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Abstract

A well-quasi-order is an order which contains no infinite decreasing sequence
and no infinite collection of incomparable elements. In this paper, we con-
sider graph classes defined by excluding one graph as contraction. More pre-
cisely, we give a complete characterization of graphs H such that the class
of H-contraction-free graphs is well-quasi-ordered by the contraction relation.
This result is the contraction analogue of the previous dichotomy theorems of
Damsaschke [Induced subgraphs and well-quasi-ordering, Journal of Graph The-
ory, 14(4):427–435, 1990] on the induced subgraph relation, Ding [Subgraphs
and well-quasi-ordering, Journal of Graph Theory, 16(5):489–502, 1992] on the
subgraph relation, and B lasiok et al. [Induced minors and well-quasi-ordering,
ArXiv e-prints, 1510.07135, 2015] on the induced minor relation.

1 Introduction

A well-quasi-order is a quasi-order where every decreasing sequence and every
collection of incomparable elements (called an antichain) are finite. Well-quasi-
orders enjoy nice combinatorial properties that can be used in several contexts,
from algebra to computational complexity and algorithms. Since its introduction
more than sixty years ago, the theory of well-quasi-orders led to major results
in Graph Theory and Combinatorics. In particular, Kruskal showed in [9] that
trees are well-quasi-ordered by homeomorphic embedding, and Robertson and
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Théophile Trunck). Emails: mjk@mimuw.edu.pl, jean-florent.raymond@mimuw.edu.pl, and
theophile.trunck@ens-lyon.org.

1

mailto:mjk@mimuw.edu.pl
mailto:jean-florent.raymond@mimuw.edu.pl
mailto:theophile.trunck@ens-lyon.org


Seymour proved that both the minor relation and the immersion relation are
well-quasi-orders on the class of finite graphs [11, 12]. Most of the usual quasi-
orders on graphs are not well-quasi-orders in general, though. Given one of
these quasi-orders, a natural line of research is to identify the subclasses that
are well-quasi-ordered. Our work is motivated by the following results.

Theorem 1 ([2]). The class of H-induced subgraph-free graphs is well-quasi-
ordered by induced subgraphs iff H is an induced subgraph of P4.1

Theorem 2 ([3]). The class of H-subgraph-free graphs is well-quasi-ordered by
subgraphs iff H is a subgraph of Pn, for some n ∈ N.1

Theorem 3 ( [7]). The class of H-topological minor-free multigraphs is well-
quasi-ordered by topological minors iff H is a topological minor of Rn, for some n ∈
N.2

Theorem 4 ([1]). The class of H-induced minor-free graphs is well-quasi-ordered
by induced minors iff H is an induced minor of the gem or K̂4.3

These results characterize the closed classes defined by one forbidden sub-
structure that are well-quasi-orders. Like the four containment relations on
graphs mentioned in the above results, the contraction relation is not a well-
quasi-order in general. Let the diamond be the graph obtained from K4 by
deleting an edge. Our main contribution in this direction is the following result.

Theorem 5. The class of connected H-contraction-free graphs is well-quasi-
ordered by contractions iff H is a contraction of the diamond.

The requirement of connectivity in Theorem 5 is necessary in the sense that
for every graph H, the class of (not necessarily connected) H-contraction-free
graphs contains the infinite antichain {Ki, i ∈ N≥h+1} (where h = |V (H)|)
and therefore is not a well-quasi-order. Theorem 5 can be seen as contraction
counterpart of the results mentioned above.

Another line of research when dealing with quasi-orders that are not well-
quasi-orders in general is to look at canonical antichains. An antichain is canon-
ical if for every closed subset F of the quasi-order, F is a wqo iff F has a finite
intersection with this antichain. Intuitively, a canonical antichain represents all
infinite antichains of a quasi-order. As shown by the results below, the question
of the presence or absence of a canonical antichain has been studied for several
containment relations and graph classes.

Theorem 6 ([4]). Under the subgraph relation, the class of finite graphs has a
canonical antichain.

1Pn is the path on n vertices, for every n ∈ N.
2Rn is the multigraph obtained by doubling every edge of a path on n edges, for every n ∈ N.
3The gem is the graph obtained by adding a dominating vertex to P4 and K̂4 is the graph obtained

by adding a vertex of degree 2 to K4.
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Theorem 7 ([4]). Under the induced subgraph relation, the class of finite graphs
does not have a canonical antichain.

Theorem 8 ([4]). Under the induced subgraph relation, both the class of interval
graphs and the class of bipartite permutation graphs have a canonical antichain.

Theorem 9 ([8]). Under the multigraph contraction relation, the class of finite
(loopless) multigraphs has a canonical antichain.

We give an answer to this question for the containment relation with the
following result.

Theorem 10. Under the contraction relation, the class of finite graphs does not
have a canonical antichain.

The proof of Theorem 10 relies on the tools introduced in [4] that can be
used to prove that a quasi-order does not have a canonical antichain.

Organization of the paper. The proof of Theorem 5 contains three parts.
The first one, given in Section 3, is a study of infinite antichains of the contrac-
tion relation from which we can deduce that if the class of H-contraction-free
graphs is well-quasi-ordered by contractions, then H is a contraction of the di-
amond. Section 4 contains the second part which is a decomposition theorem
for diamond-contraction-free graphs. The last part uses this decomposition to
show the well-quasi-ordering result and is presented in Section 5. The proof
of Theorem 10 is given in Section 6. Definitions of the terms and notations used
are introduced in Section 2.

