POLYNOMIAL EXPANSION AND SUBLINEAR SEPARATORS
LOUIS ESPERET AND JEAN-FLORENT RAYMOND

ABSTRACT. Let C be a class of graphs that is closed under taking subgraphs. We prove
that if for some fixed 0 < § < 1, every n-vertex graph of C has a balanced separator
of order O(n'~%), then any depth-r minor (i.e. minor obtained by contracting disjoint
subgraphs of radius at most r) of a graph in C has average degree O((r polylog )/ 5).
This confirms a conjecture of Dvorak and Norin.

1. INTRODUCTION

For an integer r > 0, a depth-r minor of a graph G is a subgraph of a graph that can
be obtained from G by contracting pairwise vertex-disjoint subgraphs of radius at most 7.
Let d(G) denote the average degree of a graph G = (V, E), i.e. d(G) = 2|E|/|V|. For some
function f, we say that a class C of graphs has expansion bounded by f if for any graph
G € C and any integer r, any depth-r minor of GG has average degree at most f(r). We say
that a class has bounded expansion if it has expansion bounded by some function f, and
polynomial expansion if f can be taken to be a polynomial.

Classes of bounded expansion play a central role in the study of sparse graphs [7].
From an algorithmic point of view, a very useful property of theses classes is that when
their expansion is not too large (say subexponential), graphs in the class have sublinear
separators. A separator in a graph G = (V| E) is a pair of subsets (A, B) of vertices of G
such that AU B =V and no edge of G has one endpoint in A\ B and the other in B\ A.
The separator (A, B) is said to be balanced if both |A\ B| and |B\ A| contain at most
2|V| vertices. The order of the separator (A, B) is [AN B.

A class C of graphs is monotone if for any graph G € C, any subgraph of G is in C.
Dvordk and Norin [5] observed that the following can be deduced from a result of Plotkin,
Rao, and Smith []].

Theorem 1 ([5]). Let C be a monotone class of graphs with expansion bounded by r
c(r 4+ 1)Y9=1" for some constant ¢ > 0 and 0 < § < 1. Then there is a constant C such
that every n-vertex graph of C has a balanced separator of order Cn'=°.

Dvofdak and Norin [5] also proved the following partial converse.
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Theorem 2 ([5]). Let C be a monotone class of graphs such that for some fixed constants
C >0 and 0 < § <1, every n-vertex graph of C has a balanced separator of order Cn'=9.
Then the expansion of C is bounded by some function f(r) = O(r5/%%).

They conjectured that the exponent 5/6% of the polynomial expansion in
could be improved to match (asymptotically) that of

Conjecture 3 ([5]). There exists a real ¢ > 0 such that the following holds. Let C be a
monotone class of graphs such that for some fized constants C > 0 and 0 < § < 1, every
n-vertex graph of C has a balanced separator of order Cn'=°. Then the expansion of C is

bounded by some function f(r) = O(r/?).
In this short note, we prove this conjecture.

Theorem 4. For any C > 0 and 0 < 6 < 1, if a monotone class C has the property
that every n-vertex graph in C has a balanced separator of order at most Cn'=%, then C
has expansion bounded by the function f :r — ¢ - (r + 1)1/5(%1055(7“ + 3))2/%, for some
constants ¢y and co depending only on C.

In particular holds for any real number ¢ > 1. The proof of is

given in the next section, and we conclude with some open problems in [Section 3|

2. PrROOF OF [THEOREM 4

We need the following results. The first is a classical connection between balanced
separators and tree-width (see [5]).

Lemma 5. Any graph G has a balanced separator of order at most tw(G) + 1.
Dvotdk and Norin [4] proved that the following partial converse holds.

Theorem 6 ([4]). If every subgraph of G has a balanced separator of order at most k, then
G has tree-width at most 105k.

Note that in our proof of we could also use the weaker (and easier) result
of [1] that under the same hypothesis, G has tree-width at most 1 + klog |V (G)|, but the
computation is somewhat less cumbersome if we use instead.

For a set S of vertices in a graph G, we let N(S) denote the set of vertices not in S with
at least one neighbor in S. We will use the following result of Shapira and Sudakov [9].

Theorem 7 ([9]). Any graph G contains a subgraph H of average degree d(H) > 22d(G)
such that for any set S of at most n/2 vertices of H (where n = |V(H)|), |[N(S)| >
. |51

28 log n(log logn)?

