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Abstract

Motivated by algorithmic applications, Kun, O’Brien, Pilipczuk, and Sullivan
introduced the parameter linear chromatic number as a relaxation of treedepth and
proved that the two parameters are polynomially related. They conjectured that
treedepth could be bounded from above by twice the linear chromatic number.

In this paper we investigate the properties of linear chromatic number and pro-
vide improved bounds in several graph classes.

1 Introduction

Treedepth is a graph parameter that has been studied under different names, such as ver-
tex ranking number [Sch&9], ordered coloring [KMS95], and elimination height [Pot&8]. It
plays a central role in the graph sparsity theory of Nesetfil and Ossona de Mendez [NOdM12]
due to its strong ties with the notion of bounded expansion. Like several other concepts
from sparsity theory, a convenient aspect of this parameter is that it has several equivalent
characterizations, so one can choose the most relevant one depending on the context.

The definition of treedepth that we mostly consider in this work is via centered color-
ings. A centered coloring of a graph G is an assignment of integers (referred to as colors)
to its vertices such that in every connected subgraph of G there is a vertex with a unique
color, called center. Observe that every centered coloring is proper (i.e., adjacent vertices
receive different colors). The minimum number of colors required in a centered coloring
of G is its centered chromatic number, denoted by Yeen(G). As it turns out, this number
is equal to the treedepth of G (see [NOdM12]).

Kun, O’Brien, Pilipczuk, and Sullivan introduced in [KOPS21] the following relax-
ation of centered colorings. A linear coloring of a graph G is an assignment of integers
to its vertices such that in every path of G there is a vertex with a unique color. The
linear chromatic number of G is the minimal number of colors required in a linear col-
oring of G, and we denote it by xun(G). As paths of G are connected subgraphs, every
centered coloring is a linear coloring, so we always have xin(G) < Xcen(G). Observe that,
just like centered colorings, every linear coloring is also proper. The motivation of the
authors of [KOPS21] for introducing the linear chromatic number is algorithmic. They
suggested an approach towards improving the running time (in practice) of an algorithmic
pipeline for classes of bounded expansion [DRRT19, DKT13, NdMO08] and were able to



reduce the question whether their algorithmic strategy is relevant to the following graph
theory problem: how big can .., be compared to x;,? In the same paper they provided
the following partial answer: there is a constant ¢ < 190 such that for every graph G,
XCen(G) < Xlin(G>c ' <lOg Xlin(G»O(l)‘

Using the recent results of [CNP21] the upper bound on ¢ could be improved to 19 (as
observed in [KOPS21]) and [BDH"22] further improved it to 10.

Theorem 1.1 ([BDH22]). Every graph G satisfies Xeon(G) < X1in(G)' - (log x11n (G)) V.

On the other hand, the authors of [KOPS21] provided a sequence of Ps-free chordal
graphs for which the ratio Xcen(G)/ X1in(G) can be arbitrarily close to 2. They conjectured
that this could be the optimal gap between the two invariants.

Conjecture 1.2 ([KOPS21]). For every graph G, Xeen(G) < 2 x1in(G).

At the time of writing, the best bound that we are aware of on Ycen in terms of xj;, in
the general case is the aforementioned double-digit degree polynomial, quite far from the
conjectured linear bound. To the best of our knowledge, the only graph classes where a
linear bound is known to hold between the two parameters are trees of bounded degree and
pseudogrids (see Bose et al. [BDH22]), where a k x k pseudogrid is a subgraph-minimal
graph containing the & x k grid as a minor.!

Theorem 1.3 ([KOPS21, Theorem 4]). Let T be a tree of maximum degree A > 3. Then
Xcen (T) < (log A) ’ Xlin(T)-

In the case of interval graphs, [KOPS21] provided the following improvement over the
general bound.

Theorem 1.4 ([KOPS21]). For every interval graph G, Xeen(G) < x1n(G)?.

Our contribution

This paper is an exploratory work on the topic of linear colorings. First, we investigate
graph classes where the general polynomial bound given by Theorem 1.1 can be sub-
stantially improved. We give quadratic bounds for any minor-closed graph class, chordal
graphs, and circular-arc graphs. The latter two results generalize the bound of Theo-
rem 1.4 for interval graphs. In the case of graphs of bounded treewidth, we provide a
linear bound. This translates to a bound of 3.7 on the ratio Xcen(7")/ x1n(T") for every tree
T (Theorem 3.11), improving the non-constant log A(7") of Theorem 1.3. The proofs of
these bounds rely on a combination of the results of [CNP21] on unavoidable subgraphs
of graphs of large treedepth (see Theorem 3.2) and a result of [BDH"22] about the linear
chromatic number of pseudogrids (see Theorem 3.1).

We confirm Conjecture 1.2 in several restricted graph classes such as caterpillars (for
which we show that the two parameters differ by at most one) and several graph classes
for which we can show that linear and centered colorings coincide: (Ps+ P;)-free graphs,
(claw, net)-free graphs (which contain in particular the proper interval graphs), complete

!The result from [BDH 22| that the relation between the linear and the centered chromatic numbers
of pseudogrids is linear is only stated, but not entirely proved. What is proved in [BDH"22] is that the
linear chromatic number of a k x k pseudogrid is in Q(k). For completeness, we prove that the centered
chromatic number of a k x k pseudogrid is in O(k) in Section A.



Graph class Upper bound for Xcen(G) Reference

any minor-closed graph class O(xiin(G)?) Theorem 3.4
chordal, circular-arc O(x1n(G)?) Corollary 3.9
G with tw(G) < t 3.7-(t+ 1) (xun(G) +1/1log3) Theorem 3.5
trees 3.7 le(G) Theorem 3.11
caterpillars Xiin(G) + Theorem 4.12
(P; + Py)-free graphs Xiin (G) Theorem 4.1
(claw,net)-free Xiin (G) Proposition 4.3
complete multipartite graphs Xiin (G) Theorem 4.5
co-rook’s graphs Xiin(G) Theorem 4.6

Table 1: Summary of our results regarding Conjecture 1.2.

multipartite graphs, and complements of rook’s graphs.? This is done by a close inspection
of the structure of the considered graph classes. Note that the result for proper interval
graphs cannot be generalized to the class of interval graphs, as shown by the caterpillars.
Let us also remark that if there is a constant ¢ > 0 such that yeen(G) < ¢ x1in(G) for
every chordal graph, then ¢ > 2 due to the aforementioned construction from [KOPS21].
Our results in this direction are summarized in Table 1.

The fact the centered and the linear chromatic numbers coincide for the class of
complete multipartite graphs follows from the analogous result for cographs due to Kun
et al. [KOPS21]. However, for complete multipartite graphs, as well as for complements
of rook’s graphs, we determine the exact values of these parameters.

We then turn to another aspect of the linear chromatic number: obstructions. The
class of graphs with linear chromatic number at most some constant k is closed under
subgraphs, so we can define its obstruction set (with respect to the subgraph relation) as
the set of subgraph-minimal elements that do not belong to the class. Obstruction sets of
graph classes closed under a certain graph containment relation are interesting, especially
when they have bounded size, as they provide characterizations in terms of forbidden
substructures in the spirit of Kuratowski’s theorem and, in case of the subgraph relation,
immediately lead to polynomial-time recognition algorithms. In the case of the centered
chromatic number, obstruction sets can be defined similarly. They have been shown to
have finite size by Dvoidk, Giannopoulou, and Thilikos [DGT12] (lower bounds can be
found in the same paper). We observe that this property also holds for obstructions for
bounded linear chromatic number (Corollary 5.3). In [DGT12] the set of obstructions for
centered chromatic number at most k is given for k € {1,2,3}. By revisiting their proof,
we provide obstruction sets for linear chromatic number at most k, for k£ € {1, 2, 3}.

We conclude with algorithmic aspects. It is known that computing the centered chro-
matic number is NP-complete [BGT98]. We show that this also holds for computing
the linear chromatic number (Theorem 6.1). Finally we provide an FPT algorithm for
deciding if a graph has linear coloring number at most k& (Theorem 6.2).

Organization of the paper. In Section 2 we introduce the necessary terminology and
survey the basic properties of linear chromatic number. Section 3 is devoted to the proofs
of improved bounds for minor-closed graph classes, graphs of bounded treewidth, trees,
and certain intersection graphs. In Section 4 we investigate the classes where the two
chromatic numbers are equal or differ by at most one. In Section 5 we discuss subgraph-

2See Section 4 for definitions.



obstructions to bounded linear chromatic number, with explicit obstruction sets for the
values 1,2, 3. Algorithmic results are proved in Section 6. We conclude in Section 7.

2 Preliminaries

2.1 Notations and definitions

Basics. In this paper logarithms are binary. Unless stated otherwise, we use standard
graph theory terminology. The cliqgue number of a graph G is the maximum order of a
clique in G and is denoted by w(G). The complement G of G is the graph obtained by
reversing the adjacency relation. For a subset X C V(G), we use G — X to refer to the
graph obtained from G after the deletion of the vertices in X. A graph is subcubic if its
maximum degree is at most 3.

