POLYNOMIAL EXPANSION AND SUBLINEAR SEPARATORS

LOUIS ESPERET AND JEAN-FLORENT RAYMOND

ABSTRACT. Let \mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed $0 < \delta \le 1$, every n-vertex graph of \mathcal{C} has a balanced separator of order $O(n^{1-\delta})$, then any depth-r minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most r) of a graph in \mathcal{C} has average degree $O((r \operatorname{polylog} r)^{1/\delta})$. This confirms a conjecture of Dvořák and Norin.

1. Introduction

For an integer $r \geq 0$, a depth-r minor of a graph G is a subgraph of a graph that can be obtained from G by contracting pairwise vertex-disjoint subgraphs of radius at most r. Let d(G) denote the average degree of a graph G = (V, E), i.e. d(G) = 2|E|/|V|. For some function f, we say that a class C of graphs has expansion bounded by f if for any graph $G \in C$ and any integer r, any depth-r minor of G has average degree at most f(r). We say that a class has bounded expansion if it has expansion bounded by some function f, and polynomial expansion if f can be taken to be a polynomial.

Classes of bounded expansion play a central role in the study of sparse graphs [7]. From an algorithmic point of view, a very useful property of theses classes is that when their expansion is not too large (say subexponential), graphs in the class have sublinear separators. A separator in a graph G = (V, E) is a pair of subsets (A, B) of vertices of G such that $A \cup B = V$ and no edge of G has one endpoint in $A \setminus B$ and the other in $B \setminus A$. The separator (A, B) is said to be balanced if both $|A \setminus B|$ and $|B \setminus A|$ contain at most $\frac{2}{3}|V|$ vertices. The order of the separator (A, B) is $|A \cap B|$.

A class \mathcal{C} of graphs is *monotone* if for any graph $G \in \mathcal{C}$, any subgraph of G is in \mathcal{C} . Dvořák and Norin [5] observed that the following can be deduced from a result of Plotkin, Rao, and Smith [8].

Theorem 1 ([5]). Let C be a monotone class of graphs with expansion bounded by $r \mapsto c(r+1)^{1/4\delta-1}$, for some constant c>0 and $0<\delta\leq 1$. Then there is a constant C such that every n-vertex graph of C has a balanced separator of order $Cn^{1-\delta}$.

Dvořák and Norin [5] also proved the following partial converse.

The first author was supported by ANR Projects STINT (ANR-13-BS02-0007) and GATO (ANR-16-CE40-0009-01) and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01). The second author was supported by the Polish National Science Centre grant PRELUDIUM DEC-2013/11/N/ST6/02706.

Theorem 2 ([5]). Let C be a monotone class of graphs such that for some fixed constants C > 0 and $0 < \delta \le 1$, every n-vertex graph of C has a balanced separator of order $Cn^{1-\delta}$. Then the expansion of C is bounded by some function $f(r) = O(r^{5/\delta^2})$.

They conjectured that the exponent $5/\delta^2$ of the polynomial expansion in Theorem 2 could be improved to match (asymptotically) that of Theorem 1.

Conjecture 3 ([5]). There exists a real c > 0 such that the following holds. Let C be a monotone class of graphs such that for some fixed constants C > 0 and $0 < \delta \le 1$, every n-vertex graph of C has a balanced separator of order $Cn^{1-\delta}$. Then the expansion of C is bounded by some function $f(r) = O(r^{c/\delta})$.

In this short note, we prove this conjecture.

Theorem 4. For any C > 0 and $0 < \delta \le 1$, if a monotone class C has the property that every n-vertex graph in C has a balanced separator of order at most $Cn^{1-\delta}$, then C has expansion bounded by the function $f: r \mapsto c_1 \cdot (r+1)^{1/\delta} (\frac{1}{\delta} \log(r+3))^{c_2/\delta}$, for some constants c_1 and c_2 depending only on C.

In particular Conjecture 3 holds for any real number c > 1. The proof of Theorem 4 is given in the next section, and we conclude with some open problems in Section 3.

