# Aspects structurels et algorithmiques des ordres partiels sur les graphes

Soutenance de thèse

#### Jean-Florent Raymond

cotutelle entre l'Université de Varsovie (Pologne) et l'Université de Montpellier (France)

Directeurs de thèse: Marcin Kamiński (Univ. Varsovie) et Dimitrios M. Thilikos (LIRMM)

18 novembre 2016

# Strukturalne i algorytmiczne aspekty relacji zawierania się w grafach

Obrona doktorska

Jean-Florent Raymond

cotutelle pomiędzy Uniwersytet Warszawski i Uniwersytet w Montpellier

Promotorzy: Marcin Kamiński (Uniw. Warszawski) i Dimitrios M. Thilikos (LIRMM)

18 listopada 2016

# Structural and algorithmic aspects of partial orderings of graphs

PhD defense

Jean-Florent Raymond

cotutelle between University of Warsaw (Poland) and University of Montpellier (France)

Advisors: Marcin Kamiński (Univ. Warsaw) and Dimitrios M. Thilikos (LIRMM)

18th of November 2016

#### Outline

- Ordering objects
- Exclusion theorems
- Well-quasi-ordering
- The Erdős–Pósa property

#### Outline

- Ordering objects
- 2 Exclusion theorems
- Well-quasi-ordering
- 4 The Erdős–Pósa property

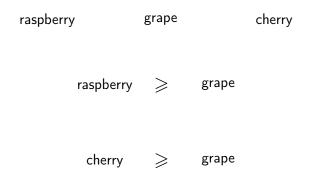
# Ordering objects

raspberry

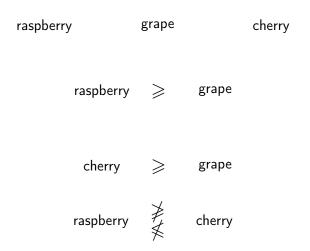
grape

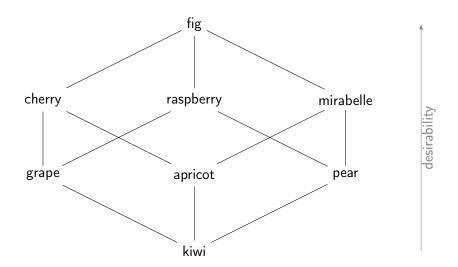
cherry

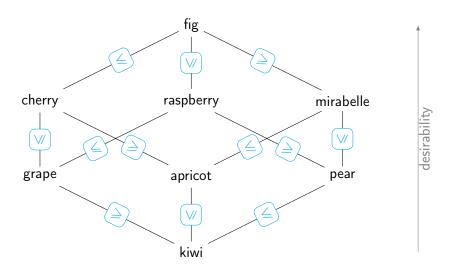
## Ordering objects

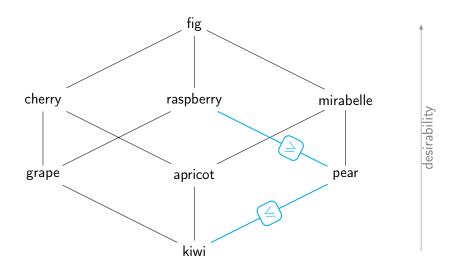


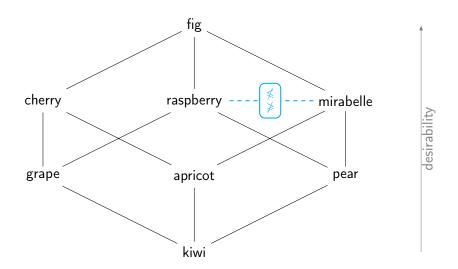
## Ordering objects



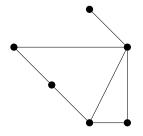








# Graphs



# Graphs



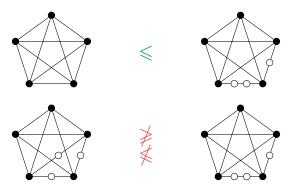
#### Subdivision partial order:

