tξ)∗(YK −XK)] < ∞.(6.25)

The first bound in (6.25) along with (6.23) gives the tightness of (πK)K∈N.
By passing to a subsequence and using Skorokhod’s representation theorem,
we may assume that (XK , YK) converges a.s. to some (X,Y ) with law π.

We argue that the convergence also takes place in L1. It suffices to show
that the families (XK)K and (YK)K are uniformly integrable (as in (6.14)).
By choosing xK suitably, we can verify this for the former. For the latter,
the second relation in (6.25) allows us to repeat the argument for (6.14) in
Step 3 of the proof of Lemma 6.3. The extra input is that we need to use
the uniform integrability of (XK)K as their laws are no longer fixed. With
this explained, we now have that (XK , YK) converges in L1 to (X,Y ).

Due to the assumption on the first marginal, we have Law(X) = µ and thus
π ∈ Π1(µ, ⋅ ). Since Stχ and χ are Lipschitz and thus have linear growths,
we can use the dominated convergence theorem to get

lim
K→∞

E[Stχ(XK)] = ∫ Stχdµ and lim
K→∞

E[χ(YK)] = ∫ χdπ2.
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The lower semi-continuity of (tξ)∗ and Fatou’s lemma (recall that (tξ)∗ ⩾
−tξ(0) = 0) yield

∫ (tξ)∗(y − x)dπ(x, y) ⩽ lim inf
K→∞

E [(tξ)∗(YK −XK)] .

Applying these convergences to (6.24), we get

∫ Stχdµ ⩽ ∫ χdπ2 − ∫ (tξ)∗(y − x)dπ(x, y).

This gives “⩽” in (6.21) and completes the proof. □

We now show (1.30), which can be interpreted as saying that χ is a
Kantorovich potential from µ to ν (see Definition 6.1).

Lemma 6.6. Let (t, µ) ∈ R+ × P1(RD
+ ) and let ν be a maximizer of h(t, µ)

in (6.6) (which exists by Lemma 6.3). Let χ ∈ X be the derivative of ψ at ν
given as in Proposition 3.8. We have

∫ χdν − ∫ Stχdµ = Tt(µ, ν).(6.26)

Proof. For every ν ∈ P1(RD
+ ) and λ ∈ (0, 1], the convexity of Tt(µ, ⋅ ) implies

Tt(µ, ν) − Tt(µ, ν) ⩾
1

λ
(Tt(µ, ν + λ(ν − ν)) − Tt(µ, ν))

⩾ 1

λ
(ψ(ν + λ(ν − ν)) − ψ(ν))

where the second inequality follows from maximality at ν of the formula for
h(t, µ) (see (6.6)). Using the differentiability of ψ in Proposition 3.8 and
sending λ to zero, we get

Tt(µ, ν) − Tt(µ, ν) ⩾ ∫ χd(ν − ν)

for any ν ∈ P1(RD
+ ), which implies

∫ χdν − Tt(µ, ν) = sup
ν∈P1(RD+ )

{∫ χdν − Tt(µ, ν)} .

By Lemma 6.4, we can recognize the right-hand side as ∫ Stχdµ, which
verifies (6.26). □

We are now ready to show that the variational problem in (1.18) is dual
to that in (1.14), that is, that g = h.

Proof of Proposition 6.2. We will proceed by double inequality.

First, we show h ⩾ g. Allowed by Lemma 6.3, let ν ∈ P1(RD
+ ) be such that

(6.27) h(t, µ) = ψ(ν) − Tt(µ, ν).
By Lemma 6.6, we have

Tt(µ, ν) = ∫ χdν − ∫ Stχdµ
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where χ is the derivative of ψ at ν given as in Proposition 3.8. The above
two displays together yield

(6.28) h(t, µ) = ψ(ν) − ∫ χdν + ∫ Stχdµ.

On the other hand, the concavity of ψ given in Lemma 3.2 implies that, for
any ν ∈ P1(RD

+ ) and λ ∈ (0,1], we have

1

λ
(ψ (λν + (1 − λ)ν) − ψ(ν)) ⩾ ψ(ν) − ψ(ν).

Sending λ → 0 and using Proposition 3.8, for the same χ as above, we
get ∫ χd(ν − ν) ⩾ ψ(ν) − ψ(ν). Rearranging and taking the infimum over
ν ∈ P1(RD

+ ), we obtain ψ∗(χ) = ∫ χdν − ψ(ν) due to its definition in (6.4).
This along with (6.28) gives

(6.29) h(t, µ) = ∫ Stχdµ − ψ∗(χ)
(6.5)
⩾ g(t, µ).

Next, we show g ⩾ h. According to the Arzelà–Ascoli theorem, X is compact
for the topology of local uniform convergence. We can thus use Sion’s
min-max theorem to obtain that

g(t, µ) = inf
χ∈X
{∫ Stχdµ − ψ∗(χ)}

= inf
χ∈X

sup
ν∈P1(RD+ )

{∫ Stχdµ − ∫ χdν + ψ(ν)}

= sup
ν∈P1(RD+ )

inf
χ∈X
{∫ Stχdµ − ∫ χdν + ψ(ν)}

= sup
ν∈P1(RD+ )

{ψ(ν) − Tt(µ, ν)} ,

where Tt(µ, ν) = supχ∈X {∫ χdν − ∫ Stχdµ} is to be compared with Tt(µ, ν)
defined in (1.13). The definition of Stχ in (5.1) implies that χ(x) −Stχ(y) ⩽
(tξ)∗(y − x) for every x, y. Then, the Kantorovich duality (6.2) implies
Tt(µ, ν) ⩽ Tt(µ, ν) and thus

g(t, µ) ⩾ sup
ν∈P1(RD+ )

{ψ(ν) − Tt(µ, ν)}
(6.6)= h(t, µ),

which completes the proof of h = g. The additional statements on optimizers
follow from h = g, (6.27), and (6.29). □

To close this section, we record the following useful result.

Lemma 6.7 (Lipschitzness of h). Let h be given as in (6.6). For every
t, t′ ∈ R+ and µ,µ′ ∈ P1(RD

+ ), we have

∣h(t, µ) − h(t′, µ′)∣ ⩽ C ∣t − t′∣ +W1(µ,µ′),(6.30)

where C = supz∈RD+ ∶ ∣z∣⩽1 ∣ξ(z)∣.



THE CONVEX STRUCTURE OF THE PARISI FORMULA 45

Proof. By Proposition 6.2, we can work with g given by (6.5) instead of
h. Fix any t, t′, µ, µ′. By the same proposition, there is χ ∈ X such that
g(t, µ) = ∫ Stχdµ − ψ∗(χ). From the definition of X in (3.17), we see that
∥χ∥Lip ⩽ 1. Let π ∈ Π(µ,µ′) be an optimal coupling for W1(µ,µ′) and let
(X,X ′) satisfy Law(X,X ′) = π. We have

g(t′, µ′) − g(t, µ)
(6.5)
⩽ ∫ St′χdµ

′ − ∫ Stχdµ ⩽ E [∣St′χ(X ′) − Stχ(X)∣]

⩽ C ∣t − t′∣ +E [∣X ′ −X ∣] = C ∣t − t′∣ +W1(µ,µ′),
where the last inequality follows from Lemma 5.13. This implies the desired
result. □

7. Proofs of the main results

In this section, we complete the proofs of Theorems 1.2, 1.3, and 1.4. We
also spell out the validity of Theorem 1.1. Recall from (6.6) that we have
set, for every (t, µ) ∈ R+ × P1(RD

+ ),
h(t, µ) = sup

ν∈P1(RD+ )
{ψ(ν) − Tt(µ, ν)} .

Recall also the notation Lq from (2.19), and that for every µ ∈ P↑(RD
+ ), there

exists a unique q ∈ Q such that µ = Lq. The key step towards the derivation
of our main results is as follows.

Proposition 7.1. Assume that ξ is strongly convex on RD
+ . Let h be given

by (6.6). For every t ∈ R+, q ∈ Q∞, and for µ = Lq ∈ P↑∞(RD
+ ), we have

h(t, µ) = sup
ν∈P↑∞(RD+ )

{ψ(ν) − Tt(µ, ν)}(7.1)

= sup
p∈Q∞

{ψ (Lq+t∇ξ(p)) − t∫
1

0
θ dLp} .(7.2)

Moreover, the suprema in (7.1) and (7.2) are achieved.

