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Abstract. In this paper we consider the multiparty equality problem in graphs, where
every vertex of a graph G is given an input, and the goal of the vertices is to decide
whether all inputs are equal. We study this problem in the local broadcast model,
where a message sent by a vertex is received by all its neighbors and the total cost
of a protocol is the sum of the lengths of the messages sent by the vertices. This
setting was studied by Khan and Vaidya, who gave in 2021 a protocol achieving a
4-approximation in the general case.

We study this multiparty communication problem through the lens of network
topology. We design a new protocol for 2-connected graphs, whose efficiency relies on
the notion of total vertex cover in graph theory. This protocol outperforms the afore-
mentioned 4-approximation in a number of cases. To demonstrate its applicability,
we apply it to obtain optimal or asymptotically optimal protocols for several natural
network topologies such as cycles, hypercubes, and grids. On the way we also provide
new bounds of independent interest on the size of total vertex covers in regular graphs.

1. Introduction

We consider the multiparty equality problem in graphs, where every vertex of a graph
G is given a k-bit input, and the goal of the vertices is to decide whether all inputs are
the same. Each vertex can communicate with its neighbors in the graph, and the cost
of the protocol is the total number of bits transmitted during the communication phase.
After this phase, each vertex either accepts or rejects the instance; if every vertex was
assigned the same input, then all vertices must accept the instance, and if two of the
inputs differ then at least one vertex must reject the instance. The complexity of the
multiparty equality problem is the minimum cost of a protocol solving the problem.
Note that we only consider protocols that are deterministic and static, in the sense that
the set of vertices sending messages and the size of their messages is independent of
their input strings (they only depend on G and k). One the other hand, the content of
the messages is allowed to depend on the input strings.

In the classical point-to-point communication model, each vertex communicates with
its neighbors on different channels (one channel per vertex), so that sending the same
message of ℓ bits to d neighbors costs dℓ bits of communication. A natural lower bound
on the complexity of the multiparty equality problem in this model can be obtained by
observing that at least k bits need to be sent through every cut of the graph in every
protocol. As a consequence, the complexity is at least k times the minimum fractional
transversal of cuts in the graph (or by duality, the maximum fractional packing of
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cuts), see [CR15, AES17]. Alon, Efremenko and Sudakov [AES17] showed that this
linear programming lower bound can be attained asymptotically for a number of graph
classes, including Hamiltonian graphs, and moreover they gave a protocol of cost within
a factor 4/3 of the optimal for every graph.

Much less is known in the local broadcast communication model, which is the main
focus of this paper. In this model, each message sent by a vertex v is transmitted to all
the neighbors of v, and the number of bits of this message is counted only once in the
complexity of the protocol. The total cost of a protocol Π on G, denoted costΠ(G, k), is
the sum of the number of bits broadcast by each vertex. The total complexity (minimum
cost of a protocol solving the problem) of the multiparty equality problem in the local
broadcast communication model on G with k bit inputs is denoted by OPT(G, k). We
will be mostly interested in the per-bit complexity OPT(G) = limk→∞

1
k
OPT(G, k),

whose existence directly follows from Fekete’s subadditive lemma. Similarly, we define
the per-bit cost of a protocol Π as costΠ(G) = limk→∞

1
k
costΠ(G, k) (this limit does not

exist for all protocols, but it does in all the protocols we consider in the paper). As in
the point-to-point communication model, a simple linear programming lower bound on
the complexity of the problem can be obtained by noting that for every cut, the sum
of the number of bits broadcast by the vertices incident to the cut has to be at least k.
This implies that a natural lower bound on OPT(G) is the maximum fractional packing
(or minimum fractional transversal) of boundaries in the graph G, where a boundary is
the set of vertices incident to the edges of a given cut in the graph.

In the definition of a protocol for equality above, we have required that when two
inputs differ, this is detected by at least one vertex. We note that when focusing on the
per-bit complexity OPT(G) or the per-bit cost of a protocol, it would be equivalent to
ask the stronger requirement that at then end of the protocol, all vertices know whether
they have the same input or not. This is because if two inputs differ, then some vertex
will detect it, and this vertex can then communicate this information to all vertices
along a spanning tree, costing a number of bits that depends only on G, not on the
length k of the input. The contribution of this additional constant cost in the per-bit
complexity vanishes as k → ∞.

The complexity of multiparty equality in the local broadcast model was studied by
Khan and Vaidya [KV21]. They first studied so-called simple protocols, where each
vertex either broadcasts its entire input, or remains inactive. Each vertex then checks
that the inputs received from its neighbors match its own input, and accepts the instance
if and only if this is the case. They related such protocols to the notion of a weakly
connected dominating set. A weakly connected dominating set S in a graph G, is a
subset of the vertices of G such that the set of edges incident to S induces a spanning
and connected subgraph of G. The minimum size of a weakly connected dominating
set in G is denoted by wds(G).

Khan and Vaidya proved the following characterization of simple protocols [KV21].

Theorem 1.1 ([KV21]). A simple protocol solves the multiparty equality problem if
and only if the set S ⊆ V of vertices chosen to transmit their entire input is a weakly
connected dominating set of G. In particular, OPT(G) ≤ wds(G).
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Let us denote by Π0 the simple protocol of Theorem 1.1, of per-bit cost costΠ0(G) =
wds(G). The authors of [KV21] use the result above to provide examples where the
multiplicative gap between the minimum cost of a simple protocol and OPT is of order
Ω(log n) (here and in the remainder of the paper, n stands for the number of vertices
of the graph under consideration). Khan and Vaidya then studied general (non-simple)
protocols, and designed a protocol Π1 which is within factor 4 of the optimal.

Theorem 1.2 ([KV21]). For any graph G and integer k, there is a protocol Π1 for
multiparty equality in the local broadcast model whose total cost is at most 4k times the
maximum fractional packing of boundaries, and in particular at most 4OPT(G, k).

Our results. In this paper, we study the multiparty equality problem in the local
broadcast model through the lens of network topology (or equivalently, graph classes).

