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Abstract. In this paper we investigate the existence of parameterized
algorithms running in subexponential time for two fundamental cycle-
hitting problems: Feedback Vertex Set and Triangle Hitting. We focus
on the class of pseudo-disk graphs, which forms a common generaliza-
tion of several graph classes where such results exist, like disk graphs
and square graphs. In these graphs we show that given a geometric rep-
resentation FVS can be solved in time 2O(k9/10 log k)nO(1) and TH in time
2O(k3/4 log k)nO(1).
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1 Introduction

Context. The purpose of Parameterized Complexity is to provide an accurate
view of the algorithmic complexity of a (typically NP-hard) decision problem
and to understand the different contributions to the running time of the param-
eters of the instance. In this framework, a standard objective is to find FPT
algorithms whose time complexities have the form f(k) · nO(1) where n and k
respectively denote the size and some parameter of the instance, and f is some
computable function. Hence, the potential super-polynomial part of the running
time is confined to the f(k) term.

In this paper we mainly focus on Feedback Vertex Set (FVS for short)
which is the problem of deciding, given a graph G and an integer k, whether G
has a set of k vertices whose deletion yields a forest. Some NP-hard problems
like FVS cannot be solved in time 2o(k)nO(1) in general graphs [3] (assuming
the Exponential Time Hypothesis) but nevertheless admit algorithms with such
running times (called subexponential FPT algorithms) when the inputs are re-
stricted to certain graph classes. This was initially proved for particular problems
in planar graphs and related classes (like map graphs) and later unified by De-
maine el al. [4] in a general framework called Bidimensionality Theory, which
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in essence states that every bidimensional3 problem (like FVS) can be solved in
subexponential FPT time on any graph class excluding a minor.

The next step has then been to move away from minor-closed graph classes
and investigate in which other classes the basic NP-hard graph problems admit
subexponential FPT algorithms. Natural candidates in this direction are inter-
section graphs of objects in the plane. Indeed, while such graphs are not planar,
the underlying planarity may allow to lift techniques and ideas from the bidimen-
sionality theory. This is not straightforward in general and required new ideas as
explained for example in [12] which discusses the extension of bidimensionality
to (unit) disk graphs.

These recent developments led to subexponential FPT algorithms in disk
graphs [12] running in time 2O(k13/14 log k)nO(1) for FVS, and in 2O(k9/10 log k)nO(1)

for TH (the Triangle Hitting problem where given a graph G and integer
k one has to decide if there is a set S of k vertices whose deletion yields to a
triangle-free graph). Recently [1], these running times have been improved to
2O(k7/8 log k)nO(1) for FVS and 2O(k2/3 log k)nO(1) for TH when a disk represen-
tation is given, and a 2O(k9/10 log k)nO(1) for FVS and 2O(k4/5 log k)nO(1) for TH
otherwise. On the other hand, we proved in a companion paper [2] that under
the Exponential Time Hypothesis, neither TH nor FVS do admit algorithms
running in time 2o(

√
n) in K2,2-free contact-2-DIR graphs of maximum degree 6,

a very restricted subclass of pseudo-disk graphs.

Contribution and techniques. In this paper we consider pseudo-disk graphs, a
classical generalization of disk graphs where informally each vertex is now a
pseudo-disk (a subset of the plane that is homeomorphic to a disk), and such
that for any two intersecting pseudo-disks, their boundaries intersect on at most
two points. We prove that, given a pseudo-disk representation of a graph, one
can solve FVS in time 2O(k9/10 log k)nO(1) (Theorem 2), which is our main result,
and TH in time 2O(k3/4 log k)nO(1).

