Aspects structurels et algorithmiques des ordres partiels sur les graphes

Soutenance de thèse

Jean-Florent Raymond
cotutelle entre l'Université de Varsovie (Pologne) et l'Université de Montpellier (France) Directeurs de thèse: Marcin Kamiński (Univ. Varsovie) et Dimitrios M. Thilikos (LIRMM)

18 novembre 2016

Strukturalne i algorytmiczne aspekty relacji zawierania się w grafach

 Obrona doktorska

 Obrona doktorska}

Jean-Florent Raymond

cotutelle pomiędzy Uniwersytet Warszawski i Uniwersytet w Montpellier Promotorzy: Marcin Kamiński (Uniw. Warszawski) i Dimitrios M. Thilikos (LIRMM)

18 listopada 2016

Structural and algorithmic aspects of partial orderings of graphs
 PhD defense

Jean-Florent Raymond

cotutelle between University of Warsaw (Poland) and University of Montpellier (France)
Advisors: Marcin Kamiński (Univ. Warsaw) and Dimitrios M. Thilikos (LIRMM)
$18^{\text {th }}$ of November 2016

Outline

(1) Ordering objects

(2) Exclusion theorems
(3) Well-quasi-ordering
(4) The Erdős-Pósa property

Outline

(1) Ordering objects

(2) Exclusion theorems

(3) Well-quasi-ordering

4 The Erdős-Pósa property

Ordering objects

raspberry
grape
cherry

Ordering objects

raspberry
grape
raspberry
\geqslant
grape
cherry
grape

cherry

Ordering objects

raspberry	grape		cherry
raspberry	\geqslant	grape	
cherry	\geqslant	grape	
raspberry	$\not \not \neq$	cherry	

Ordering fruits

Ordering fruits

Ordering fruits

Ordering fruits

Graphs

Graphs

Gdańsk

Ordering graphs

Subdivision partial order:

Ordering graphs

Subdivision partial order:

Ordering graphs

Ordering graphs

Excluding an object

Objects excluding x : objects that are not more desirable than x.

Excluding an object

Objects excluding x : objects that are not more desirable than x.

Excluding a graph

Excluding a graph

Excluding a graph

The obtained class depends on:
(1) the excluded graph;
(3) the considered order.

Motivation:

- simpler structure;
- makes some problems easier.

Outline

(1) Ordering objects

(2) Exclusion theorems

(3) Well-quasi-ordering

4 The Erdős-Pósa property

Exclusion theorems

If G excludes H for \preceq, then

Exclusion theorems

If G excludes H for \preceq, then

structural description of G

G looks like ...
bound on a parameter of G

$$
f(G) \leqslant c
$$

Exclusion theorems

If G excludes H for \preceq, then ...

If G excludes $₫$ as subdivision, then

G is a forest

$$
\delta(G) \leqslant 1
$$

Exclusion theorems

If G excludes H for \preceq, then ...
structural description of G
bound on a parameter of G

If G excludes as subdivision, then

G is a forest

$$
\delta(G) \leqslant 1
$$

If G excludes as subdivision, then
blocks of G are series-parallel

$$
\operatorname{tw}(G) \leqslant 2
$$

The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and contracting edges.

The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and contracting edges.

The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and contracting edges.

The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and contracting edges.

Bounds on parameters

Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, if G excludes H as minor, then $\operatorname{tw}(G) \leqslant f(\|H\|)$.

Bounds on parameters

Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, if G excludes H as minor, then $\operatorname{tw}(G) \leqslant f(\|H\|)$.

Theorem [Chekuri and Chuzhoy, FOCS 2013]

There is a polynomial ${ }^{\text {a }} f$ such that, for every planar graph H, if G excludes H as minor, then $\operatorname{tw}(G) \leqslant f(\|H\|)$.
${ }^{2}$ Currently: $f(k)=O\left(k^{19}\right.$ polylog $\left.k\right)$ [Chuzhoy, STOC 2015+].

Our bounds

excluded pattern	ex.	relation	par.	value of the parameter				
wheel of order k	$\$$	minor	tw	$\Theta(k)$				
double wheel of order k	(2	minor	tw	$O\left(k^{2} \log ^{2} k\right)$				
$H, \mathbf{p w}(H) \leqslant 2$: $\because: \%$	minor	tw	$O\left((\|H\|+\\|H\\|)^{2}\right)$				
yurt graph of order k	\therefore :	minor	tw	$O\left(k^{4}\right)$				
$k \cdot \theta_{r}$	88%	minor	tw	$\Theta(k \log k)$				
			δ	$\Theta(k)$				
edge-disj. union of $k \theta_{r}$'s	0	minor	Δ	$\Theta(k)$				
K_{k}	*	minor	θ_{r}-girth	$O(\log k)$				
H planar subcubic	:\%:9	immersion	tcw	$O\left(\\|H\\|^{29}\right.$ polylog $\left.\\|H\\|\right)$				

