
Enumerating Minimal Dominating Sets
in Triangle-free Graphs∗

Marthe Bonamy1, Oscar Defrain2,
Marc Heinrich3, and Jean-Florent Raymond4

1CNRS, LaBRI, Université de Bordeaux, France
2LIMOS, Université Clermont Auvergne, France

3LIRIS, Université Claude-Bernard, Lyon, France
4LaS team, Technische Universität Berlin, Germany.

October 2018

Abstract

It is a long-standing open problem whether the minimal dominating sets of a
graph can be enumerated in output-polynomial time. In this paper we prove that
this is the case in triangle-free graphs. This answers a question of Kanté et al.
Additionally, we show that deciding if a set of vertices of a bipartite graph can be
completed into a minimal dominating set is a NP-complete problem.

1 Introduction
Countless algorithmic problems in graph theory require to detect a structure with pre-
scribed properties in an input graph. Rather than finding one such object, it is sometimes
more desirable to generate all of them. This is for instance useful in certain applications
to database search [YYH05], network analysis [GK07], bioinformatics [Mar15a, Dam04],
and cheminformatics [Bar93]. Enumeration algorithms for graph problems seem to have
been first mentioned in the early 70’s with the pioneer works of Tiernen [Tie70] and
Tarjan [Tar73] on cycles in directed graphs and of Akkoyunlu [Akk73]. However, they
already appeared in disguise in earlier works [PU59, Mar64]. To this date, several in-
triguing questions on the topic remain unsolved. We refer the reader to [Mar15b] for
a more in-depth introduction to enumeration algorithms and to [Was16] for a listing of
enumeration algorithms and problems.

∗The second author has been supported by the ANR project GraphEn ANR-15-CE40-0009. The
last author has been supported by the ERC consolidator grant Distruct-648527.

1

The objects we wish to enumerate in this paper are the (inclusion-wise) minimal
dominating sets of a given graph. In general, the number of these objects may grow
exponentially with the order n of the input graph. Therefore, in stark contrast to
decision or optimization problems, looking for a running time polynomially bounded by
n is not a reasonable, let alone meaningful, efficiency criterion. Rather, we aim here for
algorithms whose running time is polynomially bounded by the size of both the input
and output data, called output-polynomial algorithms.

Because dominating sets are among the most studied objects in graph theory and
algorithms, their enumeration (and counting) have attracted an increasing attention
over the past 10 years. The problem of enumerating minimal dominating sets (hereafter
referred to as Dom-Enum) has a notable feature: it is equivalent to the extensively
studied hypergraph problem Trans-Enum. In Trans-Enum, one is given a hyper-
graph H (i.e. a collection of sets, called hyperedges) and is asked to enumerate all the
minimal transversals of H (i.e. the inclusion-minimal sets of elements that meet every
hyperedge). It is not hard to see that Dom-Enum is a particular case of Trans-Enum:
the minimal dominating sets of a graph G are exactly the minimal transversals of the hy-
pergraph of closed neighborhoods of G. Conversely, Kanté, Limouzy, Mary, and Nourine
proved that every instance of Trans-Enum can be reduced to a co-bipartite1 instance
of Dom-Enum [KLMN14]. Currently, the best output-sensitive algorithm for Trans-
Enum is due to Fredman and Khachiyan and runs in quasi-polynomial time [FK96]. It
is a long-standing open problem whether this complexity bound can be improved (see for
instance the surveys [EG02, EMG08]). Therefore, the equivalence between the two prob-
lems is an additional motivation to study Dom-Enum, with the hope that techniques
from graph theory will be used to obtain new results on the Trans-Enum problem. So
far, output-polynomial algorithms have been obtained for Dom-Enum in several classes
of graphs, including planar graphs and degenerate graphs [EGM03], classes of graphs of
bounded tree-width, clique-width [Cou09], or mim-width [GHK+18], path graphs and
line graphs [KLMN12], interval graphs and permutation graphs [KLM+13], split graphs
[KLM+15], graphs of girth at least 7 [GHKV15], chordal graphs [KLM+15], and chordal
bipartite graphs [GHK+16]. A succinct survey of results on Dom-Enum can be found
in [KN14]. The authors of [KLM+15] state as an open problem the question to de-
sign an output-polynomial algorithm for bipartite graphs (the problem also appeared
in [KN14, GHK+16]). We address this problem with the following result.

Theorem 1.1. There is an output-polynomial time algorithm enumerating minimal
dominating sets in triangle-free graphs.

In particular, the result holds for enumerating minimal dominating sets in bipartite
graphs.

Our algorithm decomposes the graph by iteratively removing closed neighborhoods in
the fashion of [EGM03], then constructs partial minimal dominating sets by adding the

1The complement of a bipartite graph.

