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Abstract

For every r ∈ N, let θr denote the graph with two vertices and r parallel edges.
The θr-girth of a graph G is the minimum number of edges of a subgraph of G
that can be contracted to θr. This notion generalizes the usual concept of girth
which corresponds to the case r = 2. In [Minors in graphs of large girth, Random
Structures & Algorithms, 22(2):213–225, 2003], Kühn and Osthus showed that
graphs of sufficiently large minimum degree contain clique-minors whose order is
an exponential function of their girth. We extend this result for the case of θr-
girth and we show that the minimum degree can be replaced by some connectivity
measurement. As an application of our results, we prove that, for every fixed r,
graphs excluding as a minor the disjoint union of k θr’s have treewidth O(k · log k).
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1 Introduction

A classic result in graph theory asserts that if a graph has minimum degree ck
√

log k,
then it can be transformed to a complete graph of at least k vertices by applying edge
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contractions (i.e., it contains a k-clique minor). This result has been proven by Kos-
tochka in [20] and Thomason in [33] and a precise estimation of the constant c has been
given by Thomason in [34]. For recent results related to conditions that force a clique
minor see [13,15,19,22,23].

The girth of a graph G is the minimum length of a cycle in G. Interestingly, it
follows that graphs of large minimum degree contain clique-minors whose order is an
exponential function of their girth. In particular, it follows by the main result of Kühn
and Osthus in [21] that there is a constant c such that, if a graph has minimum degree
d ≥ 3 and girth z, then it contains as a minor a clique of size k, where

k ≥ dcz√
z · log d

.

In this paper we provide conditions, alternative to the above one, that can force the
existence of a clique-minor whose size is exponential.

H-girth. We say that a graph H is a minor of a graph G, if H can be obtained from
G by using the operations vertex-removal, edge-removal, and edge-contraction. An H-
model in G is a subgraph of G that contains H as a minor. Given two graphs G and
H, we define the H-girth of G as the minimum number of edges of an H-model in G.
If G does not contain H as a minor, we will say that its H-girth is equal to infinity.
For every r ∈ N, let θr denote the graph with two vertices and r parallel edges, e.g. in
Section 1 the graph θ5 with 5 parallel edges. Clearly, the girth of a graph is its θ2-girth
and, for every r1 ≤ r2, the θr1-girth of a graph is at most its θr2-girth.

Figure 1: The graph θ5.

Our first result is the following extension of the result of Kühn and Osthus in [21]
for the case of θr-girth.

Theorem 1.1. There is a universal constant c such that, for every r ≥ 2, d ≥ 3r, and
z ≥ 2r, if a graph has minimum degree d and θr-girth at least z, then it contains as a
minor a clique of size k, where

k ≥
(d
r
)c
z
r√

z
r
· log d

.

In the formula above, a lower bound to the minimum degree as a function of r is
necessary. An easy computation shows that when applying Theorem 1.1 for r = 2, we
can get the aforementioned formula of Kühn and Osthus, where the constant in the
exponent is one fourth of the constant of Theorem 1.1.

Our second finding is that this degree condition can be replaced by some “loose
connectivity” requirement.
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Loose connectivity. For two integers α, β ∈ N, a graph G is called (α, β)-loosely
connected if for every A,B ⊆ V (G) such that V (G) = A∪B and G has no edge between
A \ B and B \ A, we have that |A ∩ B| < β ⇒ min(|A \ B|, |B \ A|) ≤ α. Intuitively,
this means that a small separator (i.e., on less than β vertices) cannot “split” the graph
into two large parts (that is, with more than α vertices each).

Our second result indicates that the requirement on the minimum degree in Theo-
rem 1.1 can be replaced by the loose connectivity condition as follows.

Theorem 1.2. There is a constant c > 0 such that, for every r ≥ 2, α ≥ 1, and
z ≥ 168 · α · r log r, it holds that if a graph has more than (α + 1) · (2r − 1) vertices, is
(α, 2r − 1)-loosely connected, and has θr-girth at least z, then it contains as a minor a
clique of size k where

k ≥ 2c·
z
rα

√
rz
.

Both Theorem 1.1 and Theorem 1.2 are derived from two more general results,
namely Theorem 3.2 and Theorem 3.1, respectively. Theorem 3.2 asserts that graphs
with large θr-girth and sufficiently large minimum degree contain as a minor a graph
whose minimum degree is exponential in the girth. Theorem 3.1 replaces the mini-
mum degree condition with the absence of sufficiently large “edge-protrusions”, that are
roughly tree-like structured subgraphs with small boundary to the rest of the graph (see
Section 2 for the detailed definitions).

Treewidth. A tree-decomposition of a graph G is a pair (T,X ) where T is a tree and
X is a family of subsets of V (G), called bags, indexed by the vertices of T and such that:

(i) for each edge e = (x, y) ∈ E(G) there is a vertex t ∈ V (T ) such that {x, y} ⊆ Xt;

(ii) for each vertex u ∈ V (G) the subgraph of T induced by {t ∈ V (T ) | u ∈ Xt} is
connected; and

(iii)
⋃
t∈V (T )Xt = V (G).

The width of a tree-decomposition (T,X ) is the maximum size of its bags minus one.
The treewidth of a graph G, denoted tw(G), is defined as the minimum width over all
tree-decompositions of G.

Treewidth has been introduced in the Graph Minors Series of Robertson and Sey-
mour [28] and is an important parameter in both combinatorics and algorithms. In [28],
Robertson and Seymour proved that for every planar graph H, there exists a constant
cH such that every graph excluding H as a minor has treewidth at most cH . This result
has several applications in algorithms and a lot of research has been devoted to optimiz-
ing the constant cH in general or for specific instantiations of H (see [11, 30]). In this
direction, Chekury and Chuzhoy proved in [9, 10] that cH is bounded by a polynomial
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in the size of H. Specific results for particular H’s such that cH is a low polynomial
function have been derived in [2, 3, 6, 27].

Given a graph J , we denote by k ·J the disjoint union of k copies of J . A consequence
of the general results of Chekuri and Chuzhoy in [8] is that for every planar graph J , it
holds that ck·J = k ·(log k)O(1). Prior to this, a quadratic (in k) upper bound was derived
for the case where J = θr [2,14]. As an application of our results, we prove that for every
fixed r, ck·θr = O(k · log k) (Theorem 5.1). We also argue that this bound is tight in the
sense that it cannot be improved to o(k · log k). Our proof is based on Theorem 3.1 and
the results of Geelen, Gerards, Robertson, and Whittle on the excluded minors for the
matroids of branch-width k [16].

