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Abstract

Suppose F is a finite family of graphs. We consider the following meta-problem, called F-
Immersion Deletion: given a graph G and integer k, decide whether the deletion of at most k
edges of G can result in a graph that does not contain any graph from F as an immersion. This
problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS
2012], where one deletes vertices in order to remove all minor models of graphs from F . We
prove that whenever all graphs from F are connected and at least one graph of F is planar and
subcubic, then the F-Immersion Deletion problem admits:

• a constant-factor approximation algorithm running in time O(m3 · n3 · logm);

• a linear kernel that can be computed in time O(m4 · n3 · logm); and

• a O(2O(k) +m4 · n3 · logm)-time fixed-parameter algorithm,

where n,m count the vertices and edges of the input graph. These results mirror the findings
of Fomin et al. [FOCS 2012], who obtained a similar set of algorithmic results for F-Minor
Deletion, under the assumption that at least one graph from F is planar. An important
difference is that we are able to obtain a linear kernel for F-Immersion Deletion, while
the exponent of the kernel of Fomin et al. for F-Minor Deletion depends heavily on the
family F . In fact, this dependence is unavoidable under plausible complexity assumptions, as
proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization complexity of
F-Immersion Deletion is quite different than that of F-Minor Deletion.

1 Introduction

On the F-Minor Deletion problem. Given an class of graphs G, we denote by obsmn(G) the
minor-obstruction set of G, that is the set of minor-minimal graphs that do not belong in G. Let
us fix some finite family of graphs F . A graph G is called F-minor-free if G does not contain any
graph from F as a minor. The celebrated Graph Minors Theorem of Robertson and Seymour [38]
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implies that for every family of graphs Π that is closed under taking minors, the set FG = obsmn(G)
is finite. In other words, G is characterized by the minor-exclusion of finite set of graphs; that is G
is exactly the class of FG-minor-free graphs. Hence, studying the classes of F -minor-free graphs for
finite families F is the same as studying general minor-closed properties of graphs.

Fomin et al. [19] performed an in-depth study of the following parameterized1 problem, named
F-Minor Deletion2: Given a graph G and an integer parameter k, decide whether it is possible
to remove at most k vertices from G to obtain an F-minor-free graph. By considering different
families F , the F-Minor Deletion problem generalizes a number of concrete problems of prime
importance in parameterized complexity, such as Vertex Cover, Feedback Vertex Set, or
Planarization. It is easy to see that, for every fixed k, the graph class Gmn

k,F , consisting of the
graphs in the YES-instances (G, k) of F-Minor Deletion, is closed under taking of minors. We
define Omn

k = obsmn(Gmn
k,F ). By the fact that Omn

k is finite and the meta-algorithmic consequences
of the Graph Minors series of Robertson and Seymour [36,38], it follows (non-constructively) that
F-Minor Deletion admits an FPT-algorithm. The optimization of the running time of such
FPT-algorithms for several instantiations of F has been an interesting project in parameterized
algorithm design and so far it has been focused on problems generated by minor-closed graph classes.

The goal of Fomin et al. [19] was to obtain results of general nature for F-Minor Deletion,
which would explain why many concrete problems captured as its subcases are efficiently solvable
using parameterized algorithms and kernelization. This has been achieved under the assumption
that F contains at least one planar graph. More precisely, for any class F that contains at least one
planar graph, the work of Fomin et al. [19] gives the following:

(i) a randomized constant-factor approximation running in time O(nm);

(ii) a polynomial kernel for the problem; that is, a polynomial-time algorithm that, given an
instance (G, k) of F-Minor Deletion, outputs an equivalent instance (G′, k′) with k′ ≤ k
and |G′| ≤ O(kc), for some constant c that depends on F ;

(iii) an FPT-algorithm solving F-Minor Deletion in time 2O(k) · n2.

(iv) a proof that every graph in Omn
k has kcF vertices for some constant cF that depends (non-

constructively) on F .

We remark that, for the FPT-algorithm, the original paper of Fomin et al. [19] needs one more
technical assumption, namely that all the graphs from F are connected. The fact that this condition
can be lifted was proved in a subsequent work of Kim et al. [30].

The assumption that F contains at least one planar graph is crucial for the approach of Fomin
et al. [19]. Namely, from the Excluded Grid Minor Theorem of Robertson and Seymour [37]
it follows that for such families F , F-minor-free graphs have treewidth bounded by a constant
depending only of F . Therefore, a YES-instance of F-Minor Deletion roughly has to look like a
constant-treewidth graph plus k additional vertices that can have arbitrary connections. Having
exposed this structure, Fomin et al. [19] apply protrusion-based techniques that originate in the
work on meta-kernelization [4, 20]. Roughly speaking, the idea is to identify large parts of the
graphs that have constant treewidth and a small interface towards the rest of the graph (so-called

1A parameterized problem can be seen as a subset of Σ∗ × N where its instances are pairs (x, k) ∈ Σ∗ × N. For
graph problems, the string x usually encodes a graph G. A parameterized problem admits an FPT-algorithm, or,
equivalently, belongs in the parameterized complexity class FPT, if it can be solved by an f(k) · |x|O(1) step algorithm.
See [13,17,35] for more on parameterized algorithms and complexity.

2Fomin et al. use the name F-Deletion, but we choose to use the word “minor” explicitly to distinguish it from
immersion-related problems that we consider in this paper.
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protrusions), which can be replaced by smaller gadgets with the same combinatorial behaviour.
Such preprocessing based on protrusion replacement is the base of all three aforementioned results
for F-Minor Deletion. In the absence of a constant bound on the treewidth of an F-minor-free
graph, the technique breaks completely. In fact, the kernelization complexity of Planarization,
that is, F-Minor Deletion for F = {K5,K3,3}, is a notorious open problem.

An interesting aspect of the work of Fomin et al. [19] is that the exponent of the polynomial
bound on the size of the kernel for F-Minor Deletion grows quite rapidly with the family F .
Recently, it has been shown by Giannopoulou et al. [23] that in general this growth is probably
unavoidable: For every constant η, the Treewidth-η Deletion problem (delete k vertices to
obtain a graph of treewidth at most η) has no kernel with O(kη/4−ε) vertices for any ε > 0, unless
NP ⊆ coNP/poly. Since graphs of treewidth η can be characterized by a finite set of forbidden
minors Fη, at least one of which is planar, this refutes the hypothesis that all F-Minor Deletion
problems admit polynomial kernels with a uniform bound on the degree of the polynomial. However,
as shown by Giannopoulou et al. [23], such uniform kernelization can be achieved for some specific
problem families, like vertex deletion to graphs of constant tree-depth.

Immersion problems. Recall that a graph H can be immersed into a graph G (or that H
is an immersion of G) if there is a mapping from H to G that maps vertices of H to pairwise
different vertices of G and edges of H to pairwise edge-disjoint paths connecting the images of
the respective endpoints3. Such a mapping is called an immersion model. Just like the minor
relation, the immersion relation imposes a partial order on the class of graphs. Alongside with the
minor order, Robertson and Seymour [39] proved that graphs are also well-quasi-ordered under the
immersion order, i.e., every set of graphs that are pair-wise non-comparable with respect to the
immersion relation is finite. This implies that for every class of graphs G that is closed under taking
immersions the set obsim(G), containing the immersion minimal graphs that do not belong in G, is
finite (we call obsimG immersion obstruction set of G). Therefore G can be characterized by a finite
set of forbidden immersions. The general intuition is that immersion is a containment relation on
graphs that corresponds to edge cuts, whereas the minor relation corresponds to vertex cuts. Also,
the natural setting for immersions is the setting of multigraphs. Hence, from now on all the graphs
considered in this paper may have parallel edges connecting the same pair of endpoints.

Recently, there has been a growing interest in immersion-related problems [2, 6, 14–16,22,24–26,
29, 33, 42] both from the combinatorial and the algorithmic point of view. Most importantly for us,
Wollan proved in [42] an analog of the Excluded Grid Minor Theorem, which relates the size of the
largest wall graph that is contained in a graph as an immersion with a new graph parameter called
tree-cut width. By a subcubic graph we mean a graph of maximum degree at most 3. The following
theorem follows from the work of Wollan [42] and summarizes the conclusions of this work that are
important for us.

Theorem 1 ([24]). For every graph H that is planar and subcubic there exists a constant aH , such
that every graph that does not contain H as an immersion has tree-cut width bounded by aH .

In other words, for any family F of graphs that contains some planar subcubic graph, the
tree-cut width of F-immersion-free graphs is bounded by a universal constant depending on F
only. In Section 2 we discuss the precise definition of tree-cut width and how exactly Theorem 1
follows from the work of Wollan [42]. Also, note that if a family of graphs F does not contain any
planar subcubic graph, then there is no uniform bound on the tree-cut width of F-immersion-free

3In this paper we consider weak immersions only, as opposed to strong immersions where the paths are forbidden
to traverse images of vertices other than the endpoints of the corresponding edge.
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graphs. Indeed, wall graphs are then F -immersion-free, because all their immersions are planar and
subcubic, and they have unbounded tree-cut width.

After the introduction of tree-cut width by Wollan [42], the new parameter gathered substantial
interest from the algorithmic and combinatorial community [22,24,29,33]. It seems that tree-cut
width serves the same role for immersion-related problems as treewidth serves for minor-related
problems and, in a sense, it can be seen as an “edge-analog” of treewidth. In particular, given the
tree-cut width bound of Theorem 1 and the general approach of Fomin et al. [19] to F-Minor
Deletion, it is natural to ask whether the same kind of results can be obtained for immersions
where the considered modification is edge removal instead of vertex removal. More precisely, fix
a finite family of graphs F containing some planar subcubic graph and consider the following
F-Immersion Deletion problem: given a graph G and an integer k, determine whether it is
possible to delete at most k edges of G in order to obtain a graph that does not admit any graph
from F as an immersion.

Parallel to the case of F-Minor Deletion, for every fixed k, the graph class Gimk,F consisting
of the graphs in the YES-instances (G, k) of F-Immersion Deletion is closed under taking of
immersions4, therefore Oim

k = obsim(Gimk,F ) is a finite set, by the well-quasi-ordering of graphs under
immersions [39]. Together with the immersion-testing algorithm of Grohe et al. [27], this implies that
F-Immersion Deletion admits (non-constructively) an FPT-algorithm. This naturally induces the
parallel project of optimizing the performance of such FPT-algorithms for several instantiations of F .
More concretely, is it possible to extend the general framework of Fomin et al. [19] to obtain efficient
approximation, kernelization, and FPT algorithms also for F-Immersion Deletion? Theorem 1
suggests that the suitable analog of the assumption from the minor setting that F contains a planar
graph should be the assumption that at least one graph from F is planar and subcubic.

Our results. In this work we give a definitive positive answer to this question. The following two
theorems gather our main results; for a graph G, by |G| and ‖G‖ we denote the cardinalities of the
vertex and edge sets of G, respectively.

Theorem 2 (Constant factor approximation). Suppose F is a finite family of connected graphs and
at least one member of F is planar and subcubic. Then there exists an algorithm that, given a graph
G, runs in time O(‖G‖3 log ‖G‖ · |G|3) and outputs a subset of edges F ⊆ E(G) such that G− F is
F-immersion-free and the size of F is at most capx times larger than the optimum size of a subset
of edges with this property, for some constant capx depending on F only.

In Section 8 (Conclusions) we comment on how the constant-factor approximation can be
generalized to work for F containing disconnected graphs as well, using the approach of Fomin et
al. [18, 19].

Theorem 3 (Linear kernelization and obstructions). Suppose F is a finite family of connected
graphs and at least one member of F is planar and subcubic. Then there exists an algorithm that,
given an instance (G, k) of F-Immersion Deletion, runs in time O(‖G‖4 log ‖G‖ · |G|3) and
outputs an equivalent instance (G′, k) with ‖G′‖ ≤ cker · k, for some constant cker depending on F
only. Moreover, there exists a constant cF (non-constructively depending on F) such that every
graph H in Oim

k has at most cF · k edges.

4Notice that if we consider deletion of vertices instead of edges, then the graph class Gimk is not closed under taking
immersions (for example, in a star on 7 vertices with duplicated edges, deleting one vertex makes it K3-immersion-free,
but this ‘duplicated’ star immerses 2K3, which has no such vertex). This is the main reason why we believe that edge
deletion gives a more suitable counterpart to F-Minor Deletion for the case of immersions.
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Thus, Theorems 2 and 3 mirror the approximation and kernelization results and the obstruction
bounds of Fomin et al. [19]. However, this mirroring is not exact as we even show that, in the
immersion setting, a stronger kernelization procedure can be designed. Namely, the size of the
kernel given by Theorem 3 is linear, with only the multiplicative constant depending on the family
F , whereas in the minor setting, the exponent of the polynomial bound on the kernel size provably
must depend on F (under plausible complexity assumptions). This shows that the immersion and
minor settings behave quite differently and in fact stronger results can be obtained in the immersion
setting. Observe that using Theorem 3 it is trivial to obtain a decision algorithm for F-Immersion
Deletion working in time O(ckfpt + ‖G‖4 log ‖G‖ · |G|3) for some constant cfpt depending on F only:
one simply computes the kernel with a linear number of edges and checks all the subsets of edges of
size k.

Our techniques. Our approach to proving Theorems 2 and 3 roughly follows the general frame-
work of protrusion replacement of Fomin et al. [19] (see also [4, 5]). We first define protrusions
suited for the problem of our interest. In fact, our protrusions can be seen as the edge-analog of
those introduced in [19] (as in [7]). A protrusion for us is simply a vertex subset X that induces
an F-immersion-free subgraph (which hence has constant tree-cut width, by Theorem 1), and has
a constant number of edges to the rest of the graph. When a large protrusion is localized, it can
be replaced by a smaller gadget similarly as in the work of Fomin et al. [19]. However, we need to
design a new algorithm for searching for large protrusions, mostly in order to meet the condition
that the exponent of the polynomial running time of the algorithm does not depend on F . For this,
we employ the important cuts technique of Marx [32] and the randomized contractions technique of
Chitnis et al. [9]. All of these yield an algorithm that exhaustively reduces all large protrusions.

Unfortunately, exhaustive protrusion replacement is still not sufficient for a linear kernel. However,
we prove that in the absence of large reducible protrusions, the only remaining obstacles are large
groups of parallel edges between the same two endpoints (called thetas), and, more generally, large
“bouquets” of constant-size graphs attached to the same pair of vertices. Without these, the graph is
already bounded linearly in terms of the optimum solution size. The approximation algorithm can
thus delete all edges except for the copies included in bouquets and thetas, reducing the optimum
solution size by a constant fraction of the deleted set. It then exhaustively reduces protrusions in
the remaining edges, and repeats the process until the graph is F-immersion-free.

To obtain a linear kernel we need more work, as we do not know how to reduce bouquets and
thetas directly. Instead, we apply the following strategy based on the idea of amortization. After
reducing exhaustively all larger protrusions, we compute a constant-factor approximate solution
Fapx. Then we analyze the structure of the graph G − Fapx, which has constant tree-cut width.
It appears that every bouquet and theta in G can be reduced up to size bounded linearly in the
number of solution edges Fapx that “affect” it. After applying this reduction, we can still have large
bouquets and thetas in the graph, but this happens only when they are affected by a large number
of edges of Fapx. However, every edge of Fapx can affect only a constant number of bouquets and
thetas and hence a simple amortization arguments shows that the total size of bouquets and theta
is linear in |Fapx|, so also linear in terms of the optimum.

We remark that this part of the reasoning and in particular the amortization argument explained
above, are fully new contributions of this work. These arguments deviate significantly from those
needed by Fomin et al. [19], because they were aiming at a weaker goal of obtaining a polynomial
kernel, instead of linear. Also, we remark that, contrary to the work of Fomin et al. [19], all our
algorithms are deterministic.

For the second part of Theorem 3, we show that protrusions replacements can be done in
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a way that the resulting graph is an immersion of the original one. This implies that, in the
equivalent instance (G′, k) produced by our kernelization algorithm, the graph G′ is an immersion
of G. Therefore if G is an immersion-obstruction of Gimk−1,F , then it should already have a linear, on
k, number if edges (see Section 7).

Figure 1: W4,4.

Application: immersion-closed parameters. Before we proceed to the
proofs of Theorems 2 and 3, we would like to highlight one particular meta-
algorithmic application of our results which was our original motivation. Suppose
p is a graph parameter, that is, a function that maps graphs to nonnegative
integers. We shall say that p is closed under immersion if whenever a graph H is
an immersion of another graph G, then p(H) ≤ p(G). Furthermore, p is closed
under disjoint union if p(G1 ]G2) = max(p(G1),p(G2)), for any two graphs G1

and G2; here, ] denotes the disjoint union of two graphs. Finally, p is large on
walls if the set of integers {p(Wn,n)}n∈N is infinite, where Wn,n is the n× n wall,
depicted in Figure 1, for n = 4. The following proposition follows easily from Theorem 1 and the
fact that the immersion order is a well-quasi-order.

Proposition 4. Let p be a graph parameter that is closed under immersion and under disjoint
union and moreover is large on walls. Then for every r ∈ N there exists a finite family of graphs
Fp,r with the following properties:

(a) every graph from Fp,r is connected;

(b) Fp,r contains at least one planar subcubic graph; and

(c) for every graph G, we have that p(G) ≤ r if and only if G is Fp,r-immersion-free.