2 Preliminaries

We use the notation N≥k for the set {i ∈ N, i ≥ k}, for every k ∈ N. For every
set S, we denote by P(S) the collection of subsets of S.

Graphs. All graphs in this paper are finite, simple, and undirected. We
denote by V (G) the vertex set of a graph G and by E(G) its edge set. If
X ⊆ V (G), the subgraph of G induced by X, which we write G[X], is the graph
with vertex set X and edge set E(G)∩X2. Let C be a (not necessarily induced)
cycle in a graph G. A pair of vertices {u, v} ⊆ V (C) that are not adjacent in
C is a chord of C in G if {u, v} ∈ E(G). Otherwise {u, v} is a non-chord of C
in G.

A vertex v of a graph G is a cutvertex if G \ {v} has more connected com-
ponents than G. A block is a maximal subgraph that has no cutvertex. A
clique-cactus graph is a graph whose blocks are cycles and cliques (cf. Figure 1
for an example).

If G is a graph, then G is the graph obtained by replacing all non-edges by
edges and vice versa. For every positive integer r we denote by Dr the graph
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Figure 1: A clique-cactus graph.

2 ·K1 ∪ ·Kr. In particular, D2 is the diamond. We set D = {Dr, r ∈ N} (cf.
Figure 2) and S = {K1,r, r ∈ N}.

, , , , ,
D =

. . .

Figure 2: Graphs of D.

Subsets of vertices. If G is a graph, the degree of a subset S ⊆ V (G) is the
number of vertices of V (G) \ S that have a neighbor in S. The subset S is said
to be connected if G[S] is connected. We say that S is adjacent to some vertex
v (respectively some subset S′ ⊆ V (G)) if there is an edge from v to a vertex of
S (respectively from a vertex of S to a vertex of S′).

Contractions. In a graph G, a contraction of the edge {u, v} ∈ E(G) is the
operation which adds a new vertex adjacent to the neighbors of u and v and
then deletes u and v. We say that a graph H is a contraction of a graph G
whenever H can be obtained from G by a sequence of edge contractions, what
we denote by H ≤ctr G.

A contraction model of a graph H in a graph G is function ϕ : V (H) →
P(V (G)) such that:

(i) for every v ∈ V (H), ϕ(v) is connected;

(ii) {ϕ(v), v ∈ V (H)} is a partition of V (G);

(iii) for every u, v ∈ V (H), the vertices u and v are adjacent in H iff the subsets
ϕ(u) and ϕ(v) are adjacent in G.

This definition has several consequences. In particular, the degree of v ∈ V (H)
in H is at most the degree of ϕ(v) in G. Also, there is no model of a graph with
no dominating vertex in a graph with a dominating vertex.
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It is easy to check that H is a contraction of G iff there is a contraction
model of H in G. A graph G is said to exclude a graph H as contraction, or
to be H-contraction-free, if H is not a contraction of G. We denote the class of
connected H-contraction-free graphs by Excl(H).

We say that a graph H is an induced minor of a graph G if it can be obtained
from G by deleting vertices and contracting edges.

Sequences and orders. We write 〈s1, . . . , sn〉 the sequence containing the
elements s1, . . . , sn in this order. For every set S, we denote by S? the set of
all finite sequences over S, including the empty sequence. For any partial order
(A,�), we define the relation �? on A? as follows: for every r = 〈r1, . . . , rp〉
and s = 〈s1, . . . , sq〉 of A?, we have r �? s if there is an increasing function
ϕ : {1, . . . , p} → {1, . . . , q} such that for every i ∈ {1, . . . , p} we have ri � sϕ(i).
This generalizes the subsequence relation.

Well-quasi-orders and antichains. Given an order � over S, a sequence
over S is said to be an antichain of (S,�) if its elements are pairwise incom-
parable with respect to �. A well-quasi-order (wqo for short) is a quasi-order
where every decreasing sequence and every antichain is finite.

We will use the two classical results stated below.

Proposition 1 (Folklore). Let (A,�) be a quasi-order and B,C ⊆ A. If both
(B,�) and (C,�) are wqo, then so is (B ∪ C,�).

Proposition 2 (Higman’s Lemma [6]). (A,�A) is a wqo, then so is (A?,�?A).

If (S,�) is a quasi-order that is not a wqo, a minimal antichain [10] of
(S,�) is an antichain 〈ai〉i∈N where for every i ∈ N, ai is a minimal element
(with respect to �) such that there is an infinite antichain of (S,�) starting
with 〈aj〉j∈{0,...,i}. Observe that every quasi-order that is not a wqo and that
has no infinite decreasing sequence has a minimal antichain. For every subset
A ⊆ S, we define:

Incl(A) = {x ∈ S, ∃y ∈ A, x � y and x 6= y}.

An antichain A is fundamental if (Incl(A),�) is a wqo. A set F ⊆ S is said to be
�-closed if it satisfies the following property: ∀x ∈ F,∀y ∈ S, y � x⇒ y ∈ F .

An antichain A of a quasi-order (S,�) is canonical if for every �-closed
subset F ⊆ S, we have

F ∩A is finite ⇐⇒ (F,�) is a wqo.

Let us end this section by a simple observation.