Organisation of the paper. The main notions used in this paper are defined in
Section 2. Then, we show in Section 3 that the proofs of Theorem 1.1 and Theorem 1.2
can be derived from Theorem 3.2 and Theorem 3.1, which are proved in Section 4.
Finally, in Section 5, we prove our tight bound on the minor-exclusion of k · θr.

2 Definitions

Given a function φ : A → B and a set C ⊆ A, we define φ(C) = {φ(x) | x ∈ C}.
Let χ, ψ : N → N. We say that χ(n) = Or(ψ(n)) if there exists a function φ : N → N
such that, for every r ∈ N, χ(n) = O(φ(r) · ψ(n)). This notation indicates that the
contribution of r is hidden in the constant of the big-O notation. If X is a set of sets,
we denote by ∪∪∪∪∪∪∪∪∪X the union

⋃
X∈X X.

Graphs. All graphs in this paper are finite, undirected, loopless, and may have mul-
tiple edges. For this reason, a graph is represented by a pair G = (V,E) where V is
its vertex set, denoted by V (G) and E is its edge multi-set, denoted by E(G). In this
paper, when giving the running time of an algorithm involving some graph G, we agree
that n = |V (G)| and m = |E(G)|. Given a vertex v of a graph G, the set of vertices of G
that are adjacent to v is denoted by NG(v) and the degree of v in G is |NG(v)|. Observe
that since multiple edges are allowed, the degree of a vertex may differ from the number
of incident edges. For every subset S ⊆ V (G), we set NG(S) =

⋃
v∈S NG(v) \ S (all

vertices of V (G) \ S that have a neighbor in S). The minimum degree over all vertices
of a graph G is denoted by δ(G). For a given graph G and two vertices u, v ∈ V (G),
distG(u, v) denotes the distance between u and v, which is the number of edges on a
shortest path between u and v, and diam(G) denotes max{distG(u, v) | u, v ∈ V (G)}.
For a set S ⊆ V (G) and a vertex w ∈ V , distG(S,w) denotes min{distG(v, w) | v ∈ S}.
Also, for a given vertex u ∈ V (G), eccG(u) denotes the eccentricity of the vertex u, that
is, max{distG(u, v) | v ∈ V (G)}.
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Rooted trees. A rooted tree is a pair (T, s) such that T is a tree and s, which we call
the root, belongs to V (T ). Given a vertex x ∈ V (T ), the descendants of x in (T, s) are
the elements of des(T,s)(x), which is defined as the set containing each vertex w such
that the unique path from w to s in T contains x. Given a rooted tree (T, s) and a
vertex x ∈ V (G), the height of x in (T, s) is the maximum distance between x and a
vertex in des(T,s)(x). The height of (T, s) is the height of s in (T, s). The children of a
vertex x ∈ V (T ) are the vertices in des(T,s)(x) that are adjacent to x. A leaf of (T, s)
is a vertex of T without children. Notice that, according to this definition, s is not a
leaf unless |V (T )| = 1. The parent of a vertex x ∈ V (T ) \ {s}, denoted by p(x), is the
unique vertex of T that has x as a child.

Partitions and protrusions. A rooted tree-partition of a graph G is a triple D =
(X , T, s) where (T, s) is a rooted tree and X = {Xt}t∈V (T ) is a partition of V (G) where
either |V (T )| = 1 or for every {x, y} ∈ E(G), there exists an edge {t, t′} ∈ E(T ) such
that {x, y} ⊆ Xt ∪Xt′ (see also [12,17,31]). The elements of X are called bags. In other
words, the endpoints of every edge of G either belong to the same bag, or they belong
to bags of adjacent vertices of T . Given an edge f = {t, t′} ∈ E(T ), we define Ef as the
set of edges with one endpoint in Xt and the other in Xt′ . The width of D is defined as
max{|Xt|}t∈V (T ) ∪ {|Ef |}f∈E(T ).

In order to decompose graphs along edge cuts, we introduce the following edge-
counterpart of the notion of (vertex-)protrusion used in [4,5] (among others). A subset
Y ⊆ V (G) is a t-edge-protrusion of G with extension w (for some positive integer w) if
the graph G[Y ∪ NG(Y )] has a rooted tree-partition D = (X , T, s) of width at most t
and such that NG(Y ) = Xs and |V (T )| ≥ w. The protrusion Y is said to be connected
whenever Y ∪NG(Y ) induces a connected subgraph in G.

Distance-decompositions. A distance-decomposition of a connected graph G is a
rooted tree-partition D = (X , T, s) of G, where the following additional requirements
are met (see also [35]):

(i) Xs contains only one vertex, we shall call it u, refered to as the origin of D;

(ii) for every t ∈ V (T ) and every x ∈ Xt, distG(x, u) = distT (t, s);

(iii) for every t ∈ V (T ), the graph Gt = G
[⋃

t′∈des(T,s)(t)Xt′

]
is connected; and

(iv) if C is the set of children of a vertex t ∈ V (T ), then the graphs {Gt′}t′∈C are the
connected components of Gt \Xt.

An example of distance-decomposition is given in Fig. 2. For every vertex u of a graph
on m edges, a distance-decomposition (X , T, s) with origin u can be constructed in O(m)
steps by breadth-first search.
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u5

u6

u8

u7

u3

u4

u1u0

u2 {u5}

{u6, u7} {u3, u4}

{u8} {u0, u2} {u1}

Figure 2: A graph (left) and a distance-decomposition with origin u5 of it (right).

For every t ∈ V (T ) \ {s}, we define E(t) as the set of edges that have one endpoint
in Xt and the other in Xp(t).

Let P be a path in G and D = (X , T, s) a distance-decomposition of P . We say that
P is a straight path if the heights, in (T, s), of the indices of the bags in D that contain
vertices of P are pairwise distinct. Obviously, in that case, the sequence of the heights
of the bags that contain each subsequent vertex of the path is strictly monotone.

Grouped partitions. Let G be a connected graph and let d ∈ N. A d-grouped
partition of G is a partition R = {R1, . . . , Rl} of V (G) (for some positive integer l) such
that for each i ∈ {1, . . . , l}, the graph G[Ri] is connected and there is a vertex si ∈ Ri

with the following properties:

(i) eccG[Ri](si) ≤ 2d and

(ii) for each edge e = {x, y} ∈ E(G) where x ∈ Ri and y ∈ Rj for some distinct
integers i, j ∈ {1, . . . , l}, it holds that distG(x, si) ≥ d and distG(y, sj) ≥ d.