In fact, we will only need a much weaker version, where the vertex-expansion is of order
1 : 1
Q (polylogn) instead of € (10g n(log log n)z)'

Finally, we need a result of Chekuri and Chuzhoy [2] on bounded-degree subgraphs of
large tree-width in a graph of large tree-width.
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Theorem 8 ([2]). There are constants «, 8 such that for any integer k > 2, any graph G of
tree-width at least k contains a subgraph H of tree-width at least ak/(log k)? and mazimum
degree 3.

Let us remark that instead of [Theorem 8| our proof of [Theorem 4| could rely on an
earlier result of Chekuri and Chuzhoy [3] which, under the same assumptions, merely
guarantees the existence of a subgraph of G of treewidth Q(k/(logk)®) and maximum
degree O((log k)?).

We are now ready to prove our main result.

Proof of[Theorem J} Let G be a graph of C and let F' be a depth-r minor of G. Our goal is
to prove that d(F) < ¢; - (r+1)"/2(3 log(r+3))®/°, for some constants ¢; and ¢; depending
only on C. Note that for any r > 0 and 0 < ¢ <1,

c1 - (r+ 1)1/5(% log(r + 3))/° > max {¢;(log 3), ¢y exp(% log 10%3)} ,
so we can assume without loss of generality that
d(F) > max {10% exp (4 - % log(2 - %))}

by choosing appropriate values of ¢, c. By [Theorem 7} F has a subgraph H of average
degree d(H) > 222d(F) such that for any set S of at most |V (H)|/2 vertices of H,

256
S| = |51

IN(S)| =
It follows from that H contains a balanced separator (A, B) with |[AN B| <
tw(H)+1. As A\ B and B\ A are disjoint, one of them contains at most half of the vertices.
We may assume without loss of generality that |[A\ B| < |V(H)|/2. As N(A\ B) C AN B,
we get

28log |V (H )\(logloglV 28(logIV 3

|AN Bl 2 ssimrany A\ Bl
Since (A, B) is balanced, |A\ B| +|AN B| > 3|V (H)| and so
V(H)| < |AN B|(1+2%(log [V/(H)|)?).

1
3

Given that |AN B| < tw(H) + 1, we deduce
tw(H

V() V()
) 2 55 Mg VDT — L 2 30eg VI
using that |V (H)| > d(H) > 22 - 105

By [Theorem 8, H has a subgraph H' of maximum degree 3 such that

’ a tw(H) a|V(H)|
twW(H') 2 ogte(m)? = 20700g V()P

since tw(H) < |V(H)|. Note that H' is a subgraph of H (and F') and therefore also a
depth-r minor of G. In G, H' corresponds to a subgraph G’ (before contraction of the
subgraphs of radius r) with |V/(G")| < (3r 4+ 1)|V(H')| < (3r 4+ 1)|V(H)|. Indeed, since
H' has maximum degree 3, each subgraph of radius at most r in G’ whose contraction
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corresponds to a vertex of H' contains at most 3r 4+ 1 vertices. Since H' is a minor of GG,
we have
a|V(H
tW(G/) Z tW(Hl) Z W.
Since C is monotone, every subgraph of G’ is in C and thus has a balanced separator of
order at most C|V(G")]*~%. Hence, by [Theorem 6,
tw(G') < 105C|V(G)|'° < 27C|V (G| °.

We just obtained lower and upper bounds on tw(G’). Putting them together, we obtain:

s < 2CV(E)
<27C ((3r+1)|V(H))|)

21(10(37“ + 1)175

2C (3 + 1), and

a

(2223 + D(tog V(D))

67

5, and thus

V()
(og [V(H))PT> =

N

IN

V() "

IN

It follows that
log |V (H)| < %log (%(37“ + 1)) + %loglog \V(H)|.

BN _ g mcreasing forn > 16, a direct consequence of our initial
loglogn

assumption that |V (H)| > exp (4 - % log(2 - %)) is that

Since the function n

log |V/(H)| 843
Toalos V(D] = 2 75 » and thus

log |V (H)| < 2log (2170(37’ + 1)) .