For FVS, we apply the following strategy. Given an input (G, k), the objective
is to reduce the treewidth of G to o(k) in order to solve FV S in 2O(tw(G))nO(1)

using a standard dynamic programming algorithm [3]. To do so, one has to delete
from G any structure that could make tw(G) large (close to k). A classical
approach is to start from a O(1)-approximation M0 (with |M0| = O(k)) of
a minimum FVS. Observe that as FVS is bidimensional, the existence of M0

implies that ⊞(G) (the size of the largest square grid contained as a minor in
G) is O(

√
k). However, unlike in planar graphs where tw(G) = O(⊞(G)) (a

property known under the name of subquadratic grid minor property), having
⊞(G) = O(

√
k) is not enough to ensure that tw(G) = o(k), as for example a

clique Kk has ⊞(Kk) ≤
√
k but tw(Kk) = k − 1. Thus, as first step, we use

a folklore preprocessing routine that produces 2O(
k
p log p)nO(1) instances (G′, k′)

where each graph has clique number at most p = O(kϵ).

3 Informally: yes-instances are minor-closed and a solution on the (r, r)-grid has size
Ω(r2).
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Fig. 1. In this graph G′ (from [8]), ω(G′) is constant, tw(G′) ≥ k′ (where k′ = 3 here)
as it contains Kk′,k′ as a minor, and ⊞(G) = O(

√
k′) as the set M0 of the k′ big disks

is a FVS.

The problem now is that (even in disk-graphs) this additional property on
the clique number is still not enough to force small treewidth, as shown for
instance by the graph G′ of Figure 1. Thus, we apply a second preliminary
branching step (described in the context of disk graphs in [12]). This produces
again 2O(

k
p log p)nO(1) instances (G′′,M, k′′), where M is a feedback vertex set

of G′′ with |M | = O(pk′) = O(pk), with the additional property that for any
v ∈ M , N(v) \M is an independent set. This property may look like a technical
assumption, but observe that it is necessary to ensure that the treewidth is o(k).
For example with G′ and M0 like in Figure 1, we have tw(G′) ≥ k′, but this
case is no longer possible after the second branching step as the property that
for any v ∈ M0, N(v) \M0 is an independent set does not hold.

Once these two preliminaries branching steps are done, our main technical
challenge is to kernelize each instance (G′′,M, k′′) to obtain a smaller equivalent
instance

(
G̃, k̃

)
such that

∣∣∣V (
G̃
)∣∣∣ = O

(
p6|M |

)
= O

(
p7k

)
(see Lemma 2). This

is the crux of the paper. The techniques used to achieve this kernel are sketched
in Section 4. Once the number of vertices of G̃ is small, we can show (Lemma 1)

that tw(G̃) = O
(√

p
∣∣∣V (

G̃
)∣∣∣) = O

(√
k1+8ϵ

)
and solve G̃ by classic dynamic

programming, leading to our subexponential algorithm for FVS in pseudo-disk
graphs.4

For TH, we revisit the strategy of [1] (originally designed for disk graphs)
that produces a subexponential number of instances of order quasi-linear in the
parameter. To improve the running time we show (Lemma 1) that the number
of edges in a n-vertex pseudo-disk graph of ply5 p is O(pn), which implies that
the produced instances have sublinear treewidth O(

√
pn). This improves the

treewidth bound f(p)
√
n (for some function f) given by Dvorák et al. in [6].

The problem is then solved by dynamic programming on approximate tree-
decompositions.

4 We have been told in a private communication that it might be possible to extend
the arguments of [12] for FVS in pseudo-disk graphs without a geometrical repre-
sentation, and that the time complexity would be worse than the one we obtain.

5 The ply is the maximum number of pseudo-disks sharing a common point.
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Organization of the paper. In Section 2 we give the necessary definitions and
properties and present the aforementioned preprocessing step. Section 3 reduces
our main result to a technical kernelization lemma. Section 4 is devoted to sketch-
ing the first part of the proof of this lemma. We conclude with directions for
future research in Section 5. Due to space constraints, the proofs of the state-
ments marked with the Q symbol can be found in the full version of the paper.