A set S = {s1, . . . , sl} as above is a set of centers of R where si is the center of Ri for
i ∈ {1, . . . , l}.

Given a graph G, we define a d-scattered set W of G as follows:

• W ⊆ V (G) and

• ∀u, v ∈ W, distG(u, v) > d.

If W is inclusion-maximal, it will be called a maximal d-scattered set of G.
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Frontiers and ports. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped parti-
tion of G, and let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ {1, . . . , l}, we
denote by Di = (Xi, Ti, si) the unique distance-decomposition with origin si of the graph
G[Ri] where Xi = {X i

t}t∈V (Ti). For every i ∈ {1, . . . , l} and every h ∈ {0, . . . , eccTi(si)},
we denote by Ihi the vertices of (Ti, si) that are at distance h from si, and we set

I<hi =
⋃h−1
h′=0 I

s
h′ and I≥hi =

⋃eccTi (si)

h′=h Ih
′

i . We also set

V h
i =

⋃
t∈Ihi

X i
t , V <h

i =
⋃
t∈I<hi

X i
t , and V ≥hi =

⋃
t∈I≥hi

X i
t .

The vertex-frontier Fi of Ri is the set of vertices in V d−1
i that are connected in G to

a vertex x ∈ V (G) \ Ri via a path, the internal vertices of which belong to V ≥di . The
node-frontier of Ti is

Ni = {t ∈ V (Ti) | Fi ∩Xt 6= ∅}. (1)

A vertex t ∈ I≥d−1i is called a port of Ti if X i
t contains some vertex that is adjacent in

G to a vertex of V (G) \Ri.

3 Finding small θr-models

3.1 Two intermediate results

The main results of this section are the following.

Theorem 3.1. There exists an algorithm that, with input three positive integers r, w, z
and an n-vertex graph G, outputs one of the following:

• a θr-model in G with at most z edges,

• a connected (2r − 2)-edge-protrusion Y of G with extension more than w, or

• an H-model in G for some graph H where δ(H) ≥ 1
r−12

z−5r
4r(2w+1) ,

in Or(m) steps.

Theorem 3.2. There exists an algorithm that, with input three integers r, δ, z, where
r ≥ 2, δ ≥ 3r, and z ≥ r and an n-vertex graph G, outputs one one the following:

• a θr-model in G with at most z edges,

• a vertex v of G of degree less than δ, or

• an H-model in G for some graph H where δ(H) ≥ δ−2r+3
r−1 · b

δ
r−1 − 1c

z−r
4r ,

7



in Or(m) steps.

The results of Chandran and Subramanian in [7] imply that if G has girth at least
z and mimumum degree at least δ, then tw(G) ≥ δc·z, for some constant c. As in the
third condition of Theorem 3.2 it holds that tw(G) ≥ tw(H) ≥ δ(H), Theorem 3.2 can
also be seen as a qualitative extension of the results of [7].

The above two results will be used to prove Theorem 1.1 and Theorem 1.2. We will
also need the following result of Kostochka [20].

Proposition 3.3 ([20], see also [33, 34]). There exists a constant ξ ∈ R such that for
every d ∈ N, every graph of average degree at least d contains a clique of order k as a
minor, for some integer k satisfying

k ≥ ξ · d√
log d

.

Proof of Theorem 1.1. Observe that since G has no θr-model with at most z edges and G
has minimum degree d ≥ 3r, a call to the algorithm of Theorem 3.2 on (r, d, z,G) should

return an H-model of G, for some graph H where δ(H) ≥ d−2r+3
r−1 · b d

r−1 − 1c
z−r
4r =: d′.

Using the fact that z − r ≥ z/2, it is not hard to check that there is a constant c′ ∈ R
such that

ξ · d′√
log d′

≥
(d
r
)c
′· z
r√

z
r
· log d

.

Hence by Proposition 3.3, G has a clique of the desired order as a minor.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, the properties that G enjoys will
force a minor of large minimum degree. Let us call the algorithm of Theorem 3.1 on
(r, 3α, z,G). We assumed that G has no θr-model on z edges or less, hence the output of
the algorithm cannot be such a model. Let us now assume that the algorithm outputs
a (2r − 2)-edge-protrusion Y of extension more than 3α, and let (X , T, s) be a rooted
tree-partition of Y of width at most 2r − 2 such that NG(Y ) = Xs and n(T ) > 3α. It
is known that every tree of order n has a vertex, the removal of which partitions the
tree into components of size at most n/2 each. Hence, there is a vertex v ∈ V (T ) and
a partition (Z,Z ′) of V (T ) \ {v} such that:

• both Z ∪ {v} and Z ′ ∪ {v} induce connected subtrees of T ;

• 1
3
n(T ) ≤ |Z|, |Z ′| ≤ 2

3
n(T ); and

• Xs ⊆ Z or v = s.

Let A = Z ′ ∪ {Xv} and B = V (G) \Z ′. Notice that V (G) = A∪B and that no edge of
G lies between A and B. As A ∩ B = Xv, we have |A ∩ B| < 2r − 1. Last, Z ′ ⊆ A \ B
and Z ⊆ B \A give that |A \B|, |B \A| ≥ α. The existence of A and B contradicts the
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fact that G is (α, 2r − 1)-loosely connected. Thus G has no (2r − 2)-edge-protrusion Y
of extension more than 3α.

A consequence of this observation is that the only possible output of the algorithm
mentioned above is an H-model of G for some graph H, where

δ(H) ≥ 1

r − 1
· 2

z−5r
4r(6α+1) ≥ 1

r
· 2

z
168·rα =: d.

Notice also that log d = z
168·rα which, by the condition of the theorem, is a non-

negative number. Moreover, log d ≤ z/r. Therefore, there is there is a constant c′′ ∈ R
such that

ξ · d√
log d

≥ 2c
′′· z
rα

√
z · r

in order to conclude the proof.

4 The proofs of Theorem 3.1 and Theorem 3.2

4.1 Preliminary results

Before proving Theorem 3.1 and Theorem 3.2 (in Section 4.2 and Section 4.3, respec-
tively) we need some preliminary results. Let us start we some definitions.