Proof. Denote by Gp,r the class of all graphs G for which p(G) ≤ r. Since p is immersion-closed,
Gp,r is closed under taking immersions. Since the immersion order is a well-quasi-order on graphs,
we infer that there is a finite family Fp,r of graphs such that a graph G belongs to Gp,r if and only
if G is Fp,r-immersion-free. Moreover, we can assume that Fp,r is minimal in the following sense:
for each H ∈ Fp,r and each H ′ that can be immersed in H and is not isomorphic to H, we have
that H ′ ∈ Gp,r; equivalently, p(H ′) ≤ r. We need to argue that every member of Fp,r is connected
and that Fp,r contains a planar subcubic graph.

For the first check, suppose that there is some disconnected graph H in Fp,r. Then H has
two proper subgraphs H1 and H2 such that H = H1 ]H2. Since H1, H2 are subgraphs of H, they
can, in particular, be immersed in H. Both of them are strictly smaller than H, so we infer that
p(H1) ≤ r and p(H2) ≤ r. As p is closed under disjoint union, we infer that p(H) = p(H1 ]H2) =
max(p(H1),p(H2)) ≤ r. This is a contradiction to the fact that H /∈ Gp,r.

For the second check, since p is unbounded on walls, there is some integer n such that p(Wn,n) > r.
Consequently, Wn,n /∈ Gp,r, so Wn,n contains some graph H from Fp,r as an immersion. It can be
easily seen that planar subcubic graphs are closed under taking immersions, so since Wn,n is planar
and subcubic, we infer that H is also planar and subcubic.

For a parameter p and a constant r, define the p-at-most-r Edge Deletion problem as
follows: given a graph G and an integer k, determine whether at most k edges can be deleted from
G to obtain a graph with the value of p at most r. We also define the associated parameter pr such
that

pr(G) = min{k | ∃S ⊆ E(G) : |S| ≤ k ∧ p(G \ S) ≤ r}.
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We also define Gk,pr = {G | pr(G) ≤ k} By combining Proposition 4 with Theorems 2 and 3 we
obtain the following corollary.

Corollary 5. Let p be a graph parameter that is closed under immersion and under disjoint union
and moreover is large on the class of walls5. Then, for every constant r, the p-at-most-r Edge
Deletion problem admits a constant-factor approximation and a linear kernel. Moreover, there
is a constant cr, depending (non-constructively) on r, such that for every k, every graph H in
obsim(Gk,pr) has at most cr · k edges.

Natural immersion-closed parameters that satisfy the prerequisites of Corollary 5 include
cutwidth, carving width, tree-cut width, and edge ranking; see e.g. [28,31,40–42] for more details on
these parameters. Corollary 5 mirrors the corollary given by Fomin et al. [19] for the Treewidth-η
Deletion problem, for which their results imply the existence of a constant-factor approximation, a
polynomial-kernel, a polynomial bound for the corresponding minor-obstruction set obsmn(Gk,twη),
and a single-exponential FPT algorithm, for every constant η.

Organization of the paper. In Section 2 we introduce notation, recall known definitions and
facts, and prove some easy observations of general usage. In Section 3 we provide several adjustments
of the notions of tree-cut decompositions and tree-cut width. In particular, we provide a simpler
definition of tree-cut width that we use throughout the paper, and show that an optimum-width tree-
cut decomposition may be assumed to have some additional, useful properties. In Section 4 we discuss
protrusions: finding them and replacing them. Section 5 contains the proof of Theorem 2 (constant
factor approximation), while Section 6 contains the proof of Theorem 3 (linear kernelization).
Section 7 is dedicated to the linear bound on the size of obstructions. We conclude with some
finishing remarks in Section 8.

2 Preliminaries

For a positive integer p, we denote [p] = {1, 2, . . . , p}.

Graphs. In this work, all graphs are multigraphs without loops. That is, a graph G is a pair
(V (G), E(G)), where V (G) is the vertex set and E(G) is a multiset of edges. An edge connects a pair
of different vertices, called endpoints; we write uv ∈ E(G) for an edge with endpoints u, v ∈ V (G).
Note that there might be several edges (called parallel edges) between two vertices. An edge is
incident to a vertex if that vertex is one of its two endpoints.

We write |G| for |V (G)| and ‖G‖ for |E(G)| (counting edges with multiplicities). For a subset
of vertices X ⊆ V (G), G[X] is the subgraph induced by X. For a subset X ⊆ V (G) of vertices, we
write G −X for the induced subgraph G[V (G) \X]. For a subset F ⊆ E(G) of edges, we write
G − F for the graph obtained from G by removing all edges of G, with V (G − F ) = V (G) and
E(G− F ) = E(G) \ F .

For two subsets X,Y ⊆ V (G), not necessarily disjoint, EG(X,Y ) denotes the set of all edges
xy ∈ E(G) for which x ∈ X and y ∈ Y . The boundary of X is δG(X) = EG(X,V (G) \X), while the
set of edges incident to X is EG(X,V (G)). For v ∈ V (G), the degree of v is degG(v) = |δG({v})|.
We also define the set of neighbors of v: NG(v) = {u ∈ V (G) : uv ∈ E(G)}. By NG(X) we denote
the open neighborhood of X, that is, the set of all vertices outside X that have a neighbor in X.
We drop the subscript G when it is clear from the context. A graph is subcubic if degG(v) ≤ 3 for
every v ∈ V (G).

5A graph parameter p is large on a graph class C if {p(G) | G ∈ C} is not a bounded set.

7



Trees. A forest is a graph where every connected component is a tree. For a forest T and an edge
uv ∈ E(T ), we denote by Tuv and Tvu the components of T − uv containing u and v, respectively.
Let T be a rooted tree. For every node t ∈ V (T ), we denote by π(t) its unique parent on the tree T .
A node t′ is a sibling of t if t 6= t′ and t and t′ have the same parent.

Tree-cut width. A near-partition of a set X is a family of (possibly empty) subsets X1, . . . , Xk

of X such that
⋃k
i=1Xi = X and Xi ∩Xj = ∅ for every i 6= j.

A tree-cut decomposition of a graph G is a pair T = (T,X ) such that T is a forest and
X = {Xt : t ∈ V (T )} is a near-partition of the vertices of V (G). Furthermore, we require that if
T1, . . . , Tr are the connected components of T , then

⋃
t∈V (Ti)

Xt for i ∈ [r] are exactly the vertex sets
of connected components of G. In other words, the forest T has exactly one tree per each connected
component of G, with this tree being a tree-cut decomposition of the connected component. We call
the elements of V (T ) nodes and the elements of V (G) vertices for clarity. The set Xt is called the
bag of the decomposition corresponding to the node t, or just the bag at t. By choosing a root in each
tree of T , thus making T into a rooted forest, we can talk about a rooted tree-cut decomposition.

Let G be a graph with a tree-cut decomposition T = (T,X = {Xt : t ∈ V (T )}). For a subset
W ⊆ V (T ), define XW as

⋃
t∈W Xt. For a subgraph T ′ of T we write XT ′ for XV (T ′). For an

edge uv ∈ E(T ) we write XT
uv for XTuv to avoid multiple subscripts. Notice that, since X is a

near-partition, {XT
uv, X

T
vu} is a near-partition of the vertex set of a connected component of G. We

will call the decomposition connected if for every edge uv ∈ E(T ), the graphs G[XT
uv] and G[XT

vu]
are connected.

The adhesion of an edge e = uv of T , denoted adhT (e), is defined as the set EG(XT
uv, X

T
vu).

An adhesion is thin if it has at most 2 edges, and is bold otherwise. The torso at a node t of T is
the graph HTt defined as follows. Let T ′ be the connected component of T that contains t, and let
T1, T2, . . . , Tp be the components of T ′ − t (note there might be no such components if t was an
isolated node). Observe that {Xt, XT1 , . . . , XTp} is a near-partition of XT ′ , whereas XT ′ induces a
connected component of G. Then the torso HTt is the graph obtained from G[XT ′ ] by identifying
the vertices of XTi into a single vertex zi, for each i ∈ [p], and removing all the loops created in
this manner. Note that, thus, every edge between a vertex of XTi and a vertex of XTj , for some
i 6= j, becomes an edge between zi and zj ; similarly for edges between XTi and Xt. The vertices of
Xt are called the core vertices of the torso, while the vertices zi are called the peripheral vertices
of the torso. Finally, the 3-center of a node t of T , denoted by HTt , is the graph obtained from
the torso HTt by repeatedly suppressing peripheral vertices of degree at most two and deleting any
resulting loops. That is, any peripheral vertex of degree zero or one is deleted, while a peripheral
vertex of degree two is replaced by an edge connecting its two neighbors; if the two neighbors are
equal, the resulting loop is deleted, potentially allowing further suppressions. As Wollan [42] shows,

any maximal sequence of suppressions leads to the same graph HTt . We omit the subscripts and
superscripts T when they are clear from the context.

The width of the decomposition T = (T,X ), denoted width(T ), is

max{ max
e∈E(T )

|adh(e)|, max
t∈V (T )

|V (HTt )|}.

The tree-cut width of G, denoted by tctw(G), is the minimum width of a tree-cut decomposition
of G.

Ganian et al. [22] showed that bounded tree-cut width implies bounded treewidth. Besides, Kim
et al. [29] showed that the dependency cannot be improved to subquadratic.

Lemma 6 (see [22]). For any graph G, tw(G) ≤ 2tctw(G)2 + 3tctw(G).
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Finally, Kim et al. [29] proposed a 2-approximation FPT algorithm for computing the tree-cut
width of a graph.

Theorem 7 (see [29]). There is an algorithm that, given a graph G and an integer r, runs in time
2O(r

2 log r) · |G|2 and either concludes that tctw(w) > r, or returns a tree-cut decomposition of G of
width at most 2r.

Immersions. For two graphs G and H we say that G contains H as an immersion, or H is
immersed in G, if there exist an injective mapping µV : V (H) → V (G), and a mapping µE from
edges of H to paths in G such that:

• for any edge uu′ ∈ E(H), µE(uu′) is a path in G with endpoints µV (u) and µv(u
′); and

• for any pair of different edges e, e′ ∈ E(H), the paths µE(e) and µE(e′) do not have common
edges.

For a family of graphs F , we say a graph G is F-immersion-free, or F-free for short, if for every
H ∈ F , G does not contain H as an immersion. We define the following parameterized problem:

F-Immersion Deletion
Input: A graph G and a positive integer k.
Parameter: k
Question: Is there a set F ⊆ E(G), such that |F | ≤ k and G− F is F-immersion-free?

By OPTF (G) we denote the minimum size of a set F ⊆ E(G) such that G− F is F -free. If the
family F is clear from the context, we omit the subscript.

The following result follows from the work of Wollan [42]; the improved bound is obtained using
the polynomial Excluded Grid Minor Theorem by Chekuri and Chuzhoy [8,10,11]. In particular,
note that Theorem 1 stated in the introduction follows from it.

Theorem 8. Let F be a family of graphs that contains at least one planar subcubic graph. Then
if G is an F-free graph, then tctw(G) ≤ aF , where aF = O(maxH∈F(|H|+ ‖H‖)30) is a constant
depending on F only.

Proof. Recall that the r× r wall Wr,r is a grid-like graph with maximum degree three (see Figure 1).
Theorem 17 of [42] states that if G is a graph with tree-cut width at least 4r10 ·w(r), then G admits
an immersion of the r × r wall Wr,r. Here, w(r) is the upper bound in the Excluded Grid Minor
Theorem, that is, the maximum treewidth of a graph that excludes the r × r grid as a minor. The
currently best upper bound for w(r), given by Chuzhoy in [11], is w(r) ≤ O(r19polylog(r)). It is
easy to see (see e.g., [24]) that there is a constant d such that every planar subcubic graph H with
at most r vertices and edges can be immersed into the (dr)× (dr)-wall Wdr,dr. Hence, by the results
above it follows that excluding such a graph H as an immersion imposes an upper bound of O(r30)
on the tree-cut width of a graph.

The above theorem is a starting point for our algorithms. In particular, it implies that we can
test whether a graph is F-free in linear time.

Lemma 9. Let F be a family of graphs that contains at least one planar subcubic graph. There is a
linear-time algorithm that checks whether a given graph is F-free.
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Proof. Let aF be the constant given by Theorem 8 for the family F , and let G be the input
graph. Using Bodlaender’s algorithm [3] for computing treewidth, for k = 2a2F + 3aF we either
conclude that tw(G) > k, or compute a tree decomposition of G of width at most k. This takes
time f(k) · |G| for some function f , hence linear time since k is a constant. In the first case, when
tw(G) > 2a2F + 3aF , we may directly conclude that G is not F-free, because from Lemma 6 it
follows that tctw(G) > aF , and then Theorem 8 implies that G is not F-free. Thus, we may now
assume that we have constructed a tree decomposition of G of width at most k = 2a2F + 3aF .

Observe now that for any fixed graph H, the property of admitting H as an immersion can be
expressed in MSO2 (Monadic Second-Order logic on graphs with quantification over edge subsets).
See, for example, [25]. Therefore, by applying Courcelle’s Theorem [12], for every graph H ∈ F we
may decide whether G is H-free in time g(k) · ‖G‖ for some function g; that is, in linear time since
k is a constant. By verifying this for every graph H ∈ F we decide whether G is F-free.

From now on, throughout the whole paper, we assume that F is a fixed family containing
only connected graphs, of which at least one is planar and subcubic. We define the constant
MAXF = maxH∈F ‖H‖ and let aF be the bound from Theorem 8.

3 Adjusting tree-cut decompositions

3.1 Alternative definition of tree-cut width

To simplify many arguments, we give a simpler definition of tree-cut width and show it to be
equivalent. Let G be a graph with a tree-cut decomposition T = (T,X = {Xt : t ∈ V (T )}). For
every t ∈ V (T ), we define

wT (t) = |Xt|+ |{t′ ∈ NT (t) : adhT (tt′) is bold}|.

We drop the subscript T when it is clear from the context. We then set

width′(T ) = max{ max
e∈E(T )

|adh(e)|, max
t∈V (T )

w(t)}

and define tctw′(G) as the minimum of width′(T ) over all tree-cut decompositions T of G.

Theorem 10. For every graph G it holds that tctw(G) = tctw′(G). Moreover, given a tree-
cut decomposition T = (T,X ) of G, it always holds that width(T ) ≤ width′(T ), and a tree-cut
decomposition T ′ such that width′(T ′) ≤ width(T ) can be computed in time O(‖G‖ · |G|2 ·width(T )).

Proof. Let G be a graph and T = (T,X = {Xt : t ∈ V (T )})) be a tree-cut decomposition. We first
show that width(T ) ≤ width′(T ). Consider any t ∈ V (T ) and let t1, t2, . . . , t` be the neighbors of t in
T . For i ∈ [`], denote by zi the peripheral vertex of the torso of t, HTt , obtained after consolidating
(i.e. identifying into one vertex) the set XT

tit.

We claim that |V (HTt )| ≤ w(t). Recall that HTt is the 3-center at t: its vertices are core
vertices Xt and peripheral vertices z1, . . . , z` that were not suppressed. Since degHTt (zi) = |adh(tti)|
for i ∈ [`], the vertex zi might not suppressed (and thus, belong to the 3-center at t) only when
|adh(tti)| ≥ 3, which implies

|V (HTt )| ≤ |Xt|+ |{t′ ∈ NT (t) : adh(tt′) is bold}| = w(t) (1)

This holds for every t ∈ V (T ), hence width(T ) ≤ width′(T ).
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In particular, tctw(G) ≤ tctw′(G). We now proceed to showing that tctw(G) = tctw′(G). Note
that without loss of generality we may assume that G is connected, as we may consider each
connected component separately. Hence, all the tree-cut decompositions considered in the sequel
will consist of just one tree.

Let us choose a tree-cut decomposition T = (T,X ) of G as follows: T has the optimum
width (i.e. width(T ) = tctw(G)) and, among such optimum decompositions,

∑
e∈E(T ) |adh(e)| is

minimum possible. We will now prove that |V (HTt )| = w(t) for every t ∈ V (T ), which implies that
width′(T ) = width(T ) = tctw(G) by definition, concluding the claim.

Towards a contradiction, let us assume that there exists t ∈ V (T ) with |V (HTt )| 6= w(t), and

thus by (1), |V (HTt )| < w(t). We denote by t1, t2, . . . , t` the neighbors of t in T and define zi for
i ∈ [`] as above.

Without loss of generality, let (z1, z2, . . . , zk) be a maximal sequence of vertices whose suppression

leads to HTt ; see Figure 2. Observe that, since the inequality |V (HTt )| < w(t) is strict, at least one of
the suppressed vertices originally has degree 3 or more in HTt . Let zp be the first such vertex, that is,
degHTt (zp) ≥ 3 and degHTt (zi) ≤ 2 for i < p. Note that p 6= 1 as, by definition, the first vertex to get

suppressed has degree at most 2 in HTt . Let C1, . . . , Cp′ be the connected components of the graph
induced by the vertices z1, . . . , zp−1 in HTt . Since their degrees are at most two each component Ci
is either an induced cycle or an induced path in HTt . Let C = {Ci : NHTt

(zp) ∩ V (Ci) 6= ∅}, that is,
let C be the subset of the graphs C1, . . . , Cp′ in which zp has a neighbor.

First notice that the set C is not empty. Indeed, if zp would not have any neighbor in at least
one the components C1, . . . , Cp′ then it still would have degree at least 3 in HTt after suppressing
the vertices of these graphs, z1, . . . , zp−1.