We first provide a couple of interesting applications of Theorem 1.1: an optimal
protocol for trees, and an asymptotically optimal protocol for hypercubes.

We then design a new protocol in 2-connected graphs, which outperforms Theo-
rem 1.2 on a number of natural graph classes. Our protocol uses ideas introduced by
Alon, Efremenko and Sudakov [AES17] in the point-to-point model, relying on classical
constructions in extremal combinatorics. The efficiency of our protocol depends on the
minimum size of a total vertex cover in the graph G, denoted by tvc(G), where a total
vertex cover is a subset of vertices which is both a vertex cover and a total dominating
set. We prove the following result.

Theorem 1.3. For any 2-connected graph G, there is a protocol Π2 for multiparty
equality in the local broadcast model whose per-bit cost is at most 1

2
tvc(G), and in

particular OPT(G) ≤ 1
2
tvc(G).

We emphasize that only the vertices of a total vertex cover send messages in the
protocol Π2, as opposed to the protocol of [AES17] whose correctness relies on the fact
that every vertex communicates.

Theorem 1.3 motivates the study of total vertex covers in graphs, for which we obtain
new results which might be of independent interest. Our first application concerns the
class of cycles. The linear programming lower bound on OPT(Cn) is of order n/3
(assigning weight 1

3
to each vertex). On the other hand, as wds(Cn) = ⌊n/2⌋, the

simple protocol of Theorem 1.1 has per-bit cost ⌊n/2⌋, and it can be checked that the
protocol of Theorem 1.2 has per-bit cost 2

3
n− 2

3
or 2

3
n− 1

3
, depending on the parity of

n. As an immediate application of Theorem 1.3, we obtain a quasi-optimal protocol for
cycles.

Corollary 1.4. For any integer n ≥ 3, n
3
≤ OPT(Cn) ≤ n+1

3
, and for every integer

n ≡ 0 (mod 3), OPT(Cn) =
n
3
.

We then consider hypercubes, a well-studied graph topology. It is known that d-
dimensional hypercubes Qd have weakly connected dominating sets of size matching
asymptotically the linear programming lower bound 2d

d+1
[Gri21], and therefore the

protocol Π0 of Theorem 1.1 is asymptotically best possible in this class. However the
bounds on the size of weakly connected dominating sets depend on non-trivial results
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on the density of primes (even in the most simple case d = 2ℓ−1). We give a simple and
self-contained proof of an upper bound on tvc(Qd) in this case, which directly implies
that Π2 is asymptotically optimal for these graphs as well.

Corollary 1.5. Let ℓ ≥ 2 be an integer and let d = 2ℓ − 1. Then the protocol Π2 for
equality in the hypercube Qd has per-bit cost at most

2d

d+ 1
+

2d/2

d+ 1
= OPT(Qd) +O

(√
OPT(Qd)

)
.

We next consider the classical n by n square grid, which is denoted by Gn. The linear
programming lower bound on OPT(Gn) is of order n2/5 (assigning weight 1

5
to each

vertex), but a simple counting argument shows that wds(Gn) ≥ n2/4, and thus simple
protocols cannot be optimal. The protocol of Theorem 1.2 has many possible outcomes
in a grid, depending on the order in which the vertices are chosen, and therefore it
is not clear if it can be optimal for some well-chosen ordering. We have found some
natural orderings for which the protocol of Theorem 1.2 has per-bit cost 2

5
n2, that is

twice the linear programming lower bound. On the other hand, as a direct application
of Theorem 1.3, we obtain an asymptotically optimal protocol for grids.

Corollary 1.6. OPT(Gn) = (1
5
+ o(1))n2.

We then study d-regular graphs for d ≥ 3. An interesting property of these classes is
that although the classes are very large (containing roughly 2(d/2−1)n logn non-isomorphic
n-vertex graphs), the linear programming lower bound in this case can be expressed
easily as n

d+1
, which allows to compare explicitly the quality of protocols on a large

class of graphs by simply bounding the cost of protocols on the entire class (instead of
comparing the cost of the protocol and the linear programming lower bound on every
single graph in the class).

It was proved in [CG17] that every cubic graph on n vertices has a total vertex cover
on a most 3n/4 vertices. We extend this result to every degree by proving that for
d ≥ 3, every d-regular graph on n vertices has a total vertex cover on a most d

d+1
· n

vertices. This is optimal for every d, since any total vertex cover of the complete graph
Kd+1 (which is d-regular) contains at least d vertices. It was proved in [CG17] that
there are two more extremal connected graphs in the case d = 3, and all the other
connected cubic graphs have a total vertex cover with less than 3n/4 vertices. Our
result below implies that for d ≥ 5, complete graphs are the only extremal examples.

Theorem 1.7. For every d ≥ 3, every d-regular graph on n vertices has a total vertex
cover on at most d

d+1
· n vertices. For d ≥ 5, every connected d-regular graph on n

vertices distinct from Kd+1 has a total vertex cover on at most d−ϵ
d+1

· n vertices, with
ϵ = 1

2d+1
.

Combining Theorem 1.7 and Theorem 1.3 for the upper bound, and using the linear
programming lower bound of n

d+1
alluded to above, we immediately obtain the following.

Corollary 1.8. For any d ≥ 3 and any 2-connected d-regular graph G, the protocol Π2

of Theorem 1.3 has per-bit cost at most d
2d+2

· n = d
2
·OPT(G). If moreover, d ≥ 5 and
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G ̸= Kd+1, then Π2 has per-bit cost at most d−ϵ
2

· OPT(G), for some ϵ > 0 depending
only on d.

Corollary 1.8 improves on the 4-approximation of Theorem 1.2 for any degree d ≤ 8.

Organization of the paper. In Section 2 we introduce the necessary notation, the
linear programming lower bounds and two useful lemmas. Section 3 is devoted to the
study of simple protocols. In Section 4 we introduce a new protocol for 2-connected
graphs based on total vertex covers and provide several applications. Directions for
future research are given in Section 5.

