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© Ordering objects
© Exclusion theorems
© Well-quasi-ordering

@ The Erdés—Pésa property
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Ordering objects

raspberry grape cherry
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Ordering graphs

Subdivision partial order:

/N
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Ordering graphs
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Ordering graphs

@ Other partial orders:

| o (induced) subgraph;
@ (induced) minor;
@ immersion.
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Excluding an object

Objects excluding x: objects that are not more desirable than x.
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Excluding a graph
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Excluding a graph
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The obtained class depends on: |
@ the excluded graph;
@ the considered order.
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Excluding a graph

The obtained class depends on: | Motivation:
@ the excluded graph; @ simpler structure;
@ the considered order. @ makes some problems easier.
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© Exclusion theorems
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Exclusion theorems

If G excludes H for <, then ...
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Exclusion theorems

If G excludes H for <, then ...

structural description of G bound on a parameter of G

G looks like . .. f(G) < ¢
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Exclusion theorems

If G excludes H for <, then ...

structural description of G bound on a parameter of G

If G excludes A as subdivision, then
G is a forest 0(G) <1
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Exclusion theorems

If G excludes H for <, then ...

structural description of G bound on a parameter of G

If G excludes A as subdivision, then
G is a forest 0(G) <1

If G excludes A as subdivision, then

blocks of G are series-parallel tw(G) < 2
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The minor ordering

H is a minor of G if it can be obtained by deleting vertices or edges and
contracting edges.

NX1m.
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Bounds on parameters

Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H,
if G excludes H as minor, then tw(G) < f(||H||).
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Bounds on parameters

Grid Exclusion Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H,
if G excludes H as minor, then tw(G) < f(||H||).

Theorem [Chekuri and Chuzhoy, FOCS 2013]

There is a polynomial® f such that, for every planar graph H,
if G excludes H as minor, then tw(G) < f(||H|]).

Currently: f(k) = O(k™ polylog k) [Chuzhoy, STOC 2015+].
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excluded pattern ex.  relation par. value of the parameter
wheel of order k @ minor tw O©(k)

double wheel of order k @ minor tw O(k?log? k)

H, pw(H) <2 m minor tw O ((|H] + |H]1)?)

yurt graph of order k fh minor tw O(k*%

k-0, @M minor ;w ggi)bg k)

edge-disj. union of k 6,'s W minor A O(k) *
K @ minor 6,-girth  O(log k) *
H planar subcubic :ﬁ: immersion  tcw O (||H||*® polylog [ H]|)
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excluded pattern ex.  relation par. value of the parameter
wheel of order k @ minor tw O©(k)

) double wheel of order k @ minor tw O(k?log? k)
H, pw(H) <2 m minor tw O ((|H] + |H]1)?)
yurt graph of order k fh minor tw O(k*%
k-0, @M minor ;w ggi)bg k)
edge-disj. union of k 6,'s W minor A O(k) *
K @ minor 6,-girth  O(log k) *
H planar subcubic :ﬁ: immersion  tcw O (||H||*® polylog [ H]|)

Improves the general Grid Exclusion Theorem for specific patterns.
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excluded pattern ex.  relation par. value of the parameter
wheel of order k @ minor tw O©(k)

double wheel of order k @ minor tw O(k?log? k)

H, pw(H) <2 m minor tw O ((|H] + |H]1)?)

yurt graph of order k fh minor tw O(k*%

k-0, @M minor ;w ggi)bg k)

edge-disj. union of k 6,'s W minor A O(k) *
K @ minor 6,-girth  O(log k) *
H planar subcubic :ﬁ: immersion  tcw O (||H||*® polylog [ H]|)

Used in the proof of the Erd6s—Pésa property of #,-minors.
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excluded pattern ex.  relation par. value of the parameter

wheel of order k @ minor tw O©(k)

double wheel of order k @ minor tw O(k?log? k)

H, pw(H) <2 m minor tw O ((|H] + |H]1)?)