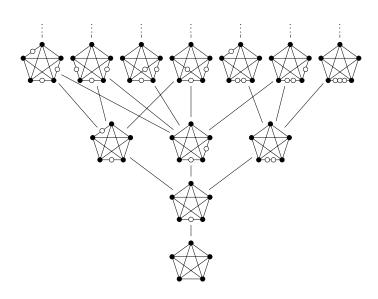


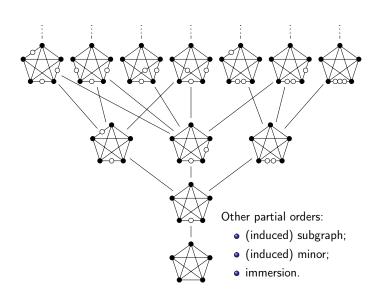




#### Subdivision partial order:





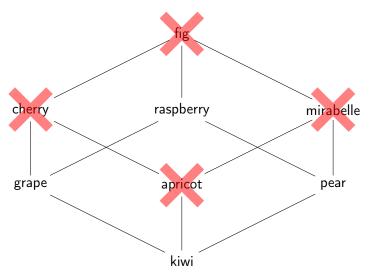


## Excluding an object

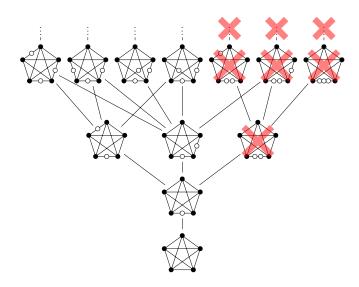
Objects excluding x: objects that are not more desirable than x.

# Excluding an object

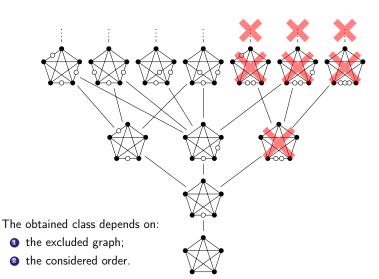
Objects excluding x: objects that are not more desirable than x.



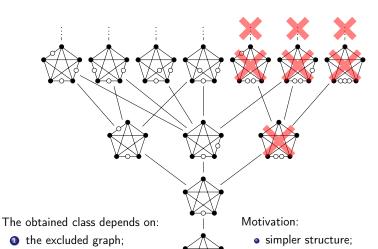
# Excluding a graph



## Excluding a graph



# Excluding a graph



the considered order.

makes some problems easier.

#### Outline

- Ordering objects
- 2 Exclusion theorems
- Well-quasi-ordering
- 4 The Erdős–Pósa property

If G excludes H for  $\leq$ , then . . .

If G excludes H for  $\prec$ , then . . .

structural description of G

bound on a parameter of G

G looks like . . .

 $f(G) \leqslant c$ 

If G excludes H for  $\prec$ , then . . .

structural description of *G* 

bound on a parameter of G

If G excludes  $\triangle$  as subdivision, then

G is a forest

$$\delta(G) \leqslant 1$$

If G excludes H for  $\leq$ , then . . .

structural description of G

bound on a parameter of G

If G excludes  $\triangle$  as subdivision, then

G is a forest

$$\delta(G) \leqslant 1$$

If G excludes  $\triangle$  as subdivision, then

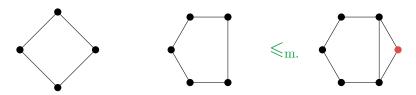
blocks of G are series-parallel

 $tw(G) \leq 2$ 

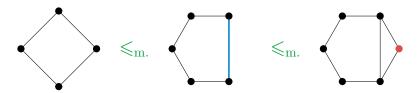
H is a minor of G if it can be obtained by deleting vertices or edges and contracting edges.



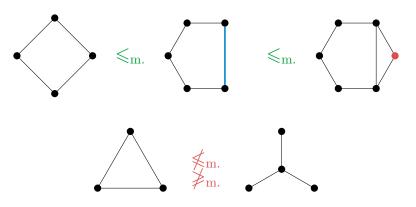
H is a *minor* of G if it can be obtained by deleting vertices or edges and contracting edges.