2

neighborhoods back one after the other. It relies on the crucial property that in triangle-
free graphs, the generation of all potential extensions of a partial minimal dominating
set to a new neighborhood is closely related to the enumeration of minimal dominating
sets in split graphs, for which tools have already been developed [KLMN14]. We note
that triangle-free graphs already received attention in the context of enumeration of
other objects, for instance maximal independent sets [HT93, Bys04], using different
techniques.

A natural technique to enumerate valid solutions to a given problem (for instance,
sets of vertices satisfying a given property) is to build them element by element. If during
the construction one detects that the current partial solution cannot be extended into a
valid one, then it can be discarded along with all the other partial solutions that contain
it. Note that in order to apply this technique, one should be able to decide whether a
given partial solution can be completed into a valid one. It turns out that for minimal
dominating sets, this problem (that we will denote by Dcs) is NP-complete [KLMN11],
even when restricted to split graphs [KLM+15]. We show that it remains NP-complete
in bipartite graphs.

Theorem 1.2. Dcs restricted to bipartite graphs is NP-complete.

In particular, Dcs is NP-complete in triangle-free graphs. This suggests that the
aforementioned technique is unlikely to be used to improve Theorem 1.1.

The paper is organized as follows. In Section 2 we give the necessary definitions. We
prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. We conclude with possible
future research directions in Section 5.

2 Preliminaries
Graphs. All graphs in this paper are finite, undirected, simple, and loopless. If G is a
graph, then V (G) is its set of vertices and E(G) ⊆ V (G)2 is its set of edges. Edges are
denoted by xy (or yx) instead of {x, y}. We assume that vertices are assigned distinct
indices; these will be used to choose vertices in a deterministic way, typically selecting
the vertex of smallest index. A clique (respectively an independent set) in a graph G
is a set of pairwise adjacent (respectively non-adjacent) vertices. The subgraph of G
induced by X ⊆ V (G), denoted by G[X], is the graph (X,E(G) ∩ (X ×X)); G \X is
the graph G[V (G) \X].

If the vertex set of a graph G can be partitioned into one part inducing a clique and
one part inducing an independent set (respectively two independent sets, two cliques),
we say that G is a split (respectively bipartite, co-bipartite) graph. If G is a split graph
with clique C and stable set S and X ⊆ V (G), we use XC and XS as shorthands for
X ∩ C and X ∩ S, respectively. Graphs where every cycle is of length at least 4 are
referred to as triangle-free graphs. If f is a function, we write f(n) = poly n when there
is a constant c ∈ N such that f(n) = O(nc).

3

Neighbors and domination. Let G be a graph and x ∈ V (G). We note N(x) the
set of neighbors of x in G defined by N(x) = {y ∈ V (G) | xy ∈ E(G)}; N [x] is the set of
closed neighbors defined by N [x] = N(x)∪ {x}. For a given X ⊆ V (G), we respectively
denote by N [X] and N(X) the sets defined by

⋃
x∈X N [x] and N [X] \ X. Let D be a

set of vertices of G. We say that D is dominating a subset S ⊆ V (G) if S ⊆ N [D].
It is minimally dominating S if no proper subset of D dominates S. The set D is a
(minimal) dominating set of G if it (minimally) dominates V (G). The set of all minimal
dominating sets of G is denoted by D(G) and the problem of enumerating D(G) given
G is denoted by Dom-Enum. Let S ⊆ V (G). A vertex y ∈ V (G) is said to be a private
neighbor of some x ∈ S if y 6∈ N [S\{x}]. Intuitively, this means that y is not dominated
by any other vertex of S. Note that x can be its own private neighbor. The set of private
neighbors of x ∈ S in G is denoted by PrivG(S, x) and we drop the subscript when it
can be inferred from the context. Observe that S is a minimal dominating set of G if
and only if V (G) ⊆ N [S] and for every x ∈ S, Priv(S, x) 6= ∅.

Enumeration. The aim of graph enumeration algorithms is to generate a set of objects
X (G) related to a graph G. We say that an algorithm enumerating X (G) with input an
n-vertex graph G is output-polynomial if its running time is polynomially bounded by
the size of the input and output data, i.e. n+ |X (G)|. If an algorithm enumerates X (G)
by spending poly(n)-time (respectively O(n)-time) before it outputs the first element,
between two output elements, and after it outputs the last element, then we say that
it runs with polynomial delay (respectively linear delay). It is easy to see that every
polynomial delay algorithm is also output-polynomial. Note however that some problems
have output-polynomial algorithms but no polynomial delay ones, unless P=NP [Str10].
When discussing the space used by an enumeration algorithm, we ignore the space where
the solutions are output.

3 Minimal domination in triangle-free graphs
In this section, we give an output-polynomial time algorithm to enumerate minimal
dominating sets in triangle-free graphs. The algorithm is inspired from the one of
[EGM03] and constructs dominating sets one neighborhood at a time.