yurt graph of order k fh minor tw O(k*%

k-0, @M minor ;w ggi)bg k)

edge-disj. union of k 6,'s W minor A O(k) *
{ K @ minor 6,-girth  O(log k) *

H planar subcubic :ﬁ: immersion  tcw O (||H||*® polylog [ H]|)

General bound extending a result of [Kiihn and Osthus, Random
Structures & Algorithms 2003].
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excluded pattern ex.  relation par. value of the parameter

wheel of order k @ minor tw O©(k)

double wheel of order k @ minor tw O(k?log? k)

H, pw(H) <2 m minor tw O ((|H] + |H]1)?)

yurt graph of order k fh minor tw O(k*%

k-0, @M minor ;w ggi)bg k)

edge-disj. union of k 6,'s W minor A O(k) *

K @ minor 6,-girth  O(log k) *
{ H planar subcubic :ﬁ: immersion  tcw O (||H||*® polylog [ H]|)

Most general pattern for immersions and tcw
(relies on the results of [Wollan, JCTB 2015]).
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Applications of exclusion theorems

Exclusion theorems

T

structural descriptions of G bounds on parameters of G
Y A4
well-quasi-ordering the Erd6s—Pésa property
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Outline

© Well-quasi-ordering
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Well-quasi-ordering

Well order: total order where

@ infinite decreasing sequences are not allowed
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Well-quasi-ordering

Well-quasi-order: partial order where

@ infinite decreasing sequences are not allowed

e

o

e

—. .

@ infinite collections of incomparable elements are not allowed
° ° ° °
(antichain)
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Well-quasi-ordering

Well-quasi-order: partial order where

@ infinite decreasing sequences are not allowed
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Well-quasi-ordering

Well-quasi-order: partial order where

@ infinite decreasing sequences are not allowed

e

o

e

—. .

= every set has minimal elements

@ infinite collections of incomparable elements are not allowed
° ° ° °
(antichain)

= every set has finitely many minimal elements
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Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements

v
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Recall: in a wqo, every set has finitely many minimal elements

If Uis upward closed:
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Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements

If Uis upward closed: o
xelU <= m <xV---Vm<x -
(finite base). .
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Why do we like well-quasi-orders?

Recall: in a wqo, every set has finitely many minimal elements

If Uis upward closed:
xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finitc number of checks.
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Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.
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Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:
@ subgraph;

@ induced subgraph;
@ induced minor;

@ topological minor.
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Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:
@ subgraph;

@ induced subgraph;
@ induced minor;

@ topological minor.

What about classes excluding a graph?
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Graphs and well-quasi-ordering

Theorem [Robertson and Seymour, JCTB 2004 and JCTB 2010]

The minor and the immersion relations are well-quasi-orders of graphs.

Folklore

The following relations are not well-quasi-orders of graphs:

@ subgraph;
@ induced subgraph;

@ induced minor;

@ topological minor.

What about classes excluding a graph? What is the dichotomy?
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Graph exclusion and well-quasi-ordering

Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

H gi.sg:
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Graph exclusion and well-quasi-ordering

Theorem [Damaschke, JGT 1990]

Graphs excluding H as induced subgraph are wqo by induced subgraphs iff

H <i.sg4

Theorem [Ding, JGT 1992]

Graphs excluding H as subgraph are wqo by subgraphs iff

H <Sg. —eo—::—o

Theorem (Liu and Thomas, 2013)

Graphs excluding H as topological minor are wqo by topological minors iff

H gt.m. P

<
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Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding A as induced minor are wqo by induced minors.
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Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding A as induced minor are wqo by induced minors.

Theorem (Btasiok, Kaminski, R., Trunck, 2015)

Graphs excluding H as induced minor are wqo by induced minors iff

H <i.1n..@' or H <im. &
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Induced minors and well-quasi-ordering

Theorem [Thomas, JCTB 1985]

Graphs excluding A as induced minor are wqo by induced minors.

Theorem (Btasiok, Kaminski, R., Trunck, 2015)

Graphs excluding H as induced minor are wqo by induced minors iff

H <i.1n..@' or H <im. &

We also obtained similar dichotomies for contractions of graphs and
multigraphs.
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From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.
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From structure to well-quasi-ordering

Toy example

Subdivisions of H are well-quasi-ordered by the subdivision order.