2. Preliminaries

2.1. Notation. In this paper, log denotes the binary logarithm. Let G be a graph.
For two disjoint sets S, S ′ ⊆ V (G), we denote by E(S, S ′) the set of edges of G with
the one endpoint in S and the other one in S ′, and the cut defined by S is E(S, S̄),
where S̄ = V (G)\S. The boundary B(S) of the cut defined by S consists of all vertices
incident to E(S, S̄). Observe that for every v ∈ V (G), the trivial boundary B({v}) is
precisely the closed neighborhood N [v] of v in G.

In the remainder we only consider connected graphs (otherwise the problem we con-
sider has no solution, as vertices in different components cannot communicate to verify
that their inputs are equal).

2.2. A linear programming lower bound. Consider the following covering linear
program for boundaries.

Program Covbnd(G)

variables: x(v) for every v ∈ V (G)
function to minimize:

∑
v∈V (G)

x(v)

subject to the constraints:

{
∀S ⊊ V (G) s.t. S ̸= ∅,

∑
v∈B(S)

x(v) ≥ 1

∀v ∈ V (G), x(v) ≥ 0.

Optimal value: τ ∗bnd(G)

The dual packing linear program is the following.
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Program Packbnd(G)

variables: y(S) for every non-empty S ⊊ V (G)

maximize:
∑

S⊊V (G), S ̸=∅
y(S)

subject to:

{
∀v ∈ V (G),

∑
S, v∈B(S)

y(S) ≤ 1

∀S ⊊ V (G) s.t. S ̸= ∅, y(S) ≥ 0

Optimal value: ν∗
bnd(G)

Note that by linear programming duality, τ ∗bnd(G) = ν∗
bnd(G) for any graph G. It

will be also useful to consider the simple variants of the two linear programs above,
Covballs(G) and Packballs(G), where instead of considering all boundaries B(S), we only
consider the trivial boundaries (of the form B({v}), for some v). Let τ ∗balls(G) = ν∗

balls(G)
be the associated optimal values.

Observing that for any non-empty cut E(S, S̄), at least k bits in total have to be
broadcast by the vertices incident to the cut, the following was proved in [KV21].

Theorem 2.1 ([KV21]). For any graph G and integer k, OPT(G, k) ≥ τ ∗bnd(G) · k, and
in particular OPT(G) ≥ τ ∗bnd(G) ≥ τ ∗balls(G).

We also consider the integer parameters τbnd(G), νbnd(G), τballs(G), νballs(G), which
are defined similarly as their fractional counterparts, but optimizing over the integers
instead of the real (or rational) numbers. For instance, as B({v}) = N [v] for every
vertex v, τballs(G) is equal to the minimum size of a set S, such that V (G) =

⋃
v∈S N [v],

or equivalently τballs(G) is the domination number of G, the minimum size of a dom-
inating set in G. Therefore, τ ∗balls(G) can be considered as the fractional domination
number of G. The following simple result will be useful in the remainder of the paper.

Lemma 2.2. If G is an n-vertex graph with maximum degree ∆, then τ ∗bnd(G) ≥
τ ∗balls(G) ≥ n

∆+1
. Moreover, if G is ∆-regular, then τ ∗balls(G) = n

∆+1
.

Proof. Setting y(S) = 1
∆+1

for every vertex boundary S of the form S = B({v}) = N [v]
for some v ∈ V (G), we obtain a feasible solution to the program Packballs(G), and thus
τ ∗balls(G) = ν∗

balls(G) ≥ n
∆+1

. When G is ∆-regular, setting x(v) = 1
∆+1

for every vertex
v ∈ V (G), we obtain a feasible solution to the program Covballs(G). It follows that
τ ∗balls(G) ≤ n

∆+1
, and thus τ ∗balls(G) = n

∆+1
, as desired. □

We note that we will only use the first part of the statement, in combination with
Theorem 2.1.

Finally, we will use the following well-known fact about 2-connected graphs.

Lemma 2.3. Every 2-connected graph G on n vertices has a 2-connected spanning
subgraph H on at most 2n− 3 ≤ 2n edges.

Proof. Every 2-connected graph G has an ear-decomposition such that every ear is open
(the two endpoints of the ear are distinct), see [Whi32]. Include in H all the ears from
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the ear-decomposition, except those consisting of a single edge. Note that we start
with a cycle (of length at least 3), and every time we add k new vertices to H, we add
k + 1 ≤ 2k edges to H. Thus H has at most 2(n− 3) + 3 = 2n− 3 edges. □

3. Simple protocols

We recall that in simple protocols for equality, each vertex either broadcasts its entire
input, or does not send any bit of communication. As stated in Theorem 1.1, the set S
of vertices broadcasting their input in such a protocol is a weakly connected dominating
set, which implies that OPT(G) ≤ wds(G) for any graph G. In this section, we explore
a number of interesting consequences of this result.

Let vc(G) denote the minimum size of a vertex cover of a graph G (a set of vertices
intersecting every edge of G). Note that wds(G) ≤ vc(G). We obtain the following
simple result.

Theorem 3.1. For any tree T , the simple protocol in which every vertex of a vertex
cover broadcasts its input is optimal among all protocols. In particular OPT(T ) = vc(T ).

Proof. Let T be a tree. Since the minimal cuts of T are single edges, τ ∗bnd(T ) coincides
with the optimal solution of the linear relaxation of vertex cover in T . But since
T is bipartite, it follows from Kőnig’s theorem that this optimal solution is equal to
vc(T ). As there is a protocol for equality with per-bit cost wds(G) ≤ vc(T ), the per-bit
complexity of equality in trees is precisely the vertex cover number. □

As observed in the previous section, τballs(G) is the domination number of G, and
this can be used to connect τballs(G) and wds(G) as follows.

Lemma 3.2. For any connected graph G, τballs(G) ≤ wds(G) ≤ 2 τballs(G)− 1.