For every k € N, P, is the path on k vertices. We denote by P; + P; the disjoint
union of the paths P; and P, and by paw the complement of P3 + P;. The k x k grid is
the Cartesian product of two copies of P, and we denote it by H;. The complete binary
tree with & levels is denoted by By. A star is any tree with a vertex adjacent to all other
vertices. A star forest is a graph every component of which is a star. A graph is chordal
if it has no induced cycle of length at least 4.

Graph containment relations. We say that a graph H is a minor of a graph G if a
graph isomorphic to H can be obtained from a subgraph of G by contracting edges. A
graph class is minor-closed if for every graph G in the class, every minor of G is also in
the class, and it is a proper minor-closed class if it is not the class of all graphs. Given
two graphs G and H, we say that G contains H if H is isomorphic to a (not necessarily
induced) subgraph of GG, and that G is H-free if no induced subgraph of G is isomorphic to
H and, more generally, that G is (Hy, Hy)-free if no induced subgraph of G is isomorphic
to one of Hy and Hy. A graph G is a subdivision of a graph H if GG is obtained from
H by subdividing edges. A graph H is a topological minor of a graph G if G contains a
subdivision of H.

Tree decompositions. A tree decomposition of a graph G is a pair (T, {X:}ev(r))
where T is a tree and X; C V(G) for every t € V(T), with the following properties:
V(G) = Usey(r) Xs; for every u € V(G), the set {t € V(') | u € X;} induces a connected
subgraph of T'; and for every edge uv € E(G) there is a t € V(T') such that {u,v} C X;.
The X,’s are the bags of the decomposition. The maximum size of a bag minus one is
the width of the decomposition. The minimum width of a tree decomposition of G is its
treewidth, which we denote by tw(G).

Colorings. A graph coloring is a function mapping the vertices of a graph to integers,
refered to as colors. A coloring is linear if every path has a unique color and centered if
every connected subgraph has a unique color. The minimum number of colors (i.e., the
cardinality of the image) of a linear (resp. centered) coloring of a graph G is its linear
chromatic number (resp. centered chromatic number), and we denote it by xin(G) (resp.
Xeen(G)). As noted in the introduction, X, is the parameter most often called treedepth
(see [NOdM12, Proposition 6.6]).



2.2 Centered versus linear

In this section we survey the basic properties of the linear chromatic number. Not all the
results stated in this section are used later in the paper, but they help to understand the
main differences between linear and centered colorings.

From the definition we have the following inequality.

Remark 2.1. For every graph G, xiin(G) < Xcen(G).

It is well known that the centered chromatic number does not increase when taking
minors (see for instance [NOdM12, Lemma 6.2]).

Proposition 2.2. If H is a minor of G, then Xcen(H) < Xeen(G).

What about the linear chromatic number? A simple observation shows that it does
not increase when taking subgraphs.

Observation 2.3. If H is a subgraph of G, then xy,(H) < x1in(G).

Proof. Every path of H is a path of G. So the coloring of H induced by a coloring of G
witnessing xjin(G) is a linear coloring of H. ]

We can also easily get the following by reserving a color for the deleted vertex.

Observation 2.4. If H is an induced subgraph of G obtained by removing a single vertex,
then xiin(G) < xun(H) + 1.

What happens with minors? Observations 2.3 and 2.4 imply that contracting an edge
cannot increase the linear chromatic number by more than one. A further partial answer
is given by the following.

Observation 2.5. There is a polynomial f such that if H is a minor of G, then x,(H) <
f(xin(G))-

Proof. By Remark 2.1, Proposition 2.2, and Theorem 1.1 respectively, we have xy,(H) <
Xeen(H) < Xeen(G) < f(x1n(G)), where f is a polynomial of degree 11 whose existence is
implied by Theorem 1.1. O]

However, in general it is not true that linear chromatic number is monotone under
taking minors (in fact, not even under taking topological minors), as shown by the follow-
ing construction due to Jana Masatikova and Wojciech Nadara (personal communication,
2024). We note that Conjecture 1.2, if true, would imply that y,(H) < 2 - xin(G) for
every minor H of G.

Proposition 2.6. There is a graph G with xin(G) = 4 and a topological minor H of G
with xyin(H) > 4.

Proof. Let G be the graph from Fig. 1 (left) and ¢ be the coloring of G specified by the
numbers on its vertices in the aforementioned figure. Let H be the graph from Fig. 1
(right) and observe that H is a topological minor of G that can be obtained by contracting
the edge kc. We show that G and H satisfy the statement of the proposition. First, we
verify that ¢ is a linear coloring by checking all the paths in G. Towards a contradiction
suppose there is a path P that does not have a center. Then, P must see one of the
colors 1 and 2. Suppose it sees 1 but not 2. Then, in order to see color 1 twice, P
contains vertices g, f, and a in order. It follows that P contains a center of color 0 or 3, a
contradiction. By symmetry, it remains to analyze the case when P sees both 1 and 2. In
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order to see colors 1 and 2 twice, P starts in g and ends in h. It cannot use e (otherwise
P = gfedh, admitting g as a center) so it starts with gfa and ends with cdh. In the rest
of the graph (i.e., G[{i, b, j, k}]) no component contains twice the color 0, so any way to
complete the path contains a center of color 0, a contradiction.

a c
J

o @ @ @ @

g f e d h

Figure 1: A graph G with x;,(G) = 4 (left) and a topological minor H of G (right) with
Xlin(H) > 4.

Note that three colors are not enough for a linear coloring as GG contains a path on 9
vertices (for instance, gfedcjabi), which requires 4 colors, as we will note in Lemma 2.7.
We conclude that xy,(G) = 4.

Now, we show that yy,(H) > 4. Suppose, for contradiction, that there exists a linear
coloring ¢ of H using four colors, say {0,1,2,3}. Observe that any cycle in H has at
least two centers in any linear coloring (since otherwise removing a unique center would
result in a path without a center), in particular let 1,0,2 be colors of a,b, and ¢ in ¢,
respectively. We split the analysis according to pairs of unique colors in the cycle C' with
vertices a, b, ¢, d, e, f. Observe that two centers cannot be adjacent in C', as otherwise the
rest of C' is a four-vertex path, which needs at least three colors in any linear coloring.
Therefore, if 0 is a unique color in C', neither 1 nor 2 is unique in C'. Moreover, observe
that also 3 is not a unique color in C' as otherwise the vertices from C' colored by 1 and
2 would create a four-vertex path in H. This is a contradiction, since the cycle has two
unique colors. It follows that 0 is not a unique color in C.

Assume for now that colors 1 and 2 are unique in C. It follows that ¢(f) = ¢(d) =3
and ¢(e) = 0 or vice versa. In both cases, ¢(g),p(h) € {1,2} as any of them creates a
four-vertex path with vertices f, e, d. Consider paths bedefg and bafedh in the case where
¢(e) = 0 and paths bedh and bafg in the case where ¢(e) = 3. Together with the previous
argument, these paths enforce g and h to have different colors in {1,2}. However, the
path gfacdh has no center. It follows that at least one of the colors 1 and 2 is not unique
in C.

Finally, assume that 1 and 3 are unique colors in C'. As 2 and also 0 are not unique
in C' by the previous analysis, we have that the vertices f,e, and d have different colors
in {0,2,3}. We now determine colors of i and j. As ¢(i) # ¢(b) and path fedcbi enforces
(1) # 3, we have ¢(i) € {1,2}. Hence, ¢(j) = 3 by considering path ibaj or ibcj and
triangle acj. Moreover, ¢(i) = 2, by path jedefabi. As p(d) # ¢(c) and ¢(d) # 0 by path
ibed, (d) = 3. It follows ¢(e) = 0 by path jede, and then ¢(f) = 2. Consider the color



of vertex g: ¢(g) # 0 by path jedefg, ©(g) # 1 by path dcjafg, p(g) # (f) = 2, and
©(g) # 3 by path bedefg. This contradicts that ¢ is a linear coloring of H with unique

colors 1 and 3 in C', but also that ¢ is a linear coloring of H as we consider all cases up
to the symmetry of 1 and 2. This shows that xy,(H) > 4. O

On paths the two invariants coincide (because every connected subgraph of a path is
a path) and their value is logarithmic in their length (see [NOdM12, Section 6.2]).

Lemma 2.7. For every integer n, Xcen(Pn) = Xin(Pn) = [log(n + 1)].
Theorem 1.3 and Lemma 2.7 imply the following.
Corollary 2.8. Let T' be a subcubic tree. Then Xeen(T) < (log3) - xin(T).

It is known that the presence in a graph of a large complete binary tree as a minor
forces a large centered chromatic number, because of Proposition 2.2 and the following
well-known equality.

Lemma 2.9 (Folklore). For every k € N, Xcen(By) = k.