Observation 1. Every sequence of graphs that is decreasing with respect to con-
traction is finite. In fact, in such a sequence the number of edges is also decreas-
ing, as every edge contraction decreases the number of edges of a graph by at
least one.
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A consequence of the above observation is that infinite antichains are the
only obstacles for a class of graphs to be well-quasi-ordered by the contraction
relation. We deal with them in the next section.

3 Infinite antichains

A simple but crucial observation in the study of the well-quasi-orderability of
classes that are defined by forbidden structures (of any kind) is the following.
If none of the graphs of an infinite antichain A contains some graph H, then
excluding H does not give a well-quasi-order. Indeed, the class obtained still
contains the infinite antichain A. Let us restate this observation in terms of
contractions.

Observation 2. Let A be an infinite antichain of the contraction relation. If
(Excl(H),≤ctr) is a wqo, then all but finitely many graphs of A contain H as
contraction.

For this reason, we deal here with infinite antichains of the contraction rela-
tion. The simplest one is certainly the class of complete bipartite graphs with
one part of size two: AK = {K2,r, r ∈ N≥2}.

Lemma 1. For every p, q, p′, q′ ∈ N≥2 such that p ≤ p′ and q < q′, there is no
model of Kp,q in Kp′,q′.

Proof. Let us assume for a contradiction that there is a model ϕ of Kp,q in
Kp′,q′ . As Kp′,q′ has more vertices than Kp,q, there is a vertex v of Kp,q such
that |ϕ(v)| ≥ 2. Observe that every subset of at least two vertices of Kp,q that
induced a connected subgraph is dominating. Indeed, such a subset must contain
at least a vertex from each part of the bipartition. It follows from the definition
of a model that Kp′,q′ has a dominating vertex, a contradiction. Therefore, there
is no model of Kp,q in Kp′,q′ .

Corollary 1. {K2,p, p ∈ N≥2} is an antichain of ≤ctr.

Recall that S is the class of stars and that D = {Dr, r ∈ N}, where Dr is the
graph that can be obtained by contracting an edge of K2,r+1, for every r ∈ N
(cf. Section 2). The following will be useful later.

Observation 3. For every p ∈ N≥1, contracting one edge in Dp gives either Dp−1,
or K1,p, depending on which edge is contracted.

As we want to identify graphs H such that (Excl(H),≤ctr) is a wqo, we must
consider every graph H such that A ∩ Excl(H) is finite, for every antichain A.
A first step towards this goal is the following observation.

Lemma 2. Let p ∈ N≥2. If H ≤ctr K2,p and H 6= K2,p, then H ∈ D ∪ S.
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Proof. Given that H ≤ctrK2,p, there is a sequence of contractions transforming
K2,p into H. If this sequence contains only one contraction, then it is straight-
forward that H = Dp−1. Therefore in the other cases H is a contraction of Dp−1.
We get the result from Observation 3 and the observation that every contraction
of a graph of S (i.e. the class of stars) belongs to S.

Observation 4. For every positive integers p, q such that p < q, we have Dp ≤ctr

K2,q.

Indeed, if F is a collection of q − p edges of K2,q that all incident with the
same vertex of degree p, then it is easy to check that contracting F in K2,q yields
Dp. An immediate consequence of Observation 4 is that AK ∩Excl(Dp) is finite
for every positive integer p.

From the fact that every graph of D ∪ S is a contraction of Dp for some
positive integer p, Observation 4 gives.

Observation 5. If (Excl(H),≤ctr) is a wqo, then H ≤ctr Dp for some p ∈ N≥1
However, we will need another antichain in order to find more properties

that H must satisfy. Let us consider the antichain of antiholes, which already
appeared in [1] in the context of induced minors: AC = {Ci, i ∈ N≥6} (cf. Fig-
ure 3). This connection with the induced minor relation (where edge contractions
and vertex deletions are allowed) is not surprising: as every contraction is an
induced minor, every antichain of the induced minor relation is also an antichain
of the contraction relation.

C6

,
C7

,
C8

,

AC =

. . .

Figure 3: Antiholes antichain.

For completeness, we include the following proof.

Lemma 3 (See also [1, Lemma 1]). AC is an antichain of the contraction rela-
tion.

Proof. Towards a contradiction, let us assume that there is a contraction model
ϕ of Cp in Cq for some integers p, q ∈ N≥3 such that p < q. Recall that the image
of ϕ is a partition of Cq. As |Cp| < |Cq|, there is a vertex v of Cp such that
|ϕ(v)| ≥ 2. Observe that for every choice of two vertices of Cp there is at most
one vertex which is not adjacent to one of them. Therefore, there is at most one
set in {ϕ(u), u ∈ V (Cp) \ {v}} that is not adjacent to ϕ(v). This contradicts
the fact that ϕ is a model of Cp in Cq as every vertex of Cq is adjacent to all
but two vertices. Consequently there is no contraction model of Cp in Cq, for
every integers p, q ∈ N≥3, p < q.
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Again, we look at graphs H such that Excl(H) ∩ AC is finite. As a wqo
must contain none of AK and AC , it is enough to consider graphs such that
Excl(H) ∩ AC is finite among those for which Excl(H) ∩ AK is finite.

Lemma 4. If p ≥ 3 then Excl(Dp) ∩ AC is infinite.