Let (T, s) be a rooted tree and let N be a subset of its leaves. We say that a vertex
u of T is N-critical if either it belongs to N ∪ {s} or there are at least two vertices
in N that are descendants of two distinct children of u. An N-unimportant path in
T is a path with at least 2 vertices, with exactly two N -critical vertices, which are its
endpoints (see Fig. 3 for a picture). Notice that an N -unimportant path in T cannot
have an internal vertex that belongs to some other N -unimportant path. Also, among
the two endpoints of an N -unimportant path there is always one which is a descendant
of the other. As we see in the proof of the following lemma, N -unimportant paths are
the maximal paths with internal vertices of degree 2 that appear if we repeatedly delete
leaves that do not belong to N ∪ {s}.

Lemma 4.1. Let d, k ∈ N, k ≥ 1. Let (T, s) be a rooted tree and let N be a set of leaves
of (T, s), each of which is at distance at least than d from s. If for some integer k, every
N-unimportant path in T has length at most k, then |N | ≥ 2d/k.

Proof. We consider the subtree T ′ of T obtained by repeatedly deleting leaves that do
not belong to N ∪ {s}. By construction, every leaf of (T ′, s) belongs to N , hence our
goal is then to show that (T ′, s) has many leaves. Notice that in (T ′, s), every vertex
of degree at least 3 is N -critical. Therefore, the N -unimportant paths of (T ′, s) are the
maximal paths, the internal vertices of which have degree two. By contracting each of
these paths into an edge, we obtain a tree T ′′ where every internal vertex has degree
at least 3. Observe that every edge on a root-leaf path of T ′′ is originated from the
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root

Figure 3: An unimportant path (dashed) in a tree. Gray subtrees are those without
vertices from N .

contraction of a path on at most k edges, as we assume that every N -unimportant path
in T has length at most k. We deduce that T ′′ has height at least d/k, hence it has at
least 2d/k leaves. Consequently, T ′ has at least 2d/k leaves, and then |N | ≥ 2d/k.

Recall that if (X , T, s) is a distance-decomposition of a graph and t ∈ V (T ) \ {s},
E(t) denotes as the set of edges that have one endpoint in Xt and the other in Xp(t).

Lemma 4.2. Let G be an n-vertex graph, let r be a positive integer, let D = (X , T, s)
be a distance-decomposition of G, and let d > 1 be the height of (T, s). Then either G
contains a θr-model with at most 2 · r · d edges or for every vertex i ∈ V (T ) \ s, it holds
that |E(i)| ≤ r− 1. Moreover there exists an algorithm that, in Or(m) steps, either finds
such a model, or asserts that |E(i)| ≤ r − 1 for every i ∈ V (T ) \ s.

Proof. We consider the non-trivial case where r ≥ 2. Suppose that there exists a node
t of (T, s) such that |E(t)| ≥ r. Clearly, such a t can be found in O(m) steps. We will
prove that G contains a θr-model. Let k be the height of t in T .

We need first the following claim.

Claim 4.3. Given a non-empty proper subset U of Xt, we can find in Gt a path of
length at most 2k from a vertex of U to a vertex of Xt \ U , in O(m) steps.

Proof of Claim 4.3. We can compute a shortest path P from a vertex of U to a vertex of
Xt\U , in O(m) steps using a BFS. Let us show that P has length at most 2k. Let u ∈ U
and v ∈ Xt \U be the endpoints of P , and let w be a vertex of P of the lowest possible
height h (0 ≤ h ≤ k). Then it holds that distGt(v, u) = distGt(U, v). We examine the
non-trivial case where P has more than one edge. By minimality of P we have w /∈ Xt.

Our next step is to prove that if P has more than one edge, then both the subpaths
of P from u to w and from v to w are straight. Suppose now, without loss of generality,
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that the subpath from u to w is not straight and let z be the first vertex of it (starting
from u) which is contained in a bag of height greater than or equal to the height of
the bag of its predecessor in P . By definition of a distance-decomposition (in particular
items (ii) and (iii)), there is at least one vertex x ∈ Xt which is connected by a straight
path P ′ to z in G. Then there are two possibilities:

• either x ∈ U , and then the union of the path P ′ and the portion of P between z
and v is a path that is shorter than P ;

• or x ∈ Xt \ U , and in this case the union of the path P ′ and the portion of P
between u and z is a path that is shorter than P .

As, in both cases, the occurring paths contradict the construction of P , we conclude
that both the subpath of P from u to w and the one from v to w are straight. This
implies that P has length at most 2 · (k − h) ≤ 2 · k and the claim follows. 3

Our next step is to construct a vertex set U and a set of paths P as follows. We set
P = ∅, U = ∅, and we start by adding in U an arbitrarily chosen vertex u ∈ Xt. Using
the procedure of Claim 4.3, we repeatedly find a path from a vertex of U to a vertex of
Xt \ U , add this second vertex to U and the path to P , until there are at least r edges
in E(t) that have endpoints in U .

The construction of U requires at most r repetitions of the procedure of Claim 4.3,
and therefore O(r · m) steps in total. Clearly |U | ≤ r, hence |P| ≤ r − 1. Besides,
every path in P has length at most 2k according to Claim 4.3. Notice now that ∪∪∪∪∪∪∪∪∪P is
a connected subgraph of Gt with at most 2k · (r − 1) edges.

As there are at least r edges in E(t) with endpoints in U we may consider a subset
F of them where |F | = r. Since D is a distance-decomposition (by item (ii) of the
definition), each edge e ∈ F is connected to the origin by a path of length d − k − 1
whose edges do not belong to Gt. Let P ′ be the collection of these paths. Clearly, the
paths in P ′ contain, in total, at most r · (d− k − 1) edges.

If we now contract in G all edges in P and all edges in P ′, except those in F , and
then remove all edges not in F , we obtain a graph isomorphic to θr. Therefore we found
in G a θr-model with at most

r · (d− k − 1) + 2 · k · (r − 1) + r ≤ r · (d− k − 1) + 2 · k · r + r

= r · (d+ k)

≤ 2 · r · d (since d ≥ k)

edges in O(r ·m) steps.

The following result is a direct consequence of Lemma 4.2 and item (ii) of the defi-
nition of a distance-decomposition.
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Corollary 4.4. Let G be an n-vertex graph, let r be a positive integer, let D = (X , T, s)
be a distance-decomposition of G, and let d > 1 be the height of (T, s). If some bag of
D contains at least r vertices, then G contains a θr-model with at most 2 · r · d edges,
which can be found in Or(m) steps.

The remaining lemmata will be related to grouped partitions.

Lemma 4.5. For every positive integer d and every connected graph G there is a d-
grouped partition of G that can be constructed in O(m) steps.