«

We conclude that
1 ) g\ /9
V(H)| < (%(37’ +1) <§ log (%(37“ + 1)>> ) < %q(r + 1)1/6(% log(r + 3))c2/57

for some constants ¢y, ¢2 depending only on C' and the constants «, 3 of [Theorem 8 Recall
that d(F) < 28d(H). Since d(H) < |V (H)|, we obtain d(F) < ¢;-(r+1)"° (4 log(r+3))/?,

as desired. This concludes the proof of [Theorem 4] O

3. OPEN PROBLEMS

A natural problem is to determine the infimum real ¢ > 0, such that if a monotone
class C has the property that every n-vertex graph in C has a balanced separator of order
O(n'~?), then C has expansion bounded by some function r + O(r/%). [Theorem 4|implies
that ¢ < 1. On the other hand, it directly follows from |Theorem 1| that ¢ < 4—_1% would

imply that if any n-vertex graph in C has a balanced separator of order O(n'~?), then any
n-vertex graph in C has a balanced separator of order O(n!~(1+</4)9) " Therefore,
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implies that ¢ > i (moreover, the proof of in [5] can be slightly optimized to
show that ¢ > %) A good candidate to prove a better lower bound for ¢ would be the

family of all finite subgraphs of the infinite d-dimensional grid. The n-vertex graphs in
this class have balanced separators of order O(n'~'/?) (see [6]), and it might be the case
that they have expansion Q(r°?) for some ¢ > 3.

One way to measure the sparsity of a class of graphs is via its expansion (as defined in
. Another way (which turns out to be equivalent) is via its generalized coloring
parameters. Given a linear order L on the vertices of a graph G, and an integer r, we
say that a vertex v of G is strongly r-reachable from a vertex u (with respect to L) if
v <, u, and there is a path P of length at most r between u and v, such that u <, w
for any internal vertex w of P. If we only require that v is the minimum of the vertices of
P (with respect to L), we say that v is weakly r-reachable from w. The strong r-coloring
number col,.(G) of G is the minimum integer k such that there is a linear order L on the
vertices of G such that for any vertex u of G, at most k vertices are strongly r-reachable
from u (with respect to L). By replacing strongly by weakly in the previous definition, we
obtain the weak r-coloring number wcol,(G) of G. Note that for any graph G and any
integer r, col,(G) < wcol,(G). For more on these parameters and their connections with
the expansion of graph classes, the reader is referred to [7].

As we have seen before, it follows from [5] that a monotone class of graphs has polynomial
expansion if and only if, for some fixed 0 < § < 1, each n-vertex graph in the class has a
balanced separator of order O(n!=%). Joret and Wood asked whether this is also equivalent
to having weak and strong r-coloring numbers bounded by a polynomial function of r.

Problem 9 (Joret and Wood, 2017). Assume that C is a monotone class of graphs. Are
the following statements equivalent?

(1) C has polynomial expansion.

(2) There exists a constant ¢, such that for every r, every graph in C has strong r-
coloring number at most O(r°).

(8) There exists a constant c, such that for every r, every graph in C has weak r-coloring
number at most O(rc).

Note that clearly (3) implies (2). It was known that (3) implies (1) (this is a consequence
of Lemma 7.11 in [7]), and Norin recently made the following observation, which shows
that (2) implies (1).

Observation 10 (Norin, 2017). Every depth-r minor of a graph G has average degree at
most 2 coly, (G).

Proof. Let L be a linear order on the vertices of (G, such that for any vertex v of GG, at most
col, (@) vertices are strongly r-reachable from v (with respect to L). Let H be a depth-r
minor of a graph G. For any vertex u of H, let S, be a subgraph of G of radius at most
r, such that the S,’s are vertex-disjoint and for any edge uv of H, there is an edge in G
between a vertex of S, and a vertex of S,. It is enough to prove that there is a linear order
L’ on the vertices of H such that any vertex u of H, at most coly,(G) vertices of H are
strongly 1-reachable from wu.
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We construct L' from L as follows: for u,v in H, we set u <y, v if and only if, with
respect to L, the smallest vertex of S, precedes the smallest vertex of S,. This clearly
defines a linear order on the vertices of H. Consider a vertex u of H and let z be the
smallest vertex of S, (with respect to L). Let v be a neighbor of v in H with v < u (i.e.
v is strongly 1-reachable from u in H). Let t € S, and z € S, be such that ¢z is an edge
of G. Observe that there is a path P, from z to ¢ in S, (and x is the smallest vertex in
this path with respect to L), and a path P, from z to y in S,. Let w be the first vertex
of P, such that w < = (note that possibly w = z). The concatenation of P,, zt, and the
subpath of P, between z and w has length at most 4r and thus shows that w is strongly
4r-reachable from x in G. Hence, at most coly,(G) vertices of H are strongly 1-reachable
from u in H with respect to L', as desired. O
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