H is a *minor* of G if it can be obtained by deleting vertices or edges and contracting edges.



H is a *minor* of G if it can be obtained by deleting vertices or edges and contracting edges.



## Bounds on parameters

### Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, if G excludes H as minor, then  $tw(G) \leq f(||H||)$ .

## Bounds on parameters

## Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, if G excludes H as minor, then  $tw(G) \leq f(||H||)$ .

### Theorem [Chekuri and Chuzhoy, FOCS 2013]

There is a polynomial f such that, for every planar graph H, if G excludes H as minor, then  $tw(G) \leq f(||H||)$ .

<sup>a</sup>Currently:  $f(k) = O(k^{19} \text{ polylog } k)$  [Chuzhoy, STOC 2015+].

# Our bounds

| excluded pattern                    | ex.         | relation  | par.                | value of the parameter                                |
|-------------------------------------|-------------|-----------|---------------------|-------------------------------------------------------|
| wheel of order k                    | $\bigoplus$ | minor     | tw                  | $\Theta(k)$                                           |
| double wheel of order k             |             | minor     | tw                  | $O(k^2 \log^2 k)$                                     |
| $H, pw(H) \leqslant 2$              | <b>!!!</b>  | minor     | tw                  | $O\left(( H  + \ H\ )^2\right)$                       |
| yurt graph of order k               | <b>A</b>    | minor     | tw                  | $O(k^4)$                                              |
| $k \cdot \theta_r$                  | 000         | minor     | $\frac{tw}{\delta}$ | $\frac{\Theta(k \log k)}{\Theta(k)}$                  |
| edge-disj. union of $k \theta_r$ 's | W           | minor     | Δ                   | Θ(k) *                                                |
| $\kappa_k$                          |             | minor     | $\theta_r$ -girth   | $O(\log k)$ *                                         |
| H planar subcubic                   | 1111        | immersion | tcw                 | $O\left(\ H\ ^{29}\operatorname{polylog}\ H\ \right)$ |

#### Our bounds

| excluded pattern                    | ex.                         | relation  | par.                | value of the parameter                                |
|-------------------------------------|-----------------------------|-----------|---------------------|-------------------------------------------------------|
| wheel of order k                    | $\odot$                     | minor     | tw                  | $\Theta(k)$                                           |
| double wheel of order k             |                             | minor     | tw                  | $O(k^2 \log^2 k)$                                     |
| $H, pw(H) \leqslant 2$              | <b>III</b>                  | minor     | tw                  | $O\left(( H  +   H  )^2\right)$                       |
| yurt graph of order <i>k</i>        | <b>#</b>                    | minor     | tw                  | $O(k^4)$                                              |
| $k \cdot \theta_r$                  | ${\tt O}  {\tt O}  {\tt O}$ | minor     | $\frac{tw}{\delta}$ | $\frac{\Theta(k \log k)}{\Theta(k)}$                  |
| edge-disj. union of $k \theta_r$ 's | W                           | minor     | Δ                   | ⊖( <i>k</i> ) *                                       |
| $\kappa_k$                          |                             | minor     | $\theta_r$ -girth   | $O(\log k)$ *                                         |
| H planar subcubic                   | 1111                        | immersion | tcw                 | $O\left(\ H\ ^{29}\operatorname{polylog}\ H\ \right)$ |

Improves the general Grid Exclusion Theorem for specific patterns.