2 Preliminaries

2.1 Basics

In this paper logarithms are binary and all graphs are simple, loopless and
undirected. Unless otherwise specified we use standard graph theory terminology,
as in [5] for instance. Given a graph G, we denote by ω(G) the maximum order
of a clique in G. We denote by dG(v) the degree of v ∈ V (G), or simply d(v)
when G is clear from the context. We use the notation ∆(G) for the maximum
degree of the vertices of G. We denote by tw(G) the treewidth of G.

2.2 Graph classes

Fig. 2. Three forbidden intersections between pseudo-disks, and two avoidable exam-
ples.

In this article, we are mainly concerned with geometric graphs described by
the intersection or contact of objects in the Euclidean plane. The most general
class we consider are string graphs, which are intersection graphs of strings (a.k.a.
Jordan arcs).

Pseudo-disk graphs. The focus on this paper is on pseudo-disk graphs. A pseudo-
disk D is a subset of the plane that is homeomorphic to a disk. We denote its
boundary by ∂D and call internal points any point of D that does not belong
to ∂D. A set of pseudo-disks S forms a system of pseudo-disks if, for any two
intersecting elements D1,D2 ∈ S,

their borders, ∂D1 and ∂D2, intersect on at most two points. Under minor
perturbation, any system of pseudo-disk, can be such that for any two intersect-
ing elements D1,D2 ∈ S, either their borders do not intersect but in that case
one is contained in the other, or their borders intersect on exactly two points



FVS for pseudo-disk graphs in subexponential FPT time 5

while D1 ∩ D2 contains internal points. Similarly, we can require that no point
belongs to more than two boundaries (see Figure 2). Given a system of pseudo-
disks S, we denote by GS the corresponding intersection graph, and this defines
the class of pseudo-disk graphs.

Note that pseudo-disk graphs are in particular string graphs and they form
a common generalization of various classes of “fat” intersection graphs such as
disk graphs, intersection graphs of axis-parallel squares, and more generally any
intersection graph obtained from homothetic copies of a given convex set, but
they also generalize the contact graphs of segments (see full version).

Given S a system of pseudo-disks and z a point in the plane, the ply of z
(wrt. S) is the number of pseudo-disks of S containing z. The ply of a maximal
connected region R of R2 \

⋃
D∈S ∂D, is the ply of any of its points. The ply of

S is the maximum ply of a point of the plane wrt. S. A pseudo-disk graph G
has ply p if it is the intersection graph of a system of pseudo-disks of ply p.

Representation of pseudo-disk graphs. A system of pseudo-disks S is represented
by the directed plane multi-graph

−→
P S defined as follows (see also Figure 3). For

any two D1,D2 ∈ S, every point in ∂D1 ∩ ∂D2 is a vertex of
−→
P S . For any

D ∈ S, the Jordan arcs in ∂D joining any two such points form the arcs of−→
P S . Those arcs are oriented in such a way that ∂D corresponds to a clockwise
cycle around D. It may remain disks D ∈ S with uncrossed boundaries (i.e.
∂D ∩ ∂D′ = ∅ for any ∂D′ ∈ S). For such a disk, we pick an arbitrary point in
∂D as a vertex for

−→
P S , and the rest of ∂D corresponds to a clockwise loop on

this vertex. Note that
−→
P S has at most 2|E(GS)|+ |V (GS)| vertices, and at most

4|E(GS)| + |V (GS)| edges. This is a convenient feature of pseudo-disks system
to admit a polynomial (in terms of GS) space data structure representing them.
This graph

−→
P S is called the pseudo-disk representation of S and GS . We denote−→

P ∗
S the dual graph of

−→
P S . Observe that any arc is oriented from a region (of S)

with lower ply towards one with higher ply.

Fig. 3. A pseudo-disk representation
−→
P S and its dual

−→
P ∗

S .
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2.3 Branching steps and properties of pseudo-disk graphs

Dvořák et al. proved in [6] that n-vertex pseudo-disk graphs with ply p have
treewidth at most f(p)

√
n for some function f . In Lemma 1 below we improve

this bound to O(
√
pn). Our proof requires the following consequence of the

results on balanced separators of string graphs of Lee [11] and the links between
separators and treewidth of Dvořák and Norin [7].