Proof. Since a weakly dominating set is a dominating set, we have τballs(G) ≤ wds(G),
so it remains to prove wds(G) ≤ 2 τballs(G). Consider a dominating set D of size
τballs(G) in G. We assume that G has more than one vertex otherwise the statement is
trivially true. Let H be the subgraph of G induced by all edges that are incident to a
vertex of D. Since D is a dominating set, H is a spanning subgraph of G of minimum
degree at least 1, and with at most τballs(G) connected components. Let E ′ be a set
of edges of E(G) \E(H) of minimum size such that the subgraph of G induced by the
edges of E(H) ∪ E ′ is connected. As H has at most τballs(G) connected components,
|E ′| ≤ τballs(G)− 1. Let D′ be a subset of vertices of G obtained by doing the following
for each edge e ∈ E ′: select an endpoint of e arbitrarily and add it to D′. Then D ∪D′

has size at most 2 τballs(G)−1 and it can be checked that D∪D′ is a weakly dominating
set of G, as desired. □

Recall that τ ∗balls(G) ≤ OPT(G). In particular, for any graph G for which τballs(G) is
very close to τ ∗balls(G), combining Theorem 1.1 with Lemma 3.2 immediately provides
a good approximation of the optimal broadcast protocol.

Corollary 3.3. For every graph G, there is a simple protocol for equality with per-bit
cost at most 2 · τballs(G)

τ∗balls(G)
· OPT(G).
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For instance, the d-dimensional hypercube Qd with d = 2k − 1, for some integer k,
satisfies τ ∗balls(Qd) = τballs(Qd) =

2d

d+1
, and thus Corollary 3.3 implies that the broadcast

protocol based on weakly dominating sets is within a multiplicative factor 2 of the
optimal protocol for these graphs.

Note that for hypercubes, we can use the stronger results obtained by Griggs in
[Gri21], showing that Qd has a connected dominating set of size (1+o(1)) 2d

d+1
as d → ∞,

and in particular wds(Qd) = (1 + o(1)) 2d

d+1
. Theorem 1.1 then gives an asymptotically

optimal (simple) protocol for equality in hypercubes. Alternatively, we describe in the
next section a protocol Π2 which has per-bit cost 2d

d+1
+ 2d/2 on the hypercube Qd, see

Section 4.2.3 for details.

4. Total vertex covers and a new protocol

4.1. The new protocol. Recall that a total vertex cover in a graph G is a vertex
subset that is both a total dominating set and a vertex cover. The minimum size of
such a set is denoted by tvc(G). In this section we prove Theorem 1.3, restated below
as Theorem 4.1.

Theorem 4.1. Let G be a 2-connected graph G and k be an integer. Then there is a
protocol Π2 for equality in G of total cost costΠ2(G, k) ≤ (k/2+ o(k)) · tvc(G), and thus
OPT(G) ≤ costΠ2(G) ≤ 1

2
tvc(G).

We emphasize that in our protocol, only the vertices of a total vertex cover of G send
a message; all the other vertices remain silent.

Note that it might be the case that a 2-connected graph G contains a 2-connected
spanning subgraph H with tvc(H) < tvc(G), in which case it is natural to run the
equality protocol in H rather than in G. We therefore obtain the following immediate
corollary of Theorem 4.1, which will be used extensively in our applications.

Corollary 4.2. For any 2-connected spanning subgraph H of G, there is a protocol for
equality in the local broadcast model in G whose per-bit cost is at most 1

2
tvc(H), and in

particular OPT(G) ≤ 1
2
tvc(H).

Remark 4.1. In terms of transversals, a total vertex cover is an (integral) transversal
of open neighborhoods (total dominating set) and of edges (vertex cover). As we are
dealing with graphs with no isolated vertices, a total vertex cover always exist, for
instance every vertex cover of such a graph G is dominating and can be made total by
adding a neighbor of each of its elements, so tvc(G) ≤ 2vc(G).

Our protocol Π2 of Theorem 4.1 relies on a technical lemma (Lemma 4.3 below) from
[AES17] and used there in the different setting of point-to-point communication. Before
we can formally state this result, we need to introduce some terminology. Let H be a
graph with n vertices v1, . . . , vn. Let F be a graph with its vertices partitioned into n
classes U1, . . . , Un. A subgraph of F isomorphic to H is called a special copy of H if for
every i ∈ {1, . . . , k} the vertex corresponding to vi in the copy belongs to Ui. We say
that F is a faithful host for H if the two following conditions are met:

(1) The edges of F can be partitioned into edge-disjoint special copies of H; and
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(2) F contains no other special copy of H than the aforementioned |E(F )|/|E(H)|
copies defining its edge set.

Lemma 4.3 ([AES17, Lemma 3.3]). Let H be a 2-connected n-vertex graph and let
m be a positive integer. Then there is a faithful host for H with classes of vertices
U1, . . . , Un, each of size nm, containing a least m2/e10

√
logm logn special copies of H.

We are now ready to prove the main result of this section.

Proof of Theorem 1.3. Let n denote the number of vertices of G, that we call v1, . . . , vn,
and let m be the minimum integer such that m2

e10
√
logm logn ≥ 2k. By Lemma 4.3 there is

a faithful host F for G with classes of vertices U1, . . . , Un, each of size nm, containing
a least 2k special copies of G. For every i ∈ {1, . . . , n}, let us name u1

i , . . . , u
nm
i the

vertices of Ui. We associate to each k-bit word w a special copy Gw of G in F in an
injective way (i.e. if w ̸= w′ then Gw ̸= Gw′). Since there are at least 2k special copies,
this is always possible.

For a fixed assignment λ : V (G) → {0, 1}k of k-bit inputs to the vertices of G, let us
define the identity of a vertex vi of G as the integer 1 ≤ j ≤ nm such that the vertex of
the special copy Gλ(vi) corresponding to vi is uj

i . In other words, V (Gλ(vi))∩Ui = {uj
i}.

Such an integer always exists by the definition of a special copy. Notice that the identity
of a vertex vi depends on its input λ(vi).

For every edge vivj ∈ E(G), we say that the identity ai of vi is consistent with the
identity aj of vj if:

(1) there is an edge in F between uai
i and u

aj
j ; and

(2) this edge belongs to the special copy Gλ(vj).
Observe that due to the second item, this relation is not symmetric. However, given
ai, the vertex vj can check whether ai is consistent with aj.