#### Our bounds

| excluded pattern                    | ex.                         | relation  | par.                | value of the parameter                                |
|-------------------------------------|-----------------------------|-----------|---------------------|-------------------------------------------------------|
| wheel of order k                    | $\odot$                     | minor     | tw                  | $\Theta(k)$                                           |
| double wheel of order k             |                             | minor     | tw                  | $O(k^2 \log^2 k)$                                     |
| $H, pw(H) \leqslant 2$              | H                           | minor     | tw                  | $O\left(( H +\ H\ )^2\right)$                         |
| yurt graph of order <i>k</i>        | $\triangle$                 | minor     | tw                  | $O(k^4)$                                              |
| $k \cdot \theta_r$                  | ${\tt O}  {\tt O}  {\tt O}$ | minor     | $\frac{tw}{\delta}$ | $\frac{\Theta(k \log k)}{\Theta(k)}$                  |
| edge-disj. union of $k \theta_r$ 's | W                           | minor     | Δ                   | Θ(k) *                                                |
| $\kappa_k$                          |                             | minor     | $\theta_r$ -girth   | $O(\log k)$ *                                         |
| H planar subcubic                   | 1111                        | immersion | tcw                 | $O\left(\ H\ ^{29}\operatorname{polylog}\ H\ \right)$ |

Used in the proof of the Erdős–Pósa property of  $\theta_r$ -minors.

### Our bounds

| excluded pattern                    | ex.                         | relation  | par.                | value of the parameter                                |
|-------------------------------------|-----------------------------|-----------|---------------------|-------------------------------------------------------|
| wheel of order k                    | $\bigoplus$                 | minor     | tw                  | $\Theta(k)$                                           |
| double wheel of order k             |                             | minor     | tw                  | $O(k^2 \log^2 k)$                                     |
| $H, \mathbf{pw}(H) \leqslant 2$     | <b>III</b>                  | minor     | tw                  | $O\left(( H  + \ H\ )^2\right)$                       |
| yurt graph of order <i>k</i>        | <b></b>                     | minor     | tw                  | $O(k^4)$                                              |
| $k \cdot \theta_r$                  | ${\tt Q}  {\tt Q}  {\tt Q}$ | minor     | $\frac{tw}{\delta}$ | $\frac{\Theta(k \log k)}{\Theta(k)}$                  |
| edge-disj. union of $k \theta_r$ 's | W                           | minor     | Δ                   | ⊖( <i>k</i> ) *                                       |
| $K_k$                               |                             | minor     | $\theta_r$ -girth   | $O(\log k)$ *                                         |
| H planar subcubic                   | 1111                        | immersion | tcw                 | $O\left(\ H\ ^{29}\operatorname{polylog}\ H\ \right)$ |

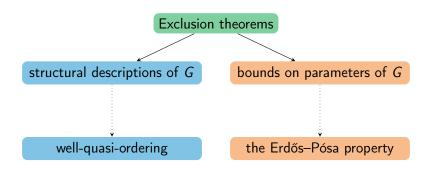
General bound extending a result of [Kühn and Osthus, Random Structures & Algorithms 2003].

### Our bounds

| excluded pattern                    | ex.                         | relation  | par.                | value of the parameter                                |
|-------------------------------------|-----------------------------|-----------|---------------------|-------------------------------------------------------|
| wheel of order k                    | $\odot$                     | minor     | tw                  | $\Theta(k)$                                           |
| double wheel of order k             |                             | minor     | tw                  | $O(k^2 \log^2 k)$                                     |
| $H, pw(H) \leqslant 2$              | H                           | minor     | tw                  | $O\left(( H  +   H  )^2\right)$                       |
| yurt graph of order <i>k</i>        | <b>#</b>                    | minor     | tw                  | $O(k^4)$                                              |
| $k \cdot \theta_r$                  | ${\tt Q}  {\tt Q}  {\tt Q}$ | minor     | $\frac{tw}{\delta}$ | $\frac{\Theta(k \log k)}{\Theta(k)}$                  |
| edge-disj. union of $k \theta_r$ 's | W                           | minor     | Δ                   | Θ(k) *                                                |
| $\kappa_k$                          |                             | minor     | $\theta_r$ -girth   | $O(\log k)$ *                                         |
| H planar subcubic                   |                             | immersion | tcw                 | $O\left(\ H\ ^{29}\operatorname{polylog}\ H\ \right)$ |

Most general pattern for immersions and **tcw** (relies on the results of [Wollan, JCTB 2015]).