Theorem 1 ([11] and [7]). Any m-edge string graph has treewidth O(
√
m).

Lemma 1. If a graph G on n vertices admits a pseudo-disk representation with
ply p, then G has at most 3epn edges. Furthermore, tw(G) = O(

√
pn).

Proof. To bound the number of edges of G, we follow the same approach as [9]
for contact of strings. Consider a pseudo-disk graph G with n vertices and m
edges having a representation with ply p. Then, pick a subset V ′ ⊆ V (G) of
pseudo-disks by picking each one, randomly and independently, with probabil-
ity 1/p. The expected size of V ′ is n/p. For each uv ∈ E(G), the probability
that at an arbitrarily chosen point puv ∈ Du ∩ Dv, only Du and Dv remain
is (1 − 1/p)q−2/p2 ≥ (1 − 1/p)p−2/p2, where q is the ply of puv. By linear-
ity of expectation, the expected number of edges uv for which only u and v
remain at puv is at least m(1 − 1/p)p−2/p2. The following claim implies that
m(1− 1/p)p−2/p2 ≤ 3n/p.

Claim 1. If a graph H has an edge subset E′ ⊆ E(H) such that H admits
a pseudo-disk representation where for any edge uv ∈ E′ there is a point in
Du ∩ Dv with ply two, then |E′| ≤ 3|V (H)|.

Proof. We show this by proving that the graph (V (H), E′) is planar, and this is
obtained by constructing a pseudo-disk representation with ply at most two [10].
We start with the representation of H and we show how to modify it in order
to delete at least one edge of E(H) \E′. Iterating this process yields the desired
representation.

If there is a pseudo-disk Dv, whose points all have ply at least three, one can
simply move Dv far away from the rest of the representation. The obtained graph
has at least two edges less, and we still have a point with ply two in Du ∩Dv for
any uv ∈ E′.

Similarly if there is an edge ab of E(H)\E′ with Da ⊂ Db and a has degree 1,
we can move its disk away from the rest of the representation.

Otherwise, let ab be an edge of E(H) \E′ minimizing the number of regions
in Da ∩ Db. Note that by the first rule there is no Dc ⊆ Da ∩ Db. For such an
edge ab, and for every c ∈ V (H) \ {a, b}, the border ∂Dc intersects ∂Da ∩Db as
many times as it intersect ∂Db∩Da. Hence, replacing Da and Db by Da \Db and
Db \ Da respectively, one obtains a representation where the new borders ∂Da

and ∂Db intersect the same borders (exactly twice) as the old one except for the
edge ab. Finally, since there was no pseudo-disk contained in Da ∩ Db, ab is the
only deleted edge. ⌟
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Since 1/e ≤ (1− 1/p)p−2 for p ≥ 3, we get m ≤ 3epn as claimed. The second
part of the statement follows by Theorem 1. ⊓⊔

As first step of our algorithms we make use of two preprocessing routines: the
first one is a folklore branching that allows to reduce cliques larger than a chosen
size p (where typically p = kϵ) and the second, given a (possibly non-optimal)
solution M to the problem, allows to consider subcases where for any v ∈ M ,
N(v)\M is an independent set. These steps are described in [12] for disk graphs.
We combine them in the following routine.

Corollary 1 (Q). Let Π be FVS or TH. There is a 2O(
k
p log k)nO(1)-time algo-

rithm that, given a pseudo-disk graph G with a representation, a parameter k,
and an integer p ∈ [6, k], returns a collection C of size 2O(

k
p log k) of quadruples

(G′,
−→
P ′,M, k′) such that

−→
P ′ is a pseudo-disk representation of G′ and:

1. (G′, k′) is an instance of Π where G′ is an induced subgraph of G, ω(G′) ≤ p,
and k′ ≤ k.