2. Proof of Theorem 4

We need the following results. The first is a classical connection between balanced separators and tree-width (see [5]).

Lemma 5. Any graph G has a balanced separator of order at most tw(G) + 1.

Dvořák and Norin [4] proved that the following partial converse holds.

Theorem 6 ([4]). If every subgraph of G has a balanced separator of order at most k, then G has tree-width at most 105k.

Note that in our proof of Theorem 4 we could also use the weaker (and easier) result of [1] that under the same hypothesis, G has tree-width at most $1 + k \log |V(G)|$, but the computation is somewhat less cumbersome if we use Theorem 6 instead.

For a set S of vertices in a graph G, we let N(S) denote the set of vertices not in S with at least one neighbor in S. We will use the following result of Shapira and Sudakov [9].

Theorem 7 ([9]). Any graph G contains a subgraph H of average degree $d(H) \ge \frac{255}{256}d(G)$ such that for any set S of at most n/2 vertices of H (where n = |V(H)|), $|N(S)| \ge \frac{1}{2^8 \log n(\log \log n)^2} |S|$.

In fact, we will only need a much weaker version, where the vertex-expansion is of order $\Omega\left(\frac{1}{\operatorname{polylog} n}\right)$ instead of $\Omega\left(\frac{1}{\log n(\log\log n)^2}\right)$.

Finally, we need a result of Chekuri and Chuzhoy [2] on bounded-degree subgraphs of large tree-width in a graph of large tree-width.

Theorem 8 ([2]). There are constants α, β such that for any integer $k \geq 2$, any graph G of tree-width at least k contains a subgraph H of tree-width at least $\alpha k/(\log k)^{\beta}$ and maximum degree β .

Let us remark that instead of Theorem 8, our proof of Theorem 4 could rely on an earlier result of Chekuri and Chuzhoy [3] which, under the same assumptions, merely guarantees the existence of a subgraph of G of treewidth $\Omega(k/(\log k)^6)$ and maximum degree $O((\log k)^3)$.

We are now ready to prove our main result.

Proof of Theorem 4. Let G be a graph of C and let F be a depth-r minor of G. Our goal is to prove that $d(F) \leq c_1 \cdot (r+1)^{1/\delta} (\frac{1}{\delta} \log(r+3))^{c_2/\delta}$, for some constants c_1 and c_2 depending only on C. Note that for any $r \geq 0$ and $0 < \delta \leq 1$,

$$c_1 \cdot (r+1)^{1/\delta} (\frac{1}{\delta} \log(r+3))^{c_2/\delta} \ge \max \left\{ c_1 (\log 3)^{c_2}, c_1 \exp(\frac{c_2}{\delta} \log \frac{\log 3}{\delta}) \right\},$$

so we can assume without loss of generality that

$$d(F) \geq \max\left\{10^8, \exp\left(4 \cdot \frac{\beta+3}{\delta} \log(2 \cdot \frac{\beta+3}{\delta})\right)\right\}$$

by choosing appropriate values of c_1, c_2 . By Theorem 7, F has a subgraph H of average degree $d(H) \geq \frac{255}{256}d(F)$ such that for any set S of at most |V(H)|/2 vertices of H,

$$|N(S)| \ge \frac{1}{2^8 \log |V(H)| ((\log \log |V(H)|)^2} |S| \ge \frac{1}{2^8 (\log |V(H)|)^3} |S|.$$