Our bounds

excluded pattern	ex.	relation	par.	value of the parameter			
wheel of order k	$\%$	minor	tw	$\Theta(k)$			
double wheel of order k		minor	tw	$O\left(k^{2} \log ^{2} k\right)$			
$H, \operatorname{pw}(H) \leqslant 2$!:	minor	tw	$O\left((\|H\|+\\|H\\|)^{2}\right)$			
yurt graph of order k	\because	minor	tw	$O\left(k^{4}\right)$			
$k \cdot \theta_{r}$	88.	minor	tw	$\Theta(k \log k)$			
			δ	$\Theta(k)$			
edge-disj. union of $k \theta_{r}$'s	D80	minor	Δ	$\Theta(k)$			
K_{k}	∞	minor	θ_{r}-girth	$O(\log k)$			
H planar subcubic	:OR:	immersion	tcw	$O\left(\\|H\\|^{29}\right.$ polylog \\|H\|)			

Improves the general Grid Exclusion Theorem for specific patterns.

Our bounds

excluded pattern	ex.	relation	par.	value of the parameter			
wheel of order k	5	minor	tw	$\Theta(k)$			
double wheel of order k		minor	tw	$O\left(k^{2} \log ^{2} k\right)$			
$H, \operatorname{pw}(H) \leqslant 2$	$!: \%$	minor	tw	$O\left((\|H\|+\\|H\\|)^{2}\right)$			
yurt graph of order k	\because	minor	tw	$O\left(k^{4}\right)$			
$k \cdot \theta_{r}$	888	minor	tw	$\Theta(k \log k)$			
$k \cdot \theta_{r}$.0.	minor	δ	$\Theta(k)$			
edge-disj. union of $k \theta_{r}$'s	08	minor	Δ	$\Theta(k)$			
K_{k}	\mathbb{N}^{2}	minor	θ_{r}-girth	$O(\log k)$			
H planar subcubic	:OR:	immersion	tcw	$O\left(\\|H\\|^{29}\right.$ polylog \\|H\|)			

Used in the proof of the Erdős-Pósa property of θ_{r}-minors.

Our bounds

excluded pattern	ex.	relation	par.	value of the parameter			
wheel of order k	\therefore	minor	tw	$\Theta(k)$			
double wheel of order k		minor	tw	$O\left(k^{2} \log ^{2} k\right)$			
$H, \operatorname{pw}(H) \leqslant 2$!: $:$	minor	tw	$O\left((\|H\|+\\|H\\|)^{2}\right)$			
yurt graph of order k	\because	minor	tw	$O\left(k^{4}\right)$			
$k \cdot \theta_{r}$	888	minor	tw	$\Theta(k \log k)$			
			δ	$\Theta(k)$			
edge-disj. union of $k \theta_{r}$'s	D80	minor	Δ	$\Theta(k)$			
K_{k}	∞	minor	θ_{r}-girth	$O(\log k)$			
H planar subcubic	:OR:	immersion	tcw	$O\left(\\|H\\|^{29}\right.$ polylog \\|H\|)			

General bound extending a result of [Kühn and Osthus, Random Structures \& Algorithms 2003].

Our bounds

excluded pattern	ex.	relation	par.	value of the parameter			
wheel of order k	θ	minor	tw	$\Theta(k)$			
double wheel of order k		minor	tw	$O\left(k^{2} \log ^{2} k\right)$			
$H, \mathbf{p w}(H) \leqslant 2$	$!: \%$	minor	tw	$O\left((\|H\|+\\|H\\|)^{2}\right)$			
yurt graph of order k	\ldots	minor	tw	$O\left(k^{4}\right)$			
$k \cdot \theta_{r}$	80.	minor	tw	$\Theta(k \log k)$			
			δ	$\Theta(k)$			
edge-disj. union of $k \theta_{r}$'s	0	minor	Δ	$\Theta(k)$			
K_{k}	\mathbb{N}^{2}	minor	θ_{r}-girth	$O(\log k)$			
H planar subcubic	:ロ:0:	immersion	tcw	$O\left(\\|H\\|^{29}\right.$ polylog \\|H\|)			

Most general pattern for immersions and tcw (relies on the results of [Wollan, JCTB 2015]).