Proof. 1t is easy to check that coloring each vertex of By with its distance to the root is
a centered coloring, and it has k colors, s0 Xcen(Br) < k. Conversely, by contradiction
suppose that yeen(Bx) = k fails for some value of £ > 1 and let us consider the minimum
such value. So By admits a centered coloring ¢ with less than k colors. From the definition
there is a vertex v to which ¢ assigns a unique color. Observe that By — v contains a
copy of By_1, that we call B. As ¢(v) is unique, ¢ assigns at most k£ — 2 colors to B. By
minimality of k, B has a subgraph with no unique color by ¢, but this is also a subgraph
of By, with this property, a contradiction. O

A similar statement holds for linear chromatic number, as a consequence of Corol-
lary 2.8.

Lemma 2.10. If G contains By as a minor, then xn(G) = k/log 3.

Proof. Since the complete binary tree By is subcubic, if G' contains By, as a minor, then
it contains a subdivision B of By as a subgraph (see [Die25, Proposition 1.7.3]). As
subdividing edges does never decrease Xcen (Proposition 2.2) and by Lemma 2.9, we infer
that Yeen(B) = k. By Corollary 2.8, xin(B) > k/log3. By Observation 2.3, we get the
desired bound. O

We note that the constant log 3 in the statement above is tight because of the following
result. This suggests a possible improvement of the ratio in Conjecture 1.2 in the special
case of trees.

Theorem 2.11 ([KOPS21)). klglgo Xeen(Bk)/ Xin(Bx) = log 3.

3 General bounds

In this section we provide improvements over the bound of Theorem 1.1 in minor-closed
graph classes, graphs of bounded treewidth, trees, and certain intersection graphs, includ-
ing chordal graphs and circular-arc graphs.

Following [KOPS21], Bose et al. [BDH"22] relaxed the notion of a k x k grid to a
family of graphs called k x k pseudogrids, that have the following properties:
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(1) A graph G contains B as a minor if and only if G contains a k x k pseudogrid
as a subgraph (that is, k x k pseudogrids are exactly the subgraph-minimal graphs
containing Hy as a minor).

(2) There is a constant ¢ > 0 such that the linear chromatic number of any & x k pseu-
dogrid is at least ck.

These two facts imply the following.

Theorem 3.1 ([BDH"22]). There is a constant ¢ > 0 such that if G contains By, as a
minor then xin(G) = ck.

Czerwinski, Nadara, and Pilipczuk proved in [CNP21, Theorem 1.4] that large centered
chromatic number implies either large treewidth or the presence of a subcubic tree with
large centered chromatic number. The precise statement of the result involves a numerical

constant, denoted by « and defined as a =log3/log ((1 + \/5) /2) (Note that o ~
2.283.)

Theorem 3.2 ([CNP21]). For every two integers w,d > 0 and every graph G, if Xcen(G) =
=

awd then either tw(G) = w or G contains as a subgraph a subcubic tree T with Xcen(T')
d.

We will also use the following linear grid minor theorem of Demaine and Hajiaghayi.

Theorem 3.3 ([DH08]). For every proper minor-closed graph class G there is a constant
¢ such that for every t € N and every G € G, if tw(G) > ¢ -t then G contains B, as a
minor.

We are now ready to prove the first result of this section, which is a quadratic relation
between the centered and the linear chromatic numbers for graphs excluding any fixed
graph as a minor.

Theorem 3.4. For every proper minor-closed graph class G there is a constant ¢ > 0
such that for every G € G, Xeen(G) < ¢ X1in(G)?.

Proof. Let c31 and c33 be the constants from Theorems 3.1 and 3.3, respectively. Let
G € G and let k = Ycen(G). We deal with small values separately. Let ¢y = 4a(cs 3+ 1)%
If k£ < ¢y, then the statement trivially holds for ¢ = ¢q. So in the following we may thus
assume k > cg.

We apply Theorem 3.2 with w = d = b/k/aJ (indeed, we have w,d > 0 and k > awd,

so the theorem applies). We distinguish two cases depending on the outcome of the
theorem.
If tw(G) > w, then by Theorem 3.3 G contains a ¢ x t grid as a minor, where



t = |w/cs3]. By Theorem 3.1,

Xin(G) = c31 - t

L]

C3.3

C3.3

=C31

= C31

. vk — Va(ess +1)
3'1 C3.3v/ Q0

C3.1
> VEk as k > cp.
= 203,3\/& = Q0

2
So in this case k < ¢ - xuin(G)? for ¢; = (2c3.3\/5> '

C3.1
In the remaining outcome of Theorem 3.2, G contains a subcubic tree T with yeen () >

d as subgraph. We apply Corollary 2.8 and get x1in(G) = x1in(T) = d/log3 = {\ / k:/on /log 3.

So similarly as above k < ¢ X1 (G)? for some constant ¢, > 0. Overall the claimed state-
ment holds for ¢ = max(cg, ¢1, ). O

In graph classes of bounded treewidth we can get a linear bound.

Theorem 3.5. Fvery graph G satisfies

Yeen (@) < - (bW(G) +1) - (le@ * 10;3)

where ¢ = alog 3 < 3.7.

Proof. Let k = xcen(G). We apply Theorem 3.2 for w = tw(G) +1 and d = [ X |.

Treewidth does not increase when taking subgraphs, so only the second outcome of
the theorem may hold. Hence G contains a subcubic tree T" with Xcen(7') = d.

Since the linear chromatic number is monotone under subgraphs (see Observation 2.3),
we have xin(G) = xun(T'). As T is subcubic, we may use Corollary 2.8 and obtain, using
d>E —1,

k 1
aw(log3) log3’

Xlin(G) 2 Xlin(T) 2 Xcen(T)/logg >
Hence, k < a(log3)(tw(G) + 1) - xuin(G) + a(tw(G) + 1), proving the claimed result. O

As a corollary (and using that when xin(G) < 2, Xeen(G) = xun(G), see Observa-
tion 5.5) we get the following bound.

Corollary 3.6. FEvery graph G satisfies
Xcen(G) <c- (tW(G) + 1) : Xlin(G)

where ¢ = a(log3 +1/3) < 4.38.



In graph classes where the treewidth is linearly bounded from above by the clique
number (which is a lower bound for xjy,), Theorem 3.5 implies a quadratic bound. In
particular, this is the case for intersection graphs of connected subgraphs of graphs of
bounded treewidth. For a class G of graphs, let I(G) be the class of region intersection
graphs of graphs in G, defined as follows. For H € G and a family {H,};c; of connected
subgraphs of H, let G be the graph with vertex set J in which two distinct vertices 7 and j
are adjacent if and only if H; and H; have a vertex in common. Region intersection graphs
have been studied as a common generalization of many classes of geometric intersection
graphs (see [Leel7]). For any graph class G of graphs with bounded treewidth, region
intersection graphs of graphs in G have treewidth linearly bounded from above by the
clique number. This follows from the following property, shown in the proof of [BGT98,
Lemma 2.4],

Lemma 3.7 ([BGT98]). Let k > 0 be an integer and let G be a class of graphs with
treewidth at most k. Then each graph G € I(G) has a tree decomposition in which each
bag is a union of at most k + 1 cliques.

Theorem 3.8. Let k > 0 be an integer and let G be a class of graphs with treewidth at
most k. Then each graph G € I(G) satisfies Xeen(G) = O(x1n(G)?).

Proof. Let G € 1(G). By Lemma 3.7, G has a tree decomposition in which each bag is a
union of at most k + 1 cliques. Hence, tw(G) < (k + 1)w(G) — 1. By Theorem 3.5, we
infer that

Xeen(G) = O((tw(G) + 1) - X1 (@) = O((k + Dw(G) - x1(G)) = O(xin(G)7)
since w(G) < x1n(G) and the constant k£ + 1 is subsumed by the O(-)-notation. O

Since every chordal graph is an intersection graph of subtrees in a tree (see [Bun74,
Wal78, Gav74]) and every circular-arc graph is an intersection graph of paths in a cycle,
the cases k € {1,2} of Theorem 3.8 imply the following generalizations of the analogous
result from [KOPS21] for interval graphs (Theorem 1.4).

Corollary 3.9. Every chordal or circular-arc graph G satisfies Xeen(G) = O(x1in(G)?).
A crucial step in the proof of Theorem 3.2 is the following.

Lemma 3.10 ([CNP21]). Every tree T contains a subcubic tree T' with Xeen(T') >
Xeen(T') /v as a subgraph.

Using Lemma 3.10 we can improve by a factor of 2 the ratio in the bound of Theo-
rem 3.5 in the case of trees, with a similar proof.

Theorem 3.11. For every tree T, Xcen(T') < ¢+ x1n(T') where ¢ = alog3 < 3.7.

Proof. By Lemma 3.10, T contains a subcubic tree 7" with Xcen(7") = Xecen(T)/a as
a subgraph. Using Corollary 2.8 we obtain xin(7) = xin(7") = Xecen(1")/log3 >
Xeen(T')/(r(log 3)). -
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4 When centered is almost linear

Interesting cases of graphs satisfying Conjecture 1.2 are the graphs for which the two
chromatic numbers are equal. A sufficient condition for this is that every linear coloring
of the graph is centered. Three graph classes with this property were already identified
by Kun et al. [KOPS21]. In Section 4.1, we identify two more.