As discussed below (1.30), the key point in showing (7.1) is to transfer
the monotonicity of µ into the monotonicity of a maximizer in the definition
of h(t, µ). In order to do so, we will smear out the measure µ so that it
becomes absolutely continuous with respect to the Lebesgue measure. The
smeared-out measure is however no longer monotone, only approximately
so, and our first task is to develop convenient tools that allow us to track
approximate and exact monotonicity of a measure.

Lemma 7.2 (Characterization of monotonicity). Let d ∈ N and µ ∈ P(Rd
+).

The measure µ is monotone if and only if, for every i, j ∈ {1, . . . , d},

µ⊗2 ({ (y, y′) ∈ Rd
+ ×Rd

+ ∶ yi ⩾ y′i or yj ⩽ y′j }) = 1.(7.3)

Remark 7.3. Let Y and Y ′ two independent random variables with law µ.
Then, (7.3) can be rewritten as P(Yi ⩾ Y ′i or Yj ⩽ Y ′j ) = 1. □
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Proof of Lemma 7.2. We proceed in two steps. First, we show that (7.3) is
equivalent to a stronger formulation and then we apply results from [40,
Section 2].

Step 1. We show that the condition specified in (7.3) is equivalent to

µ⊗2 ({ (y, y′) ∈ Rd
+ ×Rd

+ ∶ a ⋅ y ⩾ a ⋅ y′ or b ⋅ y ⩽ b ⋅ y′ }) = 1(7.4)

for every a, b ∈ Rd
+. One direction is obvious and we focus on deducing (7.4)

from (7.3).

It is more convenient to work with random variables and we start with
some notation. For a pair (U,V ) of real-valued random variables, we say
that (U,V ) is monotone if, given an independent copy (U ′, V ′), we have
almost surely that {U ⩾ U ′ or V ⩽ V ′}. It is clear that (U,V ) is monotone if
and only if (V,U) is so. We need the following property. Given three random
variables U,V,W , we have, for every s, t ⩾ 0,

if both (U,W ) and (V,W ) are monotone, then so is (sU + tV,W ).(7.5)

This immediately follows from the definition. Indeed, let (U ′, V ′,W ′) be an
independent copy and there is nothing to show when W ⩽W ′. Otherwise,
we must have U ⩾ U ′ and V ⩾ V ′, which implies sU + tV ⩾ sU ′ + tV ′.

Let Y be a random vector in Rd with µ = Law(Y ). The condition in (7.3)
is equivalent to that (Yi, Yj) is monotone for every 1 ⩽ i, j ⩽ d. Fix any

a, b ∈ Rd
+. For each j, iteratively applying (7.5) to pairs (Yi, Yj) for 1 ⩽ i ⩽ d,

we can get that (a ⋅Y,Yj) is monotone. Similarly, we can get that (a ⋅Y, b ⋅Y )
is monotone, which is equivalent to (7.4).

Step 2. We use results from [40, Section 2] to conclude. We start with some
definitions. Let Sd be the linear space of real symmetric matrices endowed
with the Frobenius inner product, namely, a ⋅ b = ∑d

i,j=1 aijbij for a, b ∈ Sd.

Let Sd
+ be the set of positive semi-definite matrices. Let µ be the image

of µ through the map Rd ∋ x ↦ diag(x1, . . . , xd). Since µ is supported on
diagonal matrices and diagonal entries of a, b ∈ Sd

+ are nonnegative, we can
see that (7.4) is equivalent to

µ⊗2 ({ (y, y′) ∈ Sd
+ × Sd

+ ∶ a ⋅ y ⩾ a ⋅ y′ or b ⋅ y ⩽ b ⋅ y′ }) = 1(7.6)

for every a, b ∈ Sd
+.

Monotone probability measures on Sd
+ are defined in the paragraphs

above [40, Proposition 2.3] and [40, (2.1)]. The condition in (7.6) exactly
matches this definition and thus µ is monotone on Sd

+. By [40, Proposi-
tion 2.4], this monotonicity is equivalent to the existence of an increasing
path q ∶ [0,1) → Sd

+ such that µ = Law(q(U)), where the monotonicity of
q is understood as q(s′) − q(s) ∈ Sd

+ whenever s′ ⩾ s. Since µ is supported
on diagonal matrices, q must take values in diagonal matrices. There-
fore, µ = Law(q(U)) is equivalent to µ = Law(q(U)) for some increasing
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q ∶ [0,1) → Rd, where q and q are related by diag(q) = q a.e. on [0,1).
Combining these equivalences, we obtain the desired characterization. □

The next lemma is tailored for application to our future context involving
a smeared-out version of the measure µ ∈ P↑∞(RD

+ ), where we later let the
smearing-out parameter tend to zero. Recall that U is a random variable
with uniform distribution over [0,1].

Lemma 7.4. Let µ = Lq ∈ P↑∞(RD
+ ) (see (2.19)) with q ∈ Q∞ strictly

increasing in the sense that q(s) − q(s′) ∈ (0,∞)D whenever s > s′. For
each n ∈ N, let ϖn ∈ P(R2D

+ ) and suppose that there is an RD
+ -increasing

measurable map Tn ∶ RD
+ → RD

+ such that

x′ = Tn(x) for ϖn-a.e. (x,x′).(7.7)

Assume that ϖn converges weakly to some ϖ ∈ P(R2D
+ ) whose projection on

the first D coordinates is equal to µ. Then, we have ϖ ∈ P↑(R2D
+ ) and thus

there is p ∈ Q such that ϖ = Law(q(U),p(U)).

Proof. In the following, we denote by (y, y′) an element in R2D
+ ×R2D

+ . For
i, j ∈ {1, . . . ,2D}, we consider the following events on R2D

+ ×R2D
+ ,

Ei,j = {yi ⩾ y′i or yj ⩽ y′j} .
We also set

Ei =
D

⋂
j=1

Ei,j , for i ∈ {1, . . . ,D} and E =
D

⋂
i=1
Ei =

D

⋂
i,j=1

Ei,j .

For each n, let µn ∈ P(RD
+ ) be the projection of ϖn to the first D coordinates.

For i, j ⩽D, Ei,j can be measured by µn. Then, we immediately have

ϖ⊗2n (Ei,j) = µ⊗2n (Ei,j) if i ⩽ j ⩽D.

When i ⩽ D < j, by (7.7), we have yj = (Tn(y[D]))j for ϖn-a.e. y, where

y[D] = (yk)1⩽k⩽D. Since Tn is assumed to be RD
+ -increasing, for ϖ

⊗2
n -a.e.

(y, y′), we have that y[D] ⩽ y′[D] implies yj ⩽ y′j . On the event Ei we have

yi ⩾ y′i or y[D] ⩽ y′[D]. In the latter case, it follows from the previous

observation that yj ⩽ y′j ϖ⊗2n -almost surely. Hence, we have Ei ⊆ Ei,j and
thus

ϖ⊗2n (Ei,j) ⩾ϖ⊗2n (Ei) = µ⊗2n (Ei) if i ⩽D < j.

Similarly on the event E we have y[D] ⩽ y′[D] or y[D] ⩾ y
′
[D] and by (7.7), we

can also deduce

ϖ⊗2n (Ei,j) ⩾ µ⊗2n (E) if D < i ⩽ j.

Using the above three displays and the symmetry ϖ⊗2n (Ei,j) = ϖ⊗2n (Ej,i),
we obtain

ϖ⊗2n (Ei,j) ⩾ µ⊗2n (E), ∀i, j ∈ {1, . . . ,2D}.(7.8)
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Notice that ∂E ⊆ ⋃D
i,j=1 ∂Ei,j = ⋃D

i=1{yi = y′i}. Since q as in µ = Lq is strictly
increasing, we can get

µ⊗2 ({yi = y′i}) = ∬[0,1]2
1qi(s)=qi(s′)dsds

′ = 0.

Hence, E is a continuity set of µ⊗2. Since µ ∈ P↑∞(RD
+ ) is monotone, by

Lemma 7.2, we have that µ⊗2(E) = 1. Also, notice that Ei,j is a closed set.
Using these and the Portmanteau theorem, we pass to the limit in (7.8) to
get

ϖ⊗2(Ei,j) ⩾ lim sup
n→∞

ϖ⊗2n (Ei,j) ⩾ lim
n→∞

µ⊗2n (E) = µ⊗2(E) = 1

for every i, j. Therefore, by Lemma 7.2, ϖ is monotone. Since the first
marginal of ϖ is µ = Lq, we must have ϖ = Law(q(U),p(U)) for some
p ∈ Q. □

We are now ready to prove Proposition 7.1.