A peeling of a graph G is a sequence (V0, . . . , Vp) such that Vp = V (G), V0 = ∅, and
for every i ∈ {1, . . . , p},

Vi−1 = Vi \N [vi]

for some vi ∈ Vi. We call (v1, . . . , vp) the vertex sequence of the peeling; note that p is
only known after peeling the whole graph.

In the following, we consider a triangle-free graph G and a fixed peeling (V0, . . . , Vp)
with vertex sequence (v1, . . . , vp). For every i ∈ {0, . . . , p}, we denote by D(G, i) the set
of minimal dominating sets of Vi in G. Recall that these sets may contain vertices of
G− Vi, which is a crucial point. Then D(G, p) = D(G).

4

Definition 3.1. Let i ∈ {0, . . . , p− 1} and D ∈ D(G, i+1). We denote by Parent(D, i+
1) the pair (D∗, i) where D∗ is obtained from D by successively removing the vertex x of
smaller index in D satisfying Priv(D, x) ∩ Vi = ∅, until no such vertex exists.

Clearly, there is a unique way to build Parent(D, i+1) givenD and i. By construction,
the obtained set D∗ is a minimal dominating set of Vi.

Proposition 3.2. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i).
If D∗ dominates Vi+1 then D∗ ∈ D(G, i+ 1) and Parent(D∗, i+ 1) = (D∗, i).
Otherwise, D∗ ∪ {vi+1} ∈ D(G, i+ 1) and Parent(D∗ ∪ {vi+1}, i+ 1) = (D∗, i).

Proof. First note that since D∗ ∈ D(G, i), Priv(D∗, x) ∩ Vi 6= ∅ for all x ∈ D∗. Hence
Parent(D∗, i + 1) = (D∗, i) whenever D∗ dominates Vi+1. If D∗ does not dominate
Vi+1 then D = D∗ ∪ {vi+1} does. Moreover, Priv(D, vi+1) ∩ Vi+1 6= ∅. Since vi+1 is not
connected to any vertex in Vi, it cannot steal any private neighbors to the elements ofD∗.
Hence Priv(D, x) ∩ Vi+1 6= ∅ for all x ∈ D and Parent(D∗ ∪ {vi+1}, i+ 1) = (D∗, i).

The Parent relation as introduced in Definition 3.1 defines a tree on vertex set
p⋃

i=0

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)}, and root (∅, 0) (the empty set being the only dom-
inating set of the empty vertex set V0). Our algorithm will search this tree in order
to enumerate every minimal dominating set of G. Proposition 3.2 guarantees that for
every i < p and every D∗ ∈ D(G, i), the pair (D∗, i) is the parent of some (D, i + 1)
with D ∈ D(G, i + 1) (possibly D = D∗). Consequently, every branch of the tree leads
to a different minimal dominating set of G. In particular, for every i < p, we have
|D(G, i)| ≤ |D(G, i+ 1)|.

Given a set D∗ ∈ D(G, i), we now focus on the enumeration of every D ∈ D(G, i+1)
such that (D, i + 1) has (D∗, i) for parent. From Proposition 3.2, we know that either
(D∗, i+1) or (D∗∪{vi+1}, i+1) has (D∗, i) for parent. Consequently, we refer to X = ∅
and X = {vi+1} as the trivial extensions of (D∗, i), and focus on the non-trivial ones.

We call candidate extension of (D∗, i) any (inclusion-wise) minimal set X ⊆ V (G)
such that D∗∪X dominates Vi+1 in G, avoiding the trivial cases where X ∈ {∅, {vi+1}}.
Then, X is a candidate extension of (D∗, i) if and only if X 6∈ {∅, {vi+1}}, Vi+1 ⊆
N [D∗ ∪ X] and, for every x ∈ X, Priv(D∗ ∪ X, x) ∩ Vi+1 6= ∅. Note that possibly not
all candidate extensions of (D∗, i) form with D∗ a minimal dominating set of Vi+1. In
fact, there is no guarantee that any candidate extension forms a minimal dominating
set of Vi+1: it might be that (D∗, i) has a unique child, given by its trivial extension.
We denote by C(D∗, i) the set of candidate extensions of (D∗, i). We point out that by
the minimality assumption, the vertex vi+1 appears in no element of C(D∗, i).

Lemma 3.3. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). Then |C(D∗, i)| ≤ |D(G)|.

5

Proof. We argue that for every X ∈ C(D∗, i) there is an element of D(G, i + 1) whose
intersection with V (G) \ D∗ is precisely X. This will prove |C(D∗, i)| ≤ |D(G, i + 1)|,
hence |C(D∗, i)| ≤ |D(G)| as desired.