It follows from Lemma 5 that H contains a balanced separator (A, B) with $|A \cap B| \le \operatorname{tw}(H)+1$. As $A \setminus B$ and $B \setminus A$ are disjoint, one of them contains at most half of the vertices. We may assume without loss of generality that $|A \setminus B| \le |V(H)|/2$. As $N(A \setminus B) \subseteq A \cap B$, we get

$$|A \cap B| \ge \frac{1}{2^8 (\log |V(H)|)^3} |A \setminus B|.$$

Since (A, B) is balanced, $|A \setminus B| + |A \cap B| \ge \frac{1}{3}|V(H)|$ and so

$$\frac{1}{3}|V(H)| \le |A \cap B|(1 + 2^8(\log|V(H)|)^3).$$

Given that $|A \cap B| \leq \operatorname{tw}(H) + 1$, we deduce

$$\operatorname{tw}(H) \geq \tfrac{|V(H)|}{3 \cdot 2^8 (\log |V(H)|)^3 + 3} - 1 \geq \tfrac{|V(H)|}{2^{10} (\log |V(H)|)^3},$$

using that $|V(H)| \ge d(H) \ge \frac{255}{256} \cdot 10^8$.

By Theorem 8, H has a subgraph H' of maximum degree 3 such that

$$\operatorname{tw}(H') \geq \tfrac{\alpha \operatorname{tw}(H)}{(\log \operatorname{tw}(H))^\beta} \geq \tfrac{\alpha |V(H)|}{2^{10}(\log |V(H)|)^{\beta+3}},$$

since $\operatorname{tw}(H) \leq |V(H)|$. Note that H' is a subgraph of H (and F) and therefore also a depth-r minor of G. In G, H' corresponds to a subgraph G' (before contraction of the subgraphs of radius r) with $|V(G')| \leq (3r+1)|V(H')| \leq (3r+1)|V(H)|$. Indeed, since H' has maximum degree 3, each subgraph of radius at most r in G' whose contraction

corresponds to a vertex of H' contains at most 3r + 1 vertices. Since H' is a minor of G', we have

$$\text{tw}(G') \ge \text{tw}(H') \ge \frac{\alpha |V(H)|}{2^{10} (\log |V(H)|)^{\beta+3}}.$$

Since \mathcal{C} is monotone, every subgraph of G' is in \mathcal{C} and thus has a balanced separator of order at most $C|V(G')|^{1-\delta}$. Hence, by Theorem 6,

$$\operatorname{tw}(G') \le 105C|V(G')|^{1-\delta} \le 2^7C|V(G')|^{1-\delta}.$$

We just obtained lower and upper bounds on tw(G'). Putting them together, we obtain:

$$\begin{split} \frac{\alpha |V(H)|}{2^{10}(\log |V(H)|)^{\beta+3}} &\leq 2^{7}C \, |V(G')|^{1-\delta} \\ &\leq 2^{7}C \, \left((3r+1)|V(H)|\right)^{1-\delta}, \, \text{and thus} \\ \frac{|V(H)|^{\delta}}{(\log |V(H)|)^{\beta+3}} &\leq \frac{2^{17}C}{\alpha}(3r+1)^{1-\delta} \\ &\leq \frac{2^{17}C}{\alpha}(3r+1), \, \text{and} \\ |V(H)| &\leq \left(\frac{2^{17}C}{\alpha}(3r+1)(\log |V(H)|)^{\beta+3}\right)^{1/\delta}. \end{split}$$

It follows that

$$\log |V(H)| \le \frac{1}{\delta} \log \left(\frac{2^{17}C}{\alpha} (3r+1) \right) + \frac{\beta+3}{\delta} \log \log |V(H)|.$$

Since the function $n \mapsto \frac{\log n}{\log \log n}$ is increasing for $n \ge 16$, a direct consequence of our initial assumption that $|V(H)| \ge \exp\left(4 \cdot \frac{\beta+3}{\delta} \log(2 \cdot \frac{\beta+3}{\delta})\right)$ is that

$$\frac{\log |V(H)|}{\log \log |V(H)|} \ge 2 \cdot \frac{\beta+3}{\delta}$$
, and thus $\log |V(H)| \le \frac{2}{\delta} \log \left(\frac{2^{17}C}{\alpha}(3r+1)\right)$.