Proof. If diam(G) ≤ 2d, then {V (G)} is a d-grouped partition of G. Otherwise, let
R = {s1, . . . , sl} be a maximal 2d-scattered set in G. This set can be constructed
in O(m) steps by breadth-first search. The sets {Ri}i∈{1,...,l} are constructed by the
following procedure:

1. Set k = 0 and R0
i = {si} for every i ∈ {1, . . . , l};

2. For every i ∈ {1, . . . , l}, every v ∈ Rk
i and every u ∈ NG(v), if u has not been

considered so far, add u to Rk+1
i ;

3. If k < 2d, increment k by 1 and go to step 2;

4. Let Ri =
⋃2d
k=0R

k
i for every i ∈ {1, . . . , l}.

Let R = {Ri}i∈{1,...,l}. By construction, each set Ri induces a connected graph in G. It
remains to prove that R is a partition of V (G) and that it has the desired properties.

Notice that in the above construction if a vertex is assigned to the set Ri, then it
is not assigned to Rj, for every distinct integers i, j ∈ {1, . . . , l}. Let v ∈ V (G) be a
vertex that does not belong to Ri for any i ∈ {1, . . . , l} after the procedure is completed.
Then for every i ∈ {1, . . . , l} we have distG(v, si) > 2d and v /∈ R, which contradicts
the maximality of R. Therefore R is a partition of V (G).

Since for each vertex v in Ri it holds that distG(v, si) ≤ 2d, R obviously satisfies
property (i) of the definition.

For property (ii) of the definition, let e = {x, y} be an edge in G such that x ∈ Ri,
y ∈ Rj, for some distinct integers i, j ∈ {1, . . . , l}. Towards a contradiction, we assume
without loss of generality that distG(x, si) < d. This means that during the construction
of Ri, the vertex x was added to the set Rk

i for some k ≤ d − 1. Also, since the
vertex y is adjacent to x but was added to Rl

j for some l ≤ 2d instead of Rk+1
i , it

follows that l ≤ k + 1, which means that distG(y, sj) ≤ k + 1. Hence distG(si, sj) ≤
distG(si, x) + distG(x, y) + distG(y, sj) ≤ k+ 1 + k+ 1 ≤ 2d again is not possible since
R is a 2d-scattered set.

Finally, in the procedure above, each edge of the graph is encountered at most once,
hence the whole algorithm will take at most O(m) time. This concludes the proof of
the lemma.
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Lemma 4.6. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let si be a center of Ri, for every i ∈ {1, . . . , l}. If for some distinct i, j ∈ {1, . . . , l},
G has at least r edges from vertices in Ri to vertices in Rj then G[Ri ∪ Rj] contains a
θr-model with at most 4 · r · d+ r edges, which can be found in Or(m) steps.

Proof. Suppose that for some i ∈ {1, . . . , l}, G has a set F of at least r edges from
vertices in Ri to vertices in Rj. Let R′i ⊆ Ri and R′j ⊆ Rj be the sets of the endpoints
of those edges. Since R is a d-grouped partition of G, it holds that, for each x ∈ R′i
and y ∈ R′j, distG(x, si) ≤ 2d and distG(y, sj) ≤ 2d. That directly implies that for
every h ∈ {i, j}, there is a collection Ph of r paths, each of length at most 2d and not
necessarily disjoint, in G[Rh] connecting sh with each vertex in R′h, which we can find
in Or(m) steps. It is now easy to observe that the graph Q, obtained from ∪∪∪∪∪∪∪∪∪Pi ∪ ∪∪∪∪∪∪∪∪∪Pj
by adding all edges of F , is the union of r paths between si and sj, each containing at
most 4 · d + 1 edges. Therefore, Q is a model of θr with at most 4 · r · d + r edges, as
required. As mentioned earlier the construction of Pi and Pj takes Or(m) steps.

Lemma 4.7. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ {1, . . . , l}, let Di = (Xi, Ti, ri)
be the distance-decomposition with origin si of the graph G[Ri]. If for some i ∈ {1, . . . , l}
and w ∈ N, the tree Ti, with node-frontier Ni, has an Ni-unimportant path of length at
least 2(w + 1), then G has a connected (2r − 2)-edge-protrusion Y with extension more
than w, which can be constructed in Or(m) steps.

Proof. Let P = t0 . . . tp be a Ni-unimportant path of length p ≥ 2(w + 1) in Ti. We as-
sume without loss of generality that tp ∈ des(Ti,ri)(t0). Due to the definition of distance-
decompositions, the vertices in X i

t0
or X i

tp form a vertex-separator of G. Let Z ⊆ E(G)

be the set containing all edges between X i
t0

and X i
t1

and all edges between X i
tp−1

and

X i
tp in G. Clearly, Z is an edge-separator of G with at most 2r − 2 edges. Let T ′i be

the subtree of Ti that we obtain if we remove the descendants of tp and any vertex that
is not a descendant of t1. Let Y =

⋃
t∈V (T ′i )\{t0,tp}

X i
t . In other words, Y consists of the

vertices in the bags of T ′i excluding X i
i and X i

j. Obviously, NG(Y ) = Xt0 ∪Xtp .
We will now construct a rooted tree-partition F = (XF , TF , rF) of G[Y ∪ NG(Y )]

of width at most 2r − 2 and such that |V (TF)| > w. Let TF be the tree obtained
from T ′h by identifying, for every j ∈ {0, . . . , b(p− 1)/2c}, the vertex tj with the vertex
tp−j. If multiple edges are created during this identification, we replace them with
simple ones. We also delete loops that may be created. Let us define the elements of
XF = {XFt }t∈V (TF ) as follows. If t ∈ V (TF ) is the result of the identification of tj and
tp−j for some j ∈ {0, . . . , b(p− 1)/2c}, then we set XFt = Xtj ∪ Xtp−j . On the other
hand, if t ∈ V (TF ) is a vertex of T ′i that has not been identified with some other vertex,
then XFt = Xt. The construction of F is completed by setting rF to be the result of the
identification of t0 and tp, the endpoints of P .

It is easy to verify that F is a rooted tree-partition of G[Y ∪ NG(Y )] of width at
most 2r − 2. Notice also that the identification of the antipodal vertices of the path P
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creates a path in TF of length b(p − 1)/2c. This implies that the extension of F is at
least b(p− 1)/2c ≥ w + 1. Besides, all the operations performed to construct F can be
implemented in Or(m) steps. This completes the proof.

We conclude this section with two easy lemmata related to ports and frontiers.