Proof. For every p ≥ 3, then graph Dp has independence number at least 3. Let
q > p. As contracting edges can only decrease the independence number, there
is no sequence of contractions transforming Cq (which has independent number
2) to Dp, for every integer q > p. Therefore Cq ∈ Excl(Dp), for every integer
q > p.

Corollary 2. If (Excl(H),≤ctr) is a wqo, then H ≤ctr D2.

The next sections are devoted to graphs not containing D2 as contraction.
We will first prove a decomposition theorem for the graphs in this class, which
we will use to show that (Excl(D2),≤ctr) is a wqo.

4 On graphs with no diamond

In this section we show that graphs in Excl(D2) have a simple structure. More
precisely, we prove the following lemma. Recall that clique-cactus graphs are
the graphs whose blocks are cycles or cliques.

Lemma 5. Graphs of Excl(D2) are exactly the connected clique-cactus graphs.

The proof of Lemma 5 will be given after a few lemmas. If C is a cycle of a
graph G and {u, v}, {u′, v′} ⊆ V (C), we say that {u, v} and {u′, v′} are crossing
in C if u, v, u′, v′ are distinct and are appearing in this order on the cycle.

Lemma 6. Let G be a graph and let C be a cycle in G. If C has at least one
chord and one non-chord in G, then it has one chord and one non-chord that
are crossing in C.

Proof. Let {x, x′} be a non-chord of C in G and let P and Q be the connected
components of C \ {x, x′} which obviously are paths. Let us assume that every
chord of C in G has both endpoints either in P or in Q (otherwise we are done)
and let {y, y′} be a chord of C in G, the endpoints of which belong, say, to P .
Let z be a vertex of the subpath of P delimited by y and y′ such that z 6∈ {y, y′},
and let z′ be a vertex of Q. If {z, z′} is a chord of C in G, then {x, x′} and {z, z′}
are satisfying the required property. Otherwise, {z, z′} is a non-chord and now
{y, y′} and {z, z′} are crossing.

Lemma 7. Let G ∈ Excl(D2). Every cycle of G is either an induced cycle, or
it induces a clique in G.
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Proof. Let G be a graph of Excl(D2) and let C be a cycle of G. Towards a
contradiction, let us assume that C has at least one chord {u, u′} and one non-
chord {v, v′}. According to Lemma 6 we can assume without loss of generality
that they are crossing in C. Let P and Q be the two connected components of
C \{v, v′}. Contracting P to a single vertex x and Q to y yields a graph G′ such
that:

• v, x, v′, y lie on the cycle in this order;

• {v, v′} 6∈ E(G′); and

• {x, y} ∈ E(G′) (as {u, u′} connects the subgraphs that are respectively
contracted to x and y).

Notice that G′[{v, x, v′, y}] is isomorphic to D2, however G′ may also contains
other vertices. Let us consider G′ \ {v, x, v′, y}. While G′ \ {v, v′, x, y} contains
a connected component adjacent to x or y, we contract it to this vertex (that
we keep calling with the same name). Then, while it has a connected compo-
nent adjacent to v but not v′ (respectively v′ but not v), we contract it to v
(respectively v′), again keeping the same name for that vertex. Finally, the only
remaining connected components (if any) are adjacent to exactly v and v′: we
contract each of them to a single vertex, adjacent to v and v′. Notice that none
of these operations create an edge connecting v to v′, thus the subset {v, v′, x, y}
still induces a subgraph isomorphic to D2. Let us call G′′ the obtained graph.
As observed above, G′′ consists of the subgraph isomorphic to D2 induced by
{v, v′, x, y} plus k extra vertices of degree two, z1, . . . , zk, each of which is adja-
cent to v and v′. In the case where k = 0, G′′ is isomorphic to D2 and we reached
the contradiction we were looking for. Otherwise, we contract {v′, y} (naming
the resulting vertex v′), which produces a complete subgraph on vertices v, v′, x,
and then we contract {v, zi} for every i ∈ {2, . . . , k} (naming the resulting vertex
v). The obtained graph is a complete graph on v, v′, x, two vertices of which
(that are v, v′) are adjacent to an extra vertex, v1. This graph is isomorphic to
D2, as x is not adjacent to v1, therefore we reached a contradiction. Therefore
C has either no chords or no non-chords in G. It is clear that in the first case
C is an induced cycle of G and that in the second case it induces a clique.

Lemma 8. Let G ∈ Excl(D2) be a 2-connected graph. Then G is either a cycle,
or a clique.

Proof. We assume that |V (G)| > 1, otherwise the result is trivial. Let C be a
longest cycle of G. By Lemma 7 the cycle C is either an induced cycle, or it
induces a clique in G. Let us treat these two cases separately. For contradiction
we assume that V (G) \V (C) is not empty and we call H1, . . . ,Ht the connected
components of G \ C, for some t ∈ N≥1. Let us consider the graph G′ where
Hi, which is connected, has been contracted to a single vertex hi, for every
i ∈ {1, . . . , t}. Observe that G′ is 2-connected, given that G is 2-connected.
Also, G′ ∈ Excl(D2).
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First case: C induces a clique in G′. Notice that C is then a maximal clique. Let
u = h1. As C is maximal, there is a vertex v ∈ V (C) such that {u, v} 6∈ E(G′).
Let x and y be two neighbors of u on C (they exist since G′ is 2-connected).
These vertices define two subpaths of C. Let R be the longest of these paths
that contains v. Observe that in this case, R has at least three vertices. The
union of {u, x}, {u, y} and R is a cycle of G′ that we call C ′. According to
Lemma 7, this cycle is either induced or it induces a clique. As {u, v} 6∈ E(G′),
C ′ cannot induce a clique in G. On the other hand, C is not an induced cycle as
every pair of vertices of R are adjacent (and |V (R)| ≥ 3 as mentioned earlier).
We reached the contradiction we were looking for.