In Section 4.2, we consider two more graph families for which the linear and cen-
tered chromatic numbers coincide and determine their exact values: complete multipartite
graphs and complements of rook’s graphs.

Finally, in Section 4.3, we show that for caterpillars the two parameters differ by at
most one.

4.1 Graphs for which every linear coloring is centered

Recall that every centered coloring of a graph G is also a linear coloring. Hence, a sufficient
condition for the equality between the linear and centered chromatic numbers of GG is that
every linear coloring of GG is centered.

Kun et al. [KOPS21] observed that this property holds for graphs with independence
number at most two, cographs, and graphs with maximum degree at most 2. The result
for graphs with independence number at most two can be generalized as follows.

Theorem 4.1. If G is a (Ps+ Py)-free graph, then every linear coloring of G is centered.
In particular, x1in(G) = Xcen(G).

Proof. Suppose for a contradiction that G has a non-centered linear coloring ¢ and let H
be a connected induced subgraph of G with no center. We consider two cases depending
on whether the complement H of H is connected or not.

Case 1. H is connected. Since H is paw-free, by a result of Olariu [Ola88] H is either
triangle-free or complete multipartite. In the first case the independence number of H is
at most 2, so by [KOPS21, Lemma 1] ¢ is a centered coloring, a contradiction. In the
second case, as H is connected, H is a complete graph and the same conclusion follows.

Case 2. H is disconnected. Then H has a bipartition (A4, B) of its vertex set into two
nonempty sets with all edges between them. As ¢ is a proper coloring, ¢ colors A and B
with disjoint sets of colors. Besides, by Lemma 4.4, in one of A and B ¢ assigns different
colors to all the vertices. We may assume without loss of generality that the vertices of A
gets colored with different colors. Then, any vertex of A is a center of H, contradicting
the choice of H. O

A useful observation, also used in [KOPS21], is that the property holds for graphs
such that every connected induced subgraph has a Hamiltonian path.

Observation 4.2. If GG is such that every connected induced subgraph of G has a Hamil-
tonian path, then every linear coloring of GG is centered.

Indeed, if H admits a linear coloring v, then for every connected subgraph H of G,
V(H) induces a connected subgraph that has a Hamiltonian path Pgy. Then Py admits
a center thus H admits a center, and therefore 1 is a centered coloring of G.

A graph G is an interval graph if it is an intersection graph of a family of closed
intervals on the real line. If moreover none of the intervals contains another, then G is a
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proper interval graph. Kun et al. [KOPS21] showed that every interval graph G satisfies
Xeen(G) < X1 (G)?. If G is a proper interval graph, then i, (G) = Xeen(G), as implied by
the fact that every proper interval graph is (claw, net)-free® and the following.

Proposition 4.3. If G is (claw, net)-free, then every linear coloring of G is centered. In
particular, Xiin(G) = Xcen(G).

Proof. Duffus, Jacobson, and Gould [DJG81] showed that every connected (claw, net)-
free graph has a Hamiltonian path. Moreover, the class of (claw, net)-free graphs is closed
under induced subgraphs. The result is thus implied by Observation 4.2. O]

4.2 Complete multipartite graphs and complements of rook’s
graphs

Given a positive integer k, a complete k-partite graph is any graph G such that V(G)
admits a partition into k£ nonempty parts such that two vertices of G are adjacent if
and only if they belong to different parts. A complete multipartite graph is any graph
G that is complete k-partite for some k. Note that if G is complete multipartite, then
GG is complete k-partite for a unique k; moreover, the corresponding partition into k
parts is unique. Complete multipartite graphs are cographs, hence, every linear coloring
is centered (see [KOPS21]). In the next theorem we determine the exact values of the
corresponding chromatic numbers. We start with a simple lemma that we use twice, so
we extracted the statement.

Lemma 4.4. Let G be a graph, let (A, B) be a bipartition of V(G) such that every vertex
of A is adjacent to every vertex of B, and let ¢ be a linear coloring of G. Then, in one
of A and B, the coloring ¢ assigns different colors to all the vertices.

Proof. Suppose for a contradiction that two vertices a,a’ € A are assigned the same color
and two vertices b,b’ € B are assigned the same color. Then these four vertices form a
Py-subgraph with no center. O]

Theorem 4.5. Let G be a complete multipartite graph. Then xiin(G) = Xcen(G), with both
quantities equal to n — p + 1 where n is the order of G and p is the maximum cardinality

of a part of G.

Proof. To see that Yeen(G) < n — p+ 1, Observe that we can color the largest part Y of
G with the same color and all the other vertices with different colors. This is a centered
coloring since every subgraph of G either contains a single vertex from Y, or contains a
uniquely colored vertex from G — Y.

To show that xy;,(G) > n—p+1, consider a linear coloring ¢ and let k be the number
of colors used. If all vertices of G are colored with unique colors, then k =n >n —p+ 1.
Hence, we may assume that two vertices u, v receive the same color. Then v and v are
non-adjacent and thus belong to the same part X of G. Since the pair (X, V(G) \ X) is
a bipartition of V(G) with all edges between X and V(G) \ X, by Lemma 4.4, ¢ assigns
different colors to all the vertices in one of X and V(G) \ X. Since ¢(u) = ¢(v), we infer
that ¢ assigns different colors to all the vertices in V(G) \ X. Furthermore, since ¢ is a
proper coloring, no color of a vertex in V(G) \ X can be used on any vertex in X. Hence,
k>=n—|X|+1>=n—p+1, as claimed. We conclude that x;in(G) <K n—p+1 < Xeen(G) <
Xiin (G), therefore, equalities must hold throughout. O

3The claw is the graph obtained by attaching 3 pendant vertices to a vertex, and the net is the graph
obtained by attaching a pendant vertex to each vertex of a Kj.
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For all n,m > 1, the n X m rook’s graph is a graph on nm vertices, arranged into m
columns with n vertices each and into n rows with m vertices each, such that two vertices
are adjacent if and only if there are in the same column or in the same row.

We consider here the co-rook’s graph, that is, the complement of the n x m rook’s
graph. Note that this graph can also be obtained by removing the edges of n disjoint
complete graphs K, from the complete multipartite graph with m parts with n vertices
each.

Theorem 4.6. Letn > m > 1 and let G,,,, be the complement of the n x m rook’s graph.
Then
nm—n+1 ifm=>=22andn>=3,

m otherwise .

Xcen(Gn,m) = Xlin(Gn,m) = {

Proof. Suppose first that m = 1. Then G, ; is an edgeless graph of order n, thus
Xeen(Gn1) = Xiin(Gri) = 1. Suppose next that m = n = 2. Then Gsy is a disjoint
union of two complete graphs Kb, hence een(G22) = Xiin(G22) = 2.

Assume now that m > 2 and n > 3, with n > m. Since G, ,, is a subgraph of the
complete multipartite graph with m parts of n vertices, we obtain from Proposition 2.2
and Theorem 4.5 that Xcen(Gnm) < nm—n+1; so let us show that xjin(Gpm) = nm—n+1.
Suppose for a contradiction that there exists a linear coloring ¢ of G, ,, with at most
nm — n colors.

Recall that the vertices of G, ,, are partitioned into m columns C4, ..., C,, and into
n rows Ry, ..., R,. Two vertices are non-adjacent if and only if they belong to the same
column or row. Hence, for any two vertices v and v, if ¢(u) = ¢(v), then they are non-
adjacent, so either there is i € {1,...,n} such that u,v € R; or there is j € {1,...,m}
such that u,v € Cj.

Claim 4.7. Let u,v,u',v" be four distinct vertices such that p(u) = @(v) and p(u') =
©(v"). Then either three of those vertices belong to the same column or to the same row, or
there exist two rows R and R’ and two columns C' and C" such that {u,v,u',v'} C RUR’
as well as {u,v, v’ '} CCUC".

Proof. Recall that the vertices in each pair are either in the same column or in the same
row.

Suppose that u and v are in the same column C}, and respectively in rows R;, and
R;,. Suppose that neither v’ nor v’ is in C; (otherwise there are three of those vertices
in C}), and that one of them, without loss of generality v/, is neither in R;, nor in R;,.
Thus «' is adjacent to both u and v. Moreover, since v’ cannot be both in R;, and R;,,
v" is adjacent to at least one of u, v, without loss of generality v. Then uu'vv’ is a path of
Gn,m With no center, a contradiction.

Therefore v, v belong to the union of the rows R;, and R;,. If they are in the same
row, then three of the vertices u,v,u/,v" are in a same row, so we may assume (w.l.0.g.)
that u' belongs to R;, and v’ belongs to R;,. Suppose that «’,v" are not both in the same
column: then wv'u'v is a path of G,,,, with no center, a contradiction.

The case where u, v are in a same row is obtained by symmetry. a

Claim 4.8. For each column (resp. row), there are at most two vertices whose color is
not unique in this column (resp. row).
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Proof. Suppose that there exist two distinct vertices u,v € V (G, ,,) that are in a same
column Cj; such that ¢(u) = ¢(v). Let R;, and R;, be the two rows containing v and v,
respectively.