Proof of Proposition 7.1. We need approximations of µ ∈ P↑∞(RD
+ ) from the

collection Pac(RD
+ ) of probability measures on RD

+ that are absolutely con-
tinuous with respect to the Lebesgue measure. Let (µn)n∈N be a sequence
in Pac(RD

+ ) that converges weakly to µ. Since µ is compactly supported,
we may assume that the measures µn are all supported in some fixed ball
(independent of n). Hence, by Lemma 6.7,

lim
n→∞

h(t, µn) = h(t, µ).(7.9)

Allowed by Lemma 6.3, for each n ∈ N, let νn be a maximizer of h(t, µn)
in (6.6) and let πn be an optimal coupling of (µn, νn) for Tt(µn, νn). Hence,
we have

h(t, µn) = ψ(νn) − Tt(µn, νn),(7.10)

Tt(µn, νn) = ∫ (tξ)∗(y − x)dπn(x, y).(7.11)

The plan is to show that νn is approximately monotone. Then, by taking
limits, we expect that the formula for h(t, µ) maximizes over monotone
measures. By Lemma 6.6, there is χn ∈ X (see (3.17)) such that

∫ χndνn − ∫ Stχndµn = Tt(µn, νn).(7.12)

Note that according to Lemma 5.3, thanks to the assumption on ξ, the
function ξ∗ is differentiable on RD. We proceed in five steps.

Step 1. Let (Xn, Yn) be a random variable with law πn. We show that
possibly up to a redefinition of πn, we may assume without loss of generality
that Yn −Xn ∈ ∇ξ(RD

+ ) almost surely.

Define

Y ′n = ∇ξ(∇ξ∗((Yn −Xn)+)) +Xn,
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let ν′n denote the law of Y ′n and let π′n denote the law of (Xn, Y
′
n). Since

x+ − x ∈ RD
+ , according to (5.9) in Lemma 5.4 we have that Y ′n − Yn ∈ RD

+
almost surely. Hence, by monotonicity of ψd (which we can borrow from
[13, Proposition 3.6] or rederive using Proposition 3.8 and the fact that
functions in X are increasing), we have ψ(ν′n) ⩾ ψ(νn). In addition, according
to Lemma 5.7 and (5.11) in Lemma 5.4, we have E[(tξ)∗(Y ′n − Xn)] =
E[(tξ)∗(Yn −Xn)], so

Tt(µn, ν′n) ⩽ ∫ (tξ)∗(y−x)dπ′n(x, y) = ∫ (tξ)∗(y−x)dπn(x, y) = Tt(µn, νn).

We deduce that

ψ(ν′n) − Tt(µn, ν′n) ⩾ ψ(ν′n) − ∫ (tξ)∗(y − x)dπ′n(x, y)

⩾ ψ(νn) − Tt(µn, νn)
= h(t, µn)
⩾ ψ(ν′n) − Tt(µn, ν′n),

where the last inequality follows from (6.6). The above display implies that
ν′n is a maximizer in the definition (6.6) of h(t, µn) and that π′n is an optimal
coupling for Tt(µn, ν′). In addition, if (X ′n, Y ′n) is a random variable with law
π′n, we have by definition that Y ′n −X ′n ∈ ∇ξ(RD

+ ) almost surely, this means
that up to replacing (πn, νn) by (π′n, ν′n) (and redefining χn accordingly), we
may assume that Yn −Xn ∈ ∇ξ(RD

+ ) almost surely.

Step 2. We now show that

y = x + t∇ξ (∇Stχn(x)) for πn-a.e. (x, y).(7.13)

This implicitly states that Stχn is differentiable at such points. Using (7.11)
and (7.12), we have

∫ (χn(y) − Stχn(x) − (tξ)∗(y − x))dπn(x, y) = 0.

By the formula for Stχn in (5.1), the integrand in the above display is
non-positive. Therefore, we must have

χn(y) − Stχn(x) − (tξ)∗(y − x) = 0, for πn-a.e. (x, y).
Since Stχn is Lipschitz due to Lemma 5.13, Stχn is differentiable almost
everywhere with respect to the Lebesgue measure (see e.g. [20, Theorem 2.10]).
Hence, due to µn ∈ Pac(RD

+ ) (the first marginal of πn), we have that for
πn-a.e. (x, y), Stχn is differentiable at x. By (5.3) in Proposition 5.1, we get

∇Stχn(x) = ∇(tξ)∗(y − x), for πn-a.e. (x, y).

Recalling from Step 1 that y − x ∈ ∇ξ(RD
+ ) for πn-a.e. (x, y), and using

Remark 5.5 we can apply t∇ξ to both sides in the above and obtain (7.13).
Since Stχn is RD

+ -convex due to Proposition 5.9, we have that

∇Stχn is RD
+ -increasing(7.14)



50 THE CONVEX STRUCTURE OF THE PARISI FORMULA

which will be used later.

Step 3. We show that (πn)n∈N is tight and derive the limit of (7.10). Let
random variables (Xn, Yn, Zn) satisfy

Law(Xn, Yn) = πn; Zn = ∇Stχn(Xn).(7.15)

By (7.13), we have

Yn =Xn + t∇ξ(Zn) a.s.(7.16)

Recall that χn given by Proposition 3.8 belongs to the collection X defined
in (3.17), whose definition implies that χn is 1-Lipschitz. By Lemma 5.13,
Stχn is also 1-Lipschitz. Setting C = t sup∣z∣⩽1 ∣∇ξ(z)∣, we have

∣Zn∣ ⩽ 1 and ∣Yn −Xn∣ ⩽ C a.s.(7.17)

Since µn = Law(Xn) and µn is assumed to be supported in a fixed ball,
by (7.17), Yn and Zn take values in a fixed compact set. In particular, the
family (Xn, Yn, Zn)n∈N is tight. By passing to a subsequence and invoking
Skorokhod’s representation theorem, we may assume that (Xn, Yn, Zn) con-
verges almost surely to some (X,Y,Z), and therefore also in L1 since these
random variables are bounded uniformly over n. Since Yn is a continuous
function of Xn and Zn as in (7.16), we also have

Y =X + t∇ξ(Z) a.s.(7.18)

Since µn = Law(Xn) and µn converges to µ in P1(RD
+ ), we must have

µ = Law(X). We set

ν = Law(Y ) and π = Law(X,Y ) ∈ Π(µ, ν).(7.19)

By (7.11) and Fatou’s lemma (recall that (tξ)∗ ⩾ −tξ(0) = 0 and (tξ)∗ is
lower semi-continuous), we have

Tt(µ, ν) ⩽ E [(tξ)∗(Y −X)] ⩽ lim inf
n→∞

E [(tξ)∗(Yn −Xn)] = lim inf
n→∞

Tt(µn, νn).

This along with the continuity of ψ in P1(RD
+ ) in (3.14) implies that

ψ(ν) − Tt(µ, ν) ⩾ ψ(ν) −E [(tξ)∗(Y −X)]

⩾ lim inf
n→∞

ψ(νn) − Tt(µn, νn)
(7.9)(7.10)= h(t, µ)

(6.6)
⩾ ψ(ν) − Tt(µ, ν).

This together with (7.18) yields

h(t, µ) = ψ(ν) − Tt(µ, ν)(7.20)

= ψ (Law(Y )) −E [(tξ∗)(t∇ξ(Z))] .(7.21)

Step 4. We show the desired results under the additional assumption that

µ = Lq with q strictly increasing(7.22)
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in the sense that q(s) − q(s′) ∈ (0,∞)D whenever s > s′. Assume (7.22), we
want to show that there is p∗ ∈ Q∞ such that

(X,Y,Z) d= (q(U), q(U) + t∇ξ(p∗(U)), p∗(U))(7.23)

where U is uniform over [0, 1]. Due to (7.18), we only need to find the repre-
sentation for (X,Z). The assumption in (7.22) together with (7.14) and (7.15)
allow us to apply Lemma 7.4 with ϖn, Tn, ϖ substituted by Law(Xn, Zn),
∇Stχn, and Law(X,Z), respectively. Consequently, Law(X,Z) is mono-
tone. Hence, there must be an increasing path p∗ ∶ [0,1) → RD

+ such that

(X,Z) d= (q(U),p∗(U)). Since Z is bounded (as a consequence of (7.17)),
we have p⋆ ∈ Q∞ and more precisely

∣p⋆(s)∣ ⩽ 1, ∀s ∈ [0,1).(7.24)

Due to ν = Law(Y ) (see (7.19)) and (7.23), ν is a monotone measure and

has bounded support. In other words, ν = Lq+t∇ξ(p⋆) ∈ P
↑
1(R

D
+ ). In view

of the definition of h in (6.6) and (7.20), we can deduce (7.1) and that the
supremum is achieved at Lq+t∇ξ(p⋆). From the definition of θ in (1.9) and

(5.7) in Lemma 5.4, we have that for every x ∈ RD
+ ,

tθ(x) = (tξ)∗(t∇ξ(x)).(7.25)

Using (7.21), (7.23), and (7.25), we have

h(t, µ) = ψ (Lq+t∇ξ(p⋆)) − ∫ θ dLp⋆ .(7.26)

Due to (6.6) and the definition of the optimal transport problem Tt in (1.13),
we see that h(t, µ) is always an upper bound for the term in (7.2). Then, the
above display implies the equality in (7.2) and that the supremum is achieved
at p⋆. Hence, we have shown (7.1) and (7.2) under the assumption (7.22)
and the suprema are achieved at Lq+t∇ξ(p⋆) and p⋆, respectively.