Let X ∈ C(D∗, i). We consider the set X ∪D∗, which dominates Vi+1. By definition
of C(D∗, i), we have Priv(X ∪D∗, x)∩Vi+1 6= ∅ for every x ∈ X. Therefore, every subset
of X ∪D∗ that dominates Vi+1 contains X. Consider an inclusion-wise minimal subset
D′ of X ∪D∗ that dominates Vi+1. We have X ⊆ D′, hence the conclusion.

Lemma 3.3 above ensures that C(D∗, i) is bounded by D(G). Hence, it is reasonable
to test each of the candidate extensions even though D∗ might be the parent of only
one set in D(G, i+1). It now suffices to explain how to enumerate C(D∗, i) to complete
the algorithm (formally described in Theorem 3.10).

Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). We define S = N(vi+1) ∩ Vi+1 \ N [D∗]
and C = N(S) \ {vi+1}. As G is triangle-free and S is included in the neighborhood
of vi+1, S is an independent set. Let Zi

D∗ be the split graph obtained from G[C ∪ S]
where C is completed into a clique; note that the independent set S is maximal in
Zi

D∗ since C ⊆ N(S). Recall that for any X ⊆ V (Zi
D∗), we defined XC = X ∩ C and

XS = X ∩ S. We set DS=∅(Z
i
D∗) = {D ∈ D(Zi

D∗) | DS = ∅}. The following result is
implicit in [KLMN14].
Proposition 3.4. Let H be a split graph with maximal stable set S and clique C. Let
X ⊆ V (H). Then, X ∈ D(H) if and only if S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all
x ∈ X.
Proof. Let us assume that Priv(X, x) ∩ S 6= ∅ for all x ∈ X and that X dominates S.
Then either X ∩ C 6= ∅ and X also dominates C. Or X ∩ C = ∅; in this case X = S
because X dominates S. As C ⊆ N(S), X also dominates C. The minimality of X
follows from our first assumption. Hence X ∈ D(H).

Conversely, let X ∈ D(H). Clearly N [X] ⊇ S, so we suppose by contradiction that
Priv(X, x)∩S = ∅ for some x ∈ X. By minimality of X, we have Priv(X, x) 6= ∅, which
implies Priv(X, x) ⊆ C. Consequently, we must have X ∩ C = {x}. As C ⊆ N(S),
there exists a vertex y ∈ S ∩ N(v). Since y 6∈ Priv(X, x) and X ∩ C = {x}, we have
y ∈ X. However, in this case N [y] ⊆ N [x] and so Priv(X, y) = ∅, which contradicts the
minimality of X.

We now characterize C(D∗, i) depending on whether vi+1 has to be dominated by
the extension or not. The condition D∗ ∈ D(G, i) \ D(G, i+ 1) in the statement below
prevents (D∗, i) from having the trivial extension ∅ - in which case it is the only one.
Lemma 3.5. Let i ∈ {0, . . . , p− 1}, D∗ ∈ D(G, i) \ D(G, i+ 1) and Z = Zi

D∗. Then
• either D∗ ∩N(vi+1) 6= ∅ and C(D∗, i) = D(Z),

• or D∗ ∩N(vi+1) = ∅ and

C(D∗, i) = (D(Z)\DS=∅(Z))∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

6

Proof. Let us first consider the case D∗ ∩N(vi+1) 6= ∅. Let X ∈ C(D∗, i). Since vi+1 is
dominated by any vertex of D∗ ∩N(vi+1), only the stable set S of Z is to be dominated
by X. In other words X minimally dominates S: S ⊆ N [X] and Priv(X, x)∩ S 6= ∅ for
all x ∈ X. By Proposition 3.4, X ∈ D(Z), which proves the inclusion C(D∗, i) ⊆ D(Z).
Conversely, let X ∈ D(Z). By Proposition 3.4, S ⊆ N [X] and Priv(X, x)∩S 6= ∅ for all
x ∈ X. Since vi+1 is already dominated by D∗, X ∈ C(D∗, i). Hence C(D∗, i) = D(Z),
as desired.

From now on and until the end of the proof we assume that D∗ ∩N(vi+1) = ∅. Let
C denote the vertex set of the clique of Z. Let X ∈ C(D∗, i). We know that X must
be a dominating set of Z. Indeed, by definition of C(D∗, i), X dominates S, and either
X ∩C 6= ∅, in which case X also dominates C, or X = S and X also dominates C since
C ⊆ NZ(S). There are two cases to consider.

If X is a minimal dominating set of Z, then since X has to dominate vi+1, we have
X ∩ S 6= ∅ and consequently X ∈ D(Z) \ DS=∅(Z).

