
168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

The CORDIC Algorithm: New Results
for Fast VLSI Implementation

Jean Duprat and Jean-Michel Muller, Member, IEEE

Abstract- After a brief survey on the CORDIC algorithm,
we give some new results which enable fast and easy signed-
digit implementation of CORDIC, without modifying the basic
iteration step. A slight modification would make it possible to
use carry save representation of numbers, instead of signed-digit
one. Our method, called branching CORDIC method, consists of
performing in parallel two classic CORDIC rotations. It gives
a constant normalization factor. Then, we propose an on-line
implementation of our algorithm with an on-line delay equal to
5 for the sine and cosine functions.

Index Terms-CORDIC, elementary functions on line, signed-
digit representations.

I. INTRODUCTION
HE CORDIC algorithm was introduced in 1959 by Volder T [16]. In Volder's version, CORDIC makes it possible to

perform rotations (and therefore to compute sine, cosine,
and arctangent functions) and to multiply or divide num-
bers, using only shift-and-add elementary steps. In 1971,
Walther [17] generalized this algorithm in order to compute
logarithms, exponentials, and square roots. CORDIC is not
the fastest way to perform multiplications or to compute
logarithms and exponentials, but, since the same algorithm
enables the computation of most mathematical functions using
basic operations of the form a f b . 2T2, it is attractive for
hardware implementations. CORDIC has been implemented
in pocket calculators like Hewlett Packard's HP 35 [3], and
in arithmetic coprocessors like the Intel 8087. Some authors
proposed to use CORDIC processors for signal processing
applications (DIT [6], filtering [5], SVD [9]), for image
processing [2], or for solving linear systems [l], [l l] . The
first part of this paper is a brief survey on CORDIC. The
reader familiar with this algorithm may skip this part. In the
second part, we propose a new algorithm, called branching
CORDIC, for performing rotations very quickly, using a
redundant number system. In the last part, we propose an on-
line implementation of our algorithm for computing sine and
cosine functions. On-line arithmetic [lo] is a digit-serial mode
of computation where digits circulate most significant digit
first. On-line implementations of CORDIC have been already
proposed by Ercegovac and Lang [8], and by Lin and Sips
[=I.

Manuscript received March 15, 1991; revised March 27, 1992.
The authors are with CNRS, Laboratoire LIP-IMAG, Ecole Normale

IEEE Log Number 9205221.
Superieure de Lyon, 69364 Lyon Cedex 07, France.

11. A BRIEF SURVEY

A. The Classical CORDIC Iteration
Volder's algorithm is based upon the following iteration:

x,+1 = X, - d,y,2-"
y,+i = Y, + d,xn2-"
z,=1 = z , - d, arctan 2 Y .

The terms arctan 2-n are precomputed and stored, and the d i ' s
are equal to -1 or 4-1. In the rotation mode of CORDIC, d,
is chosen equal to the sign of z, (+1 if z , 2 0, else -1).

arctan 2-k = 1.743 . . .,
then

If Izo(is less than or equal to

where the scale factor K is equal to n?==, 1/ cos(d,
arctan2-"). Since for any n., d, equals f l , this factor is
constant and equal to nr?,d- = 1.646760

For instance, to compute the sine and cosine of a number
8, 181 5 Cr=oarc t an2-k , one may take zo = 1/K =
0.607252 . . - , yo = 0, and zo = 0 .

CORDIC may be understood as a rewriting of numbers
in special bases, called discrete bases [4], [13]. After the
iterations, zo is equal to C & d k arctan 2Tk. The sequence
(arctan2-k) is the "base," and the terms d k are the "digits"
of the representation of zo. Such a representation is possible
because for any n, arctan2-, 5 Cr=,+l arctan2-'.

A positive sequence (e,) satisfying
33

V n . e, 5 e k
k=,+l

is called a discrete basis of order 1 [13], and enables such
representations of numbers.