We conclude that

$$|V(H)| \le \left(\frac{2^{17}C}{\alpha}(3r+1)\left(\frac{2}{\delta}\log\left(\frac{2^{17}C}{\alpha}(3r+1)\right)\right)^{\beta+3}\right)^{1/\delta} \le \frac{255}{256}c_1(r+1)^{1/\delta}\left(\frac{1}{\delta}\log(r+3)\right)^{c_2/\delta},$$

for some constants c_1, c_2 depending only on C and the constants α, β of Theorem 8. Recall that $d(F) \leq \frac{256}{255}d(H)$. Since $d(H) \leq |V(H)|$, we obtain $d(F) \leq c_1 \cdot (r+1)^{1/\delta} (\frac{1}{\delta} \log(r+3))^{c_2/\delta}$, as desired. This concludes the proof of Theorem 4.

3. Open problems

A natural problem is to determine the infimum real c > 0, such that if a monotone class \mathcal{C} has the property that every n-vertex graph in \mathcal{C} has a balanced separator of order $O(n^{1-\delta})$, then \mathcal{C} has expansion bounded by some function $r \mapsto O(r^{c/\delta})$. Theorem 4 implies that $c \leq 1$. On the other hand, it directly follows from Theorem 1 that $c \leq \frac{1}{4+\epsilon}$ would imply that if any n-vertex graph in \mathcal{C} has a balanced separator of order $O(n^{1-\delta})$, then any n-vertex graph in \mathcal{C} has a balanced separator of order $O(n^{1-(1+\epsilon/4)\delta})$. Therefore, Theorem 1

implies that $c \geq \frac{1}{4}$ (moreover, the proof of Theorem 1 in [5] can be slightly optimized to show that $c \geq \frac{1}{2}$). A good candidate to prove a better lower bound for c would be the family of all finite subgraphs of the infinite d-dimensional grid. The n-vertex graphs in this class have balanced separators of order $O(n^{1-1/d})$ (see [6]), and it might be the case that they have expansion $\Omega(r^{cd})$ for some $c > \frac{1}{2}$.

One way to measure the sparsity of a class of graphs is via its expansion (as defined in Section 1). Another way (which turns out to be equivalent) is via its generalized coloring parameters. Given a linear order L on the vertices of a graph G, and an integer r, we say that a vertex v of G is $strongly\ r$ -reachable from a vertex u (with respect to L) if $v \leq_L u$, and there is a path P of length at most r between u and v, such that $u <_L w$ for any internal vertex w of P. If we only require that v is the minimum of the vertices of P (with respect to L), we say that v is $weakly\ r$ -reachable from u. The $strong\ r$ -coloring $number\ col_r(G)$ of G is the minimum integer k such that there is a linear order L on the vertices of G such that for any vertex u of G, at most k vertices are strongly r-reachable from u (with respect to L). By replacing $strongly\ by\ weakly\ in$ the previous definition, we obtain the $weak\ r$ -coloring $number\ wcol_r(G)$ of G. Note that for any graph G and any integer r, $col_r(G) \leq wcol_r(G)$. For more on these parameters and their connections with the expansion of graph classes, the reader is referred to [7].

As we have seen before, it follows from [5] that a monotone class of graphs has polynomial expansion if and only if, for some fixed $0 < \delta \le 1$, each n-vertex graph in the class has a balanced separator of order $O(n^{1-\delta})$. Joret and Wood asked whether this is also equivalent to having weak and strong r-coloring numbers bounded by a polynomial function of r.

Problem 9 (Joret and Wood, 2017). Assume that C is a monotone class of graphs. Are the following statements equivalent?

- (1) C has polynomial expansion.
- (2) There exists a constant c, such that for every r, every graph in C has strong rcoloring number at most $O(r^c)$.
- (3) There exists a constant c, such that for every r, every graph in C has weak r-coloring number at most $O(r^c)$.

Note that clearly (3) implies (2). It was known that (3) implies (1) (this is a consequence of Lemma 7.11 in [7]), and Norin recently made the following observation, which shows that (2) implies (1).

Observation 10 (Norin, 2017). Every depth-r minor of a graph G has average degree at $most\ 2\operatorname{col}_{4r}(G)$.