Otherwise, X is not a minimal dominating set of Z. This implies that it has a
vertex u with no private neighbor in Z. By definition of C(D∗, i), this means that
Priv(D∗∪X, u)∩Vi+1 = {vi+1}. Therefore there is exactly one such vertex. Then, if we
write Q = X \{u}, Q is a minimal dominating set of Z. Since vi+1 is a private neighbor
of u, we must have Q∩ S = ∅, and consequently Q ∈ DS=∅(Z). Finally, by definition of
C(D∗, i), for any x ∈ Q ⊂ X, we have Priv(X, x) ∩ Vi+1 6= ∅. This shows that we have

X ∈

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 , (1)

and proves the following inclusion:

C(D∗, i) ⊆ (D(Z) \ DS=∅(Z)) ∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

To prove the reverse inclusion, we first considerX ∈ D(Z)\DS=∅(Z). By Proposition 3.4,
S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Since X ∩ S 6= ∅, S ∪ {vi+1} ⊆ N [X].
Thus X ∈ C(D∗, i). Now we consider a set X of the form Q∪{u}, for some Q ∈ DS=∅(Z)
and u ∈ N(vi+1) such that ∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅. By Proposition 3.4,
PrivZ(Q, x) ∩ S 6= ∅ for all x ∈ Q. Since Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅ for all x ∈ Q
and vi+1 ∈ Priv(X, u), Priv(X, x) ∩ Vi+1 6= ∅ for all x ∈ X. Since S ∪ {vi+1} ⊆ N [X],
X ∈ C(D∗, i). This proves the reverse inclusion and concludes the proof.

In [KLMN14], authors give a polynomial delay algorithm to enumerate minimal
dominating sets in split graphs.

Theorem 3.6 ([KLMN14]). There is an algorithm that, given a split graph H with n
vertices and m edges, outputs with O(n+m) delay every minimal dominating set of H,
using O(n2) space.

7

The above algorithm relies on the observation that for every split graph H, the set
DC(H) = {DC | D ∈ D(H)} is in bijection with D(H) and it forms an independent set
system. A family of sets S is an independent set system if S ∈ S implies that S \{s} ∈ S
for all s ∈ S. We show that there is a polynomial delay algorithm to enumerate C(D∗, i)
given i ∈ {1, . . . , p− 1} and D∗ ∈ D(G, i) using the same observations.

Proposition 3.7 ([KLMN14]). Let H be a split graph with maximal stable set S and
clique C and let D be a minimal dominating set of H. Then DS = S \N(DC).

Proposition 3.8 ([KLMN14]). Let H be a split graph with maximal stable S and
clique C. Then:

1. DC(H) = {A ⊆ C | ∀x ∈ A, Priv(A, x) 6= ∅},

2. DC(H) and D(H) are in bijection,

3. DC(H) is an independent set system.

Lemma 3.9. There is an algorithm that, given i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i),
enumerates C(D∗, i) in output-polynomial time O(poly(n) · |C(D∗, i)|) and using at most
poly(|V (G)|) space.

Proof. Lemma 3.5 allows us to consider two cases depending on whether vi+1 has a
neighbor in D∗ or not. Let Z = Zi

D∗ . As usual we denote by S and C the maximal
stable set and the clique of Z, respectively.

If D∗∩N(vi+1) 6= ∅, then by Lemma 3.5 C(D∗, i) = D(Z), and we can enumerate the
elements of C(D∗, i) with polynomial delay using the algorithm of Theorem 3.6 on D(Z).

In the case where D∗ ∩N(vi+1) = ∅, we start enumerating DC(Z). This can be done
with polynomial delay and space as in the proof of Theorem 3.6, using the fact that
DC(Z) is an independent set system and that testing if an arbitrary set A belongs to
DC(Z) can be done in polynomial time using Lemma 3.8. That is, we construct elements
of DC(Z) from the empty set to every inclusion-wise maximal A ∈ DC(Z). Repetitions
are avoided using a linear ordering on vertices of C; see [KLMN14] for details. Then, for
every element A ∈ DC(Z) output by the above algorithm, we check in polynomial time if
it dominates Z. If it does not, then we extend A into its unique corresponding minimal
dominating set D ∈ D(Z) such that D∩C = A (i.e. D = A∪S \N(A)), and output D.
Otherwise, for every u ∈ N(vi+1) such that for all x ∈ A, Priv(A ∪ {u}, x) ∩ Vi+1 6=
∅ (which can be tested in time polynomial in the order of Z), we output A ∪ {u}.
Lemma 3.5 guarantees that the above algorithm indeed outputs C(D∗, i).

Note that the only elements D ∈ D(Z) which do not lead to an element of C(D∗, i)
are the D ∈ DS=∅(Z) for which no vertex u ∈ N(vi+1) satisfies the desired conditions.
However, we will show that |DS=∅(Z)| ≤ n|D(Z) \ DS=∅(Z)|. Indeed, consider the
map f that, given D ∈ DS=∅(Z) removes one arbitrary vertex from D, and completes
the dominating set by adding the vertices in the independent set which are no longer
dominated. Then, f maps elements of DS=∅(Z), to the set D(Z) \ DS=∅(Z). Moreover,

8

every element in this second set is the image of at most |C| ≤ n elements by f . This
implies the desired bound.