2. |M | = O(pk), G′ −M is triangle-free (when Π is TH) or is a forest (when
Π is FVS), and for any v ∈ M , N(v) \M is an independent set.

3. (G, k) is a yes-instance of Π if and only if there exists (G′,
−→
P ′,M, k′) ∈ C

such that (G′, k′) is a yes-instance.

3 Hitting cycles in pseudo-disk graphs

The main result of this paper is the following.

Theorem 2. There is an algorithm that, given an n-vertex pseudo-disk graph
with a representation and a parameter k, solves FVS in time 2O(k

9
10 log k)nO(1).

To achieve this, we proceed in three steps. We first use the preprocessing of
Corollary 1. Then, we kernelize each instance provided by the branching process
in Lemma 2. We show that these kernelized instances have small treewidth, and
thus we can conclude with a dynamic algorithm to solve each of them. The main
technical ingredient of this proof is the following lemma, whose proof is deferred
to the full version due to space constraints, and for which we provide a sketch
in Section 4.

Lemma 2 (Q). Given a quadruple (G,
−→
P S ,M, k) as given by Corollary 1 (for

Π = FV S), there is a polynomial time algorithm that returns an equivalent
instance (G′, k′) where k′ ≤ k and G′ is a pseudo-disk graph with ply at most p
and O(p7k) vertices.

As we will apply Corollary 1 for p = O(kϵ), the above will directly imply that
|V (G′)| is almost linear, and, using Lemma 1, that G′ has sublinear treewidth.
Thus, the whole technical difficulty is to prove Lemma 2. Now that the lemma
is stated, we can proceed with the proof of the theorem.
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Proof (of Theorem 2). We apply Corollary 1 on an instance (G, k) provided
with a representation

−→
P S and on a value p ∈ [6, k] to be set later. As a result we

obtain a collection C of 2O(
k
p log k) instances that are each provided with a ply

p pseudo-disk representation, and with a feedback vertex set M of size O(pk),
such that for any v ∈ M , N(v) \M is an independent set. Furthermore, solving
these instances of FVS is enough to get a solution to our initial instance (G, k).
This first stage is done in time 2O(

k
p log k)nO(1).

Then for each of the 2O(
k
p log k) obtained instances, we apply the kernelization

described in Lemma 2, and we get a pseudo-disk graph G′ with ply at most p
and with only O(p7k) vertices. By Lemma 1, this kernel has treewidth at most

O(
√

p8k), and can thus be solved in time 2O(tw(G′))nO(1) = 2
O
(
p4k

1
2

)
nO(1) with

classical algorithms [3]. The overall time complexity of this algorithm is

2O(
k
p log k)nO(1) · 2O(

k
p log k) · nO(1) · 2O

(
p4k

1
2

)
nO(1).

Thus setting p = k
1
10 the time complexity is indeed 2O(k

9/10 log k)nO(1). ⊓⊔

4 Overview of the first part of proof of Lemma 2

Recall that in Lemma 2 we are given a quadruple (G,
−→
P S ,M, k) as computed

by Corollary 1. The equivalent instance computed in Lemma 2 will be obtained
using reduction rules. Before applying these rules, we define the set M ′ by adding
to M every pseudo-disk D that contains a point of ∂Du ∩∂Dv, for u, v ∈ M (see
Figure 4, left). We denote RM ′ the region RM ′ = (∪u∈M ′Du). Note that this
region (and its complement) may not be connected. Let us now partition the
vertices of V (G) \M ′ into three types.

Definition 1. A vertex v ∈ V (G) \M ′ is an inner-M ′-vertex if Dv ⊆ RM ′ , it
is a border-M ′-vertex if Dv intersects RM ′ without being included, and it is an
outer-M ′-vertex if Dv does not intersect RM ′ . We denote IM ′ , BM ′ , and OM ′

the vertex sets with these three types of vertices (see Figure 4 (right)).

Let us state a few properties about these vertices.

Claim 2 (Q).