15t
H = ond grd gth

5th

@ choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

enc (m) = (0,2,1,1,0)
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From structure to well-quasi-ordering

Toy example
Subdivisions of H are well-quasi-ordered by the subdivision order.

1St
H = 274 gra gth
5th
@ choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

enc (m) = (0,2,1,1,0)

@ choose an order on encodings s.t. enc(G) < enc(G’) = G <G’
e.g. the product order, (2,1,0,3,1) < (5,1,2,4,1)
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From structure to well-quasi-ordering

Toy example
Subdivisions of H are well-quasi-ordered by the subdivision order.

1St
H = 274 gra gth
5th
@ choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

enc (m) = (0,2,1,1,0)

@ choose an order on encodings s.t. enc(G) < enc(G’) = G <G’
e.g. the product order, (2,1,0,3,1) < (5,1,2,4,1)
© show that encodings are well-quasi-ordered by this order;
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From structure to well-quasi-ordering

Toy example

—

Subdivisions of H are well-quasi-ordered by the subdivision order.

1St
H = 274 gra gth
5th
@ choose an encoding of graphs as simple objects
e.g. # of subdivisions for each edge, in some chosen order;

enc (m) = (0,2,1,1,0)

@ choose an order on encodings s.t. enc(G) < enc(G’) = G <G’
e.g. the product order, (2,1,0,3,1) < (5,1,2,4,1)

© show that encodings are well-quasi-ordered by this order;

Q that's alll
antichain {Gi, Go, ...} = antichain {enc(G1), enc(Gp), ...}
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Outline

@ The Erdés—Pésa property
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Hunting rats
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Hunting rats

P
P

Jean-Florent Raymond Structural and algorithmic aspects of partial orderings of graphs 18/11/2016 26 / 32



Hunting rats

P
P

Jean-Florent Raymond Structural and algorithmic aspects of partial orderings of graphs 18/11/2016 26 / 32



Hunting rats

P
P

Jean-Florent Raymond Structural and algorithmic aspects of partial orderings of graphs 18/11/2016 26 / 32



Hunting rats

How many traps are needed?

P
P
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Hunting rats

How many traps are needed?
eT>6
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Hunting rats

How many traps are needed?
eT>6

o 7 < 25 (size of the garden)
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Hunting rats

How many traps are needed?
eT>6

o 7 < 25 (size of the garden)
o 7T

3 x max. number of rats
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Hunting graphs within graphs

garden <« graph
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Hunting graphs within graphs

garden <« graph

rats <> disjoint subgraphs of a given type (here: cycles)
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Hunting graphs within graphs

P P

garden <« graph

rats <> disjoint subgraphs of a given type (here: cycles)

traps <> vertices covering all these subgraphs (cover)

Jean-Florent Raymond

Structural and algorithmic aspects of partial orderings of graphs 18/11/2016 27 / 32



The Erdés—Pésa property

Erdés-Pésa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum
number of vertices covering all cycles is at most ck log k (for some c).
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The Erdés—Pésa property

Erdés-Pésa Theorem, 1965
For k the maximum number of disjoint cycles in a graph, the minimum
number of vertices covering all cycles is at most ck log k (for some c).

If such a theorem holds for a class 7 (instead of cycles), we say that # has
the Erdés—Pdsa property.
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The Erdés—Pésa property

Erdés-Pésa Theorem, 1965

For k the maximum number of disjoint cycles in a graph, the minimum
number of vertices covering all cycles is at most ck log k (for some c).

If such a theorem holds for a class 7 (instead of cycles), we say that # has
the Erdés—Pdsa property.

Theorem [Robertson and Seymour, JCTB 1986]

There is a function f such that, for every planar graph H,
for k the maximum number of disjoint H-minors in a graph, the minimum
number of vertices covering all H-minors is at most (k).
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The edge-Erdés—Pdsa property

Edge version of the Erdés-Pésa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the
minimum number of edges covering all cycles is < ck log k (for some c).

|- |
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The edge-Erdés—Pdsa property

Edge version of the Erdés-Pésa Theorem, 1962

For k the maximum number of edge-disjoint cycles in a graph, the
minimum number of edges covering all cycles is < ck log k (for some c).