Observe that the graph G’ = G, ,,, — C; contains exactly nm — n vertices, and none of
these vertices can be colored ¢(u), so if each vertex of G’ has a unique color in G’, then ¢
uses at least |V(G')| + 1 > nm — n colors, a contradiction. Thus there exist two distinct
vertices « and y in G, ,, — C; such that p(x) = ¢(y). By Claim 4.7, they are in rows
R;,, R;,, either both in one of them (then without loss of generality R;,) or one in each
row, and both in the same column.

Suppose now that there is another pair v’ and v’ of distinct vertices in C; such that
p(u') =), v ¢ {u,v}, and v' # u (possibly v' = v and p(u) = ¢(v) = @(u')). Then if
x,y are both in R; , they are not in the same row as u’ nor v/, and if they are in the same
column, none of them is in the same row as u/. In both cases, this contradicts Claim 4.7.

Finally, the case when v and v are in the same row R; is obtained by symmetry and
observing that |V (G, ., — R;)| = nm —m > nm — n. 4

Claim 4.9. Each color appears at most twice in Gy, .

Proof. Suppose that G, ,, contains three distinct vertices u, v, and w such that p(u) =
©(v) = p(w). Since these three vertices are pairwise non-adjacent, they either all belong
to the same row or to the same column. That contradicts Claim 4.8. O]

Claim 4.10. Let {ug, v}, k € {a,b,c}, be three disjoint pairs of vertices such that p(uy) =
o(vg) for all k € {a,b,c}. Then, four vertices among those six belong to the same column
or to the same row, and all the other nm — 6 vertices have a unique color.

Proof. Every pair of vertices of the same color has to be either in the same column or
in the same row. We call such a pair a column pair (resp. a row pair). Hence, we may
assume without loss of generality that {u,, v, } and {up, vy} are both column pairs or both
row pairs. Suppose that they are both column pairs (the case when they are both row
pairs is treated symmetrically). Note that since ¢(u,) = p(v,) and p(up) = p(vp), we
infer from Claim 4.8 that the columns containing {u,,v,} and {uy,v,}, respectively, are
distinct. Up to reordering the columns and rows, we can assume that {u,, v, } and {u, vy}
are respectively in C7 and Cs. By Claim 4.7, we can also assume that u,, up belong to R
and v,, v, belong to Rs.

Suppose that {u.,v.} is also a column pair. Let C; be the column containing {u., v.}.
By Claim 4.8, j ¢ {1,2}, and by Claim 4.7 applied to {u,, v, } and {u.,v.}, we can assume
that u, € R; and v. € Ry. Therefore, u,vpu v,upv. is a path in G, ,, with no center, a
contradiction with the fact that ¢ is a linear coloring of G, .

Thus, {ue,v.} has to be a row pair, and let R; be the row containing {u.,v.}. Suppose
first that ¢ ¢ {1,2}. Then by Claim 4.7 applied to {u,,v,} and {u.,v.}, we can assume
that v, € Cy and v, € Cy. Then, uvpu V.V, is a path in G, ,, with no center, a
contradiction. Therefore, {u.,v.} are either in Ry or Ry, say Rj, hence there are four
vertices (namely, u,, up, u., and v.) among those six that are on the same row.

It remains to show that all the other nm — 6 vertices have a unique color. Suppose for
a contradiction that there exists a fourth pair {ug, v4} such that p(ug) = ¢(vg). Applying
the previous observations for {u., v.} to {ug, v4}, we infer that {u4, vy} are either in Ry or
Rs. Since {u,,v.} are in Ry, we infer from Claim 4.8 that {ug,vs} are in Ry. By Claim 4.7,
we may assume without loss of generality u.,uy and v., v, are respectively in the same
column. Then u,uqv.v,u:v4 is a path in G, ,,, without a center, a contradiction. 2
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Recall that ¢ uses at most nm — n colors. By Claim 4.9, each of the colors appears
at most twice. Let k be the number of colors that appear twice. Then, the total number
of colors used by ¢ is nm — k, and, hence, £ > n. On the other hand, k < 3, since
k > 4 would contradict Claim 4.10. Therefore, n < k < 3, and since n > 3, we infer
that m < n = k = 3. Since k = 3, there exist three disjoint pairs of vertices, each of
the same color. Hence, by Claim 4.10, four vertices among those six belong to the same
column or to the same row. However, this implies that m > 4 or n > 4, respectively, a
contradiction. O]

Remark 4.11. Not every linear coloring of a co-rook graph is centered. Consider the graph
depicted in Figure 2, with the coloring given by the numbers.

Figure 2: The coloring of Remark 4.11

It is easy to check that this is a linear coloring, however it is not a centered coloring,
as there is no unique color. This graph is an induced subgraph of the complement G 4
of the 2 x 4-rook’s graph. So any extension of the above coloring into a linear coloring
of G4 (for instance obtained by giving unique colors to the remaining vertices) is not a
centered coloring.

4.3 Linearly coloring caterpillars

While Conjecture 1.2 is still open for trees, Theorem 3.11 establishes a relaxed version
of it. We now provide further support for Conjecture 1.2 for trees, by proving it for
caterpillars. A caterpillar is a tree such that the removal its of leaves yields a path, called
its central path.

Theorem 4.12. If T is a caterpillar, then Xcen(T) < xun(T) + 1. Furthermore, there
exist caterpillars attaining equality.

Proof. Let P be the central path of T, and k = [log(|V(P)| + 1)]. We know from
Lemma 2.7 that Xeen(P) = xun(P) = k. We define a coloring for T as follows: the
path P is colored according to a centered coloring achieving Xcen(P) = k and all the
leaves of T" receive a (k 4 1)st color. This is a centered coloring of T" as each connected
subgraph 7" of T' that has more than one vertex is composed of a nonempty subpath
of P, which has a center, and a (potentially empty) subset of leaves of T that do not
share any color with the subpath. Thus, the center of the subpath is also a center of T".
Therefore, Xcen(T) < k4 1. Moreover, T' contains P with x;,(P) = k as a subgraph so
by Observation 2.3, xin(7") = k. Hence Xcen(T') < xin(7) + 1. O

Remark 4.13. The bound of Theorem 4.12 is tight, as witnessed by the graph depicted
in Figure 3 which has centered chromatic number 4 (see [DGT12]) and linear chromatic
number 3. A linear coloring with 3 colors is given by the numbers on the vertices.
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Figure 3: The coloring of Remark 4.13.

5 Obstructions to bounded linear chromatic number

A partial order is a well-quasi-order if it contains neither an infinite decreasing sequence,
nor an infinite antichain.

Theorem 5.1 ([NOdM12]). For every k the class of graphs of centered chromatic number
at most k is well-quasi-ordered by the induced subgraph relation.

As graphs of bounded linear chromatic number have bounded centered chromatic
number (Theorem 1.1), Theorem 5.1 implies the following.

Corollary 5.2. For every k the class of graphs of linear chromatic number at most k is
well-quasi-ordered by the induced subgraph relation.

The obstructions for having linear chromatic number at most k& have (by minimality)
linear chromatic number k£ + 1 and form an antichain, so we also get the following

Corollary 5.3. For every k € N the class of graphs G with xin(G) < k has a finite
number of obstructions with respect to the induced subgraph relation.

Since a class of graphs closed under subgraphs has a finite obstruction set with respect
to the subgraph relation if and only if it has a finite obstruction set with respect to the
induced subgraph relation, Observation 2.3 implies that the analogue of Corollary 5.3 also
holds for the subgraph relation.

Corollary 5.4. For every k € N the class of graphs G with xin(G) < k has a finite
number of obstructions with respect to the subgraph relation.

In the next section, we determine the obstructions sets for classes of graphs with
Xin(G) < k with respect to the subgraph relation, for k£ < 3.

5.1 Small values

We investigated which graphs have different values for the centered and coloring numbers,
for small values.

Observation 5.5. A graph G satisfies yiin(G) < 1if and only if G is edgeless, and xi, (G) <
2 if and only if G is star forest. In both cases x1in(G) = Xcen(G).

Proof. The case x1in(G) < 2 holds due to the fact that if yy;,(G) < 2, then G excludes P,
as well as all cycles as subgraphs, hence, G is a star forest, implying Xcen(G) < 2. [

In 2012, Dvorak, Giannopoulou, and Thilikos characterized the family of forbidden
subgraphs for treedepth—or, equivalently, the centered chromatic number—at most 3
(see [DGT12]). The list is finite, consisting of 14 graphs with at most 8 vertices. We
adapt their approach and obtain a similar result for the linear chromatic number. The
resulting list can be obtained from the list for treedepth (see [DGT12, Theorem 4]) by
extending two of its members by the addition of one or two pendant edges, respectively.
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Figure 4: The list F of subgraph obstructions to x;,(G) < 3.

Theorem 5.6. Let F be the set of graphs depicted in Figure J and let G be a graph.
Then, x1in(G) < 3 if and only if G contains none of the graphs in F as a subgraph.