Consequently, this means that while enumerating D(Z), we might throw out a frac-
tion at most n

n+1
of all the solutions we found which do not lead to elements in C(D∗, i).

This shows that the algorithm has output-polynomial time.

We are now ready to prove Theorem 1.1, that we restate here in a more accurate
form.

Theorem 3.10. There is an algorithm that, given a triangle-free graph G on n vertices,
outputs D(G) in total time poly(n) · |D(G)|2 and using at most poly n space.

Proof. We first arbitrarily choose a peeling (V0, . . . , Vp) of our input graph G with vertex
sequence (v1, . . . , vp). This takes time poly n.

Recall that the Parent relation defines a tree T on vertex set
p⋃

i=0

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)} and root (∅, 0). Let us describe how to enumerate the
children in T of (D∗, i) for every given vertex D∗ ∈ D(G, i). If D∗ dominates Vi+1, then
(D∗, i+ 1) is the only pair whose parent is (D∗, i). Otherwise, we proceed as follows:

1. output the trivial child D∗ ∪ {vi+1};

2. start (or resume, if it had already been started) the algorithm of Lemma 3.9 and
pause it after one element X of C(D∗, i) has been output;

3. if D∗ ∪X is not a minimal dominating set of Vi+1 in G, or if it is but Parent(D∗ ∪
X, i+ 1) 6= (D∗, i), discard X and loop to (2);

4. output D∗ ∪X and loop to (2).

The algorithm terminates when the algorithm of Lemma 3.9 in step (2) completes the
enumeration of C(D∗, i). The correctness of the algorithm is a consequence of the
following inclusions:

{D ∈ D(G, i+ 1) | Parent(D, i+ 1) = (D∗, i)} ⊆{D ∈ D(G, i+ 1) | D∗ ⊆ D}
⊆{D∗ ∪X | X ∈ C(D∗, i)}
∪ {D∗ ∪ {vi+1}}
∪ {D∗}

Notice that it uses at most poly n space, since we only store the data of the algorithm
of Lemma 3.9, of size at most poly n, and the data to perform step (3), which is clearly
also polynomial in n.

9

In order to enumerate D(G), i.e. the set of leaves of T , we perform a DFS and output
each visited leaf. For each vertex of T , enumerating its children can be done in at most
poly(n) · |D(G)| steps with the above algorithm, according to Lemmas 3.3 and 3.9.
Besides, the number of vertices of T at distance i from the root is at most its number of
leaves, hence T has at most O(n · |D(G)|) vertices. Therefore we can enumerate D(G) in
poly(n)·|D(G)|2 steps. Regarding the space, we observe that whenever we visit a vertex,
we do not need to compute the whole set of its children. Instead, it is enough in order
to continue the DFS to compute the next unvisited child only, which can be done using
the algorithm above (and pausing it afterward). Therefore, when we visit some (D, i) ∈
V (T), we only need to store the data of the i − 1 (paused) algorithms enumerating
the children of the ancestors of (D, i) and the data of the algorithm enumerating the
children of D, i.e. i · poly n space. Therefore the described algorithm uses polynomial
space, as claimed.

4 The extension problem is hard in bipartite graphs
We recall that Dcs denotes the problem of deciding, given a graph G and a set A ⊆
V (G), whether there exists a minimal dominating set D of G such that A ⊆ D. This
problem is known to be NP-complete for general graphs [KLMN11]. It has later been
proved that the variant where we search for a minimal dominating set containing A,
and avoiding a given vertex set B remains intractable even on split graphs [KLM+15].
We show that Dcs is still hard for bipartite graphs and thus triangle-free graphs. As a
consequence, one cannot expect to improve Theorem 1.1 by testing if subsets of V (G)
can be extended into minimal dominating sets of G. The following is a restatement of
Theorem 1.2.

Theorem 4.1. Dcs restricted to bipartite graphs is NP-complete.

Proof. Since Dcs is NP-complete in the general case, it is clear that Dcs is in NP even
when restricted to bipartite graphs. Let us now present a reduction from SAT.

Given an instance I of SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we
construct a bipartite graph G and a set A ⊆ V (G) such that there exists a minimal
dominating set containing A if and only if there exists a truth assignment that satisfies
all the clauses. The graph G has vertex partition (X, Y), defined as follows.

The first part X contains two special vertices u and w, and for every variable xi, one
vertex for each of the literals xi and ¬xi. The second part Y contains one vertex yCj

per clause Cj, one vertex negxi
per variable xi, and two special vertices v and z. For

every i ∈ {1, . . . , n} we make negxi
adjacent to the two literals xi and ¬xi and for every

j ∈ {1, . . . ,m} we make yCj
adjacent to u and to every literal Cj contains. Finally, we

add edges to form the path uvwz and set A = {negx1 , . . . , negxn , v, w}. Clearly this
graph can be constructed in polynomial time from I. The construction is illustrated in
Figure 1.