Second case: C is an induced cycle and has at least 4 vertices. Let i ∈ {1, . . . , t}.
As G′ is 2-connected, hi has at least two neighbors on C: let x and y be two of
them.

Claim 1. x and y are not adjacent.

Proof. Let us assume that {x, y} ∈ E(G′). Let C ′ be the cycle obtained from C
by replacing the edge {x, y} by the path xhiy. This cycle is not induced as x, y
are not adjacent in C ′ whereas {x, y} ∈ E(G). It does not induce a clique either
since x is not adjacent with the other neighbor of y on C (which is not x as we
assume that C has at least 4 vertices). This contradicts Lemma 7 and therefore
proves that {x, y} 6∈ E(G).

Every pair of distinct vertices of the cycle C defines two subpaths of C
meeting only at these vertices. Let u and v be two vertices of C such that hi
has at least one neighbor in the interior of each of the subpaths of C defined
by u and v, that we will respectively call P and Q. Such vertices exist, as a
consequence of Claim 1.

Let us consider the contraction H of G′ obtained by contracting the interior
path of P (respectively Q) to a single vertex wP (respectively wQ) and then by
contracting the edge connecting hi to wP . This edge exists by definition of u
and v. Then uwP vwQ is a cycle of H where {wP , wQ} is a chord (because we
contracted to wP the vertex h1 which was adjacent to both wP and wQ) and
{u, v} is a non-chord (as they were non-adjacent vertices of the induced cycle
C and that nothing has been contracted to them). According to Lemma 7, the
graph H contains D2 as contraction. As H is a contraction of G, then D2≤ctrG,
a contradiction.

In both cases we reached a contradiction, therefore V (G) \ V (C) is empty:
G is a clique or an induced cycle.

We are now ready to prove Lemma 5.

Proof of Lemma 5. The fact that a graph of Excl(D2) is clique-cactus is a straight-
forward corollary of Lemma 8. It is easy to see that a clique-cactus graph does
not contain D2 as contraction by noticing that D2 is a contraction of a graph if
and only if it is a contraction of one of its 2-connected components. As D2 is
neither a contraction of a cycle, nor of a clique, we get the desired result.
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5 Well-quasi-ordering clique-cactus graphs

We proved in the previous section that graphs of Excl(D2) are exactly the con-
nected clique-cactus graphs. This section contains the last part of the proof
of Theorem 5, which is the following lemma. We conclude this section with the
proof of Theorem 5.

Lemma 9. Connected clique-cactus graphs are well-quasi-ordered by ≤ctr.

In this section, we deal with rooted graphs. A rooted graph is a graph which
has a distinguished vertex, called root. The contraction relation is extended to
the setting of rooted graphs by requiring that a model of a rooted graph H in
a rooted graph G maps the root of H to a connected subgraph of G containing
the root of G.

Let us denote by C the class of rooted connected clique-cactus graphs. In
this class, two isomorphic graphs with a different root are seen as different. It
is clear that proving that (C,≤ctr) is a wqo implies Lemma 9. This is what we
will do.

Building blocks. Let us define three graph constructors stick : C? → C,
cycle : C? → C, and clique : C? → C. Given a sequence 〈G0, . . . , Gp−1〉 ∈ C?
(for some p ∈ N), if U denote the union of the graphs G1, . . . , Gp−1, then we
define;

• stick(G0, . . . , Gp−1) is the graph obtained from U by identifying the vertices
root(G0), . . . , root(Gp−1);

• cycle(G0, . . . , Gp−1) is the graph obtained from U by adding the edges
{root(Gi), root(G(i+1) mod p)} for every i ∈ {0, . . . , p− 1}; and

• clique(G0, . . . , Gp−1) is the graph obtained from U by adding the edges
{root(Gi), root(Gj)} for every distinct i, j ∈ {0, . . . , p− 1}.

The root of stick(G0, . . . , Gp−1), cycle(G0, . . . , Gp−1) and clique(G0, . . . , Gp−1)
is the vertex that is the root of G0. These constructors will allow us to encode
graphs of C into sequences.

We will now decompose graphs of C along blocks.
For every block B of a graph G, let decB(G) denote the collection of all the

graphs H that can be constructed from some connected component C of G\V (B)
by adding a new vertex v adjacent to the vertices of C that are adjacent to a
vertex of B in G, and setting root(H) = v.

Observe that as soon as root(G) ∈ V (B), every graph of decB(G) is a proper
contraction of G. Let dec(G) denote the union of the sets decB(G) for every block
B of G containing the root of G. The following observation is a consequence
of Lemma 5.

Observation 6. For every graph G ∈ C there is a (not necessarily unique) se-
quence 〈G0, . . . ,Gp−1〉 ∈ dec(G)? (for some p ∈ N) such thatG = cycle(stick(G0), . . . , stick(Gp−1))
or G = clique(stick(G0), . . . , stick(Gp−1)).
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From encodings to well-quasi-ordering. The following lemma will al-
low us to work on sequences in order to show that two graphs are comparable.