(a) |M ′| = O(p|M |)) = O(p2k).
(b) For any edge uv of G−M ′, the intersection Du∩Dv does not intersect RM ′ .
(c) For every u ∈ V (G) \M ′, the pseudo-disk Du does not contain any point of

∂Dv ∩ ∂Dw, for any two vertices v, w ∈ M ′.

Note that Property (b) implies that every inner-M ′-vertex u is isolated in
G−M ′. The kernelization is divided into two parts. The first part (see Subsec-
tion 4.1) deals with these inner-M ′-vertices, while the second part (not included
here due to lack of space) deals with border- and outer-M ′-vertices.
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Fig. 4. (left) From M to M ′. The pseudo-disks of M are filled. Among the others, those
added to M ′ have solid border. (right) Here, the filled pseudo-disks belong to M ′. In
dashed green, the inner pseudo-disks of IM′ . In dashed red, the border pseudo-disks of
BM′ . In dashed orange, the only pseudo-disk v ∈ OM′ . For any pseudo-disk u not in
M ′, we depicted its hosted graph Hu, which is defined in Definition 2.

4.1 Sketch of proof for inner-M ′-vertices

The purpose of this section is to reduce the number of inner-M ′-vertices. Let S ′

be the restriction of S to vertices of M ′. Let us denote
−→
P S′ the representation

of G[M ′]. Since the pseudo-disk system has ply at most p, the graph G[M ′] has
O(p|M ′|) = O(p3k) edges by Lemma 1. Each of such edge induces at most two
vertices in

−→
P S′ . Hence,

−→
P S′ has O(p3k) vertices, and thus by planarity of

−→
P S′ ,

the number of edges, and faces in
−→
P S′ is also O(p3k).

Definition 2. Given a vertex u ∈ V (G) \ M ′, we define the hosted graph Hu

as a plane graph drawn within Du, with a (single) vertex in a face f of
−→
P S′ if

and only if Du and f intersect, and with edges between vertices lying in adjacent
faces of

−→
P S′ , if their common border intersects Du (see Figure 4, right).

Claim 3. For any inner-M ′-vertex u, the hosted graph Hu is a tree.

Proof. By Properties (b) and (c), Du does not contain a crossing, meaning that
there is no v1, v2 such that Du contains a point in ∂Dv1∩∂Dv2 . Hence, the family
{Dv ∩ Du, v ∈ N(u)} is a laminar set family. This implies that Hu is a tree. ⌟

In order to count inner vertices, we distinguish two cases according to the
maximum degree of Hu.

Claim 4. The number of vertices u ∈ IM ′ such that ∆(Hu) ≥ 3 is O(p3k).

Proof. To see this, let us construct a bipartite pseudo-disk graph as follows. In
one part, we consider the arcs of

−→
P S′ . These arcs are slightly shortened (so that

they form an independent set) and slightly thickened (so that they intersect the
adjacent regions we define below), see Figure 5. In the other part, we define a
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pseudo-disk D′
u for each vertex u ∈ IM ′ such that ∆(Hu) ≥ 3 as follows. Consider

a vertex x of Hu such that dHu
(x) ≥ 3, and let D′

u be the intersection of Du and
the face of

−→
P S′ containing x. Since triangle-free pseudo-disk graphs are planar,

by [3, Lemma 9.24], the second part has size O(|E(
−→
P S′)|) = O(p|M ′|) = O(p3k).

⌟

Fig. 5. Two inner-M ′ pseudo-disks with ∆(Hu) ≥ 3, and the bipartite pseudo-disk
graph constructed to prove Claim 4.

Now, we focus on vertices u ∈ IM ′ such that ∆(Hu) ≤ 2. In that case, Hu is
a path with possibly only one vertex, and as we show with bounded length.

Claim 5. For any vertex u ∈ IM ′ such that Hu is a path, this path has length
at most d(u), and d(u) ≤ 2p. Furthermore, N(u) can be split into two cliques of
size at most p each.