Second, for C ∈ C, observe that if z is a neighbor of zp in C, then z has degree at most
2 in HTt , including its neighbor zp, and hence z has degree at most 1 in C. Therefore, every
C ∈ C is an induced path in HTt , whose endpoints we henceforth denote by zC and z′C . We have
NHTt

(zp)∩V (C) ⊆ {zC , z′C}, and since by definition NHTt
(zp)∩V (C) 6= ∅, without loss of generality

we will assume that always zCzp ∈ E(HTt ).

Claim 11. There exists C ∈ C such that NHTt
(V (C)) ⊆ {zp}.

Proof. We prove the claim by contradiction. That is, suppose that for every C ∈ C, C has a
neighbor in V (HTt ) \ {zp}. This must be a neighbor outside {zi : i ∈ [p− 1]} (since C is a connected
component of the subgraph induced by these vertices), thus for every C ∈ C, there is a vertex z ∈ C
such that z has a neighbor z′ in V (HTt ) \ {zi : i ∈ [p]}.

Let C ∈ C. Since the internal vertices of the path C have degree exactly 2 both in C and in HTt ,
they have no neighbors outside C. Consider now two cases depending on |V (C)|.

• If |V (C)| = 1, then zC = z′C has an edge to a neighbor z′ in V (HTt ) \ {zi : i ∈ [p]} and an
edge to zp; since zC = z′C has degree 2 in HTt , it has no other incident edges in HTt .

• If |V (C)| ≥ 2, then zC has an edge to a neighbor in C and an edge to zp, and again, no other
incident edges. Thus it must be that z′C has a neighbor z′ in V (HTt ) \ {zi : i ∈ [p]}. Then z′C
has an edge to z′, to a neighbor in C, and no other incident edges.

We conclude that in both cases, for every C ∈ C, we have |E(C, zp)| = 1; moreover, after
suppressing the vertices z1, . . . , zp−1, including those of C, zp has an edge to V (HTt ) \ {zi : i ∈ [p]},
a different one for every C ∈ C. Therefore, the degree of zp in HTt does not drop after suppressing
z1, . . . , zp−1. However, initially degHTt (zp) ≥ 3 by choice of zp, and after suppressing z1, . . . , zp−1,
the vertex zp must have degree at most 2 to be itself suppressed, a contradiction. y
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zq1

zC1 = z′C1

z′C2

zC2
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zq2

zq3

Xt
Xt

XT
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XT2

XT3

XT ′
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Xtp

Figure 2: On the left, the torso HTt , including the peripheral vertices z1, . . . , zp suppressed in HTt .
On the right, the modified decomposition, with subtrees T1, . . . , Tr attached to tp instead of t. This
improves the decomposition by making adh(ttp) strictly smaller (because of zpzq1 , zpzq3).

Let now C ∈ C be such that NHTt
(C) ⊆ {zp}. Let zq1 , zq2 , . . . , zqr be the vertices of the path C.

We construct a new tree-cut decomposition T ′ = (T ′,X ) of G by removing the edges ttqi from T
and adding the edges tptqi , for all i ∈ [r]. That is,

V (T ′) = V (T ) and E(T ′) = (E(T ) \ {ttqi : i ∈ [r]}) ∪ {tptqi : i ∈ [r]}.

Note that the bags in T ′ are exactly the same as in T . We will show that T ′ = (T ′,X ) has the
minimum possible width, and that

∑
e∈E(T ′) |adhT ′(e)| <

∑
e∈E(T ) |adhT (e)|, a contradiction to the

choice of T . Notice that Ttqi t = T ′tqi tp
for each i ∈ [r]; we will denote this subtree of T and T ′ by Ti

from now on. The bags assigned to this subtree do not change either, thus for every i ∈ [r] we have

adhT ′(tqitp) = adhT (tqit). (2)

Similarly, notice that for every edge e ∈ (E(T ) ∩ E(T ′)) \ {ttp} we have

adhT ′(e) = adhT (e). (3)

Finally, let us consider the edge ttp. By construction V (T ′ttp) = V (Tttp) \
⋃
i∈[r] V (Ti). In other

words, V (G) is partitioned into XT
tpt, X

T ′
ttp , and

⋃
i∈[r]XTi . Observe that adhT ′(ttp) is obtained

from adhT (ttp) by deleting EG(XTi , X
T
tpt) and adding EG(XTi , X

T ′
ttp), for all i ∈ [r].

Claim 12. For every i ∈ [r], EG(XTi , X
T ′
ttp) = ∅. Moreover, there exists i ∈ [r], EG(XTi , X

T
tpt) 6= ∅.

Proof. By the choice of C, the only neighbor of V (C) = {zq1 , . . . , zqr} in HTt is zp. That is, for
each i ∈ [r], the vertex zqi has neighbors only in zq1 , . . . , zqr and zp in HTt . Since HTt is constructed
from G by consolidating XTi into zqi (for i ∈ [r]) and XT

tpt into zp (among others), this means

that the only edges in G leaving XTi go to XT1 ∪ · · · ∪XTr ∪XT
tpt. Since XT ′

ttp is obtained from

XT
ttp = V (G) \XT

tpt by removing XT1 ∪ · · · ∪XTr , the first claim follows.

Similarly, by the choice of C, zp has an edge to V (C) = {zq1 , . . . , zqr} in HTt . This means G has
an edge between XT

tpt and XTi for some i ∈ [r]. y

It follows that adhT ′(ttp) ( adhT (ttp). Together with (2), (3), this implies

max
e∈E(T )

|adhT ′(e)| ≤ max
e∈E(T )

|adhT (e)| (4)∑
e∈E(T ′)

|adhT ′(e)| <
∑

e∈E(T )

|adhT (e)|. (5)
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To prove our claim it remains to show that maxt∈V (T ) |V (HTt )| ≤ maxt∈V (T ) |V (HT
′

t )|. Recall
first that V (T ) = V (T ′). For every vertex s ∈ V (T ) \ {t, tp} the torso at s in decomposition T is

the same as the torso at s in decomposition T ′. This implies that HTs = HT ′s .
Consider now the torso at t in decomposition T ′, i.e. HT

′
t . From the way T ′ was constructed,

we have NT ′(t) ⊆ NT (t). Moreover, recall that for every vertex s ∈ NT ′(t), adhT ′(st) ⊆ adhT (st).

Therefore HT
′

t is a subgraph of HTt , and thus |V (HT
′

t )| cannot be larger than |V (HTt )|.
Consider finally the torso at the node tp in decomposition T ′, i.e. HT

′
tp . Notice that V (HT

′
tp ) =

V (HTtp)∪{zqi : i ∈ [r]}. Recall, however, that adhT ′(tptqi) = adhT (ttqi) and therefore, deg
HT
′

tp
(zqi) =

degHTt (zqi) ≤ 2. This implies that the vertices zqi , for all i ∈ [r], get suppressed in HT
′

tp (more

precisely, we can start the procedure of obtaining HT
′

tp by suppressing them). For other vertices s in

NT ′(tp) we have adhT ′(stp) ⊆ adhT (stp). Hence |V (HT
′

tp )| cannot be larger than |V (HTtp)|.
In any case we obtain that |V (HT

′
t )| ≤ |V (HTt )| for every t ∈ V (T ). Together with (4), we

obtain that width(T ′) ≤ width(T ), that is, T ′ has the minimum possible width (because we assumed

T has). But then (5) contradicts our choice of T . Hence, |V (HTt )| = w(t), for every t ∈ V (T ), that
is, width(T ) = width′(T ), which concludes the proof that tctw(G) = tctw′(G).

For the algorithmic statement, note that in the proof, either we show that width(T ) = width′(T ),
or we construct a decomposition T ′ such that width(T ′) ≤ width(T ) and the sum of all adhesion
sizes in T ′ is strictly smaller than in T (Equation (5)). Since the construction can be easily
performed in time O(‖G‖ · |G|) by computing all torsos and 3-centers, and since the initial sum of
all adhesion sizes can be at most O(|G| · width(T )), the construction can be performed repeatedly
until width(T ) = width′(T ), concluding the algorithm.

3.2 Making the decomposition connected

The goal of this section is to prove that one can make a tree-cut decomposition connected without
increasing its width (more precisely, width′) by much. For this, we will temporarily need a slight
variation on tctw′. Let G be a graph and T = (T,X ) be a tree-cut decomposition of G. For every
t ∈ V (T ), recall that δT (t) denotes the set of edges of T incident to t. We define

z(t) = |Xt|+
∑
e∈δ(t)
|adh(e)|≥3

|adh(e)| , and

width′′(T ) = max
t∈V (T )

z(t).

Lemma 13. For every graph G and every tree-cut decomposition T of G,

width′(T )− 1 ≤ width′′(T ) ≤ (width′(T ))2.

Proof. Let G be a graph and T = (T,X = {Xt : t ∈ V (T )}) be a tree-cut decomposition of G. We
first prove that width′(T ) ≤ width′′(T ) + 1, which is equivalent to the left inequality. Recall that
width′(T ) = max{maxe∈E(T ) |adh(e)|,maxt∈V (T )w(t)}. Clearly for each t ∈ V (T ), from definitions
of w(t) and z(t) we have

w(t) = |Xt|+ |{e ∈ δT (t) : |adh(e)| ≥ 3}| ≤ |Xt|+
∑
e∈δ(t)
|adh(e)|≥3

|adh(e)| = z(t).

In particular, maxt∈V (T )w(t) ≤ maxt∈V (T ) z(t).

13



Let e∗ ∈ E(T ) be an edge of T that maximizes |adh(e∗)|. If |adh(e∗)| ≤ 2, then trivially
|adh(e∗)| ≤ |Xt|+ 1 ≤ z(t) + 1 for some t ∈ V (T ). Otherwise, if |adh(e∗)| ≥ 3, let t be an endpoint
of e∗; then z(t) ≥ |Xt|+ |adh(e∗)|, so in particular |adh(e∗)| ≤ z(t). Thus in any case, we conclude
that

width′(T ) = max{|adh(e∗)|, max
t∈V (T )

w(t)} ≤ max
t∈V (T )

z(t) + 1 = width′′(T ) + 1.

We now prove that width′′(T ) ≤ (width′(T ))2. Notice that, by definition,

max
e∈E(T )

|adh(e)| ≤ width′(T ).

Moreover, for every t ∈ V (T ),

|Xt|+ |{e ∈ δT (t) : |adh(e)| ≥ 3}| = w(t) ≤ width′(T ).

Therefore,

z(t) = |Xt|+
∑
e∈δ(t)
|adh(e)|≥3

|adh(e)|

≤ |Xt|+
∑
e∈δ(t)
|adh(e)|≥3

width′(T )

= |Xt|+ |{e ∈ δ(t) : |adh(e)| ≥ 3}| · width′(T )

≤ (width′(T ))2.

Thus, we conclude that width′′(T ) = maxt∈V (T ) z(t) ≤ (width′(T ))2.

Recall that a tree-cut decomposition T = (T,X = {Xt : t ∈ V (T )}) of G is connected if for
every edge uv ∈ E(T ), the graphs G[XT

uv] and G[XT
vu] are connected. We now show that we may

always find such a tree-cut decomposition.

Lemma 14. Given a tree-cut decomposition of a graph G with width′ at most k, a connected tree-cut
decomposition of G with width′ at most k2 + 1 can be constructed in time O(‖G‖ · |G|2 · k2).

Proof. If a graph is disconnected, we may consider its connected components separately, find a
connected tree-cut decomposition for each component and conclude the claim by taking the disjoint
union of the decompositions. We will thus henceforth assume that G is a connected graph.

Suppose G has a tree-cut decomposition of width′ at most k. Then by Lemma 13, the same
decomposition has width′′ at most k2. Let T = (T,X = {Xt : t ∈ V (T )}) be a tree-cut decomposition
of G such that width′′(T ) ≤ k2 and, subject to that,

∑
e∈E(T ) |adhT (e)|2 is minimum possible.

We claim that T is a connected decomposition. Towards a contradiction, assume that G[XT
uv]

is not connected, for some uv ∈ E(T ). Let G1, G2, . . . , Gr be its connected components. Let
T ′ = (T ′,X ′) be the tree-cut decomposition of G obtained from (T,X ) in the following way. Let
T1, T2, . . . , Tr be r distinct copies of Tuv where, for every i ∈ [r],

V (Ti) = {zi : z ∈ V (Tuv)}
E(Ti) = {fi : f ∈ E(Tuv)}.
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To obtain T ′, we remove Tuv from T , add the trees T1, T2, . . . , Tr instead, and for each i = 1, 2, . . . , r
we add a new edge ei between v and ui ∈ V (Ti). Therefore,

V (T ′) = V (Tvu) ∪
⋃
i∈[r]

V (Ti) (6)

E(T ′) = E(Tvu) ∪
⋃
i∈[r]

E(Ti) ∪
⋃
i∈[r]

{ei}. (7)

Notice then that Ti = T ′uiv, for each i ∈ [r]. We define X ′ in the following way.

X ′s =

{
Xs if s ∈ V (Tvu)

Xz ∩ V (Gi) if s = zi for some z ∈ V (Tuv) and i ∈ [r].
(8)

We will obtain a contradiction by proving that

width′′(T ′) ≤ width′′(T ) and
∑

e∈E(T ′)

|adhT ′(e)|2 <
∑

e∈E(T )

|adhT (e)|2.

However, towards our goal, we have to first show how adhesions in T ′ correspond to adhesions in T .
Notice that for every f ∈ E(T ) ∩ E(T ′),

adhT ′(f) = adhT (f). (9)

The remaining edges of T ′ are of the form pjqj ∈ E(Tj) or ej , for some j ∈ [r]. In the latter case, let
us write pj = uj and qj = v. We claim that {adhT ′(pjqj) : j ∈ [r]} is a near-partition of adhT (pq)
(here, if pjqj = ej = ujv, then p = u and q = v). Indeed, adhT ′(pjqj) is by construction equal to the
set of edges between XT

pq ∩ V (Gj) and XT
qp ∪

⋃
i 6=j V (Gi). Since, E(V (Gj), V (Gi)) = ∅, for i 6= j,

it follows that
adhT ′(pjqj) = EG(XT

pq ∩ V (Gj), X
T
qp).

Since XT
qp, X

T
pq is a near-partition of V (G) and {XT

pq ∩ V (Gi) : i ∈ [r]} is a near-partition of XT
pq,

we infer that {adhT ′(pjqj) : j ∈ [r]} is a near-partition of EG(XT
pq, X

T
qp) = adhT (pq), as claimed.

Therefore, for all edges f ∈ E(Tvu), as well as for f = uv (in which case fi = ei), we have∑
i∈[r]

|adhT ′(fi)| = |adhT (f)|. (10)

We are now able to prove that width′′(T ′) ≤ width′′(T ). That is, we want to show that
maxt∈V (T ′) zT ′(t) ≤ maxt∈V (T ) zT (t). Here zT (·) and zT ′(·) are the z(·)-functions as in the definition
of tctw′′, applied respectively in decompositions T and T ′.

Let first t ∈ V (Tvu) \ {v}. From (8) we obtain that |X ′t| = |Xt| and, from (9) we obtain that for
every edge y ∈ δT (t), |adhT ′(y)| = |adhT (y)|. Thus, zT ′(t) = zT (t).

Let now ti ∈ V (Ti), for some i ∈ [r]. From (8) we obtain that |X ′ti | ≤ |Xt|. Moreover, for every
edge fi incident to ti, from (10) we obtain that |adhT ′(fi)| ≤ |adhT (f)|. Thus, zT ′(ti) ≤ zT (t).

Finally, let t = v. From (8), we obtain that |X ′v| = |Xv|. Observe that δT ′(v) = E1 ]E2, where
E1 = δT (v) \ {uv} and E2 = {ei | i ∈ [r]}. Then from Equation (9), for every edge y ∈ E1 we have
|adhT ′(y)| = |adhT (y)|, and from Equation (10), we also have

∑
i∈[r] |adhT ′(ei)| = |adhT (e)|. From

this it follows that zT ′(v) ≤ zT (v).
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Thus for each t′ ∈ V (T ′), we have zT ′(t
′) ≤ maxt∈V (T ) zT (t) = width′′(T ), and hence width′′(T ′) ≤

width′′(T ). Furthermore, from (9) and (10), we have∑
e∈E(T ′)

|adhT ′(e)| =
∑

e∈E(T )

|adhT (e)|

Notice now that from (10), for each f ∈ E(Tvu) ∪ {uv} we have∑
i∈[r]

|adhT ′(fi)|2 ≤
(∑
i∈[r]

|adhT ′(fi)|
)2

= |adhT (f)|2. (11)

Here, for f = uv we consider fi = ei.
Since XT

uv, X
T
vu is a near-partition of V (G) and V (G1), . . . , V (Gr) is a partition of XT

uv, we have
that XT

uv, V (G1), . . . , V (Gr) is a near-partition of all of V (G). Furthermore, since G is connected
and EG(V (Gi), V (Gj)) = ∅ for i 6= j, it must be that EG(V (Gi), X

T
uv) is non-empty for each i ∈ [r].