### Applications of exclusion theorems



#### Outline

- Ordering objects
- 2 Exclusion theorems
- Well-quasi-ordering
- 4 The Erdős–Pósa property

Well order: total order where

infinite decreasing sequences are not allowed



Well-quasi-order: partial order where

infinite decreasing sequences are not allowed



• infinite collections of incomparable elements are not allowed



#### Well-quasi-order: partial order where

infinite decreasing sequences are not allowed



- ⇒ every set has minimal elements
- infinite collections of incomparable elements are not allowed



#### Well-quasi-order: partial order where

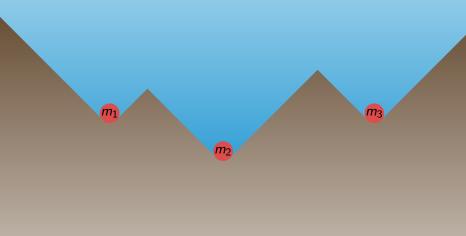
infinite decreasing sequences are not allowed



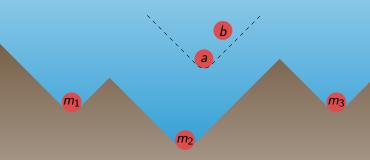
- ⇒ every set has minimal elements
- infinite collections of incomparable elements are not allowed

⇒ every set has finitely many minimal elements

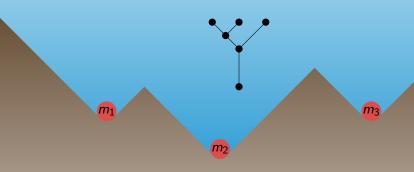
Recall: in a wqo, every set has finitely many minimal elements



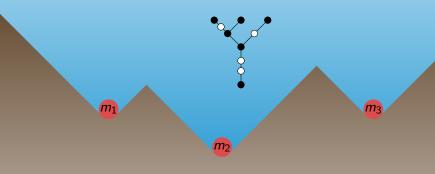
Recall: in a wgo, every set has finitely many minimal elements If *U* is upward closed:



Recall: in a wgo, every set has finitely many minimal elements If *U* is upward closed:

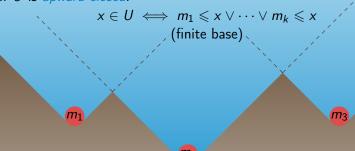


Recall: in a wgo, every set has finitely many minimal elements If *U* is upward closed:



Recall: in a wqo, every set has finitely many minimal elements

If *U* is upward closed:



Recall: in a wgo, every set has finitely many minimal elements If *U* is upward closed:

$$x \in U \iff m_1 \leqslant x \lor \cdots \lor m_k \leqslant x$$
 (finite base)

Membership testing can be done in a finite number of checks.



Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

### Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

#### **Folklore**

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor;
- topological minor.

### Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

#### **Folklore**

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor;
- topological minor.

What about classes excluding a graph?

### Theorem Robertson and Seymour, JCTB 2004 and JCTB 2010

The minor and the immersion relations are well-quasi-orders of graphs.

#### **Folklore**

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor:
- topological minor.

What about classes excluding a graph? What is the dichotomy?

# Graph exclusion and well-quasi-ordering

### Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

$$H \leqslant_{\text{i.sg.}} \bullet - \bullet - \bullet$$
.

# Graph exclusion and well-quasi-ordering

### Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wgo by induced subgraphs iff

$$H \leqslant_{\mathrm{i.sg.}} \bullet - \bullet - \bullet$$
.

### Theorem [Ding, JGT 1992]

Graphs excluding H as subgraph are wgo by subgraphs iff

$$H \leqslant_{\text{sg.}} \bullet - \cdot \cdot \cdot - \bullet$$
.

### Theorem (Liu and Thomas, 2013)

Graphs excluding H as topological minor are wgo by topological minors iff

$$H \leq_{\text{t.m.}} \bullet \circ \circ \circ \circ$$
.

# Induced minors and well-quasi-ordering

# Theorem [Thomas, JCTB 1985]

Graphs excluding 🛕 as induced minor are wqo by induced minors.