Proof. 1t can be verified that all the graphs in F have linear chromatic number at least
4 (we provide a proof of this fact in Section B). Hence, by Observation 2.3, if G' contains
one of the graphs in F as a subgraph, then xy,(G) > 4.

Suppose the converse is not true, and let G be a minimal counterexample, i.e., G is
a graph such that G contains none of the graphs in F as a subgraph, x,(G) > 4, and
every proper subgraph of G has a linear coloring with at most 3 colors. In particular, G
is connected. Observe that G does not contain a cycle of length greater than 4, otherwise
G contains either Cs, Cg, Cr, or Py (all of which are in F) as a subgraph.

We organize the proof in a sequence of claims establishing a number of structural
properties of G.

Claim 5.7. The graph G does not admit a 4-cycle containing two non-adjacent vertices
of degree 2 in G.

Proof. Towards a contradiction, denote such a cycle by C', and let vy, v, v3,v4 be a cyclic
order of the vertices of C' such that vy and vy have degree 2 in G. We first show that
there exists some ¢ € {1,3} such that v; is not an endpoint of a path of length 2 in the
graph G — vy_;. For i € {1,3}, let X; be the set of vertices of G adjacent to v; but not
to vg_;. Then, X; and X3 are disjoint (by definition) and there is no path from X; to X3
in the graph G — v; — v3, since otherwise G would contain a cycle of length more than
4. Suppose for a contradiction that there is a path of length 2, say vyx1y;, in the graph
G — vz and a path of length 2, say vs3xsys, in the graph G — v;. Since vertices vy and
vy have degree 2 in GG, they are both distinct from x; and x3, as well as from y; and ys.
Note that no vertex adjacent to both v; and vg can be adjacent to a vertex outside of C,
otherwise we would obtain an Fy subgraph. In particular, we have z; € X; for i € {1, 3}.
Then, the graph GG contains three edge-disjoint paths of lengths 1, 2, and 4 starting at
vy, namely vivy, v1T1Yy1, and vivavsz3Yys, respectively. These paths form a subgraph of G
isomorphic to Fy € F, a contradiction. This shows that there exists some ¢ € {1, 3} such
that v; is not an endpoint of a path of length 2 in the graph G — vy_;.

We may assume without loss of generality that v is the center of a star component
of the graph G — v;. We claim that the graph G — v; is a star forest. Suppose for a
contradiction that this is not the case. Suppose first that G — v; contains a cycle, say
C’. Then C’ does not belong to the component of G — v; containing v3 and we conclude
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that the graph G — v3 contains a path from v; to V(C’); let P be a shortest such path.
Note that P is of length one, since otherwise the path obtained by the concatenation
of the paths vyvsvevy, P, and a path in C’ of length 2 would form a path of length at
least 7 in (G, a contradiction with the fact that G does not contain Py as a subgraph. A
similar argument shows that C’ is the 3-cycle. But now, G contains Fg as a subgraph,
a contradiction. This shows that G — vy is acyclic. Since G — vy is not a star forest,
it contains a path of length 3 as a subgraph; let ) = wjwowsw, be such a path. As
above, () does not belong to the component of G — v; containing vz, hence, the graph
G — v3 contains a path from v; to V(Q); let R be a shortest such path. Similarly as
above, we first observe that R has length one; furthermore, since G does not contain P
as a subgraph, R must attach to an internal vertex of (), say wy. But now, G contains
three edge-disjoint paths of lengths 1, 2, and 4 starting at ws, namely wow;, wowszwy, and
Wl VoV3Vy, Tespectively, forming a subgraph of GG isomorphic to F5 € F, a contradiction.
This shows that G — v; is a star forest.

Since G — vy is a star forest, we have x;,(G — v1) < 2 (by Observation 5.5) and
consequently xiin(G) < 3 (by Observation 2.4), a contradiction. O

Claim 5.8. Ewvery 2-connected subgraph of G has at most 4 vertices.

Proof. Suppose for a contradiction that G contains a 2-connected subgraph G’ on at least
5 vertices. Then G’ has to contain a cycle on 4 vertices, say C, with vertices vy, vy, v3, U4
in cyclic order. Let v; be a vertex of V(G') \ V(C). Then, by 2-connectivity, there are
two paths in G’ connecting vs to C' that are vertex-disjoint except in vs. Furthermore,
each of these two paths has length one, since otherwise G would contain a cycle of
length greater than 4. For the same reason, these two paths connect to C' at opposite
vertices, with loss of generality at v; and v3. Notice that G’ does not contain an edge with
endpoints in {ve, vy, v5}, as otherwise G’ contains a 5-cycle with vertex set V(C') U {vs}.
Furthermore, none of the vertices in {vy, vy, v5} is adjacent in G to a vertex outside V(C),
since otherwise G' would contain Fy as a subgraph. This implies that v, and v, are two
non-adjacent vertices of C' that have degree 2 in (G, contradicting Claim 5.7. n

Claim 5.9. Fvery 2-connected subgraph of G has at most 3 vertices.

Proof. Suppose for a contradiction that G' contains a 2-connected subgraph with at least
4 vertices. By Claim 5.8, GG contains a cycle on 4 vertices, say C', with vertices vy, v, v3, U4
in cyclic order. Since G does not contain K, as a subgraph, we may assume without loss
of generality that v, is not adjacent to vs. By Claim 5.7, vertices v, and v4 cannot both
have degree 2 in G. We may assume without loss of generality that vy has a neighbor
outside of C'. If also v; has a neighbor outside of C, then G contains either C5 or Fy as
a subgraph. Therefore, v; does not have any neighbors outside of ', and by symmetry,
neither does v3. Claim 5.7 implies that v; and v3 are adjacent, and, hence, G' contains F}
as a subgraph, a contradiction. O

Claim 5.10. The graph G contains a cycle.

Proof. Suppose for a contradiction that G is a forest. Since GG is connected, GG is a tree.
The minimality of G also implies that G does not have any pairs of twin leaves: indeed,
if u and v are two leaves of G with the same neighbor, then any linear 3-coloring of G — v
can be extended to a linear 3-coloring of GG by assigning to v the color of u, contradicting
the fact that x;,(G) > 4. Let P = v;...v; be a longest path in G. Then k < 7 since G
contains no Py and k£ > 4 since otherwise G is a star, implying by Observation 5.5 that
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Xiin(G) < 2, a contradiction. By the maximality of P, d(v,) = d(v;) = 1. By the absence
of twin leaves, d(vy) = d(vg_1) = 2. We consider three cases depending on the value of k.

1. Case k € {4,5}. In this case, the maximality of P implies that every vertex of G is
at distance at most 2 from v3. Therefore, deleting vs from G results in star forest,
implying by Observations 2.4 and 5.5 that x;i,(G) < 3, a contradiction.

2. Case k = 6. Only v3 and vy may have neighbors outside of P. However, by the
maximality of P, none of v3 and vy can be an endpoint of a path of length more
than 2 that is edge-disjoint from P. Moreover, vg and v, cannot both be endpoints
of paths of length 2 that are edge-disjoint from P without creating a Fj subgraph.
We can thus assume without loss of generality that every path with endpoint v,
that is edge-disjoint from P has length at most 1. Moreover, since G has no twin
leaves, there can be only one such leaf v. But now, G admits a linear coloring with
three colors as follows. Vertex vs gets color 1, vertices vy and vg get color 2, vertex
vg gets color 3, and so does v (if it exists). Then, for the remaining vertices, we
color all vertices at distance i from v3 with color ¢ for ¢ € {1,2}. Tt is easy to check
that this is indeed a linear 3-coloring of GG, a contradiction.

3. Case k = 7. As G does not have Fj as subgraph, d(vs) = d(v;) = 2. So vy is the
only vertex of P that can have degree more than 2. Suppose that v, has a neighbor
v that does not belong to P. Then, by the maximality of P, the vertex v cannot be
an endpoint of a path of length more than 2 in the graph G — v4. Furthermore, if v
is an endpoint of such a path of length 2, then v has degree 2 in GG, since otherwise
G would contain Fj as a subgraph. Hence, each component of G — vy is a star,
implying by Observations 2.4 and 5.5 that y;,(G) < 3, a contradiction. [

By Claim 5.9 and Claim 5.10, every cycle in G has length 3 and, moreover, G contains
a K3, say C, with vertices vy, vy, v3. Observe also that every K3 in G shares a vertex with
C. Indeed, if G contains another K3 disjoint from C', then it contains either Fj or Fy as
a subgraph. In particular, by Claim 5.9, there is a vertex in C', without loss of generality
v1, that intersects all copies of K3 in G.

Claim 5.11. The graph C' s the only copy of K3 in G.

Proof. Observe that since G — vy is not a star forest, G — v; contains a P;. Moreover, v,
is adjacent to a vertex from some P, of G — vy, as otherwise we can shift a P, towards v;.
We denote such a path by P.

