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Ordering objects

raspberry grape cherry

raspberry grape>

cherry grape>

raspberry cherry�
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Graphs
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Ordering graphs

Subdivision partial order:
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Ordering graphs

...
...

...
...

...
...

...

Other partial orders:
(induced) subgraph;
(induced) minor;
immersion.
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Excluding an object

Objects excluding x : objects that are not more desirable than x .
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Excluding a graph

...
...

...
...

...
...

...

The obtained class depends on:
1 the excluded graph;
2 the considered order.

Motivation:
simpler structure;
makes some problems easier.
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Exclusion theorems

If G excludes H for �, then . . .

structural description of G bound on a parameter of G

G looks like . . . f(G ) 6 c
If G excludes as subdivision, then

G is a forest δ(G ) 6 1

If G excludes as subdivision, then

blocks of G are series-parallel tw(G ) 6 2
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The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and
contracting edges.

6m.


m.
�m.
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Bounds on parameters

Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]
There is a function f such that, for every planar graph H,
if G excludes H as minor, then tw(G ) 6 f (‖H‖).

Theorem [Chekuri and Chuzhoy, FOCS 2013]
There is a polynomiala f such that, for every planar graph H,
if G excludes H as minor, then tw(G ) 6 f (‖H‖).

aCurrently: f (k) = O(k19 polylog k) [Chuzhoy, STOC 2015+].
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Our bounds

excluded pattern ex. relation par. value of the parameter

wheel of order k minor tw Θ(k)

double wheel of order k minor tw O(k2 log2 k)

H, pw(H) 6 2 minor tw O
(
(|H|+ ‖H‖)2)

yurt graph of order k minor tw O(k4)

k · θr minor
tw Θ(k log k)
δ Θ(k)

edge-disj. union of k θr ’s minor ∆ Θ(k) ?

Kk minor θr -girth O(log k) ?

H planar subcubic immersion tcw O
(
‖H‖29 polylog ‖H‖

)
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Kk minor θr -girth O(log k) ?

H planar subcubic immersion tcw O
(
‖H‖29 polylog ‖H‖

)
Improves the general Grid Exclusion Theorem for specific patterns.
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excluded pattern ex. relation par. value of the parameter
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edge-disj. union of k θr ’s minor ∆ Θ(k) ?

Kk minor θr -girth O(log k) ?

H planar subcubic immersion tcw O
(
‖H‖29 polylog ‖H‖

)
Used in the proof of the Erdős–Pósa property of θr -minors.
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Our bounds

excluded pattern ex. relation par. value of the parameter

wheel of order k minor tw Θ(k)

double wheel of order k minor tw O(k2 log2 k)
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k · θr minor
tw Θ(k log k)
δ Θ(k)

edge-disj. union of k θr ’s minor ∆ Θ(k) ?

Kk minor θr -girth O(log k) ?

H planar subcubic immersion tcw O
(
‖H‖29 polylog ‖H‖

)
General bound extending a result of [Kühn and Osthus, Random
Structures & Algorithms 2003].
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Our bounds

excluded pattern ex. relation par. value of the parameter

wheel of order k minor tw Θ(k)

double wheel of order k minor tw O(k2 log2 k)
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k · θr minor
tw Θ(k log k)
δ Θ(k)

edge-disj. union of k θr ’s minor ∆ Θ(k) ?

Kk minor θr -girth O(log k) ?

H planar subcubic immersion tcw O
(
‖H‖29 polylog ‖H‖

)
Most general pattern for immersions and tcw
(relies on the results of [Wollan, JCTB 2015]).
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Applications of exclusion theorems

Exclusion theorems

structural descriptions of G bounds on parameters of G

well-quasi-ordering the Erdős–Pósa property
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Well-quasi-ordering

Well order: total order where
infinite decreasing sequences are not allowed

. . .

⇒ every set has minimal elements
infinite collections of incomparable elements are not allowed

. . .

(antichain)

⇒ every set has finitely many minimal elements
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Why do we like well-quasi-orders?

m1

m2

m3

Recall: in a wqo, every set has finitely many minimal elements
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Why do we like well-quasi-orders?

m1

m2

m3

Recall: in a wqo, every set has finitely many minimal elements

a

b

If U is upward closed:
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Why do we like well-quasi-orders?

m1

m2

m3

Recall: in a wqo, every set has finitely many minimal elements

If U is upward closed:
x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)
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Why do we like well-quasi-orders?

m1

m2

m3

Recall: in a wqo, every set has finitely many minimal elements

If U is upward closed:
x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.
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Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]
The minor and the immersion relations are well-quasi-orders of graphs.