Applications of exclusion theorems

Outline

(1) Ordering objects

(2) Exclusion theorems

(3) Well-quasi-ordering

Well-quasi-ordering

Well order: total order where

- infinite decreasing sequences are not allowed

Well-quasi-ordering

Well-quasi-order: partial order where

- infinite decreasing sequences are not allowed

- infinite collections of incomparable elements are not allowed (antichain)

Well-quasi-ordering

Well-quasi-order: partial order where

- infinite decreasing sequences are not allowed

\Rightarrow every set has minimal elements
- infinite collections of incomparable elements are not allowed
(antichain)

Well-quasi-ordering

Well-quasi-order: partial order where

- infinite decreasing sequences are not allowed

\Rightarrow every set has minimal elements
- infinite collections of incomparable elements are not allowed
(antichain)
\Rightarrow every set has finitely many minimal elements

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements If U is upward closed:

m_{2}

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements If U is upward closed:

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements If U is upward closed:

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements If U is upward closed:

$$
x \in U \Longleftrightarrow m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x
$$

(finite base)
m_{3}
m_{2}

Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements If U is upward closed:

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks.

Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor;
- topological minor.

Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor;
- topological minor.

What about classes excluding a graph?

Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:

- subgraph;
- induced subgraph;
- induced minor;
- topological minor.

What about classes excluding a graph? What is the dichotomy?

Graph exclusion and well-quasi-ordering

Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

Graph exclusion and well-quasi-ordering

Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

Theorem [Ding, JGT 1992]

Graphs excluding H as subgraph are wqo by subgraphs iff

Theorem (Liu and Thomas, 2013)

Graphs excluding H as topological minor are wqo by topological minors iff

$$
H \leqslant_{\mathrm{t} . \mathrm{m} .}<\cdots \cdots
$$

Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding as induced minor are wqo by induced minors.

Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding \& as induced minor are wqo by induced minors.
Theorem (Błasiok, Kamiński, R., Trunck, 2015)
Graphs excluding H as induced minor are wqo by induced minors iff

$$
H \leqslant \text { i. } \mathbb{V} \text { or } H \leqslant \text { i.m. }
$$

Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding as as induced minor are wqo by induced minors.
Theorem (Błasiok, Kamiński, R., Trunck, 2015)
Graphs excluding H as induced minor are wqo by induced minors iff

$$
H \leqslant \text { i. } \mathscr{V} \text { or } H \leqslant \text { i.m } \dot{\otimes}
$$

We also obtained similar dichotomies for contractions of graphs and multigraphs.

From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$
H=\underbrace{1^{\text {st }}}_{2^{\text {nd }}} \prod_{5^{\text {rh }}}^{3^{\mathrm{rd}}} 4^{\text {th }}
$$

(1) choose an encoding of graphs as simple objects e.g. \# of subdivisions for each edge, in some chosen order;

$$
\operatorname{enc}\left({ }^{\circ}\right.
$$

From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$
H=\underbrace{1_{-}^{\text {st }}-\int_{5^{\mathrm{th}}}^{3^{\mathrm{rd}}} 4^{\mathrm{th}}}_{2^{\mathrm{nd}}}
$$

(1) choose an encoding of graphs as simple objects e.g. \# of subdivisions for each edge, in some chosen order;

$$
\operatorname{enc}\binom{0}{0}=(0,2,1,1,0)
$$

(2) choose an order on encodings s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$

From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$
H=\underbrace{1^{\text {st }}}_{2^{\text {nd }}} \prod_{5^{\text {rh }}}^{3^{\mathrm{rd}}} 4^{\text {th }}
$$

(1) choose an encoding of graphs as simple objects e.g. \# of subdivisions for each edge, in some chosen order;

$$
\operatorname{enc}\binom{0}{0}=(0,2,1,1,0)
$$

(2) choose an order on encodings s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$
(3) show that encodings are well-quasi-ordered by this order;

From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

$$
H=\underbrace{1_{-}^{\text {st }}-\int_{5^{\mathrm{th}}}^{3^{\mathrm{rd}}} 4^{\mathrm{th}}}_{2^{\mathrm{nd}}}
$$

(1) choose an encoding of graphs as simple objects e.g. \# of subdivisions for each edge, in some chosen order;

$$
\operatorname{enc}\binom{0}{0}=(0,2,1,1,0)
$$

(2) choose an order on encodings s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$
(3) show that encodings are well-quasi-ordered by this order;
(c) that's all!
antichain $\left\{G_{1}, G_{2}, \ldots\right\} \Rightarrow$ antichain $\left\{\operatorname{enc}\left(G_{1}\right), \operatorname{enc}\left(G_{2}\right), \ldots\right\}$

Outline

(1) Ordering objects

(2) Exclusion theorems

(3) Well-quasi-ordering
(4) The Erdős-Pósa property

Hunting rats

How many traps are needed?

Hunting rats

How many traps are needed?

- $\tau \geqslant 6$

Hunting rats

How many traps are needed?

- $\tau \geqslant 6$
- $\tau \leqslant 25$ (size of the garden)

Hunting rats

How many traps are needed?