Step 5. We show the results for general µ = Lq without assuming (7.22). We
employ an approximation argument. For k ∈ N, define a strictly increasing
path qk by setting qk(s) = q(s) + k−1s1 for s ∈ [0, 1), where 1 = (1, 1, . . . , 1) ∈
RD
+ consists of ones as entries. So, qk converges to q pointwise. We take

µk = Lqk ∈ P↑∞(RD
+ ) and thus µk converges weakly to µ. Let p⋆,k be the

corresponding path appearing in (7.23). Due to (7.24), (p⋆,k)k∈N is a family
of increasing paths that are uniformly bounded. By [13, Lemma 3.4], this
allows us to assume that p⋆,k converges to p⋆ ∈ Q∞ a.e. on [0, 1) after passing
to a subsequence.

Then, (7.1) and (7.2) follow from the following convergences. We have
that h(t, µk) converges to h(t, µ) as k → ∞ by Lemma 6.7. For each ν ∈
P↑∞(RD

+ ), we have Tt(µk, ν) converges to Tt(µ, ν) due to boundedness of the
measures and the weak convergence of µk. By the continuity of ψ as in (3.14),
ψ (Lqk+t∇ξ(p)) converges to ψ (Lq+t∇ξ(p)) at any p ∈ Q∞.
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Recall that, at each µk, the relevant suprema are achieved at Lqk+t∇ξ(p⋆,k)
and p⋆,k, respectively. By similar considerations, we can show that the
suprema at µ are achieved at Lq+t∇ξ(p⋆) and p⋆, respectively. □

Proposition 7.1 requires ξ to be strongly convex on RD
+ . Since this may

not necessarily always be the case, we will introduce a small perturbation of
ξ that enforces this property, and argue by continuity to obtain the main
results. For every λ ⩾ 0, we set

(7.27) ξλ(x) = ξ(x) +
λ

2
∣x∣2.

We clearly have that for every λ > 0, ξλ is strongly convex on RD
+ . Setting

(7.28) Hλ
N(σ) =HN(σ) +

√
λ
2√
N

D

∑
d=1

∑
i,j∈IN,d

Jd
ijσiσj ,

where Jd
ij are independent N(0,1) random variables that are each indepen-

dent of HN , we have that

(7.29) EHλ
N(σ)Hλ

N(σ′) = Nξλ(RN(σ,σ′)).

We let F
λ
N , gλ, and hλ denote the quantities defined in (2.14), (6.5), and

(6.6) with ξ and HN replaced by ξλ and Hλ
N therein. At λ = 0, we have ξ0 = ξ

and H0
N = HN , therefore F

0
N = FN , g0 = g, and h0 = h. We now show the

continuity of these quantities in λ.

Lemma 7.5. For every (t, µ) ∈ R+ × P1(RD
+ ), we have that the quantities

limN→+∞ F
λ
N(t, µ), gλ(t, µ), and hλ(t, µ) are continuous functions of λ ∈ R+.

Proof. As in [31, Proposition 6.1], we can differentiate F
λ
N(t, µ) with respect

to λ and use Gaussian integration by parts to observe that the deriva-
tive is bounded uniformly in N . This yields Lipschitz continuity in λ of
limN→+∞ F

λ
N(t, µ).

For every χ ∈ X, we let Sλ
t χ denote the quantity obtained in (5.1) with

ξ replaced by ξλ therein. By Lemma 5.12 and since χ∗(p) = +∞ when
p ∈ RD

+ ∖ [0,1]D, we have

Sλ
t χ(x) = sup

p∈[0,1]D
{x ⋅ p − χ∗(p) + tξλ(p)} .

This implies that

∣Sλ
t χ(x) − Sλ′

t χ(x)∣ ⩽
Dt

2
∣λ − λ′∣,

and thus, for every µ ∈ P1(RD
+ ), we have

∣∫ Sλ
t χdµ − ∫ Sλ′

t χdµ∣ ⩽
Dt

2
∣λ − λ′∣.
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The quantity gλ(t, µ) is therefore Lipschitz continuous in λ since using (6.5)
it can be written as the infimum of a family of uniformly Lipschitz functions
of λ. Finally, from Proposition 6.2 we have that hλ(t, µ) = gλ(t, µ), so
hλ(t, µ) is also Lipschitz continuous in λ. □

We have the following immediate corollary.

Corollary 7.6. Let (t, µ) ∈ R+×P↑∞(RD
+ ) and let h(t, µ) be given as in (6.6).

We have limN→∞ FN(t, µ) = h(t, µ).

Proof. Let λ > 0, since ξλ is strongly convex on RD
+ , it follows from Proposi-

tion 2.1 and (7.2) in Proposition 7.1 that

lim
N→∞

F
λ
N(t, µ) = hλ(t, µ).

We can then let λ→ 0 and use Lemma 7.5 to get the desired result. □

We can now complete the proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Let µ = Lq ∈ P↑∞(R+). Due to P↑∞(RD
+ ) ⊆ P1(RD

+ ),
the definition of h in (6.6) and (7.1) in Proposition 7.1 yield

h(t, µ) = sup
ν∈P∞(RD+ )

{ψ(ν) − Tt(µ, ν)} .(7.30)

The formula (1.14) follows from (7.30) and Corollary 7.6. The concavity of
the functional follows from Proposition 3.5 and (6.2). The last claim on the
uniqueness of maximizers that are monotone follows from Corollary 3.7. □

Proof of Theorem 1.4. This is a consequence of Corollary 7.6, the identity
h = g given in Proposition 6.2, and the expression of g in (6.5). □

Before proceeding with the proofs of Theorems 1.1 and 1.2, we record the
following result.

Proposition 7.7 (Other forms of Parisi formula). For every t ⩾ 0 and
µ = Lq ∈ P↑∞(RD

+ ), we have

lim
N→+∞

FN(t, µ) = sup
q′∈Q∞

{ψ (Lq+q′) − ∫ (tξ)∗ dLq′}(7.31)

= sup
q′′∈Q∞

{ψ (Lq′′) − ∫
1

0
(tξ)∗ (q′′(s) − q(s)) ds} .(7.32)

Proof. We denote by v(X) the variational formula in display (X) and by
vλ(X) the variational formula in display (X) where ξ is replaced by ξλ therein.
We have

v(7.2) ⩽ v(7.31) ⩽ v(7.32) ⩽ v(7.1),
where the first inequality follows from the identity in (7.25) and the last

inequality follows from ∫
1
0 (tξ)

∗ (q′ − q) ⩾ Tt(Lq,Lq′) (due to the definition
of Tt in (1.13)). We now argue that v(7.1) ⩽ v(7.2).
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For every π ∈ P(RD
+ ×RD

+ ) we have by monotone convergence

lim
λ→0
∫ (tξ∗λ)(y − x)dπ(x, y) = ∫ (tξ

∗)(y − x)dπ(x, y)

In particular, writing

vλ(7.1) = sup
π∈Π(µ,⋅)

{ψ(π2) − ∫ (tξ∗λ)(y − x)dπ(x, y)} ,

we see that vλ(7.1) is lower semi-continuous in λ as a supremum of con-
tinuous functions of λ. By Proposition 2.1 we know that for every λ ⩾ 0,
limN→∞ F