This means adhT ′(ei) is non-empty, and since r ≥ 2, we infer that the inequality in (11) is strict for
f = uv. We conclude that ∑

e∈E(T ′)

|adhT ′(e)|2 <
∑

e∈E(T )

|adhT (e)|2, (12)

a contradiction to the choice of T .
This concludes the proof that G has a connected tree-cut decomposition of width′′ at most k2

and hence, by Lemma 13, of width′ at most k2 + 1. Note that in the proof, we either proved that T
is already connected, or constructed a decomposition T ′ with width′′(T ′) ≤ width′′(T ) and with a
strictly smaller sum of squares of adhesion sizes (Equation (12)). Since the construction can be
easily performed in O(‖G‖ · |G|) time, and since the sum of squares of adhesion sizes is initially
bounded by O(|G| · k2) (as each adhesion has size bounded by width′ of the decomposition, which
is at most k), the construction can be performed repeatedly until T is connected, concluding the
algorithm.

3.3 Neat tree-cut decompositions

Recall that a tree-cut decomposition can be rooted by selecting a root in every its tree, which naturally
imposes child-parent relation on the nodes, as well as the sibling relation. As already mentioned,
the parent of a node t is denoted by π(t). We now define additional properties of rooted tree-cut
decompositions, and show that these properties can be achieved by simple modifications of the
decomposition. This will help us in the next sections, where we will handle tree-cut decompositions
combinatorially and algorithmically. The main notion that we will be interested in is called neatness.

Definition 15. Let G be a graph and T = (T,X = {Xt : t ∈ V (T )}) be a rooted tree-cut
decomposition of G. We say that T is neat if it is connected and, furthermore, for every non-root
node t ∈ V (T ) such that adh(tπ(t)) is thin, and every sibling t′ of t, there are no edges between
XT

tπ(t) and XT
t′π(t) in G.

The second condition was used by Ganian et al. [22] under the name niceness. We now show
that every connected tree-cut decomposition can be made neat without increasing its width. The
proof of this result follows closely the lines of the proof of [22, Lemma 1].

Theorem 16. Given a connected tree-cut decomposition of a graph G with width′ at most k, a neat
tree-cut decomposition of G with width′ at most k can be computed in time O(|G|3).
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Proof. Similarly as before, if a graph is disconnected, we may consider its connected components
separately, find a neat tree-cut decomposition for each component and conclude the claim by joining
the decompositions into one forest. We will thus henceforth assume that G is a connected graph.

Let T = (T,X ) be a connected tree-cut decomposition of G with width′(T ) ≤ k. Let us
arbitrarily choose a node r ∈ V (T ) to be the root of T . We will show that, after this rooting, T can
be transformed into a neat tree-cut decomposition of G.

Similarly to [22], we will call a node t ∈ V (T ) \ {r} bad if |adh(tπ(t))| ≤ 2 and there exists a
sibling t′ of t, such that there is an edge in G between XT

tπ(t) and XT
t′π(t). Moreover, for a bad

vertex t we say that a node b is a bad neighbor of t if b ∈ V (Tt′π(t)) for some sibling t′ of t, and there

is an edge between Xb and XT
tπ(t) in G.

We define the following two procedures, similarly to [22], see Figure 3:

Rerouting(t): let t be a bad node and let b be a bad neighbor of t of maximum depth.
Then remove the edge tπ(t) from T and add a new edge bt, thus making t a child of b.

Top-down Rerouting: as long as (T,X ) is not a neat tree-cut decomposition, pick a
bad node t of minimum depth and perform Rerouting(t).

t

π(t)

t′

b

u

v

Figure 3: A decomposition with a bad node t and a bad neighbor b – the rerouting procedure will
reattach the subtree Ttπ(t) below b. Two edges of G in adh(ttp) are shown.

We first make sure that rerouting does not spoil the connectivity of a decomposition.

Claim 17. Let T = (T,X = {Xt : t ∈ V (T )}) be a connected rooted tree-cut decomposition and
t ∈ V (T ) be a bad vertex of T . If T ′ = (T ′,X ) is the rooted tree-cut decomposition obtained from T
after running Rerouting(t), then T ′ is also connected.

Proof. Notice first that, by construction, we have E(T ′) = (E(T ) \ {tπ(t)}) ∪ {tb}. Let P denote
the path in T ′ (and in T ) that leads from π(t) to b.

Observe that if uv is an edge of E(T ′) \ (E(P ) ∪ {tb}), then V (T ′uv) = V (Tuv) and V (T ′vu) =
V (Tvu). Thus G[XT

uv] and G[XT
vu] are connected. Consider now the edge tb of T ′. Notice that

V (T ′tb) = V (Ttπ(t)) and V (T ′bt) = V (Tπ(t)t). This implies that the graphs G[XT ′
tb] and G[XT ′

bt] are
connected as well.

Finally, consider an edge e = uv of P and, without loss of generality, we assume that u is the
parent of v. Notice then that

XT ′
vu = XT

vu ∪XT
tπ(t) and XT ′

uv = XT
uv \XT

tπ(t).
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Recall that the subgraphs of G induced by XT
vu and XT

tπ(t) are connected. Moreover, since t is a

bad vertex and b is a bad neighbor of t, there exists an edge between XT
tπ(t) and Xb in G. Therefore,

as Xb ⊆ XT
vu, it follows that the graph G[XT ′

vu] is connected.
To show that XT ′

uv = XT
uv\XT

tπ(t) also induces a connected subgraph in G, recall that adhT (tπ(t))

is thin. That is, |δG(XT
tπ(t))| ≤ 2, and recall that there is an edge between XT

tπ(t) and Xb in G.

Observe then that XT
uv = XT ′

uv ∪XT
tπ(t), where there is at most one edge between XT ′

uv and XT
tπ(t).

Since G[XT
uv] is connected, this implies that after removing XT

tπ(t) it remains connected, because

any path that connected two vertices of XT ′
uv and went through XT

tπ(t) would imply at least two

edges between these parts. Thus, G[XT ′
uv] is also connected. y

Next, we verify that rerouting does not increase the width.

Claim 18. Let T = (T,X ) be a rooted tree-cut decomposition and t ∈ V (T ) be a bad vertex of T .
If T ′ = (T ′,X ) is the rooted tree-cut decomposition obtained from T after running Rerouting(t),
then width′(T ′) ≤ width′(T ).

Proof. As before, notice first that we have E(T ′) = (E(T ) \ {tπ(t)}) ∪ {tb}. Let P denote the path
in T ′ (and in T ) that leads from π(t) to b.

Observe that if e is an edge of E(T ′) \ (E(P ) ∪ {tb}) then adhT ′(e) = adhT (e). Notice also that
adhT ′(tb) = adhT (tπ(t)).

Finally, let e be an edge of P . Notice that the edge between XT
tπ(t) and Xb belongs to adhT (e)

but not to adhT ′(e). Moreover, since |adhT (tπ(t))| ≤ 2, there exists at most one edge that belongs
to adhT ′(e) but not to adhT (e). We conclude that |adhT ′(e)| ≤ |adhT (e)|, for every e ∈ E(P ).

In particular, maxe∈E(T ′) |adh(e)| ≤ maxe∈E(T ) |adh(e)|. Furthermore, since the bag at every
node is unchanged, wT ′(v) can be larger than wT (v) only for v = b. (Here, wT (·) and wT ′(·) are
functions w(·) as in the definition of width′, applied to decompositions T and T ′, respectively.)
However, even in this case the only additional edge incident to b is tb, whose adhesion has size at
most 2. We conclude that wT ′(v) ≤ wT (v) for each v ∈ V (T ), and hence width′(T ′) ≤ width′(T ). y

The above two claims show that it is safe to apply the Rerouting procedure. We now show
that applying it exhastively, as described in procedure Top-down Rerouting, always terminates
within a polynomial number of steps.

Claim 19. Top-down Rerouting terminates after O(|T |2) invocations of Rerouting(t).

Proof. We note that the proof is again similar to the one in [22]. However, we include it for
the sake of completeness. For a tree-cut decomposition T = (T,X ) and a node v ∈ V (T ) let
depth(v, T ) = distT (v, r), where r is the root of T . Notice, that for every v ∈ V (T ) we have
depth(v, T ) ≤ |T |, and hence ∑

v∈V (T )

depth(v, T ) ≤ |T |2.

Let T = (T,X ) be a rooted tree-cut decomposition of G and t be a bad node of T such that the
distance of t from r is minimum. Let T ′ = (T ′,X ) be the tree-cut decomposition of G obtained
after performing Rerouting(t). Notice that, for every v ∈ V (Ttπ(t)), depth(v, T ′) ≥ depth(v, T ) + 1.
Moreover, for every v ∈ V (Tπ(t)t), depth(v, T ′) = depth(v, T ). This implies that∑

v∈V (T )

depth(v, T ) <
∑

v∈V (T ′)

depth(v, T ′) ≤ |T |2.
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Therefore, since the sum of depths of nodes increases at each step, and it is always upper bounded
by |T |2, the Top-down Rerouting procedure terminates after at most |T |2 steps. y

This concludes the proof that Top-down Rerouting produces a neat tree-cut decomposition
of width′ bounded by k2 + 1. Since we always assume |T | = O(|G|), Rerouting is invoked O(|G|2)
times. Finding a bad node and a bad neighbor can be done in O(|G|) time by inspecting edges of thin
adhesions and computing the least-common-ancestor in T of the two bags containing their endpoints,
using e.g. Gabow and Tarjan’s classical algorithm [21]. Since Rerouting can be performed in
O(|G|) time, the algorithm runs in O(|G|3) total time.

We can now combine all tools developed so far to prove the following statement, which will later
serve as an abstraction for getting tree-cut decompositions of F-free graphs with good properties.

Corollary 20. Given an F-free graph G, a neat tree-cut decomposition of width′ at most bF of G
can be computed in time O(‖G‖ · |G|2), where bF = 4(aF )2 + 1 is a constant depending on F only.
Here, aF is the constant given by Theorem 8.

Proof. We have tctw(G) ≤ aF by Theorem 8. By Theorem 7, a tree-cut decomposition of width at
most 2aF can be computed in time O(|G|2). From it, by Theorem 10, a decomposition of width′ at
most 2aF can be computed in time O(‖G‖ · |G|2). Then, by Lemma 14, a connected decomposition
of width′ at most 4(aF)2 + 1 can be computed in time O(‖G‖ · |G|2). Finally, by Theorem 16, a
neat decomposition of width′ at most 4(aF )2 + 1 can be computed in time O(|G|3).

Let G be a graph with a neat tree-cut decomposition T = (T,X ), and let p ∈ V (T ). For
t ∈ NT (p), we say the component Ttp of T − p is connected with a neat adhesion to p if the adhesion
of tp is thin, and moreover all of its edges have an endpoint in Xp. We now prove a result that
shows what the neat decompositions are useful for: provided some node has many neighbors, all but
a constant number of them is connected to it via neat adhesions.

Corollary 21. Let G be a graph with a neat tree-cut decomposition T = (T,X ) with width′(T ) ≤ b,
for some integer b. Then for every p ∈ V (T ), at most 2b+ 1 of the connected components of T − p
are not connected with a neat adhesions to p.

Proof. Let p ∈ V (T ). By the definition of width′, at most b of the edges in δT (p) have adhesions
containing more than two edges of G; all other edges in δT (p) have thin adhesions. Additionally,
at most one edge in pt ∈ δT (p) has the property that π(p) = t; all other edges pt ∈ δT (p) satisfy
π(t) = p. Consider then the remaining edges in δT (p), say pt1, . . . , ptr, for some r ≥ |δT (p)| − b− 1.
They have thin adhesions and satisfy π(ti) = p.

Recall that adh(pti) contains precisely the edges of G with one endpoint in XT
tip and the other

in XT
pti . By definition of a neat decomposition (and since adh(tip) = adh(tiπ(ti)) is thin), the edges

of G contained in adh(pti) cannot have an endpoint in XT
t′p for any sibling t′ of ti. This means

that they have one endpoint in XT
tip and one in XT

π(p)p ∪Xp (if p is the root, assume XT
π(p)p = ∅).

However, the number of edges between XT
tip and XT

π(p)p is bounded by |adh(π(p)p)| ≤ b. Therefore,

at least r − b of the decomposition edges tip (i ∈ [r]) have adhesions containing only edges of G
that have an endpoint in Xp. This means that for at least r − b ≥ |δT (p)| − 2b− 1 indices i ∈ [r],
the component Ttip of T − p is connected with a neat adhesion to p.
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4 Protrusions

We now introduce the notion of a protrusion that is suitable for our problem. Namely, protrusions
are F-free parts of the graph with a constant-size boundary.

Definition 22. An r-protrusion of a graph G is a set X ⊆ V (G) such that |δ(X)| ≤ r and G[X] is
F-free.

Recall that by Corollary 20, the subgraph induced by a protrusion, as an F-free graph, always
has a neat tree-cut decomposition of width′ bounded by a constant bF . In the sequel, we will only
deal with 2bF - and 2-protrusions.

4.1 Replacing protrusions

As in [19], the base for our kernelization algorithm is protrusion replacement. That is, the algorithm
iteratively finds a protrusion X that is large but has small δ(X), and replaces it with a gadget X ′

that has the same behaviour, but is smaller. The following lemma, whose proof is the main goal of
this section, formalizes this intuition.

Lemma 23. There is a constant cF and algorithm that, given a graph G and a 2bF -protrusion X in
it with ‖G[X]‖ > cF , outputs in linear time a graph G′ with OPT(G) = OPT(G′) and ‖G′‖ < ‖G‖.

Moreover, there is a linear-time algorithm working as follows: given a subset F ′ of edges of G′

such that G′ − F ′ is F-free, the algorithm computes a subset F of edges of G such that G− F is
F-free and |F | ≤ |F ′| (and is called a solution-lifting algorithm).

The proof of Lemma 23 follows closely the strategy used by Fomin et al. [19]: Every 2bF -
protrusion can be assigned a type, where the number of types is bounded by a function depending
on F only. The type of a protrusion can be computed efficiently due to protrusions having constant
treewidth. Protrusions with the same type behave in the same way with respect to the problem of
our interest, and hence can be replaced by one another. Therefore, we store a replacement table
consisting of the smallest protrusion of each type, so that every larger protrusion can be replaced by
a smaller representative stored in the table. The lifting algorithm finds, using dynamic programming,
a partial solution in the large protrusion that has the same behaviour as the given partial solution
in the replacement protrusion, while being not larger.

We now proceed with implementing this plan formally. We start with defining boundaried graphs.

Definition 24. An r-boundaried graph consists of an underlying graph G and an r-tuple (u1, . . . , ur)
of (not necessarily different) vertices of G, called the boundary. Given two r-boundaried graphs

G = (G, (u1, . . . , ur)) and H = (H, (v1, . . . , vr)),

we define their gluing, denoted G⊕H, to be the following graph: take the disjoint union of G and
H, and for each i ∈ [r] add one edge uivi. Finally, we define ‖G‖ to be ‖G‖.

We extend all notation for graphs to boundaried graphs, always applying it to the underlying
graph. Thus, we can talk about, e.g., F-free boundaried graphs.

Boundaried graphs can be naturally equipped with a Myhill-Nerode-like equivalence relation
concerning the problem of our interest.

Definition 25. Two r-boundaried graphs G1 and G2 are called F-equivalent if for every r-boundaried
graph H, the following holds:

OPT(G1 ⊕H) = OPT(G2 ⊕H).
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Obviously, F -equivalence is an equivalence relation on r-boundaried graphs. We now introduce
a condition that implies F-equivalence, which will be combinatorially easier to handle.

Suppose G is an r-boundaried graph, with boundary (u1, u2, . . . , ur). Define the extended graph
ext(G) as follows: for each i ∈ [r], introduce a new vertex copy(ui) that is adjacent only to ui.
Suppose further that Q is some graph. If φ is a partial function from V (Q) to [r], then by a φ-rooted
immersion model of Q in ext(G) we mean an immersion model of Q in ext(G) that is faithful w.r.t.
φ in the following sense: for each vertex v of Q that has defined image under φ, v is mapped to
copy(uφ(v)) in the immersion model.

Fix a positive integer r and recall that MAXF = maxH∈F ‖H‖. Consider a graph Q and a
partial function φ from V (Q) to [r]. We call the pair (Q,φ) relevant if the following conditions hold:

• ‖Q‖ ≤ (r + 1)MAXF and Q has no isolated vertices; and

• φ is non-empty, i.e., it assigns a value to at least one argument.

The set of relevant pairs will be denoted by Rr,F . Observe that

|Rr,F | ≤ 2poly(r,MAXF ). (13)

Indeed, there are at most 2poly(r,MAXF ) graphs with at most (r + 1) ·MAXF edges and no isolated
vertices, and for each of them there are at most (r + 1)O((r+1)MAXF ) possible partial functions φ.

Definition 26. Let r be a positive integer and let G be an r-boundaried graph. For a set S ⊆ Rr,F
of relevant pairs, the deletion number of G w.r.t. S is the minimum number of edges that need to be
deleted from ext(G) so that it does not admit a φ-rooted immersion model of Q, for each (Q,φ) ∈ S.
Note that the edges uicopy(ui), for i ∈ [r], may also be deleted in this definition. The signature of
G, denoted σ[G], is the function from subsets of Rr,F to nonnegative integers defined as follows:

σ[G](S) = deletion number of G w.r.t. S.

The following lemma explains the relation between F-equivalence and signatures.

Lemma 27. If two F-free r-boundaried graphs have the same signatures, then they are F-equivalent.