# Induced minors and well-quasi-ordering

# Theorem [Thomas, JCTB 1985]

Graphs excluding A as induced minor are wgo by induced minors.

### Theorem (Błasiok, Kamiński, R., Trunck, 2015)

Graphs excluding H as induced minor are wgo by induced minors iff

$$H \leqslant_{i.m.}$$
 or  $H \leqslant_{i.m.}$ 



### Induced minors and well-quasi-ordering

# Theorem [Thomas, JCTB 1985]

Graphs excluding A as induced minor are wgo by induced minors.

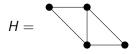
### Theorem (Błasiok, Kamiński, R., Trunck, 2015)

Graphs excluding H as induced minor are wgo by induced minors iff

We also obtained similar dichotomies for contractions of graphs and multigraphs.

### Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.



#### Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

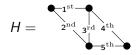
$$H = 2^{\text{nd}} 3^{\text{rd}} 4^{\text{th}}$$

choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

$$\mathtt{enc}\left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) = \left( \begin{smallmatrix} 0 \\ 2 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$$

### Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.



choose an encoding of graphs as simple objects e.g. # of subdivisions for each edge, in some chosen order;

$$\mathtt{enc}\left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) = \left( \begin{smallmatrix} 0 \\ 2 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$$

2 choose an order on encodings s.t.  $enc(G) \leq enc(G') \Rightarrow G \prec G'$ e.g. the product order,  $(2, 1, 0, 3, 1) \leq (5, 1, 2, 4, 1)$ 

### Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$H = 2^{\text{nd}} 3^{\text{rd}} 4^{\text{th}}$$

choose an encoding of graphs as simple objects e.g. # of subdivisions for each edge, in some chosen order;

$$\mathtt{enc}\left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) = \left( \begin{smallmatrix} 0 \\ 2 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$$

- 2 choose an order on encodings s.t.  $enc(G) \leq enc(G') \Rightarrow G \leq G'$ e.g. the product order,  $(2, 1, 0, 3, 1) \leq (5, 1, 2, 4, 1)$
- 3 show that encodings are well-quasi-ordered by this order;

#### Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$H = 2^{\text{nd}} 3^{\text{rd}} 4^{\text{th}}$$

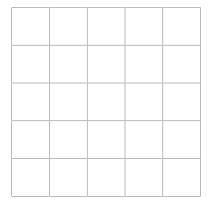
choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

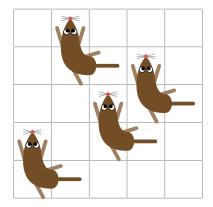
$$\mathtt{enc}\left( \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right) = \left( \begin{matrix} 0,2,1,1,0 \end{matrix} \right)$$

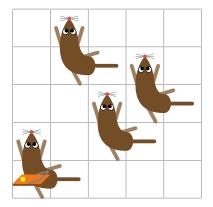
- ② choose an order on encodings s.t.  $enc(G) \leq enc(G') \Rightarrow G \leq G'$  e.g. the product order,  $(2, 1, 0, 3, 1) \leq (5, 1, 2, 4, 1)$
- show that encodings are well-quasi-ordered by this order;
- that's all! antichain  $\{G_1, G_2, \ldots\} \Rightarrow$  antichain  $\{\operatorname{enc}(G_1), \operatorname{enc}(G_2), \ldots\}$

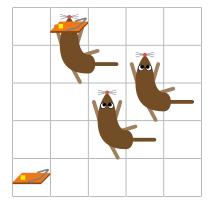
#### Outline

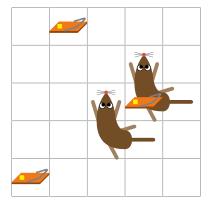
- Ordering objects
- 2 Exclusion theorems
- Well-quasi-ordering
- 4 The Erdős–Pósa property