Suppose for a contradiction that G contains at least two copies of K3. Then, at least
one of those copies is disjoint from P. Since v; is adjacent to a vertex from P, this gives
rise to either Fg or F%, a contradiction. O

As in the proof of Claim 5.11, for every vertex v € C, the graph G — v contains a P;
adjacent to v. We say that v € V(C) is good if the unique edge in C' — v is the middle
edge of all the copies of Py in G — v.

Claim 5.12. There is at most one good vertezx of C.

Proof. Suppose without loss of generality that v; and vy are good. Then, since v; is good,
the connected component of G — v; containing vs, v3 is a tree consisting of the edge vyv3
with some pendant edges. Similarly, the connected component of G — vy containing vy, v3
is a tree consisting of the edge v,v3 with some pendant edges. Therefore, GG consists of the
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triangle C' with some pendant edges attached to it. We can thus find a linear 3-coloring
of G, by giving the same color to v; and the leaves adjacent to v;,; for each i € {1,2,3}
(indices modulo 3). This contradicts the fact that xy,(G) = 4. O

The above claim implies that there is at most one good vertex of C. To conclude the
proof it is enough to observe that, in the case of a single good vertex we obtain an F5,
while in the case of no good vertex we obtain an Fg, a contradiction.

This completes the proof. O

6 Algorithmic aspects

We now discuss the complexity of LINEAR CHROMATIC NUMBER, the decision problem
that takes as input a graph G and an integer k, and the task is to determine if x;;,(G) < k.
It is not clear if the problem is in NP, since, as shown by Kun et al. [KOPS21]; the problem
of determining whether a coloring is linear is co-NP-complete. Nevertheless, the close
relationship between the centered and linear chromatic numbers together with known
hardness results for the centered chromatic number lead to the following result. A graph
G is cobipartite if its vertex set is a union of two cliques.

Theorem 6.1. LINEAR CHROMATIC NUMBER is NP-complete for cobipartite graphs.

Proof. Every connected cobipartite graph has a Hamiltonian path and every connected
induced subgraph of a cobipartite graph is cobipartite. Thus, by Observation 4.2, any
linear coloring of a connected cobipartite graph G is also a centered coloring, hence,
Xeen(G) = Xiin(G). This implies that LINEAR CHROMATIC NUMBER, when restricted
to cobipartite graphs, is in NP: if x;;,(G) < k, then this can be certified by giving a
treedepth decomposition with depth at most k£, which is an equivalent definition of cen-
tered chromatic number (see [NOdM12]). As shown by Bodlaender et al. [BDJ" 98], given
a cobipartite graph G and an integer k, it is NP-complete to determine if ycen(G) < k.
Since Xcen(G) < k if and only if x;,(G) < k, the claimed NP-completeness follows. O

On the positive side, we observe that the problem admits a linear-time fixed-parameter
tractable algorithm with respect to its natural parameterization.

Theorem 6.2. For every positive integer k, there is an algorithm running in time O(n)
that determines if a given n-vertex graph G satisfies xin(G) < k.

Proof. Before describing the algorithm, let us mention two observations that are crucial
for the algorithm and its correctness. First, if G is a graph with xu,(G) < k, then
td(G) = Xeen(G) = O(kM) (by Theorem 1.1 with the improved bound of [BDH"22]), and
consequently tw(G) = O(k) (since any graph G satisfies tw(G) < td(G) — 1). Second,
for a fixed k, the property that a graph G = (V, E') admits a linear coloring with & colors
can be expressed with a fixed MSO, formula ;. The formula states that there exists a
partition of V' into pairwise disjoint subsets X1, ..., Xy (the &k color classes) such that for
each nonempty subset F' C F forming a path there exists a vertex v incident with an
edge of F' such that v € X, for some i € {1,...,k} and no other vertex incident with an
edge of F' belongs to X;. Expressing that F' forms a path can be done by requiring two
conditions on the subgraph formed by F: (i) that it is connected (that is, that for each
partition of the set of vertices incident with an edge in I’ into two nonempty parts there
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exists an edge in F' connecting the two parts), and (ii) that all its vertices have degree 2,
except two of them, which have degree one.

Let G be a graph and let n be the order of G. The algorithm to determine if xy;,(G) < k
is now easy to obtain. First, we apply any of the algorithms from [BDD*16] or [Kor23]
to determine in time 2°¢' ) if tw(G) = O(k'). If this is not the case, we conclude that
Yin(G) > k. If tw(G) = O(k''), then we also obtain a tree decomposition of G with
width O(k). Next, given this tree decomposition, we apply Courcelle’s theorem [Cou90)]
to determine in time O(n) (where the hidden constant depends on k) if G models the
formula 1. Since this is the case if and only if G admits a linear coloring with k colors,
the result follows. O]

7 Conclusion

In this paper we explored various aspects of the linear chromatic number of graphs.
In particular, we gave improved bounds for several graph classes. We recall that most
our results in this direction are listed in Table 1. We investigated the subgraph ob-
structions to bounded linear chromatic number and provided two algorithmic results: a
NP-completeness proof and an FPT algorithm. So far, the conjecture that motivated this
research is still open. Let us restate it below.

Conjecture 1.2 ([KOPS21]). For every graph G, Xcen(G) < 2 Xx1in(G).

As noted in the introduction, the ratio 2 above cannot be improved in general. This
suggests the following open problem.

Question 7.1. What is the supremum ¢ of Xcen(7')/ X1in(7') when T is a tree?
By Theorem 2.11, ¢ > log 3.

Acknowledgements. The authors thank Jana Masarikovd and Wojciech Nadara for
allowing them to include Proposition 2.6 and its proof. This work was supported in part
by the Slovenian Research and Innovation Agency (I0-0035, research program P1-0285
and research projects J1-3003, J1-4008, J1-4084, J1-60012, J5-4596, N1-0209, and N1-
0370, and by the research program CogniCom (0013103) at the University of Primorska.
J.-F. Raymond was partially supported by the ANR project GRALMECO (ANR-21-
CE48-0004).

References

[BDD*16] Hans L. Bodlaender, Pal Grgnas Drange, Markus S. Dregi, Fedor V. Fomin,
Daniel Lokshtanov, and Michal Pilipczuk. A c*n 5-approximation algorithm
for treewidth. SIAM J. Comput., 45(2):317-378, 2016.

[BDH"22] Prosenjit Bose, Vida Dujmovié¢, Hussein Houdrouge, Mehrnoosh Javarsineh,
and Pat Morin. Linear versus centred chromatic numbers. Preprint available
at https: //arziv. org/abs/2205. 15096, 2022.

[BDJ*98] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter
Kratsch, Haiko Miiller, and Zsolt Tuza. Rankings of graphs. SIAM J. Discrete
Math., 11(1):168-181, 1998.

21


https://arxiv.org/abs/2205.15096

[BGTS]

[Bun74]

[CNP21]

[Cou90]

IDGT12]

[DHOS]

[Die25]

IDJGS1]

[DKT13]

[DRR+19]

[GavT4]

[KMS95]

[KOPS21]

[Kor23|

Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register
allocation for a fixed number of registers. In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1998),
pages 574-583. ACM, New York, 1998.

Peter Buneman. A characterisation of rigid circuit graphs. Discrete Math.,
9:205-212, 1974.

Wojciech Czerwinski, Wojciech Nadara, and Marcin Pilipczuk. Improved
bounds for the excluded-minor approximation of treedepth. SIAM Journal
on Discrete Mathematics, 35(2):934-947, 2021.

Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Inform. and Comput., 85(1):12-75, 1990.

Zdenék Dvorak, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. For-
bidden graphs for tree-depth. FEuropean J. Combin., 33(5):969-979, 2012.

Erik D Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in
treewidth with applications through bidimensionality. Combinatorica, 28:19—
36, 2008.

Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, sixth edition, [2025] (€)2025.

Dwight Duffus, Michael Scott Jacobson, and Ronald J. Gould. Forbidden
subgraphs and the Hamiltonian theme. In The theory and applications of
graphs (Kalamazoo, Mich., 1980), pages 297-316. Wiley, New York, 1981.

Zdenek Dvorak, Daniel Kral, and Robin Thomas. Testing first-order properties
for subclasses of sparse graphs. J. ACM, 60(5):36:1-36:24, 2013.

Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sanchez Villaamil,
Somnath Sikdar, and Blair D. Sullivan. Structural sparsity of complex net-
works: bounded expansion in random models and real-world graphs. J. Com-
put. System Sci., 105:199-241, 2019.

Fanica Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. J. Combinatorial Theory Ser. B, 16:47-56, 1974.

Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered colourings.
Discrete Mathematics, 142(1-3):141-154, 1995.

Jeremy Kun, Michael P O’Brien, Marcin Pilipczuk, and Blair D Sullivan.
Polynomial treedepth bounds in linear colorings. Algorithmica, 83(1):361-386,
2021.

Tuukka Korhonen. A single-exponential time 2-approximation algorithm for
treewidth. STAM Journal on Computing, 2023. To appear. https://doi.org/
10.1137/22M147551X.