We now fix an optimal total vertex cover S of G, and we are ready to describe the
protocol Π2. Given an assignment λ of k-bit inputs to the vertices of G, the protocol
is the following:
Communication: Each vertex v of S broadcasts its identity to its neighbors and the
other vertices remain silent.
Decision: A vertex v of G accepts the instance if and only if all identities received from
its neighbors are consistent with its own identity.

This completes the description of the protocol Π2. Recall that we chose F and the
function w 7→ Gw depending only on G, and in particular they do not depend on the
assignment of inputs λ. So using them and their own inputs, the vertices can indeed
compute their own identity and check consistency with those possibly sent by their
neighbors.

Let us now show that the protocol is correct. Suppose first that λ assigns the same
word w to every vertex of G. Then for every edge vv′ of G, the identity of v is trivially
consistent with that of v′, since these are defined with respect to the same special copy
Gw of G. Hence in this case every vertex accepts the instance.
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Conversely, suppose that every vertex accepts the instance. For every i ∈ {1, . . . , n},
let ai be the identity of vi. Recall that S is a vertex cover, so for every edge vivj of
G, at least one of the two endpoints lies in S, say vi ∈ S. It follows that vi sends its
identity ai to vj. As vj accepts the instance, uai

i u
aj
j is an edge in F . Hence F has a

subgraph G′ on vertex set {uai
i }i∈{1,...,n} that is isomorphic to G and where for every

i ∈ {1, . . . , n} the vertex corresponding to vi lies in the vertex subset Ui. The subgraph
G′ of F is a thus a special copy of G in F , and by the definition of a faithful host G′

is one of the special copies that partition the edges of F , say G′ = Gw for some k-bit
word w. Since S is a total vertex cover, every vertex vj of G has a neighbor vi ∈ S.
By the second item in the definition of consistency, the edge vaii v

aj
j of F belongs to the

special copy Gλ(vj). As noted above this edge also belongs to G′ = Gw so by definition
of faithful hosts, λ(vj) = w. This shows that all vertices of G have the same input, as
desired.

It remains to bound the cost of the protocol. Recall that only the vertices in S
broadcast their identity. Also, recall that the identity of a vertex is an integer of
{1, . . . , nm}, and that n (the number of vertices of G) is a constant while k → ∞. By
the choice of m we have

2 log(m− 1) ≤ k + 10 log(e)
√

log(m− 1) log n

logm =
k

2
+O(

√
logm log n)

=
k

2
+O(

√
k log n)

The total cost of the protocol is thus at most

|S| · logmn = |S| ·
(
k

2
+O

(√
k log n

)
+ log n

)
= tvc(G) ·

(
k

2
+ o(k)

)
.

It follows that the per-bit cost of the protocol is at most 1
2
tvc(G), which completes the

proof. □

4.2. Applications.

4.2.1. Complete bipartite graphs K2,t. We start by giving a simple example of a fam-
ily of graphs where the protocol Π2 of Theorem 4.1 outperforms the protocols Π0 of
Theorem 1.1 and Π1 of Theorem 1.2. The complete bipartite graph K2,t has a total
vertex cover that consists of three vertices: the two vertices of degree t and one vertex
of degree 2. According to Theorem 4.1, we thus have costΠ2(K2,t) ≤ 3/2. This is tight
as we also have OPT(K2,t) ≥ 3/2 thanks to the lower bound OPT(K2,t) ≥ τ ∗bnd(K2,t)
(Theorem 2.1). On the other hand, we can observe (see [KV21]) that on K2,t the cost
of the protocols Π0 and Π1 is always at least 2.
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4.2.2. Cycles. We immediately deduce from Theorem 4.1 an almost optimal protocol
for equality in cycles.

Corollary 4.4. On input Cn, the protocol Π2 of Theorem 4.1 has per-bit cost at most
n+1
3

≤ OPT(Cn) +
1
3
. Moreover, if n ≡ 0 (mod 3), Π2 has per-bit cost n

3
= OPT(Cn).

Proof. In a cycle Cn we can construct a total vertex cover by selecting all vertices except
those whose index is 0 modulo 3. So tvc(Cn) ≤ 2

3
(n+1) and the protocol of Theorem 4.1

has per-bit cost at most (n+ 1)/3 (and at most n/3 if n ≡ 0 (mod 3)).
On the other hand, by Lemma 2.2, τ ∗balls(Cn) = n/3. Overall we get:

n

3
= τ ∗balls(Cn) ≤ τ ∗bnd(Cn) ≤

1

k
OPT(Cn, k) ≤ costΠ2(Cn) ≤

n+ 1

3
,

as desired. □

4.2.3. Hypercubes. In Section 3, we observed that there is a simple protocol for equality
in the d-dimensional hypercube Qd of per-bit cost (1+o(1)) 2d

d+1
, asymptotically matching

the fractional lower bound 2d

d+1
. The efficiency of this protocol was based on a recent

result of Griggs on connected dominating sets in hypercubes [Gri21]. We note that
this result itself is based on classical results on q-ary codes and crucially relies on the
density of primes, even for simple cases such as d = 2ℓ − 1 (for some integer ℓ) where
the domination number of Qd is well understood. It turns out that Corollary 4.2 can
be used to give an alternative protocol for equality in the hypercube Qd, d = 2ℓ − 1,
of cost at most 1

d+1
(2d + 2d/2), which only relies on basic arguments (once we assume

Lemma 4.3, which is based on a non-trivial construction of dense sets of integers without
long arithmetic progression [Beh46]).

Theorem 4.5. Let ℓ ≥ 2 be an integer and let d = 2ℓ − 1. Then the hypercube Qd has
a spanning 2-connected subgraph H with tvc(H) ≤ 2 · (2d−ℓ + 2d/2−ℓ).