Lemma 10. Let G,H ∈ C?. If H≤ctr
? G, then

(i) cycle(H)≤ctr cycle(G);

(ii) clique(H)≤ctr clique(G); and

(iii) stick(H)≤ctr stick(G).

Proof. Let H = 〈H1, . . . ,Hp〉 and G = 〈G1, . . . , Gq〉 (for some positive integers
p, q), and let H = cycle(H) and G = cycle(G). For the sake of readability we
will refer to Hi’s (respectively Gi’s) either as elements of H (respectively G) or
as subgraphs of H (respectively G).

If H ≤ctr
? G, then there is, by definition of ≤ctr

?, an increasing function
ϕ : {1, . . . , p} → {1, . . . , q} such that ∀i ∈ {1, . . . , p} , Hi ≤ctr Gϕ(i). Therefore
there is a sequence of edge contractions transforming Gϕ(i) into Hi for every i ∈
{1, . . . , p}. Let us perform the following operations on G:

1. for every j ∈ {1, . . . , q} \ {ϕ(i), i ∈ {1, . . . , p}} we contract the subgraph
Gj to a single vertex vj and we then contract some edge incident with vj ;

2. for every i ∈ {1, . . . , p} we contract the subgraph Gi in order to obtain the
subgraph Hϕ(i).

Observe that after step 1., we obtain the graph cycle(G−), where G− can be ob-
tained from G be deleting elements of indices in {1, . . . , q}\{ϕ(i), i ∈ {1, . . . , p}}.
Intuitively, we contracted the graphs that do not appear in H and removed their
attachment point from the cycle. Then we replace in step 2. every graph of G−
by its corresponding contraction of H. Therefore the graph obtained at the end
is cycle(H), that is H, as required.

The cases (ii) and (iii) are very similar: H can be obtained from G by
following the same operations as above.

Proof of Lemma 9. Let us assume by contradiction that (C,≤ctr) is not a wqo.
All decreasing sequences of this quasi-order are finite (as each contraction de-
creases the number of edges by at least one), therefore (C,≤ctr) contains an
infinite antichains. Let us consider a minimal antichain {Ai}i∈N of (C,≤ctr). Let
B =

⋃
i∈N dec(Ai), and let us show that (B,≤ctr) is a wqo. For contradiction, let

us assume that it is not a wqo and let {Bi}i∈N be a minimal antichain of this
quasi-order.

By definition of B, for every H ∈ B there is an integer i ∈ N such that
H≤ctrAi (for instance, an integer i such that H ∈ dec(Ai)). Therefore for every
i ∈ N there is an integer π(i) such that Bi ≤ctr Aπ(i). Let k ∈ N be the integer
such that π(k) is minimum. Then the following sequence

A = A0, . . . , Aπ(k)−1, Bk, Bk+1, . . .

is an infinite antichain of (C,≤ctr). Indeed, as both {Ai}i∈N and {Bi}i∈N are an-
tichains, every pair of comparable graphs ofA involves one graph of {Ai}i∈{1,...,π(k)−1}

12



and one graph of {Bi}i∈N≥k
. Let us assume that for some i ∈ {0, . . . , π(k)− 1}

and j ∈ N≥k we have Ai ≤ Bj . Then Ai ≤ Bj ≤ Aπ(i), a contradiction with
the fact that {Ai}i∈N is an antichain. The case Bj ≤ Ai is not possible by the
choice of k. This proves that (B,≤ctr) is a wqo. According to Proposition 2,
(B?,≤ctr

?) is also a wqo. Let B′ = {stick(H), H ∈ B?}. Item (iii) of Lemma 10
implies that any antichain in (B′,≤ctr) can be translated into an antichain of
the same length in (B?,≤ctr

?), hence (B′,≤ctr) is a wqo. By the same argument
(now using items (i) and (ii) of Lemma 10), we deduce that the quasi-orders

({cycle(H), H ∈ B′?},≤ctr) and ({clique(H), H ∈ B′?},≤ctr)

are well-quasi-orders. Therefore U = {cycle(H), H ∈ B′?}∪{clique(H), H ∈ B′?}
is well-quasi-ordered by ≤ctr, as a consequence of Proposition 1. According to
Observation 6, we have {Ai}i∈N ⊆ U . This contradicts the fact that {Ai}i∈N is
an infinite antichain. Therefore (C,≤ctr) is a wqo and we are done.

We would like to point out that with a proof similar to Lemma 9, it is in fact
possible prove that if a class G of 2-connected graphs is wqo by ≤ctr, then so is
the class of graphs whose blocks belong to G. The interested reader may have a
look at [8, Lemma 5] for a result of this flavour, see also [5, Theorem 5] and [1].

The proof of Theorem 5 is now immediate.

Proof of Theorem 5. Let H be a graph such that Excl(H) is a wqo. Then
H ≤ctr D2, by Corollary 2. On the other hand, if H ≤ctr D2 then Excl(H) ⊆
Excl(D2). Observe that every antichain (respectively decreasing sequence) of
(Excl(H),≤ctr) is an antichain (respectively a decreasing sequence) of (Excl(D2),≤ctr).
As a consequence of Lemma 9 we get that (Excl(H),≤ctr) is a wqo and we are
done.

6 On canonical antichains

In this section, we will use the following result of Ding in order to prove Theo-
rem 10. Figure 4 illustrates the requirements of the lemma.