Proof. For any neighbor v of u, Dv contains one of the two faces f1 and f2 of−→
P S′ containing the endpoints of the path Hu (see Figure 6 (left)). Otherwise,
∂Du and ∂Dv would intersect in at least four points. Since the representation
has ply at most p, there are at most 2p pseudo-disks containing one (or two) of
these faces. Among those, the pseudo-disks containing f1 clearly induce a clique,
such as the remaining ones, since all of them contain f2. ⌟

Even if these paths have bounded length, the number of such paths can still
be arbitrarily large as we could draw them one “parallel” to each other, creating
large class of twins (see Figure 6). Thus, we need the following kernelization rule
for the feedback vertex set problem.

(twins) Consider an independent set S of V (G) \M ′ such that all the vertices
in S have the same neighborhood N . If N admits a partition into two
cliques and if |S| > 4, delete |S| − 4 vertices of S and keep the same
parameter k.
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Proof. (Safeness of the rule) Denote v1, . . . , vs the vertices in S, for some s > 4,
and denote C1, C2 the two cliques partitioning N . Let G′ = G − {v5, . . . , vs}.
Clearly G′ cannot have a minimum feedback vertex set larger than G. Hence, it
is sufficient to show that G′ has a feedback vertex set X, that is also a feedback
vertex set for G.

Consider any minimum feedback vertex set X of G′, and let us transform
it (if needed) into a minimum feedback vertex set intersecting N on at least
|N | − 1 vertices. Observe first that for any i, |Ci \X| ≤ 2. If |C1 \X| = 2, then
{v1, v2, v3, v4} ⊆ X, as otherwise the two vertices in C1 \X and any vi not in X
would form a triangle in G−X. In such case, defining X ′ by replacing in X the
vertices v1, v2, v3, v4 with the vertices in C1 \X and in C2 \X would result in
the desired feedback vertex set. Indeed, the vertices v1, v2, v3, v4 are isolated in
G′ −X ′, and G′ − {v1, v2, v3, v4} −X ′ is a forest, as X ⊆ X ′ ∪ {v1, v2, v3, v4}.

Hence, we consider that |C1 \X| ≤ 1 and |C2 \X| ≤ 1. If |C1 \X| = 1 and
|C2 \ X| = 1, then |{v1, v2, v3, v4} ∩ X| ≥ 3, as otherwise the two vertices in
{v1, v2, v3, v4} \ X, the vertex in C1 \ X and the vertex in C2 \ X would form
a 4-cycle in G − X. In such case, defining X ′ by replacing in X two vertices
in {v1, v2, v3, v4} ∩ X with the vertices in C1 \ X and in C2 \ X would result
in the desired feedback vertex set. Indeed, the vertices v1, v2, v3, v4 not in X ′

are isolated in G′ −X ′, and G′ − {v1, v2, v3, v4} −X ′ is a forest, as X ⊆ X ′ ∪
{v1, v2, v3, v4}.

We thus have a minimum feedback vertex set of G′ intersecting N on at least
|N | − 1 vertices. Since the vertices v5, . . . , vs are leaves or are isolated in G−X,
we have that G −X is the forest G′ −X with s − 4 leaves or isolated vertices
added, and it is thus a forest. ⌟

Identifying the configuration required by the previous twins rule and updating
the representation of G when we delete vertices can be done in polynomial time,
implying that this kernelization can be performed in time polynomial in |V (G)|.

From now on, among the vertices u ∈ IM ′ such that Hu is a path, there
are at most four vertices with the same neighborhood. We can thus focus on
bounding the number of such vertices u with distinct neighborhoods. Indeed, if
I∗M ′ is a maximal subset without twins (among vertices of IM ′ such that Hu is
a path), then |IM ′ | ≤ 4|I∗M ′ |+O(p3k) (by Claim 4). In the following subsection,
we sketch how to bound |I∗M ′ | in order to obtain the following claim.