Proof. Let L be a linear order on the vertices of G, such that for any vertex v of G, at most $\operatorname{col}_r(G)$ vertices are strongly r-reachable from v (with respect to L). Let H be a depth-r minor of a graph G. For any vertex u of H, let S_u be a subgraph of G of radius at most r, such that the S_u 's are vertex-disjoint and for any edge uv of H, there is an edge in G between a vertex of S_u and a vertex of S_v . It is enough to prove that there is a linear order L' on the vertices of H such that any vertex u of H, at most $\operatorname{col}_{4r}(G)$ vertices of H are strongly 1-reachable from u.

We construct L' from L as follows: for u, v in H, we set $u <_{L'} v$ if and only if, with respect to L, the smallest vertex of S_u precedes the smallest vertex of S_v . This clearly defines a linear order on the vertices of H. Consider a vertex u of H and let x be the smallest vertex of S_u (with respect to L). Let v be a neighbor of u in H with $v <_{L'} u$ (i.e. v is strongly 1-reachable from u in H). Let $v \in S_u$ and $v \in S_v$ be such that $v \in S_v$ is an edge of $v \in S_v$. Observe that there is a path $v \in S_v$ from $v \in S_v$ to $v \in S_v$ be the first vertex in this path with respect to $v \in S_v$ and a path $v \in S_v$ from $v \in S_v$. Let $v \in S_v$ be the first vertex of $v \in S_v$ such that $v \in S_v$ (note that possibly $v \in S_v$). The concatenation of $v \in S_v$ and the subpath of $v \in S_v$ between $v \in S_v$ and $v \in S_v$ has length at most $v \in S_v$ and thus shows that $v \in S_v$ is strongly 4 $v \in S_v$ and $v \in S_v$ between $v \in S_v$ between $v \in S_v$ and $v \in S_v$ between $v \in S$

Acknowledgements

We thank Zdeněk Dvořák for the discussion about [5], Gwenaël Joret and David Wood for allowing us to mention Problem 9, and Sergey Norin for allowing us to mention Observation 10 and its proof.

References

- [1] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks, *Approximating treewidth, pathwidth, frontsize, and shortest elimination tree*, J. Algorithms **18(2)** (1995), 238–255.
- [2] C. Chekuri and J. Chuzhoy, *Degree-3 Treewdith Sparsifiers*, In Proc. of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (2015), 242–255.
- [3] C. Chekuri and J. Chuzhoy, Large-treewidth graph decompositions and applications, In Proc. of the 45st Annual ACM Symposium on Theory of Computing (2013), 291–300.
- [4] Z. Dvořák and S. Norin, Treewidth of graphs with balanced separations, Manuscript, 2014. arXiv:1408.3869
- [5] Z. Dvořák and S. Norin, Strongly sublinear separators and polynomial expansion, SIAM J. Discrete Math. 30(2) (2016), 1095–1101.
- [6] G. L. Miller, S.-H. Teng and S. Vavasis, A unified geometric approach to graph separators, In Proc. of the 32nd Annual Symposium on Foundations of Computer Science (1991), 538–547.
- [7] J. Nešetřil and P. Ossona de Mendez, Sparsity Graphs, Structures, and Algorithms, Springer-Verlag, Berlin, Heidelberg, 2012.
- [8] S. Plotkin, S. Rao, and W.D. Smith, Shallow excluded minors and improved graph decomposition, In Proc. of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (1994), 462–470.
- [9] A. Shapira and B. Sudakov, Small Complete Minors Above the Extremal Edge Density, Combinatorica 35(1) (2015), 75–94.

UNIV. GRENOBLE ALPES, CNRS, G-SCOP, GRENOBLE, FRANCE *E-mail address*: louis.esperet@grenoble-inp.fr

Institute of Informatics, University of Warsaw, Poland and LIRMM, University of Montpellier, France

E-mail address: jean-florent.raymond@mimuw.edu.pl