Lemma 11 ( [4, Theorem 1.1]). Let (S,�) be a quasi-order, let 〈ai〉i∈N be a
sequence of elements of S and let {Wi}i∈N be a sequence of sequences of elements
of S. If we have

(i) 〈ai〉i∈N is a fundamental infinite antichain; and

(ii) for every i ∈ N, Wi is a fundamental infinite antichain; and

(iii) for every i ∈ N and every H ∈ Wi, ai � H and there are no other compa-
rable pairs of elements in

⋃
i∈NWi ∪ {ai}i∈N

then (S,�) does not have a canonical antichain.
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a0

. . .

W0

a1

. . .

W1

a2

. . .

W2

. . .

Figure 4: The situation described in Lemma 11. Arrows are directed towards larger
elements.

Note that [4, Theorem 1.1] mentions other obstructions to the existence of
a canonical antichain, however we will only use that described in Lemma 11.
We will now define some sequences of graphs and show that they satisfy the
properties of Lemma 11.

For every p, q ∈ N, letWp,q be the graph obtained by adding two non-adjacent
dominating vertices to the disjoint union of Kp and K2,q (see Figure 5). These
two vertices are called poles, and the two vertices corresponding to the part of
K2,q of size 2 are called semipoles. Observe that the other vertices either have
degree two (in which case they are adjacent to the two poles, only), or have
degree four (and they are adjacent to both poles and both semipoles).

Figure 5: The graph W4,3. Poles are drawn in white and semipoles in gray.

Lemma 12. For every p, p′, q, q′ ∈ N≥3, there is a model of Wp,q in Wp′,q′ iff
(p, q) = (p′, q′).

Proof. Let us assume that there is a model ϕ of Wp,q in Wp′,q′ . Let v be a vertex
of Wp,q of degree two. By definition of a model, ϕ(v) must be a connected subset
of degree 2 of V (Wp′,q′). Let us consider the possible choices for this subset.

First case: ϕ(v) is of the form V (Wp′,q′) \ {x, y}, for some u, v ∈ V (Wp′,q′).
Therefore, V (Wp′,q′) \ ϕ(v) has two vertices. As Wp,q has more than 3 vertices
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(recall that p, q ≥ 3) which are mapped by ϕ to disjoint subsets of V (Wp′,q′),
this case is not possible.

Second case: ϕ(v) is the subset of vertices inducing the subgraph K2,q′ used
in the construction of Wp′,q′ . Observe that the poles and semipoles of Wp,q (4
vertices in total, as they are distinct from v) all have degree at least 3. Moreover,
Wp′,q′ \ϕ(v) is isomorphic to K2,p′ . As every connected subset of degree at least
3 of K2,p′ must contain a pole of this graph, there are at most two such subsets
that are disjoint. This contradicts the fact that the images by ϕ of the four
poles and semipoles of Wp,q are disjoint connected subsets of degree at least 3
of Wp′,q′ \ ϕ(v). Therefore, this case is not possible neither.

Third case: ϕ(v) = {x} for some vertex x ∈ V (Wp′,q′) of degree 2. As we reach
this case for every choice of a vertex of degree 2 of Wp,q, we deduce p ≤ p′. The
same argument applied to vertices of degree 4 yields q ≤ q′. Let us now consider
poles and semipoles.

Let u be a pole. Observe that according to the above remarks, ϕ(u) must be
adjacent to vertices of degree two, so it should contain a pole of Wp,q. If ϕ(u)
contains in addition a vertex of degree 2 or 4 of Wp,q, then ϕ(u) is dominating.
This is not possible since u is not dominating, therefore ϕ(u) = {v} for some
pole v of Wp′,q′ . Let us now assume that u is a semipole of Wp,q. As previously,
the above remarks imply that ϕ(u) is adjacent to vertices of degree 4 of Wp′,q′ .
Hence ϕ(u) contains a semipole of Wp′,q′ (it cannot contain a pole as both belong
to the image of poles of Wp,q). Therefore each semipole of Wp,q is sent to a subset
of V (Wp′,q′) containing a semipole. Observe that ϕ(u) cannot contain a vertex
of degree two otherwise it would not be connected. Besides, it cannot contain
a vertex of degree 4 otherwise it would be adjacent to the image by ϕ of the
other semipole of Wp,q. Consequently ϕ(u) contains a semipole of Wp′,q′ and no
other vertex. We proved that for every u ∈ V (Wp,q), the set ϕ(u) is a singleton.
Therefore |V (Wp,q)| = |V (Wp′,q′)|. Given that p ≤ p′ and q ≤ q′ (as proved
above), this is possible only if p = p′ and q = q′. This concludes the proof.

Corollary 3. {Wp,q}p,q≥3 is an antichain for ≤ctr.

For every i ∈ N≥3, let Wi = {Wi,q}q∈N≥3
.

Lemma 13. For every p, q, r ∈ N≥3, we have K2,r ≤ctr Wp,q iff r = p+ 1.

Proof. Let us consider a contraction model ϕ of K2,r in Wp,q. We call X the
vertices of Wp,q inducing the K2,q used in the construction of this graph. Let us
consider a vertex u of degree 2 of K2,r. Exactly as in the proof of Lemma 12,
there are three possible choices for ϕ(u). For the same reason as in this proof,
the case where ϕ(u) = V (Wp,q)\{x, y} (for some x, y ∈ V (Wp,q)) is not possible.
Therefore, either ϕ(u) = X, or ϕ(u) = {x} for some x ∈ V (Wp,q) of degree 2.
Since this holds for every vertex of degree 2 of K2,r, and as Wp,q has exactly p
vertices of degree 2, we deduce that r ≤ p+ 1.