Claim 6. After the kernelization of Subsection 4.1, the number of inner-M ′-
vertices is O(p5|M ′|), that is |IM ′ | = O(p7k).

4.2 Sketch for bounding the size of I∗
M ′

Given two hosted graphs Hu and Hv that are paths, we say that Hu and Hv

are identical if their vertices are drawn in the same faces of
−→
P S′ , and if these

faces are visited in the same order. Let H ̸=
M ′ be a maximum set of pairwise non-

identical paths Hu, for vertices u ∈ IM ′ . As vertices v of I∗M ′ are non twins, their
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Fig. 6. Left: a hosted graph Hu that is a path. Right: some vertices u ∈ IM′ such that
Hu is a path. Some of these vertices have many twins.

Fig. 7. In green the paths of P 3
e (s). Left: in black and brown a path of P5

m(s). Right:
in black the paths of P 5

m(s).

paths Hv are not identical, and thus |I∗M ′ | ≤ |H ̸=
M ′ |. Bounding the size of this

set H ̸=
M ′ thus bounds the sizes of I∗M ′ and IM ′ . As a worst case, we assume that

for any subpath P ′ of some path P1 ∈ H ̸=
M ′ , there is a path P2 ∈ H ̸=

M ′ that is
identical to P ′.

We prove that |H ̸=
M ′ | = O(p4l), where l denotes the number of faces in

−→
P S′ ,

by showing that |H ̸=,i
M ′ | = O(i3l), where H ̸=,i

M ′ is the set of paths P ∈ H ̸=
M ′ of

length i. Observe that |H ̸=,1
M ′ | ≤ |E(

−→
P S′)| = O(l) as these paths cross a distinct

arc of
−→
P S′ .

Due to lack of space, we now only sketch how to bound |H ̸=,i
M ′ | for some odd

i ≥ 3. Let s be an edge of
−→
P S′ . Let Pi

m(s) be the set of paths of H ̸=,i
M ′ whose

middle edge e crosses s (see Figure 7 left), and P⌈i/2⌉
e (s) be the set of paths

of H ̸=,⌈i/2⌉
M ′ whose first or last edge crosses s. The simple observation that any

path from Pi
m(s) can be created by "gluing" two paths from P⌈i/2⌉

e (s) leads
to the trivial bound |Pi

m(s)| ≤ |P⌈i/2⌉
e (s)|2. However, since these paths do not

intersect each other, we can prove the key property that |Pi
m(s)| ≤ 3|P⌈i/2⌉

e (s)|
(see Figure 7 right). By summing over all s, we get |H ̸=,i

M ′ | ≤ 6|H ̸=,⌈i/2⌉
M ′ | (we get

an extra factor 2 as each path in H
̸=,⌈i/2⌉
M ′ is counted twice, one time for each of

its endpoint). This induction resolves in |H ̸=,i
M ′ | ≤ 6log(i)|H ̸=,1

M ′ | = O(i3l).
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5 Discussion

In this paper we gave algorithms for Feedback Vertex Set and Trian-
gle Hitting in pseudo-disk graphs running in times 2O(k9/10 log k)nO(1) and
2O(k3/4 log k)nO(1), respectively. This generalizes the previous results [12] on disk
graphs, with an improvement on the running time. On the other hand, as noted
in the introduction, there is for both problems an ETH-based lower-bound of
2o(

√
n) [2]. So a natural problem is to get matching upper- and lower-bounds.

We have no evidence to believe that our upper-bounds could be tight. Besides,
our algorithms require a pseudo-disk representation of the input graph. So a sec-
ond open problem is to provide a robust subexponential FPT algorithm for FVS
in pseudo-disk graphs. The bulk of our algorithm for FVS consists in applying
reduction rules to obtain an instance of size polynomial in the parameter. How-
ever this is not strictly speaking a kernel as we do not reduce the input instance
but the subexponential number of instances produced by the preprocessing step.
It could however be interesting to investigate if the ideas from our reduction
steps could be useful for kernelization in pseudo-disk graphs.
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