Lemma 4.8. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ {1, . . . , l}, let Di = (Xi, Ti, ri)
be the distance-decomposition with origin si of the graph G[Ri], and let Ni be the node-
frontier of Ti. Then, for every i ∈ {1, . . . , l}, there are at least |Ni| ports in Ti.

Proof. Let i ∈ {1, . . . , l}. We will show that every vertex in the node-frontier of Ti has
a descendant which is a port. For every vertex t ∈ Ni ⊆ V (Ti), there is, by definition,
a path from t to a vertex in G \Ri, the internal vertices of which belong to V ≥di . Let v
be the last vertex of this path (starting from t) which belongs to Ri and let t′ ∈ V (T )
be the vertex such that v ∈ X i

t . Then t′ is a port of Ti. Observe that t′ cannot be the
descendant of any other vertex of Ni. Therefore there are at least |Ni| ports in Ti.

Corollary 4.9. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of
G, and let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ {1, . . . , l}, let
Di = (Xi, Ti, ri) be the distance-decomposition with origin si of the graph G[Ri], and let
Ni be the node-frontier of Ti. If for some integer k, every Ni-unimportant path in Ti has
length at most k, then Ti contains at least 2d/k ports.

Proof. Let i ∈ {1, . . . , l}. From Lemma 4.8, it is enough to prove that |Ni| ≥ 2d/k. Then
the result follows by applying Lemma 4.1 for (Ti, si), d, Ni, and k.

4.2 Proof of Theorem 3.1

Proof. Let d = z−r
4r

. According to Lemma 4.5, we can construct in O(m) steps a d-
grouped partition R = {R1, . . . , Rl} of V (G), with a set of centers S = {s1, . . . , sl}, and
also, for every i ∈ {1, . . . , l}, the distance-decompositions Di = (Xi, Ti, ri) with origins
si of the graphs G[Ri]. For every i ∈ {1, . . . , l}, we use the notation Xi = {X i

t}t∈V (Ti)

and denote by Ni the node-frontiers of Ti.
By applying the algorithm of Lemma 4.6, in Or(m) steps, we either find a θr-model in

G with at most z = 4·r·d+r edges or we know that for every two distinct i, j ∈ {1, . . . , l}
there are at most r − 1 edges of G with one endpoint in Ri and one in Rj.

Similarly, by applying the algorithm of Lemma 4.2, in Or(m) steps we either find a
θr-model in G with at most 2 · r · d ≤ z edges or we know that for every i ∈ {1, . . . , k}
and every t ∈ V (Ti), the bag X i

t contains at most r − 1 vertices.
Using the algorithm of Lemma 4.7, in Or(m) steps we either find a (2r − 2)-edge-

protrusion with extension more than w, or we know that for every i ∈ {1, . . . , l}, all
Ni-unimportant paths of Ti have length at most 2w + 1.
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We may now assume that none of the above algorithms provided a θr-model with z
edges, or a (2r − 2)-edge-protrusion.

From Corollary 4.9, for every i ∈ {1, . . . , l} the tree Ti contains at least 2
d−1
2w+1 =

2
z−5r

4r·(2w+1) ports, which by definition means that there are at least 2
z−5r

4r·(2w+1) edges in G
with one endpoint in Ri and the other in V (G) \ Ri. By Lemma 4.6, for every distinct
integers i, j ∈ {1, . . . , l} there are at most r − 1 edges with one endpoint in Ri and the
other in Rj. As a consequence of the two previous implications, for every i ∈ {1, . . . , l}
there is a set Zi ⊆ {1, . . . , l} \ {i}, where |Zi| ≥ 1

r−12
z−5r

4r(2w+1) , such that for every j ∈ Zi
there exists an edge with one endpoint in Ri and the other in Rj. Consequently, if
we now contract all edges in G[Ri] for every i ∈ {1, . . . , l}, the resulting graph H is a

minor of G of minimum degree at least 1
r−12

z−5r
4r(2w+1) . Therefore, we output G, which is

an H-model, as required in this case.

4.3 Proof of Theorem 3.2

Proof. The proof is quite similar to the one of Theorem 3.1. If G contains a vertex v
of degree less than δ, we can easily find it in Or(m) steps. Hence, from now on we can
assume that every vertex has degree at least δ.

Let d = z−r
4r

. From Lemma 4.5, in O(m) steps, we can construct a d-grouped
partition R = {R1, . . . , Rl} of G, with a set of centers S = {s1, . . . , sl}, and also
the distance-decomposition Di = (Xi, Ti, ri) with origins si of the graphs G[Ri], for
every i ∈ {1, . . . , l}. We use again the notation Xi = {X i

t}t∈V (Ti).
As in the proof of Theorem 3.1, in Or(m) steps, we can either find a θr-model in G

with at most z = 4·r·d+r edges or we know that for every distinct integers i, j ∈ [l] there
are at most r − 1 edges of G with one endpoint in Ri and one in Rj (cf. Lemma 4.6).

Using Corollary 4.4, we can in Or(m) steps either find a θr-model in G with at most
z edges or we know that every bag of Di has less than r vertices, for every i ∈ {1, . . . , l}.
Let i ∈ {1, . . . , l} and let u ∈ Ri be a vertex at distance less than d from si. As u has
degree at least 3r, it must have neighbors in at least 3 different bags of Di, apart from the
one containing it. This means that every vertex in Ti of distance less than d from ri has

degree at least b δ
r−1c ≥ 3 and therefore Ti has at least b δ

r−1 − 1cd leaves. Notice also that

if t is a leaf of Ti, then each vertex in X i
t can have at most r−1 neighbors in X i

p(t) and at

most r−2 neighbors in X i
t . Therefore there are at least δ− (r−1)− (r−2) = δ−2r+3

edges in G with one endpoint in X i
t and the other in V (G) \ Ri. This means that for

every i ∈ {1, . . . , l} there are at least (δ − 2r + 3) · b δ
r−1 − 1cd edges with one endpoint

in Ri and the other V (G) \Ri.
Similarly to the proof of Theorem 3.1, we deduce that, for each i ∈ {1, . . . , l}, there

is a set Zi ⊆ {1, . . . , l} \ {i} where |Zi| ≥ δ−2r+3
r−1 · b

δ
r−1 − 1cd such that, for every j ∈ Zi,

there exists an edge with one endpoint in Ri and the other in Rj. This implies the

existence of an H-model in G for some H with δ(H) ≥ δ−2r+3
r−1 · b

δ
r−1 − 1c

z−r
4r . We then

15



output G, which, in this case, is an H-model.

5 Excluding k copies of θr as a minor

This section is devoted to the proof of the following theorem.