Let v, w denote the poles of K2,r. Because of the observation above and of
the definition of a contraction model, each of ϕ(v) and ϕ(w) must be adjacent
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to some vertex of degree 2 of Wp,q and these sets should not be adjacent. The
only possible choice for them is to let ϕ(v) be the singleton containing one pole
of Wp,q and ϕ(w) be the singleton containing the other pole. Observe that, in
the case where p+ 1 > r, either one vertex of degree 2 of Wp,q or a vertex of X
does not belong to the image of ϕ. This contradicts the definition of a model,
hence this case is not possible.

The only remaining case is thus r = p + 1. Observe that X induces a
connected subgraph. It is not hard to see that contracting X to a single vertex
yields K2,p+1.

Observation 7. Let p, q ∈ N≥3. There is no induced path on four vertices in Wp,q,
neither in K2,p.

Then we successively deduce the following consequences.

Corollary 4. For every p, q ∈ N≥3, none of the graphs Wp,q and K2,p contains
the gem as induced minor.

Corollary 5. No graph of Incl(Wi) and of Incl({K2,p}p∈N≥3
) contains the gem

as induced minor, for every i ∈ N≥3.

The following observation will allow us to use Lemma 14, which deals with
induced minors.

Observation 8. Let H and G be two graphs. If both of them have a dominating
vertex, then H is a contraction of G iff H is an induced minor of G.

Lemma 14 ([1]). Graphs not containing the gem as induced minor are wqo by
the induced minor relation.

The following corollaries are direct consequences of Lemma 14, Observation 8
and Corollary 5.

Corollary 6. Incl({K2,p}p∈N≥3
) is wqo by ≤ctr.

Corollary 7. The graphs of Incl(Wi) with a dominating vertex are wqo by ≤ctr,
for every i ∈ N≥3.

Lemma 15. Wi is a fundamental antichain, for every i ∈ N≥3.

Proof. Let i ∈ N≥3. We need to show that (Incl(Wi),≤ctr) is a wqo. Let us call
inner edge every edge of Wp,q that is not incident with a pole, for every p, q ∈
N≥3. Observe that if a graph H ∈ Incl(Wi) has been obtained by contracting at
least one edge incident with a pole, then H has a dominating vertex. According
to Corollary 7, these graphs are wqo by ≤ctr, therefore we will here consider
graphs of Incl(Wi) that have been obtained by only contracting inner edges. We
call I this class.

We first show that I is the union of the two following classes:

• the class I0 of graphs that can be obtained by adding two non-adjacent
dominating vertices to Ki +Dq for some q ∈ N≥0; and
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• the class I1 of graphs that can be obtained by adding two non-adjacent
dominating vertices to Ki + Sq for some q ∈ N≥0.

Again we use the notion of poles to denote the two dominating vertices added
to construct graphs of I0 and I1. A semipole is either a dominating vertex of Dq

(when dealing with graphs of I0), or the dominating vertex of Sq (when dealing
with graphs of I1).

Contracting an inner edge in Wi,q clearly yields a graph of I0. Now, observe
that any further contraction of an edge connecting a vertex of degree 4 to a
semipole gives a graph of I0 again. If, on the other hand, we contract the edge
connecting the two semipoles, then we get a graph of I1. On a graph of I1,
contracting an edge of the star (used in the construction of this graph) still
gives a graph of I1. Therefore I = I0 ∪ I1.

Let us assume that I is not wqo by ≤ctr. Therefore it has an infinite an-
tichain. As I = I0 ∪ I1, one of I0 and I1 (at least) has an infinite antichain.
Let A be such an infinite antichain.

We now look at vertices of graphs of A that are neither poles, nor semipoles,
nor have degree 2. These vertices are the vertices of degree 2 of the copy of
Dq or the vertices of degree one of the copy of Sq used in the construction of
the graphs of A (depending whether A ⊆ I0 or A ⊆ I1). We call them inner
vertices.

Let A and A′ be two graphs of A such that A has less inner vertices than A′.
These graphs exist since the elements of A are distinct. Let q be the number of
inner vertices of A and q′ the one of A′.

In both cases A ⊆ I0 and A ⊆ I1 we can obtain A from A′ by contracting
q′ − q inner vertices of A′ to a semipole. This contradicts the fact that A is an
antichain. Therefore (I,≤ctr) is a wqo. This implies that Wi is fundamental, as
required.

We are now ready to prove Theorem 10.

Proof of Theorem 10. Let Ai = K2,i+1 for every i ∈ N≥3.
By the virtue of Corollary 6, {Ai}i∈N≥3

is a fundamental antichain, as well
as Wi, for every i ∈ N≥3, according to Lemma 15. Also, for every i ∈ N≥3, we
have Ai≤ctrH for every H ∈ Wi (Lemma 13) and there are no other comparable
pairs of elements in

⋃
i∈N≥3

Wi ∪ {Ai}i∈N≥3
(Lemma 12 and Lemma 13).

Hence these sequences of graphs satisfy the requirements of Lemma 11, which
implies that there is no canonical antichain for the contraction relation.
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