Proof. Let G1,G2 be a pair of F -free r-boundaried graphs that have the same signature. For t = 1, 2,
let (ut1, . . . , u

t
r) be the boundary of Gt. Take any r-boundaried graph H, and let (v1, . . . , vr) be its

boundary.
We need to prove that OPT(G1 ⊕H) = OPT(G2 ⊕H). It suffices to prove that OPT(G1 ⊕H) ≤

OPT(G2 ⊕H), because then the converse inequality will follow by symmetry. Throughout the proof,
we implicitly identify G1, G2, and H with their copies in the gluings G1 ⊕H and G2 ⊕H. We also
use the extended graphs ext(G1) and ext(G2), with the notation copy(·), and injective mappings

ι1 : E(ext(G1))→ E(G1 ⊕H)

ι2 : E(ext(G2))→ E(G2 ⊕H)

defined as follows. If e ∈ E(G1), then ι1(e) = e, and if e = u1i copy(u
1
i ) for some i = 1, . . . , r, then

ι1(e) = u1i vi. Mapping ι2 is defined in the same way.
Suppose F1 is an optimum-size subset of edges of G1⊕H such that (G1⊕H)−F1 is F -free; that

is, |F1| = OPT(G1 ⊕H). Let L1 = ι−11 (F1 \E(H)); that is, L1 consists of all edges of ext(G1) that
correspond to edges of F1 under mapping ι1. Let S be the set of all relevant pairs (Q,φ) ∈ Rr,F for
which ext(G1)−L1 does not admit a φ-rooted immersion model of Q. Since G1 and G2 have the same
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⇒

G2
H Q

Figure 4: Construction of graph Q from the immersion model I. The model I is depicted on the
left panel; the red vertices are the images of the vertices of H. The obtained graph Q is on the left
panel. The yellow vertices are the images of vertices of H that lie within V (G2), whereas the green
vertices are the copies of boundary vertices that are included in the vertex set of Q. The former
graphs G2 and H are depicted in very light grey in order to show from where the different parts of
Q come from.

signatures, there is a subset of edges L2 ⊆ E(ext(G2)) with |L2| ≤ |L1| such that ext(G2)− L2 also
does not admit a φ-rooted immersion model of Q, for every (Q,φ) ∈ S. We define F2 ⊆ E(G2 ⊕H)
as follows:

F2 = ι2(L2) ∪ (F1 ∩ E(H)).

Since |L2| ≤ |L1|, we also have that |F2| ≤ |F1|. Hence it suffices to show that (G2 ⊕ H) − F2 is
F-free.

For the sake of contradiction suppose that (G2 ⊕ H) − F2 contains an immersion model I of
some graph H ∈ F . Clearly I must use at least one edge outside E(H), because otherwise I would
be also an immersion model of H in (G1 ⊕H)− F1, which is F-free by assumption. Also, I must
use at least one edge outside E(G2), because otherwise it would be an immersion model of H in G2,
which is F-free by the supposition of the lemma.

Take any edge e of H, and let Pe be the path in the model I that is the image of e. Each
vertex traversed by Pe belongs either to V (G2) or to V (H). For each maximal interval I on Pe of
vertices belonging to V (G2), consider the path in ext(G2) constructed as follows: take all edges of
Pe incident to the vertices of I (so including the edge preceding and succeeding I on the path), and
map them to the edges of ext(G2) using ι−12 . This image is a path in ext(G2) whose endpoints are
either copies copy(u2i ) of some boundary vertices, or the original endpoints of Pe.

Starting from H, construct a graph Q as follows (see Fig. 4 for reference). The vertex set of Q
consists of all the vertices of H that are mapped to V (G2) in the model I, plus the set of all the
vertices copy(u2i ) for which the edge u2i vi is used in the model I. The edges of Q are defined by
the construction of the previous paragraph: every path R constructed for some maximal interval
on some path Pe gives rise to an edge in Q connecting the endpoints of R. It is now easy to see
that the above paths define a φ-rooted immersion model of Q in ext(G2)−L2, where φ assigns each
vertex copy(u2i ) its index i.

We now verify that (Q,φ) is a relevant pair. First, since every graph of F is connected and has
at least one edge, it is immediate that Q has no isolated vertices. For every edge e of H, the path
Pe can alternate between V (G2) and V (H) at most r times, and hence e can give rise to at most
r + 1 edges in Q; it follows that

‖Q‖ ≤ (r + 1)‖H‖ ≤ (r + 1)MAXF .

Finally, since I uses at least one edge outside E(H) and at least one edge outside E(G2), we conclude
that neither Q nor φ is empty.
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Since (Q,φ) is a relevant pair for which there is a φ-rooted immersion model of Q in ext(G2)−L2,
we have that (Q,φ) /∈ S. By the way we defined S, it follows that there is a φ-rooted immersion
model of Q in ext(G1)− L1. Take the edges of this model, map them according to ι1 to edges of
G1⊕H, and add all the edges used by model I within E(H). It can be now easily seen that all these
edges form an immersion model of H in (G1⊕H)−F1, which is a contradiction with (G1⊕H)−F1

being F-free.

It is not hard to see that the deletion numbers in fact cannot be too large.

Lemma 28. If G is an r-boundaried graph and S ⊆ Rr,F is a subset of relevant pairs, then the
deletion number of G w.r.t. S is at most r.

Proof. Let (u1, . . . , ur) be the boundary of G. Since φ is non-empty for each (Q,φ) ∈ S, in order to
make ext(G) not admit φ-rooted minor of Q one can always remove all the edges uicopy(ui), for
i ∈ [r]. Hence, the deletion number of G w.r.t. S is upper bounded by the number of these edges,
that is, by r.

Lemmas 27 and 28, together with (13), immediately yield the following.

Corollary 29. The number of possible signatures of r-boundaried graphs is at most 22
2poly(r,MAXF )

.
Consequently, F-equivalence has at most this many equivalence classes.

Finally, we need the algorithmic tractability of signatures.

Lemma 30. For every positive integer r, there exists a linear-time algorithm that, given an F-free
r-boundaried graph G, computes its signature.

Proof. For each such subset S of relevant pairs, the deletion number of G w.r.t. S can be computed
in linear time as follows. First, observe that, due to G being F -free, by Proposition 6 and Theorem 8
we infer that the treewidth of ext(G) is bounded by a constant depending on F only. Hence, using
Bodlaender’s algorithm [3] we can compute in linear time a tree decomposition of ext(G1) of constant
width. Then, on this tree decomposition we apply the optimization variant of Courcelle’s theorem,
due to Arnborg et al. [1] (see also [13, Theorem 7.12] for a modern presentation). For this, we
observe that finding the minimum cardinality of an edge subset of ext(G) that hits all φ-rooted
immersion model of Q, for each (Q,φ) ∈ S, can be expressed in a straightforward way as an MSO2

optimization problem; the formula’s length depends only on r and F . Thus, the algorithm of
Arnborg et al. [1] solves this optimization problem in linear-time, yielding the deletion number of G
w.r.t. S. By applying this procedure to all subsets S of relevant pairs, whose number is bounded by
a constant depending on r and F , we obtain the whole signature of G.

We are ready to prove the basic protrusion replacement lemma, i.e., Lemma 23.

Proof of Lemma 23. We first describe the algorithm that computes G′. Recall that, by Corollary 29,
for any r ≤ 2bF the number of possible signatures of r-boundaried graphs is bounded by a constant
depending F only. Define the following table T : for each r ≤ 2bF and each possible signature
ρ of r-boundaried graphs, we store in T the smallest, in terms of the number of edges, F-free
r-boundaried graph Gρ for which σ[Gρ] = ρ. If no F-free r-boundaried graph has signature ρ,
a marker ⊥ is stored instead. Note that table T depends only on family F , and hence can be
hardcoded in the algorithm. Define cF to be the largest number of edges among the graphs stored
in T ; then cF is a constant depending on F only.
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Let r = |δ(X)|. Based on G[X] and G−X, define r-boundaried graphs GX and H as follows.
The underlying graph of GX is G[X], and of H is G−X. Fix an arbitrary ordering e1, e2, . . . , er of
the edges of δ(X). Then the i-th boundary vertex of GX is the endpoint of ei that lies in X, and
the i-th boundary vertex of H is the second endpoint of ei, the one that lies outside of X. It follows
that G = GX ⊕H.

Using the algorithm of Lemma 30, compute the signature ρ := σ[GX ]. Note here that GX is
F-free by the supposition that X is a protrusion. Since GX has signature ρ, it follows that table
T stores some r-boundaried graph Gρ with the same signature. As ‖G[X]‖ = ‖GX‖ > cF and
‖Gρ‖ ≤ cF , we have that ‖Gρ‖ < ‖GX‖.

Define
G′ := Gρ ⊕H.

As ‖Gρ‖ < ‖GX‖, we have that ‖G′‖ < ‖G‖. Since GX and Gρ have the same signatures and are
both F-free, by Lemma 27 we have that they are F-equivalent. Hence

OPT(G) = OPT(GX ⊕H) = OPT(Gρ ⊕H) = OPT(G′),

and we conclude that G′ can be output by the algorithm.

We now describe the solution lifting algorithm. Suppose we are given a subset F ′ of edges of G′

such that G′ − F ′ is F-free. Recall that G′ = Gρ ⊕H. Let F ′H = F ′ ∩ E(H) and let F ′ρ = F ′ \ F ′H;
here, we implicitly identify Gρ and H with their copies in the gluing G′ = Gρ ⊕H. Consider the

extended graph ext(Gρ), and let F̃ ′ρ be the image of F ′ρ under the mapping ι−1 defined as in the
proof of Lemma 27: the edges of Gρ are mapped to themselves, while the edges between GX and H
are mapped to the corresponding edges between the boundary vertices and their copies in ext(Gρ).

Since ext(Gρ) is a graph of constant size, we can compute in constant time the subset S ⊆ Rr,F
of those relevant pairs (Q,φ) ∈ Rr,F , for which ext(Gρ) does not admit a φ-rooted immersion model
of Q. Observe that since the signatures of Gρ and GX are the same, the deletion numbers of Gρ

and GX w.r.t S are equal. Hence, there exists a subset F̃X of edges of ext(GX) with |F̃X | ≤ |F̃ ′ρ|,
such that also in ext(GX)− F̃X there is no φ-rooted immersion model of Q, for each (Q,φ) ∈ S.

Observe that such set F̃X can be computed in linear time using the algorithm of Arnborg et
al. [1] as follows. Just as in Lemma 30, the fact that GX is F -free implies that ext(GX) has constant
treewidth. Hence, we can compute its tree decomposition of constant width using Bodlaender’s
algorithm [3]; this takes linear time. Then, on this decomposition we run the algorithm of Arnborg
et al. [1] for the MSO2 optimization problem defined as follows: find the smallest subset of edges
whose removal leaves no φ-rooted immersion model of Q, for each (Q,φ) ∈ S. The algorithm of
Arnborg et al. [1] can within the same linear running time also reconstruct the solution, so we are

indeed able to construct F̃X .
Let now FX ⊆ E(G) be the image of F̃X under the mapping ι defined as in the proof of Lemma 27:

the edges of GX are mapped to themselves, while the edges between the boundary vertices and
their copies are mapped to the corresponding edges between GX and H. Define F := FX ∪ F ′H. By

the construction of FX we have that for every relevant pair (Q,φ) ∈ Rr,F , if ext(GX)− F̃X admits

a φ-rooted immersion model of Q, then so does ext(Gρ) − F̃ ′ρ. A simple replacement argument,
essentially the same as in the proof of Lemma 27, shows that the F -freeness of G′ − F ′ implies that
G− F is also F -free. Also, |F | ≤ |F ′| due to |F̃X | ≤ |F̃ ′ρ|, so the solution F can be returned by the
solution-lifting algorithm.

We henceforth define a replaceable protrusion in G as a 2bF -protrusion X with ‖G[X]‖ > cF ,
where cF is the constant given by Lemma 23.

24



Note that the proof of Lemma 23 a priori does not give any concrete upper bound on the sizes of
the replacement graphs stored in table T , and on the obtained constant cF . Also, it is unclear how
to compute the table T based on the knowledge of F . Obviously, we do not need the computability
of T or any concrete upper bound on cF , because we design algorithms for a family F fixed in
advance, so objects that depend on F only may be hard-coded in the algorithms. However, we find
it instructive to discuss the matter of computability of T and the bound on cF , at least intuitively.

First of all, the algorithm of Arnborg et al. [1] is based on constructing an automaton that
traverses the given tree decomposition of a graph. In our case, we have a constant upper bound on
the minimum size of the sought set, so we are actually working with a finite-state tree automaton.
By tracing the standard translation from MSO2 to tree automata, one can estimate the number of
states in the tree automaton constructed by the algorithm. This number is bounded by a tower
function of constant height applied to MAXF and the width of the decomposition; this is because
the formula expressing the problem has constant quantifier rank. This also gives an upper bound
on the minimum size of a tree decomposition that the automaton evaluates to a given state, which
directly corresponds to the sizes of graphs stored in table T . The automaton can be explicitly
constructed by the algorithm of Arnborg et al. [1], and from the automaton one can retrieve small
candidates for graphs stored in T .

The above strategy roughly shows that the graphs that are stored in T are of size bounded by a
tower function of constant height applied to MAXF and the width of the decomposition. However,
based on this idea one can also give a direct proof, as follows. Take any graph G stored in T , and
let T be its tree-cut decomposition of width at most bF . With every node x of T one can associate
a boundaried graph Gx, which corresponds to the subtree rooted at x; the adhesion between x
and its parent forms the boundary. Assume for a moment that G is very large. Suppose first that
the depth of T is large, more precisely larger than the total number of signatures of r-boundaried
graphs, for r ≤ bF . Then there is some root-to-leaf path in T that contains two nodes x and y, say
x being an ancestor of y, for which Gx and Gy have the same signatures. It can be easily seen that
the part between Gx and Gy can be “unpumped”: we can replace Gx with Gy, obtaining a smaller
graph G′ with the same signature as G. If this unpumping cannot be applied, then the depth of T
is bounded by the number of signatures, and Gx can be large only if some node has a large number
of children. But then again, a similar unpumping strategy can be applied if the number of children
is larger than some constant depending on the number of possible signatures. Thus we obtain an
explicit upper bound on the size of a graph that can be stored in T instead of G.

Once all these arguments are formalized, one can prove the following result that gives an upper
bound on the sizes of graphs that are stored in T .

Lemma 31. Suppose r is a positive integer and ρ is a signature of r-boundaried graphs. If
there exists an F-free r-boundaried graph with signature ρ, then there is also one with at most
4exp(poly(r,MAXF )) vertices and edges, where 4exp(·) is the 4-times folded exponential function.

Note that once we have a computable upper bound, table T may be constructed from F in
constant time by brute force. We would like to remark that the same unpumping strategy was
recently applied by Chatzidimitriou et al. [7] for the parameter tree-partition width, which is similar
to treewidth. The full proof of Lemma 31 will appear in the journal version of this paper.

4.2 Finding excessive protrusions

Recall that a replaceable protrusion in a graph G is a 2bF -protrusion X with ‖G[X]‖ > cF . To
find replaceable protrusions in the input graph, we need to assume some additional connectivity
constraint (which will be implied from a connected tree-cut decomposition) – this is captured by
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the following definition. The larger protrusion size is needed to make any connected component of
the protrusion replaceable.

Definition 32. A 2bF -protrusion B in a connected graph G is called excessive if ‖G[B]‖ > 2bF · cF
and G−B has at most two connected components.

Replaceable protrusions could be found easily if we allowed a (far worse) running time of the
form ‖G‖O(bF ), but this would affect the running times in both our main results. With the above
definition in hand, we use the following two techniques instead.

The first is important cuts, introduced by Marx [32], see also the exposition in [13, Chapter 8.2].
Intuitively, we consider (S, T )-cuts (i.e., edge sets whose removal separates the vertex sets S and T )
that are ‘pushed’ towards T , meaning that we make the set of vertices reachable from S inclusion-wise
maximal, without increasing the cut size. Such cuts can be effectively enumerated, allowing us to
find a protrusion’s boundary.

Definition 33. Consider a graph G and disjoint vertex sets S, T ⊆ V (G). Let ∆ ⊆ E(G) be an
(S, T )-cut and let R be the set of vertices reachable from S in G−∆. We say ∆ is an important cut
if it is inclusion-wise minimal and there is no (S, T )-cut ∆′ with |∆′| ≤ |∆| such that R′ ⊃ R, where
R′ is the set of vertices reachable from S in G−∆′.

Lemma 34 ( [32]). Let S, T ⊆ V (G) be two disjoint sets of vertices in a graph G and let k ≥ 0.
The set of all important (S, T )-cuts of size at most k can be enumerated in time O(4k · k · ‖G‖).

The second technique we use is randomized contractions by Chitnis et al. [9]. While randomized
refers to the intuition behind this technique, following [9] we use the technique of splitters of Naor
et al. [34] to make its usage deterministic. A convenient black-box access to splitters is given by the
following lemma.

Lemma 35 ( [9]). Given a set U of size m together with integers 0 ≤ a, b ≤ m, one can in time
2O(min(a,b) log(a+b)) ·m logm construct a family F of at most 2O(min(a,b) log(a+b)) · logm subsets of U ,
such that the following holds: for any sets A,B ⊆ U with A ∩B = ∅, |A| ≤ a, |B| ≤ b, there exists
a set T ∈ F with A ⊆ T and B ∩ T = ∅.

These two techniques allow us to reduce excessive protrusions: we use the randomized contractions
technique to find a large enough subset of a presumed excessive protrusion, after which important
cuts allow us to find a boundary that makes this subset a replaceable protrusion.