Folklore
The following relations are not well-quasi-orders of graphs:

subgraph;
induced subgraph;
induced minor;
topological minor.

What about classes excluding a graph? What is the dichotomy?
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Graph exclusion and well-quasi-ordering

Theorem [Damaschke, JGT 1990]
Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

H 6i.sg. .

Theorem [Ding, JGT 1992]
Graphs excluding H as subgraph are wqo by subgraphs iff

H 6sg. · · · .

Theorem (Liu and Thomas, 2013)
Graphs excluding H as topological minor are wqo by topological minors iff

H 6t.m. · · · .
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Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding as induced minor are wqo by induced minors.

Theorem (Błasiok, Kamiński, R., Trunck, 2015)
Graphs excluding H as induced minor are wqo by induced minors iff

H 6i.m. or H 6i.m. .

We also obtained similar dichotomies for contractions of graphs and
multigraphs.
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From structure to well-quasi-ordering

Toy example
Subdivisions of H are well-quasi-ordered by the subdivision order.

H =

1 choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

enc
( )

= (0, 2, 1, 1, 0)

2 choose an order on encodings s.t. enc(G ) 6 enc(G ′)⇒ G �G ′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are well-quasi-ordered by this order;
4 that’s all!

antichain {G1,G2, . . .} ⇒ antichain {enc(G1), enc(G2), . . .}
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Hunting rats

How many traps are needed?

τ > 6
τ 6 25 (size of the garden)
τ 6 3×max. number of rats
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Hunting graphs within graphs

garden ↔ graph

rats ↔ disjoint subgraphs of a given type (here: cycles)
traps ↔ vertices covering all these subgraphs (cover)
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The Erdős–Pósa property

Erdős-Pósa Theorem, 1965
For k the maximum number of disjoint cycles in a graph, the minimum
number of vertices covering all cycles is at most ck log k (for some c).
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For k the maximum number of disjoint cycles in a graph, the minimum
number of vertices covering all cycles is at most ck log k (for some c).

If such a theorem holds for a class H (instead of cycles), we say that H has
the Erdős–Pósa property.

Theorem [Robertson and Seymour, JCTB 1986]
There is a function f such that, for every planar graph H,
for k the maximum number of disjoint H-minors in a graph, the minimum
number of vertices covering all H-minors is at most f (k).
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The edge-Erdős–Pósa property

Edge version of the Erdős-Pósa Theorem, 1962
For k the maximum number of edge-disjoint cycles in a graph, the
minimum number of edges covering all cycles is 6 ck log k (for some c).

3 7
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Edge version of the Erdős-Pósa Theorem, 1962
For k the maximum number of edge-disjoint cycles in a graph, the
minimum number of edges covering all cycles is 6 ck log k (for some c).

3 7

Theorem (Giannopoulou, Kwon, R., Thilikos, 2016)
There is a polynomial f such that, for every planar subcubic graph H,
for k the maximum number of edge-disjoint H-immersions in a graph, the
minimum number of edges covering all H-immersions is 6 f (k).
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Three ways to the edge-Erdős–Pósa property

Typical statement
There is a function f such that,
for k the maximum number of edge-disjoint H-subgraphs in a graph, the
minimum number of edges covering all H-subgraphs is 6 f (k).

G excludes (k + 1) H-subgraphs → exclusion theorem
We then used the three following techniques:

1 construct a small cover with edges from a small cover with vertices
(from the vertices to the edges);

2 bound a structural parameter that provides small edge-separators
(tree-partition width, tree-cut width, . . . );

3 bound a girth-like parameter and construct step-by-step a small cover
with edges.
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Summary

Exclusion theorems

structural descriptions of G bounds on parameters of G

well-quasi-ordering the Erdős–Pósa property

Three directions for further research:
graph modification problems;
obstructions;
directed graphs.
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Not in this talk

decomposition theorems when excluding some induced minor with
Trunck and Kamiński;
well-quasi-ordering and contraction, with Trunck and Kamiński;
algorithms for packing and covering θr -minors, with Chatzidimitriou,
Sau, Thilikos;
more on the Erdős–Pósa property (θr -minors and girth, vertex
version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;

kernels for cycle packing problems, with Atminas and Kamiński;
on the Erdős–Pósa property for digraphs;
bounding the size of obstructions for bounded cutwidth, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;
algorithms for edge-deletion to immersion-closed classes, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

Dziękuję! Thank you! Merci !
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