10

x1

¬x1

xn

¬xn

x2

¬x2

negx1

negxn

negx2

. . .

yC1

yCm

yC2

. . .

u v

zw
. . .

Figure 1: A bipartite graph G and a set A ⊆ V (G) constructed from an instance of
SAT with variables x1, . . . , xn and clauses C1, . . . , Cm. Black vertices constitute the set
A. Then A can be extended into a minimal dominating set D of G if and only if there
is a truth assignment of the variable satisfying all the clauses.

Let us show that A can be extended into a minimal dominating set of G if and only
if I has a truth assignment that satisfies all the clauses. The proof is split into two
claims. A partial assignment of I is a truth assignment of a subset of the variables
x1, . . . , xn. Observe that a partial assignment may satisfy all the clauses (i.e. the values
of the non-assigned variables do not matter). A partial assignment that satisfies all
the clauses is called a minimal assignment if no proper subset of the assigned variables
admits such a partial assignment.
Claim 4.2. Let S ⊆ {x1,¬x1, . . . , xn,¬xn} be a set containing at most one literal for
each variable. Then S minimally dominates {yC1 , . . . , yCm} if and only if its elements
form a minimal assignment of I.

Proof of Claim 4.2. Let S be as above and let j ∈ {1, . . . ,m}. Since yCj
/∈ S, the

set S contains a neighbor x of yCj
. By construction, x is a literal appearing in Cj.

Hence a partial assignment of the variables of I satisfying all its clauses is given by the
literals present in S. Moreover, x has a private neighbor yCj′

, by minimality of S. The
assignment given by S is hence minimal: not specifying the value of the variable of x
would leave the clause Cj′ unsatisfied. y

Claim 4.3. IfD is a minimal dominating set ofG containingA, thenD\A ⊆ {x1,¬x1, . . . ,
xn,¬xn} and it contains at most one literal for each variable.

Proof of Claim 4.3. Notice that Priv(A, v) = {u}. If yCj
belongs to D for some j ∈

{1, . . . ,m}, then Priv(D, v) = ∅, a contradiction to the minimality of D. For similar
reasons u, z /∈ D. Hence D ∩ {u, z, yC1 , . . . , yCm} = ∅. Besides, for every i ∈ {1, . . . ,m},
D contains at most one of xi and ¬xi, as otherwise Priv(D,negxi

) would be empty,
again contradicting the minimality of D. This proves the claim. y

If A can be extended into a minimal dominating set D of G, then by combining
the two claims above, we deduce that I has truth assignment that satisfies all clauses.
Conversely, if I has such a truth assignment, then there is a set S as in the statement

11

of Claim 4.2. In S ∪ A, every element of S has a private neighbor, as a consequence of
the minimality of S and the fact that no element of A has a neighbor among the clause
variables. Besides, each of negx1 , . . . , negxn has a private neighbor (because S contains
at most one of the two literals for each variable) and it is easy to see that the same holds
for v and w. Hence S ∪ A is a minimal dominating set of G.

Given an instance I of SAT, we constructed in polynomial time an instance (G,A)
of Dcs that is equivalent to I. This proves that Dcs is NP-hard.

5 Conclusion
In this paper, we proved that the set of minimal dominating sets of a graph can be
enumerated in output-polynomial time in triangle-free graphs, and hence in bipartite
graphs. It remains open whether a polynomial delay algorithm exists for these classes.

The most general open problem on the topic discussed in this paper is whether the
minimal dominating sets of a co-bipartite graph can be enumerated in output-polynomial
time. Indeed, as noted in the introduction this would imply that such an algorithm also
exists for the general case. Other classes where no output-polynomial time algorithms
are known include unit disk graphs and graphs of bounded expansion, according to
[KN14, GHK+16].

Acknowledgements
The authors wish to thank Paul Ouvrard for extensive discussions on the topic of this
paper. We also gratefully acknowledge support from Nicolas Bonichon and the Simon
family for the organization of the 3rd Pessac Graph Workshop, where this research was
done. Last but not least, we thank Peppie for her unwavering support during the work
sessions.

References
[Akk73] Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of large

graphs. SIAM Journal on Computing, 2(1):1–6, 1973.

[Bar93] John M. Barnard. Substructure searching methods: Old and new. Journal
of Chemical Information and Computer Sciences, 33(4):532–538, 1993.

[Bys04] Jesper Makholm Byskov. Enumerating maximal independent sets with ap-
plications to graph colouring. Operations Research Letters, 32(6):547–556,
2004.

[Cou09] Bruno Courcelle. Linear delay enumeration and monadic second-order logic.
Discrete Applied Mathematics, 157(12):2675–2700, 2009.