Theorem 5.1. For every graph G, r ≥ 2, and k ≥ 1, if tw(G) ≥ 26r · k · log(k + 1),
then G contains k · θr as a minor.

For the proof, we need to introduce some definitions and related results.

5.1 Preliminaries

Let G be a graph and G1, G2 two non-empty subgraphs of G. We say that (G1, G2) is
a separation of G if:

• V (G1) ∪ V (G2) = V (G); and

• (E(G1), E(G2)) is a partition of E(G).

Let G be a graph. Given a set E ⊆ E(G), we define VE as the set of all endpoints of
the edges in E. Given a partition (E1, E2) of E(G) we define δ(E1, E2) = |VE1 ∩ VE2|.

A cut C = (X, Y ) of G is a partition of V (G) into two subsets X and Y . We define
the cut-set of C as EC = {{x, y} ∈ E(G) | x ∈ X and y ∈ Y } and call |EC | the order of
the cut. Also, given a graph G, we denote by σ(G) the number of connected components
of G.

The branchwidth of a graph. A branch-decomposition of a graph G is a pair (T, τ)
where T is a ternary tree and τ a bijection from the edges of G to the leaves of T .
Deleting any edge e of T partitions the leaves of T into two sets, and thus the edges
of G into two subsets Ee

1 and Ee
2. The width of a branch-decomposition (T, τ) is equal

to maxe∈E(T ){δ(Ee
1, E

e
2)}. The branchwidth of a graph G, denoted bw(G), is defined as

the minimum width over all branch-decompositions of G.

The branchwidth of a matroid. We assume that the reader is familiar with the basic
notions of matroid theory. We will use the standard notation from Oxley’s book [25].
The branchwidth of a matroid is defined very similarly to that of a graph. Let M
be a matroid with finite ground set E(M) and rank function r. The order of a non-
trivial partition (E1, E2) of E(M) is defined as λ(E1, E2) = r(E1) + r(E2) − r(E) + 1.
A branch-decomposition of a matroid M is a pair (T, µ) where T is a ternary tree
and µ is a bijection from the elements of E(M) to the leaves of T . Deleting any
edge e of T partitions the leaves of T into two sets, and thus the elements of E(M)
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into two subsets Ee
1 and Ee

2. The width of a branch-decomposition (T, µ) is equal
to maxe∈E(T ){λ(Ee

1, E
e
2)}. The branchwidth of a matroid M, denoted bw(M), is again

defined as the minimum width over all branch-decompositions ofM. The cycle matroid
of a graph G denoted MG, has ground set E(MG) = E(G) and the cycles of G as the
cycles ofMG. Let G be a graph,MG its cycle matroid and (G1, G2) a separation of G.
Then clearly (E(G1), E(G2)) is a partition of E(MG), but to avoid confusion we will
henceforth denote it (E1, E2) and we will call it the partition of MG that corresponds to
the separation (G1, G2) of G. Observe that the order of this partition is:

λ(E1, E2) = δ(E(G1), E(G2))− σ(G1)− σ(G2) + σ(G) + 1. (?)

Minor obstructions. Let G be a graph class. We denote by obs(G) the set of all
minor-minimal graphs H such that H /∈ G and we will call it the minor obstruction set
for G. Clearly, if G is closed under minors, the minor obstruction set for G provides
a complete characterization for G: a graph G belongs in G if and only if none of the
graphs in obs(G) is a minor of G.

Given a class of matroids M, the minor obstruction set for M, denoted by obs(M), is
defined very similarly to its graph-counterpart: it is simply the set of all minor-minimal
matroids M such that M /∈M.

We will need the following results.

Proposition 5.2 ([29, Theorem 5.1]). Let G be a graph of branchwidth at least 2. Then,
bw(G) ≤ tw(G) + 1 ≤ b3

2
bw(G)c.

Proposition 5.3 ([6]). Let r ∈ N≥1 and let G be a graph. If bw(G) ≥ 2r + 1, then G
contains a θr-model.

Proposition 5.4 ([18, Theorem 4]). Let G be a graph that contains a cycle and MG be
its cycle matroid. Then, bw(G) = bw(MG).

Proposition 5.5 ([16, Lemma 4.1]). Let a matroid M be a minor obstruction for the
class of matroids of branchwidth at most k and let g(n) = (6n−1− 1)/5. Then, for every
partition (X, Y ) of M with λ(X, Y ) ≤ k, either |X| ≤ g(λ(X, Y )) or |Y | ≤ g(λ(X, Y )).

The following observations are also crucial.

Observation 5.6. Let G be a graph class that is closed under minors and let MG =
{MG | G ∈ G}. G is minor closed if and only if MG is minor closed. Moreover, for
every H ∈ obs(G) it holds that MH ∈ obs(MG).

The above observation is a direct consequence of the definition of matroid remo-
val/contraction, e.g., see Proposition 4.9 of [26].

Observation 5.7. There is a c ∈ R≥2, such that for any integer k ≥ r ≥ 2, if g(n) =

(6n−1 − 1)/5, then 1
r−12

cr log k−5r
4r(2g(2r−2)+1) ≥ k(r + 1)− 1. Moreover, this holds for c = 63.
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5.2 Graphs with large minimum degree

In this subsection we show that every graph of large minimum degree contains k · θr as
minor. Our proof relies on the following result.

Proposition 5.8 ([32, Corollary 3]). For every k, r ∈ N≥1, every graph G with δ(G) ≥
k(r+1)−1 has a partition (V1, . . . , Vk) of its vertex set satisfying δ(G[Vi]) ≥ r for every
i ∈ {1, . . . , k}.

Lemma 5.9. For every integer r ∈ N≥1, every graph of minimum degree at least r
contains a θr-model.

Proof. Starting from any vertex u, we grow a maximal path P in G by iteratively adding
to P a vertex that is adjacent to the previously added vertex but does not belong to P .
Since δ(G) ≥ r, any such path will have length at least r + 1. At the end, all the
neighbors of the last vertex v of P belong to P (otherwise P could be extended). Since
v has degree at least r, v has at least r neighbors in P . Therefore P is a θr-model in
G.

Corollary 5.10. For every k, r ∈ N≥1, every graph G with δ(G) ≥ k(r+1)−1 contains
a k · θr-model.

Proof. According to Proposition 5.8, V (G) has a partition (V1, . . . , Vk) such that δ(G[Vi])
≥ r for every i ∈ {1, . . . , k}. Therefore, by Lemma 5.9, for every i ∈ {1, . . . , k} the graph
G[Vi] has a θr-model Mi. Clearly M1 ∪ · · · ∪Mk is a k · θr-model in G, as desired.