Lemma 36. There is an algorithm that, given a connected graph G, runs in time O(‖G‖ log ‖G‖·|G|2)
and either correctly concludes that G does not contain any excessive protrusion, or it outputs some
replaceable protrusion in G.

Proof. We describe the algorithm under the assumption that G contains some excessive protrusion;
in this case, we show that the algorithm can compute some replaceable protrusion. If the algorithm
fails to find some replaceable protrusion, then this certifies that G has no excessive protrusions, and
this conclusion can be reported by the algorithm.

Let B be an excessive protrusion in G. Since G is connected and B is a 2bF -protrusion, B
induces at most 2bF connected components in G. Let B′ be the largest one (in the number of
edges). Then clearly B′ is a 2bF -protrusion with ‖B′‖ > cF and with G[B′] connected. Furthermore,
G−B′ has at most two components, because G−B has, and every connected component of G[B]
is adjacent to at least one of the components of G−B, due to the connectivity of G. We consider
B′ instead of B from now on.
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Let T be a tree spanning a subset of B′ with min(|B′|, cF + 2) vertices. Then ‖T‖ ≤ cF + 1 and
‖G[V (T )]‖ > cF . Let s1, s2 be arbitrary vertices in the two components of G−B′ (set s1 = s2 if it
has only one component) and set S = {s1, s2}.

To find T , we now apply Lemma 35 for universe U := E(G) and constants a := ‖T‖ ≤ cF +1 and
b := |δ(B′)| ≤ 2bF . Thus, in time O(‖G‖ log ‖G‖) we construct a family F of O(log ‖G‖) subsets of
E(G) with the following guarantee: for at least one F ∈ F, we have E(T ) ⊆ F and δ(B′) ∩ F = ∅.
The algorithm guesses this set F ∈ F and the vertices of S (by iterating over |F| · |G|2 possibilities);
we shall consider the guess successful if F indeed has the above property and S indeed intersects
each component of G−B′.

Make the edges of F undeletable by considering the graph Ḡ obtained from G by contracting all
edges in F (we use the same vertex labels in Ḡ by abuse of notation). Observe that δ(B′) is an
(S, V (T ))-cut in G of size at most 2bF . If the guess was successful, it is an (S, V (T ))-cut of size at
most 2bF in Ḡ too, and furthermore by choice of S, the set of vertices reachable from S in Ḡ− δ(B′)
is precisely V (Ḡ) \B′.

Consider a corresponding important cut, that is, let ∆ ⊆ E(Ḡ) be an important (S, V (T ))-cut
of size at most 2bF such that the set of vertices reachable from S in Ḡ−∆ contains V (Ḡ) \B′ (the
existence of such a cut is easily proved, see [13, 32]). Let X̄ be the set of vertices reachable from T
in Ḡ−∆; then X̄ ⊆ B′ and δ(X̄) ⊆ ∆.

Let X be the set of vertices in G that gets contracted to X̄ in Ḡ. Then also X ⊆ B′ and
δ(X̄) ⊆ ∆ (as a subset of E(G)\F ). That is, X is F -free (because B′ is) and |δ(X)| ≤ 2bF , meaning
X is a 2bF -protrusion. As X contains V (T ), we have ‖G[X]‖ ≥ ‖G[V (T )]‖ > cF , meaning X is a
replaceable protrusion.

Since ∆ is an important cut of size at most 2bF , we can use Lemma 34 to find it, and thus to find
X, in O(‖G‖) time. Therefore, for at least one of O(|G|2 log ‖G‖) guesses, the algorithm will find a
replaceable protrusion. To handle unsuccessful guesses, the algorithm checks if the obtained set X
is in fact a replaceable protrusion; this takes O(‖G‖) time for each guess, by Proposition 9.

We remark that we only defined excessive protrusions in connected graphs. Note that if B is an
excessive protrusion in a connected component H of G, it would not necessarily be an excessive
protrusion in G, since G−B may have more components than H−B (they are however not adjacent
to B). We will thus consider the property that no component of G has an excessive protrusion. By
this we mean that for each connected component H of G, there is no excessive protrusion in H.

By exhaustively (at most ‖G‖ times) executing the algorithm of Lemma 36 and replacing any
obtained protrusion using Lemma 23, we can get rid of all excessive protrusions. We formalize this
in the following lemma, which will serve as the abstraction of protrusion replacement in the sequel.

Lemma 37 (Exhaustive Protrusion Replacement). There is an algorithm that, given a graph
G, runs in time O(‖G‖2 log ‖G‖ · |G|2) and computes a graph G′ such that OPT(G) = OPT(G′),
‖G′‖ ≤ ‖G‖, and no connected component of G′ has an excessive protrusion.

Moreover, there exists a solution-lifting algorithm that works as follows: given a subset F ′ of
edges of G′ for which G′−F ′ is F-free, the algorithm runs in time O(‖G‖2) and outputs a subset F
of edges of G such that |F | ≤ |F ′| and G− F is F-free.

Proof. Inspect every connected component H of G, and to each of them apply the algorithm of
Lemma 36, which runs in time O(‖G‖ · log ‖G‖ · |G|2). This algorithm either concludes that H has
no excessive protrusion, or finds some replaceable protrusion X in H. Then X is also a replaceable
protrusion in G, so by applying Lemma 23 to X we can compute in linear time a new graph G′

with OPT(G′) = OPT(G) and ‖G′‖ < ‖G‖. Having found G′, we can restart the whole algorithm
on G′. Eventually, the algorithm of Lemma 36 concludes that each component has no excessive
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protrusions and can hence output G. The solution-lifting algorithm follows by iteratively applying
the solution-lifting algorithm of Lemma 23 for all the consecutive replacements performed above.

Since the number of edges strictly decreases in each iteration, the number of iterations is bounded
by the number of edges of the original graph G. Therefore, the claimed running time follows.

5 Constant-factor approximation

It would be ideal if just applying the Exhaustive Protrusion Replacement (Lemma 37) reduced
the size of the graph to linear in OPT. Then, we would already have a linear kernel, and taking
all its edges would yield a constant-factor approximation. Unfortunately, there are graphs with
no excessive protrusions, where the size is not bounded linearly in OPT. To see this, observe that
even an arbitrarily large group of parallel edges is not a protrusion, so our current reduction rules
will not reduce their multiplicity, even if they amount to 99% of the graph. Hence, we need to
find a way to discover and account for such groups (we remark here that reducing each to O(OPT)
would be relatively easy, giving a quadratic kernel only, though). More generally, the structures
that turn out to be problematic are large groups of constant-size 2-protrusions attached to the same
pair of vertices; a group of parallel edges is a degenerated case of this structure. To describe the
problematic structures formally, we introduce the notion of a bouquet.

Pruning bouquets and sets of parallel edges to constant size does not give an equivalent graph
(because a larger bouquet may always require a larger number of edge deletions). However, the
edge set of the resulting pruned graph intersects some optimal solution of the original graph; this is
because for any deleted element, pruning preserves some number of isomorphic elements. Moreover,
since the intersection is a solution for the pruned graph and the pruned graph has no bouquets, we
can show that the number of edges of the pruned graph is linear in the size of the intersection.

Pruning thus gives a procedure that finds a subset of edges which intersects an optimal solution
and such that the size of the subset is at most a constant factor larger than the size of this intersection.
By iteratively finding such a set and removing it, we obtain a solution that is at most a constant
factor larger than the optimum. In the next section we will leverage the obtained constant-factor
approximation to reduce all bouquets at once, thus achieving a linear kernel.

5.1 Bouquets

Let us define the following constant (recall that MAXF = maxH∈F ‖H‖)

dF := max{2bF · cF + 2bF , 3MAXF}+ 1

We now introduce the notions of bouquets and thetas. Intuitively, a bouquet is a family of at least
dF isomorphic 2-protrusions, while a theta is a set of at least dF parallel edges.

Definition 38. Consider a graph G, a set U ⊆ V (G) and a family of 2-protrusions {Si}i∈I such
that for each i ∈ I:

• N(Si) = U (implying |U | ≤ 2);

• G[Si] is connected; and

• G[U ∪ Si] is isomorphic to G[U ∪ Sj ] for all i, j ∈ I,
with an isomorphism that maps each vertex of U to itself.
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We call such a family a bouquet attached to U if it is maximal under inclusion (i.e. there is no proper
superfamily which is also a bouquet) and has at least dF elements. The edge set of the bouquet is
the set of all edges incident to some Si.

Definition 39. For two vertices u, v ∈ V (G), a theta attached to {u, v} is a set of edges between u
and v that is maximal under inclusion and has at least dF elements.

The constant dF is chosen so that a protrusion containing a set to which a bouquet (or theta) is
attached is large enough to be excluded as an excessive protrusion, and so that any immersion of a
graph of F cannot simultaneously intersect all elements of a bouquet. Indeed, in any immersion of
some H ∈ F in a graph G, the image of an edge of H is a path in G, which visits every vertex of
the bouquet’s attachment at most once, and hence intersects at most three elements of the bouquet.
Thus in total, the immersion model intersects at most maxH∈F 3‖H‖ = 3MAXF elements of the
bouquet or theta, which is less than dF .

We now show that the number of edges of a graph with no excessive protrusions, no bouquets
and no thetas is linearly bounded in the optimum solution size, which formalizes the intuition that
these structures are the only obstacles preventing the graph from being a linear kernel.

The following well-known notion and lemma are useful for proving such bounds. For a rooted
forest T and a set M ⊆ V (T ), the least common ancestor closure (lca-closure) of M is the set
lca(M) ⊆ V (T ) obtained from M by repeatedly adding to it the least common ancestor of every
pair of nodes in the set (unless the nodes are in different connected components of the forest T ).

Lemma 40 ([19]). Let T be a rooted forest and M ⊆ V (T ). Then |lca(M)| ≤ 2|M | and every
connected component C of T − lca(M) has at most two neighbors in T .

Lemma 41. Let G be a connected graph with no excessive protrusions, no bouquets and no thetas.
Then either G is F-free, or ‖G‖ ≤ c · OPT(G) for some constant c depending on F only.

Proof. Denote k := OPT(G) and suppose G is not F-free, that is, k ≥ 1. Let F ⊆ E(G) be a set
of k edges such that G− F is F-free. By Corollary 20, G− F has a neat tree-cut decomposition
(T,X = {Xt, : t ∈ V (T )}) with width′(T,X ) ≤ bF . Let M ⊆ V (T ) be the lca-closure of the set of
the nodes of T that correspond to the bags which contain some vertices incident to edges of F .
Since |F | ≤ k there are at most 2k such bags and, by Lemma 40, we have that |M | ≤ 4k and that
every connected component of T −M has at most two neighbors in T ; see Figure 5. Recall that by
XT ′ we denote the union of bags at the nodes of a subtree T ′ of T .

Claim 42. For any connected component T ′ of T −M , ‖G[XT ′ ]‖ ≤ 2bF · cF .

Proof. Suppose to the contrary that ‖G[XT ′ ]‖ > 2bF · cF . We verify that then XT ′ is an excessive
protrusion. Indeed, XT ′ has no vertices incident to F , so G[XT ′ ] is F -free. Moreover, T ′ has at most
two neighbors in T , so |δG(XT ′)| ≤ 2bF and T − V (T ′) has at most two components adjacent to T ′.
By the properties of neat decompositions, the unions of bags of these two components of T − V (T ′)
induce at most two connected components in G− F ; in other words, G− F −XT ′ has at most two
connected components adjacent to XT ′ , say C1, C2. Then NG−F (XT ′) ⊆ C1 ∪C2 and since XT ′ has
no vertices incident to F , also NG(XT ′) ⊆ C1 ∪ C2. Since G is connected, this implies G−XT ′ has
at most two connected components (because every vertex of G−XT ′ has a path connecting it to
XT ′ in G, which must visit NG(XT ′)). This shows that XT ′ is an excessive protrusion, contradicting
assumptions. y
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We set c′ := 2bF · cF .
Each connected component of T −M has exactly one or exactly two neighbors in M ; it cannot

have zero neighbors in M , as it would then induce a component in G− F with no vertices incident
to F , contradicting that G is connected and not F-free. Observe that the number of components
that have exactly two neighbors in M is at most |M | − 1, because replacing each such component
with an edge connecting its neighbors yields a forest with vertex set M . It remains to bound the
number of components in T −M with exactly one neighbor in M .

Suppose T1, . . . , Tp are those connected components of T −M for which the neighborhood in T
is exactly t, for some t ∈ M . Again, by XTi we denote the union of the bags at the nodes of Ti.
By Corollary 21, at most 2bF + 1 of them are not connected with neat adhesions to t, so assume
w.l.o.g. that T1, . . . , Tp−2bF−1 are. That is, NG(XTi) is a non-empty subset of Xt of size at most
two, for all i = 1, . . . , p − 2bF − 1. Since there are at most b2F such subsets of size at most 2, at

least p−2bF−1
b2F

≥ p/b2F − 3 of the sets XTi have the same neighborhood U in G. By the neatness

of the decomposition, each G[XTi ] is connected and moreover ‖G[XTi ]‖ ≤ c′ by Claim 42. This
implies in particular that |XTi ∪ U | ≤ c′ + 3. This means that there are at most (c′ + 4)2c

′
possible

isomorphism types for G[XTi ∪U ]. If there were at least dF components with the same isomorphism
type, they would form a bouquet. Hence p/b2F − 3 ≤ (c′ + 4)2c

′ · dF , meaning that

p ≤ ((c′ + 4)2c
′ · dF + 3) · b2F .

We define c′′ := ((c′ + 4)2c
′ · dF + 3) · b2F .

Therefore, T −M is partitioned into at most |M | − 1 + c′′ · |M | ≤ (c′′ + 1) · |M | connected
components. By Claim 42, for each of these components, the vertices contained in its bags induce a
subgraph with at most c′ edges. In addition to these edges, the edge set of G contains only:

• k edges of the deletion set F ;

• dF · b2F edges in G[Xt] for each t ∈M (G[Xt] has at most bF vertices and every pair has less
than dF edges in between, as G has no thetas); and

• up to ((c′′ + 1) · |M |+ |M |) · bF = (c′′ + 2) · |M | · bF edges between parts of the partition of
V (T ) given by individual elements of M and connected components of T −M (each edge of
T between different parts yields at most bF edges).

Since |M | ≤ 4k, we infer that the number of edges in G is at most

4(c′′ + 1)k · c′ + k + 4k · dF · b2F + 4(c′′ + 2)k · bF = c′′′ · k,

for a constant c′′′ := 4c′(c′′ + 1) + 1 + 4dF · b2F + 4bF (c′′ + 2).

5.2 Finding a constant-factor approximation piece by piece

To handle bouquets and thetas algorithmically, we first show that they are disjoint, as otherwise
they would constitute a large protrusion. In this subsection, we frequently use the observation
that, in a connected graph, a 2-protrusion with more than 2bF · cF edges is an excessive protrusion.
Indeed, if X is a 2-protrusion in a connected graph G, then it is always the case that G−X has at
most two connected components, due to |δ(X)| ≤ 2.

Lemma 43. Let G be a connected graph with no excessive protrusions. Then every two bouquets
and/or thetas in G have disjoint edge sets. Furthermore, if a bouquet or theta is attached to
U ⊆ V (G), then U is disjoint with all elements of any bouquet.
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F

M

Figure 5: A graph G with a solution F (five red dotted edges), in a tree-cut decomposition of G−F .
The set M used in Lemma 41 is highlighted in blue: three bags incident to F , a fourth central one
in their lca-closure. Remaining components turn out to have sizes bounded by a constant (light
gray). Two bouquets are present, their attachments visible as light yellow vertices.

Proof. Suppose a bouquet or theta X is attached to UX and a bouquet Y = {Yj}j∈J is attached
to UY . Observe that either |UX | = 1 or the two vertices of UX are joined by at least dF > 2
edge-disjoint paths in G; so in any case all of UX is on one side of the cut δ(Yj), for each j ∈ J .
If UX ⊆ Yj for some j, then all but possibly two elements of X would be contained in the side
Yj of this cut. Hence Yj would be a 2-protrusion with ‖G[Yj ]‖ ≥ dF − 2 > 2bF · cF and thus an
excessive protrusion, contradicting assumptions. We infer that UX is disjoint with the elements of
any bouquet, which concludes the second part of the claim.

To show the first part of the claim, first notice that two thetas cannot have intersecting edge
sets, as they are maximal sets of parallel edges. Secondly, if a theta contained an edge from the edge
set of a bouquet Y = {Yj}j∈J , then either it would be an edge of δ(Yj) for some j ∈ J , contradicting
|δ(Yj)| ≤ 2; or it would be an edge of G[Yj ], again implying that ‖G[Yj ]‖ > 2bF · cF and that thus
Yj is an excessive protrusion, contradicting assumptions.

Finally, consider the case X = {Xi}i∈I is a bouquet attached to UX and Y = {Yj}j∈J is a
bouquet attached to UY . Let X =

⋃
i∈I Xi and Y =

⋃
j∈J Yj . We already showed that UX ∩ Y = ∅

and symmetrically UY ∩X = ∅. Therefore UX , UY ⊆ V (G) \ (X ∪ Y ). We infer that the edge-sets
of the two bouquets can intersect only if the sets X and Y intersect. Hence Xi ∩ Yj 6= ∅ for
some i ∈ I, j ∈ J . If there was an edge between some u ∈ Xi ∩ Yj and some v ∈ Yj \ Xi, then
v ∈ N(Xi) = UX and v ∈ Yj , contradicting UX ∩ Y = ∅. Hence there is no edge between Xi ∩ Yj
and Yj \Xi. Since Yj is connected and Xi ∩ Yj is non-empty, this implies Yj ⊆ Xi. A symmetric
reasoning yields that Xi ⊆ Yj , so Xi = Yj . But then UX = UY and all the elements of both bouquets
are pairwise isomorphic with an isomorphism that fixes UX = UY . We infer that the union of the
two bouquets is also a bouquet. Hence, by maximality of bouquets, we conclude that {Xi}i∈I and
{Yj}j∈J are in fact the same bouquet.
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We now proceed to formalizing the procedure of pruning all bouquets and thetas to constant
size. We show that the remaining edge set, named ∆, has the property that its removal from G
strictly decreases OPT(G) and its size is linear in that decrement.