12

[Dam04] Peter Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. In Rod Downey, Michael Fellows, and Frank
Dehne, editors, Parameterized and Exact Computation, pages 1–12, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[EG02] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and
related problems in logic and ai. In European Workshop on Logics in Artificial
Intelligence, pages 549–564. Springer, 2002.

[EGM03] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on mono-
tone dualization and generating hypergraph transversals. SIAM Journal on
Computing, 32(2):514–537, 2003. arxiv:cs/0204009.

[EMG08] Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects
of monotone dualization: A brief survey. Discrete Applied Mathematics,
156(11):2035–2049, 2008.

[FK96] Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization
of monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–628,
1996.

[GHK+16] Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and
Yngve Villanger. Enumerating minimal dominating sets in chordal bipartite
graphs. Discrete Applied Mathematics, 199:30 – 36, 2016. Special Issue:
Sixth Workshop on Graph Classes, Optimization, and Width Parameters
2013.

[GHK+18] Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter
Kratsch, Sigve H. Sæther, and Yngve Villanger. Output-polynomial enu-
meration on graphs of bounded (local) linear mim-width. Algorithmica,
80(2):714–741, Feb 2018. arxiv:1509.03753.

[GHKV15] Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger.
An incremental polynomial time algorithm to enumerate all minimal edge
dominating sets. Algorithmica, 72(3):836–859, Jul 2015.

[GK07] Joshua A. Grochow and Manolis Kellis. Network motif discovery using
subgraph enumeration and symmetry-breaking. In Annual International
Conference on Research in Computational Molecular Biology, pages 92–106.
Springer, 2007.

[HT93] Mihály Hujtera and Zsolt Tuza. The number of maximal independent sets in
triangle-free graphs. SIAM Journal on Discrete Mathematics, 6(2):284–288,
1993.

13

https://arxiv.org/abs/cs/0204009
https://arxiv.org/abs/1509.03753

[KLM+13] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari
Nourine, and Takeaki Uno. On the enumeration and counting of minimal
dominating sets in interval and permutation graphs. In International Sym-
posium on Algorithms and Computation, pages 339–349. Springer, 2013.

[KLM+15] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari
Nourine, and Takeaki Uno. A polynomial delay algorithm for enumerat-
ing minimal dominating sets in chordal graphs. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 138–153. Springer,
2015. arxiv:1407.2036.

[KLMN11] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. Enumeration of minimal dominating sets and variants. In Interna-
tional Symposium on Fundamentals of Computation Theory, pages 298–309.
Springer, 2011. arxiv:1407.2053.

[KLMN12] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. On the neighbourhood helly of some graph classes and applications
to the enumeration of minimal dominating sets. In International Symposium
on Algorithms and Computation, pages 289–298. Springer, 2012.

[KLMN14] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari
Nourine. On the enumeration of minimal dominating sets and related
notions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.
arxiv:1407.2053.

[KN14] Mamadou Moustapha Kanté and Lhouari Nourine. Minimal dominating set
enumeration. In Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages
1–5. Springer US, Boston, MA, 2014.

[Mar64] M. P. Marcus. Derivation of maximal compatibles using boolean algebra.
IBM Journal of Research and Development, 8(5):537–538, Nov 1964.

[Mar15a] Andrea Marino. An application: Biological graph analysis. In Analysis and
Enumeration: Algorithms for Biological Graphs, pages 37–44. Atlantis Press,
Paris, 2015.

[Mar15b] Andrea Marino. Enumeration algorithms. In Analysis and Enumeration:
Algorithms for Biological Graphs, pages 13–35. Atlantis Press, Paris, 2015.

[PU59] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely
specified sequential switching functions. IRE Transactions on Electronic
Computers, EC-8(3):356–367, Sept 1959.

[Str10] Yann Strozecki. Enumeration complexity and matroid decomposition. PhD
thesis, Paris 7, 2010.

14

https://arxiv.org/abs/1407.2036
https://arxiv.org/abs/1407.2053
https://arxiv.org/abs/1407.2053

[Tar73] Robert Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM Journal on Computing, 2(3):211–216, 1973.

[Tie70] James C. Tiernan. An efficient search algorithm to find the elementary
circuits of a graph. Communications of the ACM, 13(12):722–726, 1970.

[Was16] Kunihiro Wasa. Enumeration of enumeration algorithms. Preprint
arxiv:1605.05102, 2016. See also https://kunihirowasa.github.io/
enum/index (accessed on September 2018).

[YYH05] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in
graph databases. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 766–777. ACM, 2005.

15

https://arxiv.org/abs/1605.05102
https://kunihirowasa.github.io/enum/index
https://kunihirowasa.github.io/enum/index

	Introduction
	Preliminaries
	Minimal domination in triangle-free graphs
	The extension problem is hard in bipartite graphs
	Conclusion