λ
N(t, µ) = vλ(7.2), so according to Lemma 7.5, vλ(7.2) is a con-

tinuous function of λ ∈ R+. From Proposition 7.1 we have for λ > 0,
vλ(7.2) = vλ(7.1). Letting λ → 0 in this we obtain v(7.1) ⩽ v(7.2). This
completes the proof since limN→∞ FN(t, µ) = v(7.2) by Proposition 2.1. □

Proof of Theorem 1.1. The formula in (1.11) is given by Proposition 2.1 at
µ = δ0. The formula (1.12) is given by (7.31) at µ = δ0. □

Proof of Theorem 1.2. We start by proving that the variational formula in
(1.12) admits a maximizer ν. According to the refined version of the Parisi
formula given in [9, Proposition 6.1], we know that the supremum in (7.2)
can be taken over p ∈ Q∞ satisfying ∣p∣L∞ ⩽ C for some fixed constant C > 0.
By [13, Lemma 3.4], for every p ∈ [1,+∞), the set of p ∈ Q∞ satisfying
∣p∣L∞ ⩽ C is compact for the convergence in Lp. Therefore, since by (2.15)
the function ψ is Lipschitz continuous with respect to the topology of L1

convergence, there exists a maximizer p ∈ Q∞ for the variational formula in
(7.2). Choosing µ = Lp and ν = ∇ξ(µ), we have that µ and ν are maximizers
of the variational formulas in (1.11) and (1.12) respectively.

Let µ, ν be maximizers of formulas (1.11) and (1.12) respectively. Recall
the expression of tθ in (7.25). By Theorem 1.3 at µ = δ0 and the simple fact
due to (1.13) that Tt(δ0, ν) = ∫ (tξ)∗ dν for any ν, we have that (t∇ξ)(µ)
and ν are maximizers of the variational formula in (1.14) at µ = δ0. The
uniqueness thus follows from the said theorem. Consequently, we also have
ν = (t∇ξ)(µ). □

We can in fact extend the statement concerning the uniqueness of Parisi
measures in the following way.

Proposition 7.8 (Uniqueness of Parisi measure II). For every t ⩾ 0, the
suprema in (7.31) and (7.32) are each achieved at exactly one path, say
q′ and q′′ respectively, and these paths satisfy q + q′ = q′′. Moreover, the
supremum in (2.20) is achieved at paths p satisfying t∇ξ(p) = q′.

Proof. For the existence of maximizers, as explained in the proof of Theo-
rem 1.2 a simple compactness and continuity argument yields the existence of
a maximizer p ∈ Q∞ for the variational formula in (7.2). Then, the suprema
in (7.31) and (7.32) are achieved at q′ = t∇ξ(p) and q′′ = q + q′ respectively.
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This verifies the existence part. For the uniqueness part, notice that it suffices
to show that for (7.32). Let q′′ be any maximizer of (7.32), and let us write
ν = Lq′′ ∈ P↑∞(RD

+ ) and F = limN→∞ FN(t, µ). Then, Law(q(U),q′′(U)) is a
coupling of (µ, ν) and we have

F = ψ (Lq′′) − ∫
1

0
(tξ)∗ (q′′(s) − q(s)) ds

(1.13)
⩽ ψ (ν) − Tt(µ, ν)

(1.14)
⩽ F.

Hence, the supremum in (1.14) is achieved at ν. By Theorem 1.3, such
ν is unique in P↑∞(RD

+ ) and thus q′′ has to be unique. Similarly if q′ is a
maximizer in (7.31), then q + q′ is a maximizer in (7.32). Thus q′ has to be
unique and satisfy q + q′ = q′′. □

8. Explicit representation in terms of martingales

The goal of this section is to prove Theorem 1.5. One ingredient of the
proof of Theorem 1.4 is a representation of the function ψ as, for every
µ ∈ P↑1(R

D
+ ),

(8.1) ψ(µ) = inf
χ∈X
{∫ χdµ − ψ∗(χ)} .

In this representation, the set X and function ψ∗ are not uniquely determined.
In order to derive Theorem 1.5, the main task compared with the proof of
Theorem 1.4 is to derive a more explicit representation of this function ψ.
To do this, we will rely heavily on ideas developed in [42], where very similar
results are proved for models with scalar spins.

We recall that we give ourselves a probability space P = (Ω,F ,P) with
associated expectation E, and (F1(t))t⩾0, . . . , (FD(t))t⩾0 an independent
family of complete filtrations over P, which each comes with an adapted
Brownian motion (B1(t))t⩾0, . . . , (BD(t))t⩾0. We denote by Mart1, . . . ,
MartD the spaces of bounded martingales over P with respect to the
filtrations (F1(t))t⩾0, . . . , (FD(t))t⩾0 respectively, with Mart = ∏D

d=1Martd.
When we want to make the dependence on the underlying probability space
explicit we write Mart(P) in place of Mart.

We recall that the functions ψd ∶ P1(R+) → R, ϕd ∶ R+ × R → R and
ϕ∗d ∶ R+ ×R→ R are defined in (2.16), (1.21), and (1.22) respectively. Since
we have assumed that πd is not a Dirac mass, it follows that for every t ⩾ 0,
ϕd(t, ⋅) is strictly convex on R. Adapting the proof of [42, Lemma 2.2], we
obtain the following explicit representation for ψd.

Proposition 8.1. For every d ∈ [D], Td ∈ R+, and νd ∈ P∞(R+) supported
in [0, Td], we have

(8.2) ψd(νd) = inf
αd∈Martd

E[ϕ∗d(Td, αd(Td)) −
√
2αd(Td) ⋅Bd(Td)

− ∫
Td

0
νd[0, t]α2

d(t)dt].
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In addition, there is a unique minimizer αd ∈Martd in (8.2) and it must
satisfy αd(t) = ∂xΦνd(t,Xd(t)) a.s. for almost every t ⩽ Td, where Xd is the
unique strong solution to

(8.3)

⎧⎪⎪⎨⎪⎪⎩

dXd(t) = 2νd[0, t]∂xΦνd(t,Xd(t))dt +
√
2dBd(t),

Xd(0) = 0.

We next recall that, for each α ∈ Mart, we have defined χα ∶ RD
+ → R

in (1.20).

Proposition 8.2. For every ν ∈ P↑∞(RD
+ ) with marginals ν1, . . . , νD and

T = (T1, . . . , TD) such that for every d ∈ [D], the measure νd is supported in
[0, Td], we have

(8.4) ψ(ν) = inf
α∈Mart

{∫ χα dν − χα(T )

+
D

∑
d=1

λ∞,dE [ϕ∗d(Td, αd(Td)) −
√
2αd(Td) ⋅Bd(Td)]}.

In addition, there is a unique minimizer α ∈ Mart in (8.4) and it must
satisfy αd(t) = ∂xΦνd(t,Xd(t)) a.s. for every d ∈ [D] and almost every t ⩽ Td,
where Xd is the solution to (8.3).

Proof. By integration by parts, we have for every d ∈ [D] that

∫
Td

0
νd[0, t]E [α2

d(t)] dt = ∫ ∫
Td

s
E [α2

d(t)] dtdνd(s),

and thus, due to (1.20),

D

∑
d=1

λ∞,d∫
Td

0
νd[0, t]E [α2

d(t)] dt = χα(T ) − ∫ χα dν.

Using this, the decomposition of ψ into ψd as in (1.8), and the formula (8.2),
we obtain (8.4). □

Given T = (T1, . . . , Td), for every α ∈Mart, we let

φ(α) = −χα(T ) +
D

∑
d=1

λ∞,dE [ϕ∗d(Td, αd(Td)) −
√
2αd(Td) ⋅Bd(Td)] ,

and

K0 = {(φ(α), (E[α2
1(t)])t⩽T1 , . . . , (E[α

2
D(t)])t⩽TD

) ∣ α ∈Mart,

E[ϕ∗d(Td, αd(Td))] < +∞}.

We also let K denote the closed convex hull of K0. Since Mart depends on
the underlying probability space P, the sets K and K0 also depend on P.
When we want to make this dependence explicit, we will write K(P) and
K0(P). For convenience we will also let KT = ∏d[0, Td].
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Proposition 8.3. For every µ ∈ P↑∞(RD
+ ) and T = (T1, . . . , TD) such that

supp(µ) + t∇ξ([0,1]D) ⊆ ∏d∈[D][0, Td], we have

(8.5) lim
N→+∞

FN(t, µ) = inf
(φ,γ)∈K

{∫ Stχγdµ − φ} ,

where χγ is given by χγ(x) = ∑D
d=1 λ∞,d ∫

xd

0 γd(s)ds.