Now we are ready to prove the main result of this section.

5.3 Proof of Theorem 5.1

For every r ∈ N, we define f(r) = 2
3
26r. By Proposition 5.2, it is enough to prove that

if bw(G) ≥ f(r) · k · log(k + 1), then G contains k · θr as a minor. To prove this we use
induction on k.

The case where k = 1 follows from Proposition 5.3 and the fact that f(r) ≥ 2r + 1.
We now examine the case where k > 1, assuming that the proposition holds for smaller
values of k. As bw(G) ≥ f(r) · k · log(k + 1), G contains a minor obstruction for the
class of graphs of branchwidth at most f(r) · k · log(k + 1)− 1.

Claim 5.11. Any (2r − 2)-edge-protrusion of G has extension at most g(2r − 2).

Proof of Claim 5.11. Let C = (X, Y ) be a cut in G of order at most 2r − 2 and let
GX be the subgraph of G with V (GX) = X ∪NG(X) and let E(GX) = E(G[X]) ∪ EC .
Clearly the pair (GX , G[Y ]) is a separation of G. LetMG be the cycle matroid of G and
(EX , EY ) be the partition of MG that corresponds to the aforementioned separation.
By Proposition 5.4, bw(MG) = bw(G) ≥ f(r) · k · log(k + 1) (as bw(G) ≥ 3, G is
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not acyclic). Therefore, by Observation 5.6, MG is a minor obstruction for the class of
matroids of branchwidth f(r) · k · log(k + 1)− 1. We set λ = λ(EX , EY ). From (?), we
have:

λ = r(EX) + r(EY )− r(MG) + 1

= δ(E(GX), E(G[Y ]))− σ(GX)− σ(G[Y ]) + σ(G) + 1

≤ δ(E(GX), E(G[Y ]))

≤ |EC | = 2r − 2

≤ f(r) · k · log(k + 1)− 1.

Thus, by Proposition 5.5, either |EX | ≤ g(λ) or |EY | ≤ g(λ). Since g is non-
decreasing, either |E(GX)| ≤ g(2r − 2) or |E(G[Y ])| ≤ g(2r − 2). This directly implies
that for any (2r−2)-edge-protrusion Z of G, G[Z ∪NG(Z)] has at most g(2r−2) edges.
Therefore Z’s extension is also at most g(2r − 2) and the claim follows. 3

Combining the above claim, Observation 5.7, and Theorem 3.1, we infer that either
G contains a θr-model M with at most f(r) · log k edges, or it contains a minor with

minimum degree at least 1
r−1 ·2

f(r) log k−5r
4r(2g(2r−2)+1) ≥ k(r+1)−1. If the second case is true, then

by Corollary 5.10, G contains k ·θr as a minor, which proves the inductive step. We now
consider the first case. Because M is 2-connected, we obtain that |V (M)| ≤ |E(M)|.
Therefore, |V (M)| ≤ |E(M)| ≤ f(r) · log k and we can bound the treewidth of the graph
G′ = G \ V (M) as follows:

tw(G′) ≥ tw(G)− |V (M)|
≥ f(r) · k · log(k + 1)− f(r) · log k

≥ f(r) · k · log k − f(r) · log k

= f(r) · (k − 1) · log k.

Then, from the induction hypothesis, G′ contains a (k−1)·θr-model M ′ and obviously
M ∪M ′ is a k · θr-model in G, which concludes our proof.

Theorem 5.1 implies that for every fixed r, it holds that every graph excluding k · θr
as a minor has treewidth O(k · log k). We conclude with a lemma indicating that this
bound is tight up to the constants hidden in the O-notation.

Lemma 5.12. There is an increasing sequence of integers (ki)i∈N and an infinite se-
quence of graphs (Gi)i∈N such that tw(Gi) = Ω(ki log ki) and Gi does not contain ki · θr
as a minor, for every r ∈ N≥2.

Proof. According to [24, Theorem 5.13], there is an infinite familly {Gi}i∈N of 3-regular
Ramanujan graphs Gi such that i 7→ |Gi| is an increasing function. Furthermore, for
every i ∈ N, the graph Gi has girth at least 2

3
log |V (Gi)| ( [24, Theorem 5.13]) and

satisfies tw(Gi) = Ω(|V (Gi)|) (see [1, Corollary 1]). For every i ∈ N, let ki be the
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minimum integer such that |V (Gi)| < ki· 23 log |V (Gi)|. Observe that (ki)i∈N is increasing.
Notice that |V (Gi)| = Ω(ki · log ki), and thus tw(Gi) = Ω(ki · log ki). We will show that
Gi does not contain ki vertex-disjoint cycles, which implies that ki · θr is not a minor
of Gi, for every r ∈ N≥2. Suppose for contradiction that Gi contains ki vertex-disjoint
cycles. As the girth of Gi is at least 2

3
log |V (Gi)|, each of these cycles has at least

2
3

log |V (Gi)| vertices. Therefore G should contain at least k · 2
3

log |V (Gi)| vertices. This
implies that |V (G)| ≥ k · 2

3
log |V (Gi)| > |V (Gi)|, a contradiction. Therefore (ki)i∈N and

(Gi)i∈N satisfy the required properties.

6 Concluding remarks

In this paper, we introduced the concept of H-girth and proved that for every r ∈ N≥2,
a large θr-girth forces an exponentially large clique minor. This extends the results
of Kühn and Osthus related to the usual notion of girth. We also gave a variant of
our result where the minimum degree is replaced by a connectivity measure. As an
application of our result, we optimally improved (up to a constant factor) the upper-
bound on the treewidth of graphs excluding k ·θr as a minor. A first question is whether
our lower-bound on the clique minor size can be improved.

Let us now state more general questions spawned by this work. A natural line of
research is to investigate the H-girth parameter for different instantiations of H. An
interesting problem in this direction could be to characterize the graphs H for which
our results (Theorem 1.1 and Theorem 1.2) can be extended.

From its definition, the H-girth is related to the minor relation. An other direction
of research would be to extend the parameter of H-girth to other containment relations.
One could consider, for a fixed graph H, the minimum size of an induced subgraph that
can be contracted to H, or the minimum size of a subdivision of H in a graph. The first
one of these parameters is related to induced minors and the second one to topological
minors.

As the usual notion of girth appears in various contexts in graph theory, we wonder
for which graphs H the results related to girth can be extended to the H-girth or to the
two aforementioned variants.
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