Lemma 44. Given a connected graph G with no excessive protrusion that is not F-free, one can
find in in time O(|G|3) a set ∆ ⊆ E(G) such that (for some c depending on F only):

OPT(G−∆) < OPT(G) and |∆| ≤ c · (OPT(G)− OPT(G−∆)).

Proof. The algorithm finds all bouquets and thetas and deletes all but dF − 1 elements from each.
More precisely, the algorithm first deletes all but dF − 1 edges from each theta in G, resulting in a
subgraph G′. Note that since dF − 1 > 2bF , this reduction of thetas cannot introduce excessive
protrusions in the graph and hence remaining bouquets are disjoint in the sense of Lemma 43. The
algorithm then sets V ′ := V (G′) = V (G), finds all bouquets in G′ and deletes from V ′ all vertices
of all but dF − 1 elements of each bouquet. The algorithm then outputs ∆ := E(G′[V ′]).

Bouquets in G′ can be found by checking all possible attachments U of size at most 2 and all
components of G− U containing at most 2bF · cF edges (2-protrusions cannot have more edges, as
they would form excessive protrusions otherwise). There are O(|G|2) possible attachments U and
checking all components of G− U for any U takes time O(|G|), hence the running time follows.

To prove that ∆ = E(G′[V ′]) has the claimed properties, let us first show that G′[V ′] is not
F-free; we use the following slightly more general statement later.

Claim 45. Let S ⊆ V (G). If G′[V ′ ∩ S] is F-free, then so is G′[S]. If G′[S] is F-free, then so is
G[S]. In particular, G′[V ′] is not F-free.

Proof. Suppose G[S] (or G′[S]) is not F -free. Then there is an immersion model of a graph from F
in G[S] (or G′[S]). Since such a model intersects at most dF − 1 elements of any theta or bouquet,
we can find an immersion model that intersects only the elements that were not deleted from G
when constructing G′, nor from V ′ when constructing G′[V ′]. This means G′[S] and G′[V ′ ∩ S] also
contain an immersion of a graph in F , that is, they are not F-free. y

Consider now an optimal solution F ⊆ E(G) for G. Then F ∩∆ is a solution (not necessarily
optimal) for the subgraph G′[V ′], meaning F ∩ ∆ is non-empty (as G′[V ′] is not F-free) and
OPT(G′[V ′]) ≤ |F ∩∆|.

Observe that since OPT(G) = |F |, we have OPT(G)− OPT(G− F ∩∆) = |F ∩∆|. Hence

OPT(G)− OPT(G−∆) ≥ |F ∩∆|, and in particular, OPT(G−∆) < OPT(G).

We show in the three claims below that G′[V ′] is connected and has no excessive protrusions, no
bouquets and no thetas. Therefore, by Lemma 41, G′[V ′] has at most c · OPT(G′[V ′]) edges, for
some constant c depending on F only. Using the above inequalities, we reach the desired conclusion:

|∆| = |E(G′[V ′])| ≤ c · OPT(G′[V ′]) ≤ c · |F ∩∆| ≤ c · (OPT(G)− OPT(G−∆)).

It remains to show that G′[V ′] is indeed connected, has no excessive protrusions, no bouquets
and no thetas. Clearly G′ has no theta and thus G′[V ′] has no theta either. Any edge or path
deleted in the construction can be replaced with one that was not deleted, hence G′[V ′] is connected.

Claim 46. G′ has no excessive protrusions.
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Proof. Suppose S ⊆ V (G′) = V (G) is an excessive protrusion in G′. If there was a theta in G
attached to a set U with one vertex in S and the other outside of S, then in G′ there would still be
least dF − 1 edges connecting S and V (G′) \ S, contradicting that |δG′(S)| ≤ 2bF < dF − 1. Hence
there is no such theta and, in particular, δG′(S) = δG(S).

Since S is not an excessive protrusion in G, there must be a theta in G′ with an attachment U
contained in S. Thus G[S] has at least dF edges, which is more than 2bF · cF . As S is an excessive
protrusion in G′, G′ − S has at most two connected components and thus so does G− S. Note that
since S is a 2bF -protrusion in G′, we have |δG(S)| = |δG′(S)| ≤ 2bF and since G′[S] is F-free, so is
G[S] (Claim 45). Therefore S is an excessive protrusion in G, a contradiction. y

Claim 47. G′[V ′] has no excessive protrusions.

Proof. Suppose S is an excessive protrusion in G′[V ′]. Since it is not an excessive protrusion in G′,
it must be the case that S had more incident edges in G′ than in G′[V ′], i.e. δG′(S) ) δG′[V ′](S).
By the construction of G′, we infer that there is a bouquet {Yj}j∈J in G′ attached to some UY and
a j ∈ J such that Yj was removed when constructing V ′ and was adjacent to S. Since N(Yj) = UY ,
we have that UY ∩ S 6= ∅.

We claim that UY ⊆ S. If UY has one vertex this is clear. Otherwise, if UY has two vertices,
then at least dF − 1 elements of the bouquet connect them in G′[V ′], yielding a family of more
than 2bF edge-disjoint paths between them. Thus UY lies entirely on one side of the cut δG′[V ′](S),
because |δG′[V ′](S)| ≤ 2bF . Since UY ∩ S 6= ∅, we conclude that UY ⊆ S.

Similarly, we deduce that every other bouquet in G′ has an attachment fully contained in either
S or in V ′ \ S. Recall that V ′ is obtained from V (G′) by removing vertices of some elements from
each bouquet. It follows that δG′[V ′](S) is a cut in G′ too. More precisely, let S∗ ⊆ V (G′) be the set
consisting of S and those elements of bouquets deleted when constructing V ′ that were attached to
vertices in S. Then δG′(S

∗) = δG′[V ′](S).
Note that as S is a 2bF -protrusion in G′[V ′], we have |δG′(S∗)| = |δG′[V ′](S)| ≤ 2bF and since

G′[S] = G′[V ′ ∩ S∗] is F-free, so is G′[S∗] (Claim 45). Thus S∗ is a 2bF -protrusion in G′.
Since UY ⊆ S ⊆ S∗, S∗ must contain all elements of {Yj}j∈J except for at most |δG′(S∗)| ≤ 2bF .

Consequently,
‖G′[S∗]‖ ≥ dF − 2bF > 2bF · cF .

As S is an excessive protrusion in G′[V ′], we have that G′[V ′] − S has at most two connected
components. The graph G′ − S∗ can be obtained from G′[V ′] − S by reintroducing elements of
bouquets (which induced connected subgraphs) with attachments in V ′ \ S, hence G− S∗ also has
at most two components. Therefore, S∗ is an excessive protrusion in G′, a contradiction. y

Claim 48. G′[V ′] has no bouquet.

Proof. Suppose G′[V ′] has a bouquet {Xi}i∈I attached to some UX ⊆ V ′. Since it was not removed
when constructing V ′, it was not a bouquet in G′, so it must be that δG′[V ′](Xi) ( δG′(Xi) for some
i ∈ I. By the construction of V ′, there must be some bouquet {Yj}j∈J attached to some UY in G with
some Yj , j ∈ J adjacent to Xi. Again, UY either consists of one vertex, or of two vertices that are
still connected in G′[V ′] by dF − 1 > 2 edge-disjoint paths (namely paths contained in the elements
of {Yj}j∈J that did not get deleted). Hence all of UY lies on the same side of the cut δ(Xi) in G′[V ′].
Since Yj is adjacent to Xi, NG′(Yj) = UY intersects Xi and thus UY ⊆ Xi. As |δG′[V ′](Xi)| ≤ 2, we
have that δG′[V ′](Xi) can intersect at most two of the dF − 1 elements of the bouquet {Yj}j∈J that
survive in G′[V ′]. All the other elements of this bouquet must lie on the same side of the cut δ(Xi)
as UY , that is, they must be contained in Xi. So in fact Xi is a 2-protrusion in G′[V ′] containing
at least dF − 3 > 2bF · cF edges and thus an excessive protrusion, a contradiction. y
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With the above claims, we conclude that G′[V ′] has no excessive protrusions, no bouquets and
no thetas. Therefore, it satisfies the conditions of Lemma 41.

We extend Lemma 44 to disconnected graphs by simply considering each connected component
separately.

Corollary 49. Suppose we are given a graph G that is not F-free and in which every connected
component does not have any excessive protrusion. Then one can find in time O(|G|3) a set
∆ ⊆ E(G) such that (for some constant c depending on F only):

OPT(G−∆) < OPT(G) and |∆| ≤ c · (OPT(G)− OPT(G−∆)).

Proof. Let C1, . . . , Cr be the connected components of G and let without loss of generality C1, . . . , Cr′

be those that are not F-free, for some r′ ≤ r ∈ N. Since G is not F-free and all graphs of F
are connected, we have r′ ≥ 1. Since every component Ci has no excessive protrusion, for each
1 ≤ i ≤ r′ we compute a set ∆i ⊆ E(Ci) by invoking Lemma 44 on Ci. Then, for some constant c
depending on F only, we have that:

OPT(Ci −∆i) < OPT(Ci) and |∆i| ≤ c · (OPT(Ci)− OPT(Ci −∆i))

Let ∆ =
⋃r′

i=1 ∆i. Since all the graph in F are connected, OPT(G) =
∑r

i=1OPT(Ci). Components
Ci that are F-free have OPT(Ci) = 0, thus

OPT(G) =

r′∑
i=1

OPT(Ci) and similarly OPT(G−∆) =

r′∑
i=1

OPT(Ci −∆i)

Since r′ ≥ 1, we have OPT(C1 −∆1) < OPT(C1) and thus OPT(G−∆) < OPT(G). Finally

|∆| =
r′∑
i=1

|∆i| ≤ c · (OPT(G)− OPT(G−∆)).

Therefore, the algorithm can in O(
∑r′

i=1 |Ci|3) ≤ O(|G|3) time output ∆ as a result.

To get a constant-factor approximation algorithm, we invoke the above corollary iteratively.
Intuitively, we maintain a set of edges F , initially empty, and invoke the corollary on G−F to find a
set ∆ such that adding it to F decreases OPT(G−F ), while increasing |F | by only a constant factor
more. We then run the algorithm of Lemma 37 to remove excessive protrusions from G−F , reducing
in a sense those parts of the graph where no more edges need to be deleted. Eventually, we reach
OPT(G− F ) = 0, meaning F is a solution of size linear in OPT(G). The proof is straightforward,
but requires reconstructing at every step a solution to the original graph given to Lemma 37.

Theorem 50 (Theorem 2, reformulated). There is an algorithm running in time O(‖G‖3 log ‖G‖ ·
|G|3) that given a graph G, outputs a set F ⊆ E(G) of size at most capx · OPT(G) such that G− F
is F-free, for some constant capx depending on F only.

Proof. Let G0 = G and ∆0 = ∅. The algorithm computes a sequence of graphs Gi with ‖Gi‖ ≤ ‖G‖
and sets ∆i ⊆ E(Gi) as follows.

For i ≥ 0, Gi+1 is computed from Gi −∆i by invoking Lemma 37 on this graph. That is, in
time O(‖G‖2 log ‖G‖ · |G|3) we compute a graph Gi+1 in which no connected component contains
any excessive protrusions and moreover

‖Gi+1‖ ≤ ‖Gi −∆i‖ ≤ ‖G‖ and OPT(Gi+1) = OPT(Gi −∆i).
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For i ≥ 1, provided Gi is not F -free, ∆i is computed from Gi by invoking Corollary 49. That is,
in time O(|G|3) we find a set ∆i ⊆ E(Gi) such that

OPT(Gi −∆) < OPT(Gi) and |∆i| ≤ c · (OPT(Gi)− OPT(Gi −∆i)).

Here, c is the constant given by Corollary 49.
Eventually, since OPT(Gi+1) < OPT(Gi), there is an 1 ≤ r ≤ OPT(G) such that Gr is F-free.

We reconstruct a sequence of solutions Fi ⊆ E(Gi) for Gi as follows. Clearly Fr := ∅ is a solution
for Gr. If Fi+1 is a solution for Gi+1, then using the solution-lifting algorithm of Lemma 37,
a solution F ′i for Gi − ∆i can be constructed in time O(‖G‖2) such that |F ′i | ≤ |Fi+1|. Then
Fi := F ′i ∪∆i is a solution for Gi. This way, we reconstruct a solution F0 for G0 = G in at most
OPT(G) iterations, that is, in total time O(‖G‖2 · OPT(G)). Constructing the graphs Gi took
O(‖G‖2 log ‖G‖ · |G|3 · OPT(G)) total time, so since OPT(G) ≤ ‖G‖, the time bound follows.

To bound the size of the solution, we show inductively that |Fi| ≤ c · OPT(Gi) for i = r, . . . , 0.
Clearly this hold for i = r. If it holds for i+ 1, then it holds for i, because:

|Fi| ≤ |F ′i |+ |∆i| ≤ |Fi+1|+ |∆i| ≤ c ·OPT(Gi+1) + c · (OPT(Gi)−OPT(Gi+1)) = c ·OPT(Gi).

6 Linear kernel

In the previous section we have already observed (Lemma 41) that the only structures in the graph
that prevent it from being a linear kernel are excessive protrusions, bouquets, and thetas. Using
the Exhaustive Protrusion Replacement (Lemma 37) we can get rid of excessive protrusions, but
bouquets and thetas can still be present in the graph.

It would be ideal if we could reduce the size of every bouquet or theta to a constant, but
unfortunately we are so far unable to do this. Instead, we employ the following strategy based on
the idea of amortization. First, we reduce all excessive protrusions using Lemma 37. Second, using
Theorem 50, we compute an approximate solution F that is larger than the optimum only by a
constant multiplicative factor. Then, we investigate every bouquet in the graph and we estimate
the number of edges of F that, in some sense, “affect” the bouquet. It can be then shown that the
size of the bouquet can be reduced to linear in terms of the number of edges that affect it. Thus,
after performing this reduction there still might be large bouquets in the graph, but only because a
large number of edges of F affect them. However, every edge of F will affect at most a constant
number of bouquets, so the total size of the bouquets will amortize to linear in terms of |F |, hence
also linear in terms of OPT. The same amortization reasoning also enables us to bound the total
sum of sizes of thetas.

We first show that if we know a local solution that isolates a bouquet into an F -free part, then
this bouquet can be proportionally bounded without changing OPT(G).

Lemma 51. Let {Xi}i∈I be a bouquet attached to U in G. Suppose ∆ ⊆ E(G) is such that all the
connected components of G−∆ that intersect U ∪

⋃
i∈I Xi are F-free. Then OPT(G) = OPT(G′),

where G′ is obtained from G by removing vertices of all except dF + |∆| elements of the bouquet.

Proof. Suppose that, to the contrary, G′ admits an edge subset F ⊆ E(G′) of size k such that
G′ − F is F -free, but G does not. Let C ⊆ V (G) be the union of the vertex sets of those connected
components of G−∆ that contain some vertices of U ∪

⋃
i∈I Xi. By assumption, G[C]−∆ is F -free.

Note that δ(C) ⊆ ∆.
Let EC be the set of all the edges incident to vertices of C in G. We claim that |∆| > |F ∩ EC |.

To show this, define F ′ := (F \ EC) ∪∆. Observe that G − F ′ is F-free: as all graphs in F are
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connected, an immersion model of one of them in G− F ′ ⊆ G− δ(C) would either be contained in
C or disjoint from it. The first case would contradict the assumption that G[C]− F ′ ⊆ G[C]−∆ is
F -free. In the second case, the immersion model would be contained in V (G) \C, which is equal to
V (G′) \ C, because C contains all the vertices of the bouquet. That is, it would be contained in
in G[V (G) \ C]− F ′ ⊆ G′[V (G′) \ C]− (F \ EC) = G′[V (G′) \ C]− F , which would contradict the
assumption that G′ − F is F-free. By our supposition that G does not admit a solution of size k,
we infer that |F ′| > k ≥ |F |, and hence |∆| > |F ∩ EC |, as claimed.

Since G−F cannot be F -free, by our assumption that G has no solution of size k, it contains an
immersion model of some graph in F . As argued after the definition of a bouquet, this immersion
model can intersect at most dF elements of the bouquet {Xi}i∈I . Since G′ still has dF + |∆|
isomorphic elements of this bouquet, G′ − F has at least dF + |∆| − |F ∩ EC | > dF isomorphic
elements that are not intersected by F . Therefore, even if the immersion model in G−F intersected
any elements removed from G′, they can be replaced by not intersected elements that remained
unchanged in G′ − F , thus yielding an immersion model of the same graph in G′ − F . This means
that G′ − F is not F-free, a contradiction.

The same reasoning can also be applied to limit the sizes of thetas. The proof is exactly the
same and hence we leave it to the reader.