Proof. According to Theorem 1.3, we have

lim
N→+∞

FN(t, µ) = sup
ν∈P∞(RD+ )

{ψ(ν) − Tt(µ, ν)} .

In view of the more precise statement of the Parisi formula for multi-species
spin glasses given in [9, Proposition 6.1], the supremum in the previous display
is reached at a probability measure supported on supp(µ)+ t∇ξ([0, 1]D), the
assumption on T implies

supp(µ) + t∇ξ([0,1]D) ⊆ KT .

So, the supremum in the first display of this proof can be restricted to
ν ∈ P(KT ) and thus, thanks to Proposition 8.2, we have

lim
N→+∞

FN(t, µ) = sup
ν∈P(KT )

inf
α∈Mart

{∫ χα dν − χα(T )

+
D

∑
d=1

λ∞,dE [ϕ∗d(Td, αd(Td)) −
√
2αd(Td) ⋅Bd(Td)] − Tt(µ, ν)}.

For (φ, γ) ∈K, let Gt,µ(ν;φ, γ) = ∫ ∑d λd,∞Γddν−φ−Tt(µ, ν) where we have
set Γd(x) = ∫

xd

0 γd(s)ds. The previous display can be rewritten as

lim
N→+∞

FN(t, µ) = sup
ν∈P(KT )

inf
(φ,γ)∈K0

Gt,µ(ν;φ, γ),

Since Gt,µ(ν; ⋅) is affine, we can replace K0 by K in the previous display, to
obtain

lim
N→+∞

FN(t, µ) = sup
ν∈P(KT )

inf
(φ,γ)∈K

Gt,µ(ν;φ, γ).

Observe that the function Gt,µ(ν; ⋅) is continuous on R×L1 and Gt,µ(⋅ ;φ, γ)
is lower semicontinuous with-respect to the topology of weak convergence.
In addition, Gt,µ(ν; ⋅) is convex and Gt,µ(⋅ ;φ, γ) is concave because of (6.2).
Therefore, we can apply Sion’s min-max theorem and obtain

lim
N→+∞

FN(t, µ) = inf
(φ,γ)∈K

sup
ν∈P(KT )

Gt,µ(ν;φ, γ).

From Lemma 6.4, Remark 6.5 and the fact that supp(µ)+ t∇ξ([0, 1]D) ⊆ KT ,
we have that for every (φ, γ) ∈K,

sup
ν∈P(KT )

Gt,µ(ν;φ, γ) = ∫ Stχγdµ − φ,

where χγ is given by χγ(x) = ∑D
d=1 λ∞,d ∫

xd

0 γd(s)ds. This yields (8.5). □
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Proposition 8.4. Assume that there exists a uniform random variable
U ∶P → [0, 1] that is Fd(0)-measurable for every d ∈ [D]. Then (1.23) holds
with Mart =Mart(P).

Proof. Since K0 ⊆K, Proposition 8.3 implies

(8.6) lim
N→+∞

FN(t, µ) ⩽ inf
α∈Mart(P)

{∫ Stχαdµ − φ(α)} .

So we only need to prove the converse bound. Let W denote the D-
dimensional Wiener space with the canonical random variables (W (t))t⩾0
equipped with D filtrations, each generated by a component of the canonical
random variables. Let K1(W ) be the convex hull of K0(W ). We can apply
Proposition 8.3 to the probability space W , and obtain from (8.5) that (we
can replace K(W ) by K1(W ) using a continuity argument)

lim
N→+∞

FN(t, µ) = inf
(φ,γ)∈K1(W )

{∫ Stχγdµ − φ} .

Now, let (φ, γ) ∈K1(W ). By the definition of K1(W ) as the convex hull of
K0(W ), there is an integer n ∈ N and constants c1, . . . , cn ∈ [0,1] such that

∑i ci = 1 and α(1), . . . , α(n) ∈Mart(W ) such that

φ =
n

∑
i=1
ciφ(α(i)),

γd(td) =
n

∑
i=1
ciE[(α(i)d (td))

2].

For every d ∈ [D], there is a canonical embedding from Martd(W ) to the sets
of martingales in Martd(P) that are independent of Fd(0). This is because
we can identify Wd with the Brownian motion Bd. Thus, for every i ⩽ n and

d ⩽D, we think of α
(i)
d as an element of Martd(P) that is independent of

Fd(0). Now, by the assumption on P in the statement of Proposition 8.4,
there exists a random variable I ∶P → {1, . . . , n} such that

P(I = i) = ci, ∀1 ⩽ i ⩽ n,

and such that I is Fd(0)-measurable for every d ∈ [D]. We let

βd(t) = α
(I)
d (t)

Since I is Fd(0)-measurable and α
(i)
d ∈Martd(P) is independent of Fd(0),

we have that β ∈Mart(P). Furthermore, it is easily verified that

φ = φ(β),
γd(td) = E[(βd(td))2].

From this, it follows that

∫ Stχγdµ − φ = ∫ Stχβdµ − φ(β) ⩾ inf
α∈Mart(P)

{∫ Stχαdµ − φ(α)} .
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and thus

lim
N→+∞

FN(t, µ) = inf
(φ,γ)∈K1(W )

{∫ Stχγdµ − φ}

⩾ inf
α∈Mart(P)

{∫ Stχαdµ − φ(α)} .

This along with (8.6) implies (1.23). □

Proposition 8.5. There exists a probability space P such that (1.23) holds

with Mart =Mart(P) and the infimum appearing there is achieved.

Proof. We let P be a probability space such that Proposition 8.4 holds and
let α(n) ∈Mart(P) be such that

lim
n→+∞∫ Stχα(n)dµ − φ(α

(n)) = lim
N→+∞

FN(t, µ).

Since Proposition 8.4 holds, for n large enough, in view of (1.23), we must

have E[ϕ∗d(Td, α
(n)
d (Td))] < +∞. The definition of ϕd in (1.21) and that of

ϕ∗d in (1.22) imply that, for each d ∈ [D] and for t ⩽ T , αd(t) is valued in

[−1,1] a.s. In particular, the sequence (((α(n)d (t))0⩽t⩽Td
)d∈[D])n∈N (indexed

by n) is tight. Applying Prokhorov’s theorem and Skorokhod’s representa-
tion theorem, not relabeling the extraction, we obtain a probability space
P = (Ω,F ,P) and random variables (B, (α1(t1), . . . , αD(tD))td∈[0,Td]∩Q)
such that, for every integer l ∈ N, every continuous bounded function
J ∶ R × (RD)l → R, and ti = (tid)d∈[D] ∈ ∏d∈[D][0, Td] for 1 ⩽ i ⩽ l, we
have

lim
n→+∞

EJ (B,α(n)(t1), . . . , α(n)(tl)) = EJ (B,α(t1), . . . , α(tl))

where α(n)(ti) = (α(n)d (t
i
d))d∈[D]. For td ⩽ Td, we let Fd(td) denote the

σ-algebra generated by (Bd(sd))sd∈[0,td]∩Q and (αd(sd))sd∈[0,td]∩Q. We set

αd(td) = E[αd(Td)∣Fd(td)], by construction αd ∈Martd(P) with respect to
the filtration (Fd(td))td⩽Td

. Letting n→ +∞, it can then checked as in [42,
Lemma 2.5] that

lim
N→+∞

FN(t, µ) = ∫ Stχαdµ − φ(α).

Therefore, we get

lim
N→+∞

FN(t, µ) ⩾ inf
α∈Mart(P)

{∫ Stχαdµ − φ(α)} .

Since the converse inequality holds thanks to Proposition 8.3, we obtain the
desired result. □

We are now ready to prove Theorem 1.5. Note that as a consequence of
the proof below, in addition to the announced result we will observe that a
condition similar to condition (1) in [42, Theorem 2] (i.e. that the support of
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the Parisi measure is contained in the set of maximizers of ∫
1
t (s −E[α

2
s])ds)

is satisfied by the optimal martingale α, see Remark 8.6 below.

Proof of Theorem 1.5. We let

Γ(ν,α) = ∫ χαdν − φ(α) − Tt(µ, ν).

Let P be a probability space such that Proposition 8.5 holds. This means
that we have

lim
N→+∞

FN(t, µ) = inf
α∈Mart(P)

sup
ν∈P(KT )

Γ(ν,α),

and that the infimum in the previous display is reached at some α. Now let ν
denote the unique maximizer in (1.14). As discussed at the beginning of the
proof of Proposition 8.3, thanks to [9, Proposition 6.1], we have ν ∈ P(KT ),
hence

lim
N→+∞

FN(t, µ) = sup
ν∈P(KT )

inf
α∈Mart(P)

Γ(ν,α).