Proof. We start by recalling a number of classical properties of Hamming codes. Let
d = 2ℓ − 1 and let H be an ℓ by d binary matrix whose column vectors h1, . . . , hd are
all the non-zero vectors in GF(2)ℓ. We assume for convenience that h1 = 1 (the all 1
vector). Let C0 be the subgroup of GF(2)d consisting of all vectors y such that Hy = 0.
For every 1 ≤ i ≤ d, we set Ci = C0 + ei, where ei denotes the vector of GF(2)d whose
entries are all 0 except at coordinate i (the vectors ei, 1 ≤ i ≤ d, form the standard
basis of GF(2)d if viewed as a vector space, and a generating set if viewed as an additive
group). We view the sets Ci both as subsets of the vertex set V (Qd) and as cosets of
the subgroup C0 of GF(2)d. In particular the sets Ci, 0 ≤ i ≤ d, partition V (Qd) and
all have cardinality 2d

d+1
. The crucial property of this construction is that for any x ∈ Ci

and any j ̸= i, x has exactly one neighbor y in Cj: y = x+ es, where s is the index of
the column hi + hj in H. Note that the translation vector es only depends on i and j,
so there is indeed a perfect matching between Ci and Cj in Qd.

We now consider S = C0 ∪C1 (which we view both as a subset of vertices of Qd and
as a subgroup of GF(2)d). Let GS be the subgraph of Qd induced by all edges having
at least one endpoint in S. Note that GS is a spanning subgraph of Qd: all vertices of



12 L. ESPERET AND J.-F. RAYMOND

S have degree d in S, and all vertices not in S have degree 2 (being adjacent to exactly
one vertex of C0 and one vertex of C1, by the paragraph above). Moreover all the
vertices of S are in the same orbit under the action of the automorphism group of GS,
so no vertex of S is a cut-vertex in GS (otherwise all of them would be cut-vertices),
and thus all connected components of GS are 2-connected.

Claim. GS has at most 2d/2−ℓ connected components.

Proof of claim. Let X be a connected component of GS and let B = X ∩ C0. For any
b ∈ B, the vertices of B at distance 3 from b in GS are of the form b + e1 + ei + eσ(i),
where 2 ≤ i ≤ d and σ(i) is the index of the column h1 + hi = 1 + hi in H. Write
vi = e1 + ei + eσ(i) for any 2 ≤ i ≤ d. The observation above implies that B is equal
to b + V , where V denotes the subgroup generated by the vectors vi, 2 ≤ i ≤ d. Note
that vi = vσ(i) for any 2 ≤ i ≤ d, but if we define V ′ as a subset of V containing
exactly only one of vi and vσ(i) for any 2 ≤ i ≤ d, the vectors of V ′ are linearly
independent (each one has Hamming weight 3, and their supports are pairwise disjoint
apart from the first coordinate which is common to the support of all vectors of V ′).
It follows that V has dimension at least |V ′| = d+1

2
, and thus |B| ≥ 2(d+1)/2. Note that

|X| = (d + 1)|B|, since each vertex of X \ B has exactly one neighbor in B, and thus
|X| ≥ (d+ 1)2(d+1)/2 = 2(d+1)/2+ℓ. It follows that GS has at most

2d

2(d+1)/2+ℓ
= 2d−(d+1)/2−ℓ ≤ 2d/2−ℓ

components, as desired. ■

Consider the graph R obtained from Qd by contracting each component of GS into
a single vertex. As Qd is connected, R is also connected, so it contains a spanning
tree T̃ . Each edge ẽ ∈ E(T̃ ) corresponds to at least one edge e in Qd between two
connected components of GS, say Xi and Xj. We observe that whenever there is such
an edge e, there is actually at least one other edge e′ between Xi and Xj which is not
incident to e. To see this, write e = xy, and assume x ∈ Cs and y ∈ Ct (note that
s, t ≥ 2, since otherwise e would lie in GS). Observe that by definition of GS, we have
x′ = x + es + et ∈ Xi and y′ = y + et + es ∈ Xj. As x and y are adjacent in Qd and
x− y = x′ − y′, x′ and y′ are also adjacent, so we can set e′ = x′y′.

For each edge ẽ ∈ E(T̃ ), we consider the two edges e and e′ in Qd defined above
and add to S one endpoint from each edge. Let S ′ be the resulting vertex set, with
|S ′| ≤ |S|+2 · 2d/2−ℓ. Note that the subgraph GS′ of Qd consisting of all edges incident
to S ′ is spanning and 2-connected (recall that each connected component of GS is
2-connected), and

tvc(GS′) ≤ |S ′| ≤ 2 · 2d

d+1
+ 2 · 2d/2−ℓ = 2 · (2d−ℓ + 2d/2−ℓ),

as desired. □

By Corollary 4.2 we obtain the following as an immediate consequence.
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Corollary 4.6. Let ℓ ≥ 2 be an integer and let d = 2ℓ − 1. Then the protocol Π2 for
equality in the hypercube Qd has per-bit cost at most

2d

d+ 1
+

2d/2

d+ 1
= OPT(Qd) +O

(√
OPT(Qd)

)
.

4.2.4. Grids. We also obtain an asymptotically optimal protocol for equality in grids.

Figure 1. The vertex set S (depicted as white circles) and the spanning
2-connected subgraph GS of the square grid, in red.

Corollary 4.7. In the n×n square grid Gn, the protocol Π2 of Theorem 4.1 has per-bit
cost at most 1

5
n2 + 2n = (1 + o(1))OPT(Gn).

Proof. In the n × n square grid G = Gn, consider the set S of vertices (i, j) ∈ [n]2

which either lie on the outerface, or are such that i ∈ {3j − 2, 3j − 1} (mod 5) (in
words, in row j of the grid, we add to S all vertices located in columns whose index
is 3j − 2 or 3j − 1 modulo 5). Let GS be the subgraph of G induced by the edges
incident to S (see Figure 1 for an illustration). Observe that GS is a spanning subgraph
of G and is 2-connected. By definition of GS, it has a S as total vertex cover so
tvc(GS) ≤ |S| ≤ 2

5
n2 + 4n. By Corollary 4.2, the protocol Π2 has per-bit cost at most

1
2
|S| ≤ 1

5
n2 + 2n. By Lemma 2.2 we have OPT(G) ≥ 1

5
n2, and the result follows. □

Similarly, we obtain asymptotically optimal protocols for equality in triangular grids
and grids with all diagonals.