Theorem (Giannopoulou, Kwon, R., Thilikos, 2016)

There is a polynomial f such that, for every planar subcubic graph H,
for k the maximum number of edge-disjoint H-immersions in a graph, the
minimum number of edges covering all H-immersions is < f (k).
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Three ways to the edge-Erdés—Pdsa property

Typical statement

There is a function f such that,
for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all #-subgraphs is < (k).
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Three ways to the edge-Erdés—Pdsa property

Typical statement

There is a function f such that,

for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all #-subgraphs is < (k).

G excludes (k + 1) H-subgraphs — exclusion theorem
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Three ways to the edge-Erdés—Pdsa property

Typical statement

There is a function f such that,

for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all H-subgraphs is < f(k).

G excludes (k + 1) H-subgraphs — exclusion theorem
We then used the three following techniques:
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Three ways to the edge-Erdés—Pdsa property

Typical statement

There is a function f such that,

for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all H-subgraphs is < f(k).

G excludes (k + 1) H-subgraphs — exclusion theorem
We then used the three following techniques:

@ construct a small cover with edges from a small cover with vertices
(from the vertices to the edges);
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Three ways to the edge-Erdés—Pdsa property

Typical statement

There is a function f such that,

for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all H-subgraphs is < f(k).

G excludes (k + 1) H-subgraphs — exclusion theorem
We then used the three following techniques:

@ construct a small cover with edges from a small cover with vertices
(from the vertices to the edges);

@ bound a structural parameter that provides small edge-separators
(tree-partition width, tree-cut width, ...);
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Typical statement

There is a function f such that,

for k the maximum number of edge-disjoint 7{-subgraphs in a graph, the
minimum number of edges covering all H-subgraphs is < f(k).

G excludes (k + 1) H-subgraphs — exclusion theorem
We then used the three following techniques:

@ construct a small cover with edges from a small cover with vertices
(from the vertices to the edges);

@ bound a structural parameter that provides small edge-separators
(tree-partition width, tree-cut width, ...);

© bound a girth-like parameter and construct step-by-step a small cover
with edges.
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Summary

Exclusion theorems

T

structural descriptions of G bounds on parameters of G

A4

well-quasi-ordering the Erd6s—Pésa property
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Exclusion theorems

T

structural descriptions of G bounds on parameters of G

A4

well-quasi-ordering the Erd6s—Pésa property

Three directions for further research:
e graph modification problems;
@ obstructions;

o directed graphs.
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Not in this talk

@ decomposition theorems when excluding some induced minor with
Trunck and Kaminski;

o well-quasi-ordering and contraction, with Trunck and Kaminski;

@ algorithms for packing and covering 8,-minors, with Chatzidimitriou,
Sau, Thilikos;

@ more on the Erdds—Pésa property (6,-minors and girth, vertex
version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;

@ kernels for cycle packing problems, with Atminas and Kaminski;

@ on the Erdés—Pdsa property for digraphs;

@ bounding the size of obstructions for bounded cutwidth, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;

@ algorithms for edge-deletion to immersion-closed classes, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.
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@ decomposition theorems when excluding some induced minor with
Trunck and Kaminski;

o well-quasi-ordering and contraction, with Trunck and Kaminski;

@ algorithms for packing and covering 8,-minors, with Chatzidimitriou,
Sau, Thilikos;

@ more on the Erdds—Pésa property (6,-minors and girth, vertex
version), with Chatzidimitriou, Giannopoulou, Kwon, Sau, Thilikos;

@ kernels for cycle packing problems, with Atminas and Kaminski;

@ on the Erdés—Pdsa property for digraphs;

@ bounding the size of obstructions for bounded cutwidth, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna;

@ algorithms for edge-deletion to immersion-closed classes, with
Giannopoulou, Mi. Pilipczuk, Thilikos, Wrochna.

Dziekuje! Thank you! Merci !
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