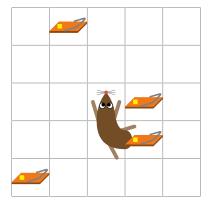


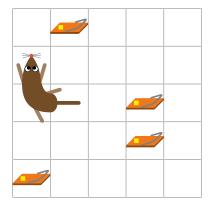


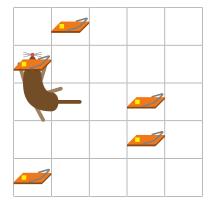


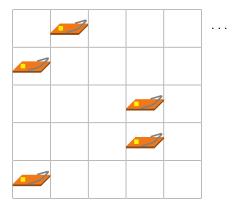


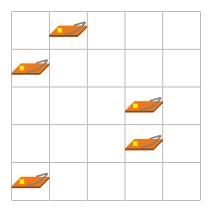




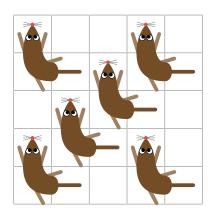






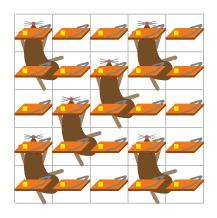


How many traps are needed?



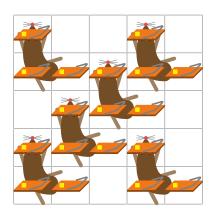
How many traps are needed?

τ ≥ 6



How many traps are needed?

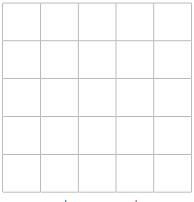
- τ ≥ 6
- $\tau \leq 25$  (size of the garden)

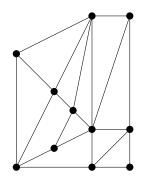


How many traps are needed?

- τ ≥ 6
- $\tau \leqslant 25$  (size of the garden)
- $\tau \leqslant 3 \times \text{max.}$  number of rats

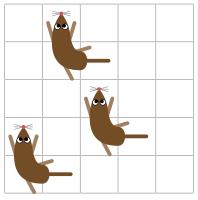
# Hunting graphs within graphs

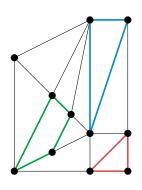




 $garden \leftrightarrow graph$ 

# Hunting graphs within graphs

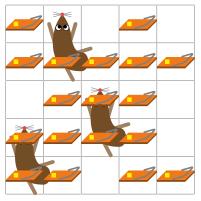


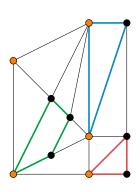


garden ↔ graph

 $\mathsf{rats} \leftrightarrow \mathsf{disjoint} \ \mathsf{subgraphs} \ \mathsf{of} \ \mathsf{a} \ \mathsf{given} \ \mathsf{type} \ \mathsf{(here: cycles)}$ 

# Hunting graphs within graphs





garden ↔ graph

rats ↔ disjoint subgraphs of a given type (here: cycles)

traps ↔ vertices covering all these subgraphs (cover)

## The Erdős–Pósa property

#### Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most  $ck \log k$  (for some c).

## The Erdős–Pósa property

#### Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most  $ck \log k$  (for some c).

If such a theorem holds for a class  $\mathcal{H}$  (instead of cycles), we say that  $\mathcal{H}$  has the Erdős–Pósa property.

# The Erdős–Pósa property

#### Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most  $ck \log k$  (for some c).

If such a theorem holds for a class  $\mathcal{H}$  (instead of cycles), we say that  $\mathcal{H}$  has the Erdős–Pósa property.

## Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, for k the maximum number of disjoint H-minors in a graph, the minimum number of vertices covering all H-minors is at most f(k).

# The edge-Erdős–Pósa property

## Edge version of the Erdős-Pósa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the minimum number of edges covering all cycles is  $\leqslant ck \log k$  (for some c).



# The edge-Erdős–Pósa property

## Edge version of the Erdős-Pósa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the minimum number of edges covering all cycles is  $\leq ck \log k$  (for some c).