In particular, for every ν ∈ P(KT ) and α ∈Mart(P), we have

Γ(ν,α) ⩾ lim
N→+∞

FN(t, µ) ⩾ Γ(ν,α).

Choosing α = α and ν = ν, we obtain limN→+∞ FN(t, µ) = Γ(ν,α). In
particular the previous display reads

Γ(ν,α) ⩾ Γ(ν,α) ⩾ Γ(ν,α).

In particular α is a minimizer of Γ(ν, ⋅), this means that α is a minimizer
in the variational formula (8.4) with ν = ν. According to the optimality
condition in Proposition 8.2, we have that α is uniquely characterized and
satisfies αd(t) = ∂xΦνd(t,Xd(t)), where Xd solves (8.3). In particular, αd

is measurable with respect to the filtration generated by Bd. This means
that α lies in the image of Mart(W ) in Mart(P) through the canonical
injection (recall that W denotes the Wiener space and that the canonical
injection is obtained by replacing the canonical Brownian motion W by B).
From this, we obtain that for any probability space P, there is a copy of α
in Mart(P) that we still denote α for convenience. Thus we have

lim
N→+∞

FN(t, µ) = ∫ Stχαdµ − φ(α) ⩾ inf
α∈Mart(P)

{∫ Stχαdµ − φ(α)} .

The other bound follows immediately from Proposition 8.3 recalling that
K0 ⊆K. □

Remark 8.6. Also observe that from Γ(ν,α) ⩾ Γ(ν,α), we have that

∫ χαdν − Tt(µ, ν) ⩾ ∫ χαdν − Tt(µ, ν).
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Taking the supremum over ν ∈ P(KT ) on the right-hand side, using Lemma 6.4
and rearranging, we obtain that

∫ χαdν − ∫ Stχαdµ ⩾ Tt(µ, ν).

This means that χα is a Kantorovich potential from µ to ν (see Definition 6.1).
This condition replaces condition (1) in [42, Theorem 2] (i.e. that the
support of the Parisi measure is contained in the set of maximizers of

∫
1
t (s −E[α

2
s])ds). □

Appendix A. Proof of the 2-dimensional inequality for ξ∗

In this section, we give a proof of Proposition 4.2.

Proof of Proposition 4.2. Let us first show that without loss of generality we
may assume that ξ is strongly convex on R2

+. Assume that Proposition 4.2
holds when ξ is further assumed to be strongly convex. Applying Proposi-
tion 4.2 to the function ξλ = ξ + λ

2 ∣ ⋅ ∣
2, we obtain for all real numbers a ⩽ a′

and b ⩽ b′,
ξ∗λ(a, b) + ξ

∗
λ(a

′, b′) ⩽ ξ∗λ(a
′, b) + ξ∗λ(a, b

′).
Thus, to show that (4.3) holds for ξ, it is enough to show that for every y ∈ R2

+,
ξ∗λ(y) → ξ∗(y) as λ→ 0. We fix y ∈ R2

+, the sequence (ξ∗λ(y))λ increases as λ
decreases to 0 and is upper-bounded by ξ∗(y), we denote by ℓ ∈ [0, ξ∗(y)]
its limit. In addition, for every x ∈ R2

+, we have ξ∗λ(y) ⩾ x ⋅ y − ξ(x) −
λ
2 ∣x∣

2

letting λ→ 0 in this inequality yields

ℓ = lim
λ→0

ξ∗λ(y) ⩾ x ⋅ y − ξ(x).

Taking the supremum over x ∈ R2
+ in the last display, we obtain ξ∗(y) ⩽ ℓ.

Thus limλ→0 ξ
∗
λ(y) = ξ

∗(y), as desired.
In view of the previous argument, we will assume that ξ is λ-strongly

convex for some λ > 0 for the rest of this proof.

Step 1. We show that for every y ∈ R2
+, the supremum in the definition of ξ∗(y)

is reached at a unique point xopt(y) ∈ R2
+ and that we have ∣xopt(y)∣ ⩽ ∣y∣/λ.

We fix y ∈ R2
+. Since ξ is strongly convex, the map x ↦ x ⋅ y − ξ(x) is

strongly concave on R2
+; so it has at most one maximizer. In addition, we

have for every x ∈ R2
+ that ξ(x) ⩾ λ

2 ∣x∣
2. Hence for ∣x∣ > 2∣y∣/λ, we have

x ⋅ y − ξ(x) ⩽ ∣x∣∣y∣ − λ
2
∣x∣2 ⩽ ∣x∣(∣y∣ − λ

2
∣x∣) < 0 ⩽ ξ∗(y).

It follows that

ξ∗(y) = sup
x∈R2+
∣x∣⩽ y

λ

{x ⋅ y − ξ(x)} .

The optimization problem in the last display has an optimizer xopt(y) ∈ R2
+

satisfying ∣xopt(y)∣ ⩽ ∣y∣/λ.
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Step 2. We show that xopt(y) = 0 if and only if y = 0.
If y = 0, the condition ∣xopt(y)∣ ⩽ ∣y∣/λ imposes xopt(y) = 0. Conversely, if

we have xopt(y) = 0, then ξ∗(y) = 0. We will show that ξ∗(y) > 0 for y ≠ 0.
Let r > 0, the function ξ is C1,1 on the ball 0 of center and radius r in R2

+. In
particular, since we have assumed that ∇ξ(0) = 0, there exists θ = θ(r) > 0
such that for every ∣x∣ < r

ξ(x) ⩽ ξ(0) + ∇ξ(0) ⋅ x + θ
2
∣x∣2 = θ

2
∣x∣2.

For ∣y∣ < λr, chosing x = εy for ε > 0 small enough, we have ∣x∣ < r and
∣x∣ ⩽ ∣y∣/λ, this yields

ξ∗(y) ⩾ x ⋅ y − ξ(x) ⩾ ε∣y∣2 − θε
2

2
∣y∣2 = ε∣y∣2 (1 − θε

2
) > 0.

Step 3. We show that ξ∗ is C1,1 on R2. In particular, ξ∗ is differentiable
on R2 and its gradient is a Lipschitz function which is itself differentiable
almost everywhere.

We know that ξ∗ is convex, so it is enough to show that the function
y ↦ ξ∗(y) − 1

2λ ∣y∣
2 is concave on R2. We have

ξ∗(y) − 1

2λ
∣y∣2 = sup

x∈R2+
{x ⋅ y − 1

2λ
∣y∣2 − ξ(x)}

= sup
x∈R2+

⎧⎪⎪⎨⎪⎪⎩
−1
2
∣ y√
λ
−
√
λx∣

2

− (ξ(x) − λ
2
∣x∣2)
⎫⎪⎪⎬⎪⎪⎭
.

Thus, y ↦ ξ∗(y) − 1
2λ ∣y∣

2 is the supremum of a jointly concave functional on

R2 ×R2
+ so it is concave on R2.

Step 4. We show that for y ∈ R2
++, xopt(y) = ∇ξ∗(y).

We fix y ∈ R2
++, we have for every y′ ∈ R2

++ and x ∈ R2
++,

ξ∗(y′) ⩾ xopt(y) ⋅ y′ − ξ(xopt(y))
= xopt(y) ⋅ y − ξ(xopt(y)) + xopt(y) ⋅ (y′ − y)
= ξ∗(y) + xopt(y) ⋅ (y′ − y).

This means that for every v ∈ R2 such that ∣v∣ = 1, we have for ε > 0 small
enough y + εv ∈ R2

++ and

ξ∗(y + εv) − ξ∗(y)
ε

⩾ xopt(y) ⋅ v.

Letting ε→ 0, we obtain

∇ξ∗(y) ⋅ v ⩾ xopt(y) ⋅ v.
Since the last display is valid for all v in the sphere of radius 1 in R2, it
imposes that ∇ξ∗(y) = xopt(y).

Step 5. We show that ∂a∂bξ
∗ ⩽ 0 almost everywhere on R2

+.
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Step 5.1. Letting V = ∇ξ(R2
++), we show that R2

++ ∖ V = Ua ∪ Ub where
Ua = {y ∈ R2

++ ∖ V ∣xopt,a = 0} and Ub = {y ∈ R2
++ ∖ V ∣xopt,b = 0} are disjoint

open sets.