- $\tau \geqslant 6$
- $\tau \leqslant 25$ (size of the garden)
- $\tau \leqslant 3 \times$ max. number of rats

Hunting graphs within graphs

garden \leftrightarrow graph

Hunting graphs within graphs

garden \leftrightarrow graph
rats \leftrightarrow disjoint subgraphs of a given type (here: cycles)

Hunting graphs within graphs

garden \leftrightarrow graph
rats \leftrightarrow disjoint subgraphs of a given type (here: cycles) traps \leftrightarrow vertices covering all these subgraphs (cover)

The Erdős-Pósa property

Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most $c k \log k$ (for some c).

The Erdős-Pósa property

Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most $c k \log k$ (for some c).

If such a theorem holds for a class \mathcal{H} (instead of cycles), we say that \mathcal{H} has the Erdő́s-Pósa property.

The Erdős-Pósa property

Erdős-Pósa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum number of vertices covering all cycles is at most $c k \log k$ (for some c).

If such a theorem holds for a class \mathcal{H} (instead of cycles), we say that \mathcal{H} has the Erdő́s-Pósa property.

Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H, for k the maximum number of disjoint H-minors in a graph, the minimum number of vertices covering all H-minors is at most $f(k)$.

The edge-Erdős-Pósa property

Edge version of the Erdös-Pósa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the minimum number of edges covering all cycles is $\leqslant c k \log k$ (for some c).

The edge-Erdős-Pósa property

Edge version of the Erdós-Pósa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the minimum number of edges covering all cycles is $\leqslant c k \log k$ (for some c).

Theorem (Giannopoulou, Kwon, R., Thilikos, 2016)

There is a polynomial f such that, for every planar subcubic graph H, for k the maximum number of edge-disjoint H-immersions in a graph, the minimum number of edges covering all H -immersions is $\leqslant f(k)$.

Three ways to the edge-Erdós-Pósa property

Typical statement

There is a function f such that, for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.

Three ways to the edge-Erdós-Pósa property

Typical statement

There is a function f such that,

 for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.G excludes $(k+1) \mathcal{H}$-subgraphs \rightarrow exclusion theorem

Three ways to the edge-Erdós-Pósa property

Typical statement

There is a function f such that,

 for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.G excludes $(k+1) \mathcal{H}$-subgraphs \rightarrow exclusion theorem We then used the three following techniques:

Three ways to the edge-Erdós-Pósa property

Typical statement

There is a function f such that,

 for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.G excludes $(k+1) \mathcal{H}$-subgraphs \rightarrow exclusion theorem
We then used the three following techniques:
(1) construct a small cover with edges from a small cover with vertices (from the vertices to the edges);

Three ways to the edge-Erdős-Pósa property

Typical statement

There is a function f such that,

 for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.G excludes $(k+1) \mathcal{H}$-subgraphs \rightarrow exclusion theorem
We then used the three following techniques:
(1) construct a small cover with edges from a small cover with vertices (from the vertices to the edges);
(2) bound a structural parameter that provides small edge-separators (tree-partition width, tree-cut width, ...);

Three ways to the edge-Erdős-Pósa property

Typical statement

There is a function f such that,

 for k the maximum number of edge-disjoint \mathcal{H}-subgraphs in a graph, the minimum number of edges covering all \mathcal{H}-subgraphs is $\leqslant f(k)$.G excludes $(k+1) \mathcal{H}$-subgraphs \rightarrow exclusion theorem
We then used the three following techniques:
(1) construct a small cover with edges from a small cover with vertices (from the vertices to the edges);
(2) bound a structural parameter that provides small edge-separators (tree-partition width, tree-cut width, ...);
(3) bound a girth-like parameter and construct step-by-step a small cover with edges.

Summary

Summary

Three directions for further research:

- graph modification problems;
- obstructions;
- directed graphs.

Not in this talk

- decomposition theorems when excluding some induced minor with Trunck and Kamiński;
- well-quasi-ordering and contraction, with Trunck and Kamiński;
- algorithms for packing and covering θ_{r}-minors, with Chatzidimitriou, Sau, Thilikos;
- more on the Erdős-Pósa property (θ_{r}-minors and girth, vertex version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;
- kernels for cycle packing problems, with Atminas and Kamiński;
- on the Erdős-Pósa property for digraphs;
- bounding the size of obstructions for bounded cutwidth, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;
- algorithms for edge-deletion to immersion-closed classes, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

Not in this talk

- decomposition theorems when excluding some induced minor with Trunck and Kamiński;
- well-quasi-ordering and contraction, with Trunck and Kamiński;
- algorithms for packing and covering θ_{r}-minors, with Chatzidimitriou, Sau, Thilikos;
- more on the Erdős-Pósa property (θ_{r}-minors and girth, vertex version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;
- kernels for cycle packing problems, with Atminas and Kamiński;
- on the Erdős-Pósa property for digraphs;
- bounding the size of obstructions for bounded cutwidth, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;
- algorithms for edge-deletion to immersion-closed classes, with Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

Dziękuję! Thank you!