22


https://doi.org/10.1137/22M147551X
https://doi.org/10.1137/22M147551X

[Leel?| James R. Lee. Separators in region intersection graphs. In Christos H. Pa-
padimitriou, editor, 8th Innovations in Theoretical Computer Science Con-
ference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 1:1-1:8. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2017.

[NAMO8]  Jaroslav Nesetril and Patrice Ossona de Mendez. Grad and classes with
bounded expansion II. algorithmic aspects. Fur. J. Comb., 29(3):777-791,
2008.

[NOdM12] Jaroslav Nesettil and Patrice Ossona de Mendez. Sparsity: graphs, structures,
and algorithms, volume 28. Springer Science & Business Media, 2012.

[Ola88] Stephan Olariu. Paw-free graphs. Inform. Process. Lett., 28(1):53-54, 1988.

[Pot88] Alex Pothen. The complexity of optimal elimination trees. PhD thesis, Penn-
sylvania State University, Department of Computer Science, 1988.

[Sch89]  Alejandro A Schéffer. Optimal node ranking of trees in linear time. Informa-
tion Processing Letters, 33(2):91-96, 1989.

[Wal78]  James R. Walter. Representations of chordal graphs as subtrees of a tree. J.
Graph Theory, 2(3):265-267, 1978.

A Pseudogrids

Recall that pseudogrids are the subgraph-minimal graphs that contain By, for some integer
k. The following lemma corresponds to the result given in [BDH'22] on pseudogrids.
However, their paper focuses on the lower bound only. We give here a proof for the upper
bound.

Lemma A.1. There are constants ¢, ¢ > 0 such that for every k > 1,
ck < Xiin(Br) < Xeen(Br) < k.

Furthermore, there is a constant ¢’ > 0 such that for every k > 1 and every subgraph-
minimal graph G containing By as a minor (i.e., kxk pseudogrid) we have Xcon(G)/ X1in(G)
.

Proof. The lower bound is Theorem 3.1. The upper bound can be obtained by induction
on k as follows, with ¢ = 4. The base case k = 2 is trivial since the two coloring numbers
are equal. When k > 2, we pick a set of vertices X consisting of the middle row and the
middle column of By, (if & is even, we choose one of the two rows and columns arbitrarily).
This set contains 2k — 1 vertices, to which we assign a unique color each. Observe that
each connected component of B, — X is a copy of By for some k' < (k—1)/2. By
induction, there is a centered coloring of each such component with at most ¢k’ colors.
Fix such a coloring, with the same set of colors of each of the 4 components. We claim
that this together with the aforementioned coloring of X is a centered coloring of Hj, with
at most 'k colors. The colors bound holds since we use at most 2k colors for X and at
most 'k /2 for By, — X, so at most 'k in total as ¢ = 4. It is a centered coloring because
any subgraph of Hy, either is included in a single component of G — X, in which case it has

23

<



a uniquely colored vertex, by induction, or the subgraph contains a vertex of X, which
has a unique color by definition.

We now prove the second part of the statement. We may assume that £ > 3. By
Theorem 3.1 we have 1, (G) > ck. Here we will use the following equivalent (see, e.g.,
[Die25]) definition of a minor: H’ is a minor of H if there is a function mapping vertices of
H' to disjoint subsets of H, each inducing a connected subgraph, and such that adjacent
vertices of H' are mapped to subsets that are connected by an edge in GG. So in the case
we study, let f be such a mapping from V' (H) to vertex subsets of G.

Note that because G is subgraph-minimal and Hj, has maximum degree 4, every vertex
has degree 4, 3, or 2 in . For the same reason {f(v) | v € V(8y)} is a partition of V(G)
and each such set f(v) induces a tree and has at most two vertices that have degree more
than 2 in G.

Suppose first that for every v € V(Hy), the set f(v) contains at most two vertices.
Then we can use a coloring of H with ¢k colors as described above and duplicate each
color in order to color the vertices in G. For instance, if v € V (Hy) receives some color x,
we assign colors (0,2) and (1,x) to the two vertices of f(v). As noted above, the image
of f defines a partition of V(G). This shows that in this case that ycen(G) < 2¢k and we
are done.

Let us now consider the case where the sizes of the images of f are not restricted. Let
W be the graph obtained from G, iteratively, as follows: as long as |f(v)| > 2 for some
v € V(HBy), we arbitrarily pick a vertex of f(v) that has degree 2 in G, delete it, and
join its neighbors by an edge (if they were not already adjacent). Such a vertex exists in
this case by the above remark about subgraph-minimality. When this process ends, the
resulting graph W satisfies the conditions of the first case so we can color it with 2¢'k
colors.

Notice that the vertices we deleted in the above process induce a collection of paths
in GG, the vertices of which have degree 2 in G. Let s be the maximum order of a path
of G whose vertices have degree 2 in G. As xun(Ps) = [logs]| by Lemma 2.7, we have
Yinl(G) > [log s].

Then we can get a centered coloring of G as follows: the vertices that also exist in W
receive the same color as in this graph and each maximal path of G — V(W) is colored
with the same set of at most [logs] colors as in Lemma 2.7. This is indeed a centered
coloring, as every subgraph of G either is a subgraph of one of the aforementioned paths
of degree 2 vertices, in which case it has a center by the choice of the colors in this path,
or it contains a vertex of W, and the center exists by the choice of the coloring of W. We
get Xeen(G) < 27k + [log s]. As noted above x1in(G) = ck and xun(G) = [log s|, so the
ratio Xcen(G)/ X1n(G) is bounded from above by a constant. O

B Obstructions for linear chromatic number 3

Lemma B.1. Let F € F be one of the graphs depicted in Figure 4. Then xun(F) = 4.

Proof. If F is in {Fy, F3, Fg, Fg, K4,C5,Cs,C7}, then F is (claw, net)-free, hence, by
Proposition 4.3, xin(F) = Xcen(F) = 4, where the inequality follows from [DGT12, The-
orem 4]). For Py this follows from Lemma 2.7.

In the following we handle the remaining graphs of Figure 4, namely Fy, Fy, F5, Fr,
and Fy in order, by assuming there exists a linear coloring ¢ with colors {0, 1,2} and
reaching a contradiction.
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For the graph F5, labeled as in the figure on the left, we can make the
following successive assumptions and implications.

1. o(c) = 0, p(d) = 1, and ¢(e) = 2 because the vertices form a
triangle and we can choose the values by symmetry;

2. ¢(f) =0 or ¢(g) = 0 because of the path fdeg; suppose without
loss of generality that ¢(f) = 0;

3. ¢(b) = 2 because of the path fdcb;
4. ¢(a) = 1 because of the path abce.

Then, the path fdecba has no center, a contradiction.

<. Q0o 0o &
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Consider now the graph Fy, labeled as in the figure on the left. We refer
to the components of Fy—{e, f} as the top/bottom left /right component,
according to their position on the picture. We can make the following
successive assumptions and implications.

1. ¢(e) =0 and ¢(f) =1, by symmetry;

2. Color 0 appears in one of the right components of Fy — {e, f},
otherwise Fy — {e} would contain a P5 colored with two colors
(and, hence, without a center). We can assume without of loss of
generality that 0 appears in the top right component, and sym-
metrically that 1 appears in the top left component.

3. Any component of Fy — {e, f} has a vertex colored 2, otherwise it
would form, together with e and f, a path with no center.

Then the path formed by the two top components and vertices uv and v
contains twice each color, hence, this path has no center, a contradiction.

O 0o

- @

For the graph Fj, labeled as in the figure on the left, note that abcdefy is
a Pr, so it has to have a unique color on d, as any other choice of a center
would leave a path on at least 4 vertices to be colored with 2 colors. We
can make the following successive assumptions and implications.

1. ¢(d) = 0 (by symmetry of the colors) and color 0 does not appear
on the paths abc and efy;

2. ¢(h) = 0 because of the path hefg and since color 0 does not
appear on efg;

3. ¢(e) =1 by symmetry of the colors 1 and 2;

4. ¢(c) = 2 because of the path hedc;

5. ¢(b) =1 and ¢(a) = 2 since color 0 does not appear on the path
abe;

Then, the path abcdeh has no center, a contradiction.
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For the graph Fx, labeled as in the figure on the left, we can make the
following successive assumptions and implications.

b 1. o(e) =0, ¢(f) =1, ¢(g9) = 2 because the vertices form a triangle
and we can choose the values by symmetry;

2. ¢(c) =1 by symmetry of the colors 1 and 2;
3. p(a) = ¢(d) = 2 because of the paths feca and fecd, respectively;
g 4. ¢(b) = 0 because of the path bacd.

~ 0O o S

Then, the path bacefg has no center, a contradiction.

Fy Finally, consider the graph Fy, labeled as in the figure on the left. The
three colors appear on the cycle cdfe, one of them appears twice on non-
a b adjacent vertices of that Cy4. By symmetry of the graph and the colors,
c d we can assume ¢(c) = ¢(f) = 0, p(d) = 1, and ¢(e) = 2. Therefore
¢(a) = 2 because of the path acdf. Then, the path acefhas no center, a

€ f contradiction.

This concludes the proof of Lemma B.1. O
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