Corollary 4.8. In the n × n triangular grid Tn, the protocol Π2 of Theorem 4.1 has
per-bit cost at most 1

7
n2 +2n = (1+ o(1))OPT(Tn). In the n× n grid Pn ⊠Pn with all

diagonals (i.e., the strong product of two paths Pn), the protocol Π2 of Theorem 4.1 has
per-bit cost at most 1

9
n2 + 2n = (1 + o(1))OPT(Pn ⊠ Pn).

Proof. The proof is identical to that of Corollary 4.7. We only need to find total vertex
covers in some spanning 2-connected subgraph of the triangular grid (with 2

7
n2 + 4n

vertices), and of the grid with all diagonals (with 2
9
n2 + 4n vertices). Such sets are

depicted in Figure 2. □
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Figure 2. Total vertex covers (in white) of 2-connected spanning sub-
graphs (in red) of the triangular grid (left) and the grid with all diagonal
(right).

We note that the lower order term in all these results can easily by improved by a
factor of 2 (we have chosen not to do so for the sake of simplicity). It is not immediately
clear how to reduce the lower order term to a constant.

4.2.5. Regular graphs. The following was proved in [CG17], under a different terminol-
ogy.

Theorem 4.9 ([CG17]). Every cubic graph on n vertices has a total vertex cover on a
most 3n/4 vertices.

Combining Theorem 4.9 and Theorem 4.1 for the upper bound and using Lemma 2.2
for the lower bound, we directly obtain the following 3

2
-approximation for equality in

cubic 2-edge-connected graphs.

Corollary 4.10. For any n-vertex 2-edge-connected cubic graph G, the protocol Π2 of
Theorem 4.1 has per-bit cost at most 3n/8 ≤ 3

2
OPT(G).

Remark 4.2. We can obtain a more efficient protocol for random cubic graphs as they
are almost surely Hamiltonian [RW94], using the fact that n-cycles have a total vertex
cover of size (2/3+o(1))n. This approach gives a protocol of per-bit cost (1/3+o(1))n ≤
(4
3
+ o(1))OPT(G) for random cubic graphs, improving on Corollary 4.10 for almost all

cubic graphs.

Cubic graphs of large girth share many properties with random cubic graphs (tech-
niques solving problems in one class often work to solve problems in the other). We
prove the following counterpart of the result above for cubic graphs of large girth (we
can actually use the same proof to give another proof of the (1/3 + o(1))n result for
random cubic graphs without using the Hamiltonicity of random cubic graphs, but we
omit the details).

Theorem 4.11. For any ϵ > 0, there is an integer g such that the following holds. If
G is an n-vertex cubic graph which is 2-edge-connected and has girth at least g, then G



MULTIPARTY EQUALITY IN THE LOCAL BROADCAST MODEL 15

has a 2-connected spanning subgraph G′ with tvc(G′) ≤ (2
3
+2ϵ)n, and thus the protocol

Π2 of Theorem 4.1 has per-bit cost (1
3
+ ϵ)n ≤ (4

3
+ ϵ)OPT(G).

Proof. Let M be a perfect matching and let C1, . . . , Cℓ be the disjoint cycles in the
subgraph of G induced by the edges of E(G) \ M (each cycle has length at least g,
by definition). In each cycle Ci, there is a total vertex cover Si of size ⌈2|Ci|/3⌉ ≤
(2/3 + ϵ)|Ci|, for sufficiently large g. Let H be the multigraph on ℓ vertices obtained
from G by contracting each cycle Ci into a single vertex vi. This graph is 2-connected,
and by Lemma 2.3, it has a 2-connected spanning subgraph H ′ with at most 2ℓ−2 ≤ 2ℓ
edges. Let G′ be the subgraph of G consisting of the union of the cycles Ci and the
edges of H ′. This graph G′ is a 2-connected spanning subgraph of G. For each edge of
H ′, add one of its endpoints in a new set S0. Then

⋃ℓ
i=0 Si is a total vertex cover of

G′ of size at most (2/3 + ϵ)n + 2ℓ ≤ (2/3 + ϵ)n + 2n/g ≤ (2/3 + 2ϵ)n for sufficiently
large g. By Corollary 4.2, we obtain cost(G) ≤ 1

2
tvc(G′) ≤ (1/3 + ϵ)n, as desired. □

By extending the proof of Theorem 4.9 we can prove that for d ≥ 3, every d-regular
graph on n vertices has a total vertex cover on a most d

d+1
· n vertices. This is optimal

for every d, since any total vertex cover of the complete graph Kd+1 (which is d-regular)
contains at least d vertices. It was proved in [CG17] that there are two more extremal
connected graphs in the case d = 3, and all the other connected cubic graphs have a
total vertex cover with less than 3n/4 vertices. The result below implies that for d ≥ 5,
complete graphs are the only extremal examples.

Theorem 4.12. For every d ≥ 3, every d-regular graph G on n vertices has a total
vertex cover on at most d

d+1
· n vertices. For d ≥ 5, every connected d-regular graph G

on n vertices distinct from Kd+1 has a total vertex cover on at most d−ϵ
d+1

· n vertices,
with ϵ = 1

2d+1
.

Proof. Let S be a total vertex cover with the minimum number of vertices and let
T = V (G) \ S. For every i ∈ {0, . . . , d− 1}, let Si denote the subset of those vertices
of S that have exactly i neighbors in T . Because S is a total vertex cover and G is
d-regular, there is no vertex in S with d neighbors in T , hence S = S0 ∪ · · · ∪ Sd−1.
Also, since S is a vertex cover, there are no edges between vertices in T .

The edges between S and T can be counted in two different ways, which yields the
following equality:

(1)
d−1∑
i=0

i|Si| = d|T |.