Clearly Ua∪Ub ⊆ R2
++∖V . Conversely, let y ∈ R2

++∖V , and by contradiction
assume that xopt(y) ∈ R2

++. Perturbing slightly around xopt(y), we get the
first order condition and ∇ξ(xopt(y)) = y, this is a contradiction. Hence,

we have xopt,a(y) = 0 or xopt,b(y) = 0. This proves that R2
++ ∖ V = Ua ∪ Ub.

By Step 2, we must have Ua ∩Ub = ∅. Finally, let us show that Ua is open.
Given y ∈ Ua, we have xopt,a(y) = 0 and xopt,b(y) > 0. By Step 4, xopt,b(y) is
a continuous function of y so for every y′ ∈ Br(y) ⊆ R2

++ ∖ V with r > 0 small
we have xopt,b(y′) > 0. This imposes xopt,a(y′) = 0 as otherwise y′ ∈ V and
thus Br(y) ⊆ Ua. This proves that Ua is an open set and by symmetry we
also have that Ub is an open set.

Step 5.2. We show that ∂a∂bξ
∗ ⩽ 0 on V = ∇ξ(R2

++).
According to Step 3, ξ∗ is differentiable with Lipschitz gradient on R2.

According to (5.7) in Lemma 5.4, we have that for every x ∈ R2
++,

ξ∗(∇ξ(x)) = x ⋅ ∇ξ(x) − ξ(x).

Differentiating the expression in the previous display, we obtain ∇ξ∗(∇ξ(x)) =
x. Now let y ∈ V , there exists x ∈ R2

++ such that y = ∇ξ(x), and we have

∇ξ(∇ξ∗(y)) = ∇ξ(∇ξ∗(∇ξ(x))) = ∇ξ(x) = y.

Finally, since ξ is strongly convex on R2
+, the function ∇ξ is continuous and

injective on R2
+, so by invariance of domain, V is an open set. Differentiating

the last display with respect to y ∈ V , we obtain that for almost all y ∈ V ,

∇2ξ∗(y) = [∇2ξ(∇ξ∗(y))]−1.

The 2 × 2 matrix A = ∇2ξ(∇ξ∗(y)) is symmetric positive definite and has
non-negative coefficients, this is because the condition (1.3) imposes some
positivity constraint on the coefficients of the power series expansion of ξ
as explained in Remark 5.11. Since (A−1)ab = −det(A)−1Aab, we obtain that
(A−1)ab ⩽ 0, as desired.

Step 5.3. We show that ∂a∂bξ
∗ ⩽ 0 almost everywhere on Ua ∪Ub.

Let y ∈ Ua, we have xopt,a(y) = 0 and xopt,b(y) > 0, so

ξ∗(y) = sup
xb>0
{xbyb − ξ(0, xb)} .

The value of the unique optimizer in the previous display is xopt,b(y). In
particular, xopt,b(y) is independent of the value of ya and by Step 4, we have
∂bξ
∗(y) = xopt,b(y). Thus, for almost all y ∈ Ua, ∂a∂bξ

∗(y) = 0. By symmetry,
this also holds for every y ∈ Ub.

Step 5.4. We show that the boundary of V in R2
++ is a Lebesgue negligible

set.
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Let us show that the boundary of V is ∇ξ(R2
+ ∖R2

++). Since R2
+ ∖R2

++ is
Lebesgue negligible and ∇ξ is a smooth function, the desired result will follow.
Let V denote the closure of V in R2

++ and let y ∈ V . There exists a sequence
(xn)n in R2

++ such that ∇ξ(xn) → y. The sequence (∇ξ(xn))n is bounded
and ∇ξ(xn) −λxn ∈ R2

+ so the sequence (xn)n is bounded. Let x ∈ R2
+ denote

a subsequential limit of (xn)n, up to extraction we have y = limn∇ξ(xn) =
∇ξ(x). Hence V ⊆ ∇ξ(R2

+). Conversely given y ∈ ∇ξ(R2
+), for some x ∈ R2

+,
we have y = ∇ξ(x) = limn∇ξ(xa + 1

n , xb +
1
n), so y ∈ V . Thus V = ∇ξ(R2

+) and
V ∖V = ∇ξ(R2

+) ∖∇ξ(R2
++). Since ξ is assumed to be strongly convex on R2

+,
∇ξ is injective on R2

+ and we have ∇ξ(R2
+) ∖∇ξ(R2

++) = ∇ξ(R2
+ ∖R2

++). Thus
V ∖ V = ∇ξ(R2

+ ∖R2
++) as announced.

Step 6. We show that (4.3) holds when ξ is λ-strongly convex.

We let a ⩽ a′, b ⩽ b′, such that a ≠ a′ and b ≠ b′. This way a′ = a + h and
b′ = b + k for h, k ∈ R2

++. We then have

(ξ∗(a, b) − ξ∗(a′, b)) − (ξ∗(a, b′) − ξ∗(a′, b′))

= ∫
1

0
∫

1

0
hk∂a∂bξ

∗(a + th, b + sk)dsdt.

According to Step 5, the right-hand side in the previous display is the integral
of an almost everywhere nonnegative function, so it is nonnegative and

(ξ∗(a, b) − ξ∗(a′, b)) − (ξ∗(a, b′) − ξ∗(a′, b′)) ⩾ 0.
Rearranging the terms in the previous display, we obtain (4.3) when a ≠ a′
and b ≠ b′. Finally, by continuity of ξ∗, the inequality (4.3) holds even when
a = a′ or b = b′. □
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Probab. Statist., to appear.

[43] Jean-Christophe Mourrat and Dmitry Panchenko. Extending the Parisi formula along
a Hamilton-Jacobi equation. Electron. J. Probab., 25:Paper No. 23, 17, 2020.

[44] Jean-Christophe Mourrat and Hendrik Weber. Global well-posedness of the dynamic
Φ4 model in the plane. Ann. Probab., 45(4):2398–2476, 2017.

[45] Dmitry Panchenko. The Parisi ultrametricity conjecture. Ann. of Math. (2), 177(1):383–
393, 2013.

[46] Dmitry Panchenko. The Sherrington-Kirkpatrick model. Springer Monographs in
Mathematics. Springer, 2013.

[47] Dmitry Panchenko. The free energy in a multi-species Sherrington-Kirkpatrick model.
Ann. Probab., 43(6):3494–3513, 2015.

[48] Dmitry Panchenko. Free energy in the Potts spin glass. Ann. Probab., 46(2):829–864,
2018.

[49] Dmitry Panchenko. Free energy in the mixed p-spin models with vector spins. Ann.
Probab., 46(2):865–896, 2018.

[50] Giorgio Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett.,
43(23):1754, 1979.

[51] Giorgio Parisi. The order parameter for spin glasses: a function on the interval 0-1. J.
Phys. A, 13(3):1101, 1980.

[52] Giorgio Parisi. A sequence of approximated solutions to the S-K model for spin glasses.
J. Phys. A, 13(4):L115–L121, 1980.

[53] Giorgio Parisi. Order parameter for spin-glasses. Phys. Rev. Lett., 50(24):1946, 1983.
[54] Mark Sellke. Optimizing mean field spin glasses with external field. Electron. J. Probab.,

29:Paper No. 4, 47, 2024.
[55] Maurice Sion. On general minimax theorems. Pac. J. Math., 8:171–176, 1958.
[56] Eliran Subag. Following the ground states of full-RSB spherical spin glasses. Comm.

Pure Appl. Math., 74(5):1021–1044, 2021.
[57] Eliran Subag. TAP approach for multispecies spherical spin glasses II: The free energy

of the pure models. Ann. Probab., 51(3):1004–1024, 2023.
[58] Eliran Subag. TAP approach for multi-species spherical spin glasses I: General theory.

Electron. J. Probab., 30:Paper No. 87, 32, 2025.
[59] Michel Talagrand. Free energy of the spherical mean field model. Probab. Theory

Related Fields, 134(3):339–382, 2006.
[60] Michel Talagrand. The Parisi formula. Ann. of Math. (2), 163(1):221–263, 2006.
[61] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2003.


	1. Introduction
	2. Definition of the enriched free energy
	3. Properties of the enriched free energy at infinite temperature
	4. Models with two species
	5. Stability of R_+D̂-convexity under HJ semigroup
	6. Optimal transport and convex duality
	7. Proofs of the main results
	8. Explicit representation in terms of martingales
	Appendix A. Proof of the 2-dimensional inequality for xi*̂
	References