## Theorem (Giannopoulou, Kwon, R., Thilikos, 2016)

There is a polynomial f such that, for every planar subcubic graph H, for k the maximum number of edge-disjoint H-immersions in a graph, the minimum number of edges covering all H-immersions is  $\leq f(k)$ .

# Three ways to the edge-Erdős-Pósa property

## Typical statement

There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

# Three ways to the edge-Erdős–Pósa property

## Typical statement

There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

G excludes (k+1)  $\mathcal{H}$ -subgraphs  $\rightarrow$  exclusion theorem

# Three ways to the edge-Erdős–Pósa property

## Typical statement

There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

G excludes (k+1)  $\mathcal{H}$ -subgraphs  $\rightarrow$  exclusion theorem We then used the three following techniques:

## Three ways to the edge-Erdős–Pósa property

## Typical statement

There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

G excludes (k+1)  $\mathcal{H}$ -subgraphs  $\rightarrow$  exclusion theorem We then used the three following techniques:

construct a small cover with edges from a small cover with vertices (from the vertices to the edges);

# Three ways to the edge-Erdős-Pósa property

## Typical statement

There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

G excludes (k+1)  $\mathcal{H}$ -subgraphs  $\rightarrow$  exclusion theorem We then used the three following techniques:

- construct a small cover with edges from a small cover with vertices (from the vertices to the edges);
- bound a structural parameter that provides small edge-separators (tree-partition width, tree-cut width, ...);

# Three ways to the edge-Erdős-Pósa property

## Typical statement

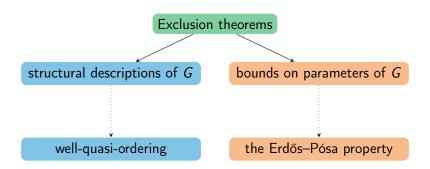
There is a function f such that.

for k the maximum number of edge-disjoint  $\mathcal{H}$ -subgraphs in a graph, the minimum number of edges covering all  $\mathcal{H}$ -subgraphs is  $\leq f(k)$ .

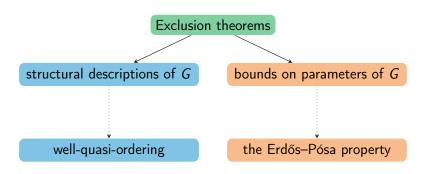
G excludes (k+1)  $\mathcal{H}$ -subgraphs  $\rightarrow$  exclusion theorem We then used the three following techniques:

- construct a small cover with edges from a small cover with vertices (from the vertices to the edges);
- bound a structural parameter that provides small edge-separators (tree-partition width, tree-cut width, ...);
- Sound a girth-like parameter and construct step-by-step a small cover with edges.

## Summary



## Summary



Three directions for further research:

- graph modification problems;
- obstructions;
- directed graphs.

#### Not in this talk

- decomposition theorems when excluding some induced minor with Trunck and Kamiński;
- well-quasi-ordering and contraction, with Trunck and Kamiński;
- algorithms for packing and covering  $\theta_r$ -minors, with Chatzidimitriou, Sau, Thilikos;
- more on the Erdős–Pósa property ( $\theta_r$ -minors and girth, vertex version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;
- kernels for cycle packing problems, with Atminas and Kamiński;
- on the Erdős–Pósa property for digraphs;
- bounding the size of obstructions for bounded cutwidth, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;
- algorithms for edge-deletion to immersion-closed classes, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

## Not in this talk

- decomposition theorems when excluding some induced minor with Trunck and Kamiński.
- well-quasi-ordering and contraction, with Trunck and Kamiński;
- algorithms for packing and covering  $\theta_r$ -minors, with Chatzidimitriou, Sau. Thilikos:
- more on the Erdős-Pósa property ( $\theta_r$ -minors and girth, vertex version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;
- kernels for cycle packing problems, with Atminas and Kamiński;
- on the Erdős–Pósa property for digraphs;
- bounding the size of obstructions for bounded cutwidth, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;
- algorithms for edge-deletion to immersion-closed classes, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

#### Merci ! Dziękuję! Thank you!