Lemma 52. Let {ei}i∈I be a theta attached to {u, v} = U in G. Suppose ∆ ⊆ E(G) is such
that all the connected components of G − ∆ that contain some vertex of U are F-free. Then
OPT(G) = OPT(G′), where G′ is obtained from G by removing all edges of {ei}i∈I except for
dF + |∆|.

The above lemmas allow us to reduce bouquets and sets of parallel edges effectively, given a
local part of an approximate solution. By appropriately amortizing bounds with the total size of
the approximate solution, we finally get a linear bound on an irreducible equivalent instance.

Lemma 53. Let G be a connected graph with no excessive protrusions and let F ⊆ E(G) be such
that G− F is F-free. Then either ‖G‖ ≤ c · |F | for some constant c depending on F only, or given
G and F , one can compute in time O(‖G‖ · |G|2) a subgraph G′ of G such that OPT(G) = OPT(G′)
and ‖G′‖ < ‖G‖.

Proof. We begin as in the proof of Lemma 41, except that given F we can now do the same effectively.
That is, using Corollary 20, we compute a neat tree-cut decomposition T = (T,X ) of G− F with
width′(T ) ≤ bF in time O(‖G‖ · |G|2). For a node t of T , by Xt we denote the bag at t.

Let M ⊆ V (T ) be the lca-closure of the set of bags containing a vertex incident to F ; M can
be easily computed in linear time. By Lemma 40, |M | ≤ 4|F | and every connected component
of T −M has at most two neighbors in T . Then Claim 42 from the proof of Lemma 41 can be
argued exactly in the same manner. We recall it for convenience and refer the reader to the proof of
Claim 42 for the argumentation.

Claim 54 (Claim 42, restated). Take any connected component T ′ of T −M and let XT ′ be the
union of the bags at the nodes of T ′. Then

‖G[XT ′ ]‖ ≤ 2bF · cF .

We denote c1 := 2bF · cF .
For a node t ∈M , let F (t) be the set of those edges of F that are incident to some vertex of Xt.

A standard hand-shaking argument shows that∑
t∈M
|F (t)| ≤ 2|F |. (14)
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Let T1, . . . , Tp(t) be the connected components of T − t which contain some other nodes of M and
let S1, . . . , Sq(t) be those with none. Again, by XTi , resp. XSi , we denote the union of bags at the
nodes of Ti, respectively Si.

Consider the forest with vertex set M defined as follows: put an edge between two nodes of M if
there is a component of T −M that neighbors both of them. Observe that p(t) is the degree of t in
this forest. Therefore, as there are at most |M | − 1 edges in any forest on |M | vertices, we infer that∑

t∈M
p(t) ≤ 2(|M | − 1). (15)

Define f(t) := |F (t)|+ bF · p(t) + dF . By (14) and (15) we conclude that∑
t∈M

f(t) ≤ 2|F |+ bF · 2(|M | − 1) + |M | · dF ≤ d1 · |F |, for d1 := 2 + 8bF + 4dF . (16)

We proceed similarly as in the proof of Lemma 41. Consider an arbitrary t ∈M . By Corollary 21,
at least q(t) − (2bF + 1) of the trees S1, . . . , Sq(t) are connected to t via a neat adhesion; let
I1 ⊆ {1, 2, . . . , q(t)} be the set of their indices. That is, for each i ∈ I1 we have that |δ(XSi)| ≤ 2
and N(XSi) is a subset of Xt of size at most 2. Since there are at most b2F subsets of Xt of size at
most 2, at least (q(t)− 2bF − 1)/b2F of subtrees {Si}i∈I1 have the same neighborhood N(XSi) = U ,
for some U ⊆ Xt of size at most 2; let I2 ⊆ I1 be the set of their indices. By Claim 54, for each
i ∈ I2 we have that XSi induces in G a subgraph with at most c1 edges. It follows that there are at
most c2 := (2c1 + 1)c1+2 possible isomorphism types for graphs G[XSi ∪ U ] for i ∈ I2 (considering
isomorphisms that fix U). Therefore, if (q(t) − 2bF − 1)/(b2F · c2) ≥ f(t), then there is a subset
I3 ⊆ I2 of size at least f(t) for which sets {XSi}i∈I3 are elements of a single bouquet X attached
to U .

Let ∆ ⊆ E(G) be the set comprising of F (t) and the adhesions corresponding to the edges
connecting subtrees T1, . . . , Tp(t) with t in T . Then ∆ separates in G the vertices of

Z := Xt ∪XS1 ∪ . . . ∪XSq(t)

from the rest of the graph; that is, all the edges between Z and V (G) \ Z are contained in ∆. Since
∆ contains F (t) and none of the sets XSi is incident to any edge of F , we infer that G[Z]−∆ is
F-free. Hence all the components of G−∆ that contain some vertex of the bouquet X are F-free.
By applying Lemma 51, we infer that either

|X | ≤ dF + |∆| ≤ dF + |F (t)|+ bF · p(t) = f(t), (17)

or all except f(t) elements of the bouquet can be deleted to obtain a strictly smaller subgraph
G′ ( G with OPT(G′) = OPT(G). Hence, if (17) does not hold, then the algorithm can output G′

and terminate. We can thus conclude the proof, unless for all t ∈M the following holds:

(q(t)− 2bF − 1)/(b2F · c2) ≤ f(t),

or equivalently
q(t) ≤ f(t) · c2 · b2F + 2bF + 1. (18)

We henceforth assume that this is the case.
Similarly, if there are more than f(t) edges with the same pair of endpoints U ⊆ Xt, by

Lemma 52 all but f(t) of them can be deleted to obtain a strictly smaller subgraph G′ ( G with
OPT(G′) = OPT(G). We can thus conclude the proof unless, for each t ∈M , there is no group of
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more than f(t) parallel edges connecting the same pair of endpoints in Xt. We henceforth assume
that the latter alternative is the case. Since |Xt| ≤ width′(T ) ≤ bF , we have the following for each
t ∈M :

‖G[Xt]‖ ≤ b2F · f(t). (19)

We proceed with analyzing the size of the instance, with the goal of showing that it is bounded
linearly in |F |. By (16) and (18) we have∑
t∈M

q(t) ≤ c2 · b2F · d1 · |F |+ |M | · (2bF + 1) ≤ c3 · |F |, for c3 := c2 · b2F · d1 + 4(2bF + 1).

That is, the total number of components of T −M with exactly one neighbor in T is at most c3 · |F |.
As we argued before, the number of components of T −M with exactly two neighbors in T is at
most |M | − 1. Hence,

T −M has at most c3 · |F |+ |M | − 1 connected components in total. (20)

We now examine the edges of G. Every edge of G is either:

(i) in F , or

(ii) in G[Xt] for some t ∈M , or

(iii) in G[XT ′ ] for a component T ′ of T −M , or

(iv) in an adhesion corresponding to an edge of T connecting a connected component of T −M
with a node of M .

The total number of edges of each of these types is respectively bounded by:

(i) |F |,

(ii) b2F · d1 · |F | (by (16) and (19)),

(iii) c1 · (c3 · |F |+ |M | − 1) (by Claim 54 and (20)), and

(iv) 2bF · (c3 · |F |+ |M | − 1) (by width′(T ) ≤ bF , (20), and the fact that each component of T −M
neighbors at most two nodes of M).

Therefore, we conclude that

‖G‖ ≤ c · |F | for c := 1 + (c1 + 2bF ) · (c3 + 4) + b2F · d1

as required.

We are ready to conclude the description of our kernelization algorithm, that is, to prove
Theorem 3. For convenience, we recall its statement and adjust it to the current notation.

Theorem 55 (Theorem 3, reformulated). There is an algorithm that, given an instance (G, k) of
F-Immersion Deletion, runs in time O(‖G‖4 log ‖G‖ · |G|3) and either correctly concludes that
(G, k) is a NO-instance, or outputs an equivalent instance (G′, k) such that G′ has at most cker · k
edges, where cker is a constant depending on F only.
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Proof. We fix the constant cker as
cker := capx · c,

where c is the constant given by Lemma 53. Let (G, k) be the input instance.
We first apply the algorithm of Lemma 37, which runs in time O(‖G‖2 log ‖G‖ · |G|3) and yields

a new graph G′ such that ‖G′‖ ≤ ‖G‖, OPT(G′) = OPT(G) and each connected component of G′

has no excessive protrusion. From now on, we work on the graph G′ instead of G. If we already
have that ‖G′‖ ≤ c · k, then we can simply output (G′, k), so assume that this is not the case.

Apply the approximation algorithm of Lemma 50 to G′, yielding in time O(‖G‖3 log ‖G‖ · |G|3)
a subset of edges F such that G′ − F is F-free and |F | ≤ capx · OPT(G′). If |F | > capx · k, then we
can infer that OPT(G) = OPT(G′) > k and thus we terminate the algorithm by concluding that
(G, k) is a NO-instance. Hence, assume otherwise, that |F | ≤ capx · k. Because ‖G′‖ > capx · c · k, we
have that

‖G′‖/|F | > c. (21)

For each connected component H of G′, let FH = F ∩E(H). Obviously H − FH is F -free, as it
is an induced subgraph of G′ − F . By (21), there exists some connected component H of G′ for
which ‖H‖/|FH | > c, that is, ‖H‖ > c · |FH |. Therefore, as H is connected and has no excessive
protrusions (as a connected component of G′), we can apply the algorithm of Lemma 53 to H.
This application takes O(‖H‖ · |H|2) time and outputs a subgraph H ′ of H with ‖H ′‖ < ‖H‖
and OPT(H ′) = OPT(H). We can now replace H with H ′ in G′, thus obtaining a new graph G′′,
and restart the whole algorithm on the instance (G′′, k). Since OPT(H ′) = OPT(H) and every
graph of F is connected, it follows that also OPT(G′) = OPT(G) and, hence, the instance (G′′, k)
is equivalent to (G, k). Also, ‖H ′‖ < ‖H‖ implies ‖G′′‖ < ‖G′‖ ≤ ‖G‖, so the number of edges is
strictly smaller in the instance (G′′, k) that in the original instance (G, k).

We conclude that the algorithm will either terminate by concluding that (G, k) is a NO instance,
or it will output (G′, k), provided ‖G′‖ ≤ cker · k, or it will restart on an equivalent instance (G′′, k)
with ‖G′′‖ < ‖G‖. The number of iterations is bounded by the number of edges in the original
graph and each iteration takes O(‖G‖3 log ‖G‖ · |G|3) time, so the running time bound follows.

7 Bounding the size of the obstructions

In order to prove the second part of Theorem 3 it is enough to prove that, in the statement of the
first part, the graph of the equivalent instance (G′, k) is an immersion of G. To see this, assume
that H ∈ Oim

k = obsim(Gimk,F ). Clearly, (H, k) is a NO-instance of F-Immersion Deletion. If we
run the kernelization algorithm on (H, k) the result should be a NO-instance (H ′, k) where H ′ is an
immersion of H. As H is an immersion obstruction of Gimk,F , for every proper immersion of H, the
pair (H ′, k) should be a YES-instance. Therefore H ′ = H and, according to the first statement of
Theorem 3, H has a linear, on k, number of edges.

It remains now to modify the kernelization algorithm of Theorem 3 so that, when it runs with
input (G, k), it outputs a pair (G′, k) where G′ is an immersion of G. Recall that the algorithm,
during its execution, either applies replacements of replaceable protrusions (i.e., 2bF -protrusions
with more than cF edges) with smaller ones (Lemma 23), or removes edges from thetas and buckets
(Lemma 53). Therefore we need to modify the protrusion replacement in Lemma 23 so that G′ is an
immersion of G. Before we explain this modification, we first need some definitions.

Given two r-boundaried graphs G = (G, (u1, . . . , ur)) and H = (H, (v1, . . . , vr)), we say that H
is a rooted immersion of H if H is an immersion of G where the corresponding mapping µV maps
vi to ui for every i ∈ {1, . . . , r}. We next argue that for every r, rooted r-boundaried graphs are
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well-quasi-ordered with respect to the rooted-immersion relation. Indeed, Robertson and Seymour
proved in [39] that the set of all colored (by a bounded number of colors) graphs is well-quasi-ordered
with respect to the colored immersion relation (here the function µV should additionally map vertices
to vertices of the same color). By assigning to the boundaries of the r-boundaried graphs r different
colors and using one more color for their non-boundary vertices, we deduce that r-boundaried graphs
are well-quasi-ordered under the rooted immersion relation.

Let Br be the set of all r-boundaried graphs. The set Br has a partition C(r) = {C(r)1 , . . . , C(r)qr }
such that two r-boundaried graphs belong in the same set if and only if they have the same

signature. According to Corollary 29, qr ≤ 22
2poly(r,MAXF )

. For every i ∈ {1, . . . , qr}, let Ci be the
set of rooted immersion-minimal elements of Ci. As r-rooted graphs are well-quasi-ordered under

rooted-immersions, we have that C(r)i is a finite set. We now consider the following set

RF =
⋃

r≤2bF

⋃
i∈{1,...,qr}

C
(r)
i .

Notice that, for each r ∈ {1, . . . , 2bF}, each r-boundaried graph H belongs in some, say C(r)i , of
the classes in C(r), therefore it should contain as a rooted immersion some of the rooted graphs in

C(r)i . Let c∗F be the maximum number of edges in an r-boundaried graph of RF . This implies that
every r-boundaried graph H of more than c∗F edges can be replaced by an equivalent (i.e., one with
the same signature) r-boundaried graph H′ that belongs in RF and is a rooted immersion of H.
Therefore, if (G, k) is an instance of F-Immersion Deletion, H is an 2bF -protrusion of G of more
than c∗F edges, and G = F⊕H, then (G′, k) is an instance equivalent to (G, k) where G′ = F⊕H′.
Moreover, as H′ is a rooted immersion of G, it follows that G′ is an immersion of G as required.

Notice that the above argumentation does not give any way to compute c∗F as the, inherently
non-constructive, proof in [39] does not provide any way to compute a bound to the size of the graphs

in C(r)i (it only says that |C(r)i | is a finite number). We wish to report that it is actually possible to
prove a constructive version of the second statement of Theorem 3. This proof is postponed in later
versions of this paper, as it resides on results that are currently under developement.

8 Conclusions

In this work we have proved that the protrusion machinery, introduced in [4, 5, 19], can be applied
to immersion-related problems in a similar manner as to minor-related problems. In particular, we
have given a constant-factor approximation algorithm and a linear kernel for the F-Immersion
Deletion problem, which on one hand mirrors and on the other surpasses the results of Fomin
et al. [19] for F-Minor Deletion. Namely, while the exponent of the polynomial bounding the
kernel size provably has to depend on the family F in the minor setting [23], in the immersion
setting we were able to give a linear kernel, with only the multiplicative constant depending on F .
We consider this apparent difference of complexity interesting and worth studying further.

The immediate next goal is to lift the technical assumption that all graphs from F are connected.
While this assumption plays an important role in several of our proofs, we expect that it is not
necessary and can be lifted using the techniques of Kim et al. [30] or Fomin et al. [18,19] that worked
in the minor setting. In fact, a constant-factor approximation, without the assumption on the
connectivity of F , can easily be obtained in the following way, as in the full version of the work of
Fomin et al. [18]. Since Theorem 8 works just as well in the case of F containing disconnected graphs,
a set of edges whose deletion makes a graph F-free also makes it a graph tree-cut width bounded

40



by some constant aF . Thus, OPTF (G) is not smaller than the optimum size of a set of edges whose
deletion turns G into a graph of tree-cut width at most aF . Tree-cut width is a graph parameter
satisfying the conditions of Corollary 5, hence given a graph G, we can construct in polynomial time
a set of edges F ⊆ E(G) of size at most a constant factor larger than OPTF (G), such that G− F
has tree-cut width at most aF . A standard application of the optimization variant of Courcelle’s
theorem, due to Arnborg et al. [1], then gives a set F ′ ⊆ E(G− F ) such that G− F − F ′ is F -free
and |F ′| = OPTF (G− F ) ≤ OPTF (G). Hence by outputting F ∪ F ′, one achieves a constant factor
approximation for F-Immersion Deletion. For the linear kernel for F-Immersion Deletion,
we so far do not see how to avoid the assumption on the connectivity of F .

We believe that an important conceptual insight that is given by this paper is the confirmation
of usefulness of the notions of tree-cut width and tree-cut decompositions. Our work, together with
a few other recent ones [22, 29, 33, 42], shows that tree-cut width is often the right parameter to
study in the context of problem related to immersions and edge-disjointness, and plays a similar
role as treewidth for minors and vertex-disjointness. We expect that more results of this kind will
appear in future.

Clearly, the remaining insisting problem on the study of F-Immersion Deletion problem is to
consider cases where none of the graphs in F is planar subcubic. This comes as an analogue to
instantiations of the F-Minor Deletion problem where F contain only non-planar graphs. In
both cases the existence of a polynomial kernel can been seen as a major challenge in parameterized
algorithms. Especially, for F-Immersion Deletion, further advances are necessary on the structure
of graphs excluding non-planar or non-subcubic immersions. While some results in this direction
have appeared in [2, 15, 33, 42], it is still unclear whether the current combinatorial insight can
produce general algorithmic results on F-Immersion Deletion.

Acknowledgements. The authors wish to thank an anonymous referee for suggesting a more
direct approach to finding excessive protrusions, as well as Ignasi Sau, Petr Golovach, Eun Jung
Kim, and Christophe Paul for preliminary discussions on the F-Immersion Deletion problem.
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