As a consequence, we have:

|S| = d|T |+ |S0| −
d−1∑
i=1

(i− 1)|Si|.(2)

Note that each vertex u ∈ S0 has at least one neighbor in Sd−1, since otherwise we
could remove u from S and still have a total vertex cover, which would contradict the
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minimality of S. On the other hand, each vertex of Sd−1 has at most one neighbor in
S0, so it follows that |S0| ≤ |Sd−1|. By (2), it follows that

|S| ≤ d|T | −
d−2∑
i=1

(i− 1)|Si| − (d− 3)|Sd−1|(3)

If |T | ≥ n
d+1

, then |S| = n− |T | ≤ d
d+1

· n. Otherwise |T | ≤ n
d+1

, and (3) implies that
|S| ≤ d

d+1
· n, which proves the first part of the statement.

We now assume for the remainder of the proof that d ≥ 5, G ̸= Kd+1, and that G
is connected. If |T | ≥ ( 1+ϵ

d+1
) · n, then |S| ≤ d−ϵ

d+1
· n, as desired. So we can assume that

|T | ≤ ( 1+ϵ
d+1

) · n.

Claim. For every u ∈ T , N(u) ∩ S1 induces a clique in G and u has a neighbor in
S2 ∪ · · · ∪ Sd−1.

Proof of claim. To show the first part of the statement, suppose towards a contradiction
that u has two neighbors v, w ∈ S1 that are not adjacent. Since v, w ∈ S1, all the
neighbors of v and w distinct from u are in S. Then observe that S \ {vw} ∪ {u} is
a total vertex cover, a contradiction to the minimality of S. If u has no neighbor in
S2∪· · ·∪Sd−1, recall that it can neither have neighbors in T nor in S0, hence N(u) ⊆ S1.
By the first part of the statement, G[{u} ∪ N(u)] is a clique. As G is d-regular and
connected, V (G) = {u} ∪N(u) and thus G = Kd+1, a contradiction. ■

We now count the number of edges between T and S2 ∪ · · · ∪Sd−1. On the one hand,
the claim above shows that this number is at least |T |. On the other hand, it is at most∑d−1

i=2 i|Si|. We thus obtain |T | ≤
∑d−1

i=2 i|Si| and thus

|T |
2

≤
d−1∑
i=2

i

2
· |Si| ≤

d−2∑
i=2

(i− 1)|Si|+ (d− 3)|Sd−1|,

where we have used that d ≥ 5. By (3), it follows that we have

|S| ≤ d|T | − |T |/2 = (d− 1
2
)|T | ≤ (d− 1

2
)( 1+ϵ

d+1
) · n = d−ϵ

d+1
· n

for ϵ = 1
2d+1

, as desired. □

Theorem 4.12 can be combined with Theorem 4.1 to prove the following.

Corollary 4.13. For any d ≥ 3 and any 2-connected d-regular graph G, the protocol
Π2 of Theorem 4.1 has per-bit cost at most d

2d+2
· n = d

2
· OPT(G). If moreover, d ≥ 5

and G ̸= Kd+1, then the protocol Π2 has per-bit cost at most d−ϵ
2

· OPT(G), for some
ϵ > 0 depending only on d.

Observe that complete graphs Kd+1 have a very efficient protocol of per-bit cost 1,
where a single vertex broadcasts its whole input. In combination with the corollary
above, this outperforms the 4-approximation given by Theorem 1.2 whenever d ≤ 8.
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5. Conclusion

5.1. Monotone total vertex cover. Given a 2-connected graph G, let tvc↓(G) be
the minimum of tvc(H) for all 2-connected spanning subgraphs H of G. Equivalently,
tvc↓(G) is the minimum cardinality of a subset S of vertices of G such that the subgraph
GS of G consisting of all edges incident to S is spanning and 2-connected. Notice the
similarity with the definition of wds(G), which is the minimum cardinality of a subset
S of vertices of G such that the subgraph GS of G consisting of all edges incident to
S is spanning and connected. A simple rephrasing of Corollary 4.2 is that there is
protocol for equality in the local broadcast model in any 2-connected graph G with
per-bit cost at most 1

2
tvc↓(G). Consequently, when 1

2
tvc↓(G) is close to τ ∗bnd(G) we

obtain almost-optimal protocols for equality in G. This is the case for any graph that
contains K2,t as a spanning subgraph (Section 4.2.1), for hypercubes (Theorem 4.5), and
for grids (Corollary 4.7). It was also used implicitly in Remark 4.2 that any n-vertex
Hamiltonian graph G satisfies tvc↓(G) ≤ 2

3
(n + 1), and in Theorem 4.11 to obtain an

efficient protocol for cubic graphs of large girth.
We believe that independently of its connections with multiparty equality, this com-

mon variant of total vertex covers and weakly connected dominating sets is worth
further investigation. The parameter tvc↓ is in some sense much better behaved than
tvc: adding edges to G does not increase tvc↓(G), while this might increase tvc(G).

5.2. Open problems. A natural problem is whether the fractional lower bound τ ∗bnd(G)
can always be attained by OPT(G). We have not been able to find a graph for which the
two parameters provably differ. A natural class to consider for potential counterexam-
ples is the class of 2-edge-connected cubic graphs, which has a clean expression for τ ∗bnd.
For this class we have only been able to find protocols of per-bit cost 3n/8, while the
fractional lower bound is n/4.

Another interesting problem is to bound the per-bit complexity of equality as a
function of the number of vertices, regardless of any fractional lower bound. This
question makes sense for the class of all graphs, but also for specific graph classes
studied in structural and algorithmic graph theory, such as planar graphs or graphs of
bounded treewidth.

We have see that for various types of grids we could obtain asymptotically optimal
protocols for equality, using total vertex covers in some 2-connected subgraphs, of size
at most twice the fractional lower bound. The three types of grids we have considered
can all be seen as Cayley graphs of Z2, with different generating sets. As the three
constructions are very similar, a natural question is whether our constructions can be
generalized to any Cayley graph of Z2.

Finally, it remains an open question whether the upper bound of 4OPT(G) on the
cost of the protocol Π1 in Theorem 1.2 can be improved.
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