The basic idea of the rotation mode of CORDIC is to
perform a rotation of angle 0 = zo as a sequence of rotations
of angle f e n , with e, = arctan 2-". We start from (20, yo),
and the point (x ,+~ , yn+l) is obtained from the point (x,, y,)
by a rotation of angle d,e, (d, = fl). This gives

In relation (A), there is only one "true" multiplication, since

0018-9340/92$03.00 0 1993 IEEE

__- _____

DUPRAT AND MULLER: CORDIC ALGORITHM: RESULTS FOR VLSl IMPLEMENTATION 169

TABLE I
DIFFERENT FUNCTIONS COMPUTABLE USING CORDIC

in radix 2 a multiplication by 2-" reduces to a shift. In order
to avoid this multiplication, instead of (A), we perform

= (1 4-,) (%)
d,2-" 1

which is the basic CORDIC step: it is not a rotation of angle
e,, but a similarity of angle e, and factor 1/ cos e,. In the fol-
lowing, we call c-similarity of angle Q a similarity of angle a
and factor 1/ cos a. In the vectoring mode of CORDIC, d , is
chosen equal to the sign of (-y,) (+l if y, 5 0, else - 1).
This gives

where the constant K is the same as in rotation mode. Since
trigonometric and hyperbolic functions are closely related, one
may expect that a slight modification of Volder's algorithm
could be used for calculating hyperbolic functions. In 1971,
John Walther [171 found the correct modification, and obtained
the generalized CORDIC iteration:

x,+l = x, - md,y,2-"(")

?/n+i = yn + d,~,2-"(")
& + 1 = 2, - d, e, (n,)

where the results and the values of d,, m, and .(TI) are
presented in Tables I and 11.

In the hyperbolic mode (m = -l), the iterations
4,13,40, . . . , l c ,3k + 1, . . . are repeated (this is why we
need to use the function n). This is necessary since the
sequence tanh-I 2-" does not satisfy relation (1). The
sequence tanh-' 2-"(") satisfies this relation. K' equals

In Walther's version CORDIC makes it possible to compute
a lot of mathematical functions [17]. For instance, e" is
obtained by adding ch x and sh x, and In x is obtained using
the relation

I-Ip=ldl - 2-2u(n) = 0.82815

B. CORDIC Iteration with Redundant Number Systems
In order to accelerate the CORDIC iterations, one can use

redundant number systems, which enable additions without
carry propagation. Here, we focus our attention on binary
signed digit representations, however, the results would be
similar in carry-save representation. The sequence of dig-
its u g , 7L1, . . . , i i m , u, = -1,0, 1, represents the number
~ ~ & i ~ , 2 - ~ . With redundant notations, the main problem is
the evaluation of d,. Assume that we are in rotation mode,
and that numbers are represented with m digits. In classical
CORDIC, d, is equal to the sign of 2,. In signed-digit
representation, this sign is the sign of the most significant
nonzero digit: the knowledge of it requires the examination of
some number of digits which may be close to m. Thus, the
choice "d, = sign (z,)" is not satisfactory: the advantage of
the redundant representation (a constant time elementary step)

dn = sign (zn)
(rotation mode)

dn = - sign (yn)
(vectoring mode)

U U

would be lost. An alternative is to accept the value d, = 0.
One examines only the most p significant digits of z,. The
number z: constituted by these p digits is close to z,. The
basic idea is the following:

If z: # 0, then z: and z , have the same sign, thus the

If z: = 0, then lz,J is very small. Therefore one can take

Of course, this is not a proof, and the correct value of p which
ensures convergence of z, to zero must be calculated. The
main drawback of such a method is that the scale factors
K and K' are no longer constants. Since K is equal to
np=g 1/ cos(d, arctan 2-"), it is a constant if the d,'s are all
equal to -1 or $1, but it is no longer a constant if the d,'s are
allowed to be equal to zero. Some authors suggested different
solutions to that problem. Takagi, Asada, and Yajima [141,
[15] propose two methods, called double rotation method and
correcting rotation method. The basic principle of the double
rotation method is that at step I, one performs, instead of a
c-similarity of angle d, arctan 2-':

choice d, = sign(z2) is convenient.

d, = 0.

0 If d, = 5 1 , two c-similarities of angle d, arctan 2-"'
0 If d, = 0, a c-similarity of angle + arctan 2-'-l, then

With such a method, the scale factor is constant. However,
it leads to more complicated iterations (or twice as many
iterations if they remain unchanged).

The basic idea of the correcting rotation method is the
following: as above, one examines the number z: constituted
by the p most significant digits of z,. Then, one takes, in
rotation mode, d, = sign(z:) if 2: # 0, +1 otherwise.
Sometimes, an error occurs, but it is possible to show that a
repetition of the iterations p , 2p, 3p . . . is sufficient to correct
this error.

Ercegovac and Lang [9] propose to evaluate the scale factor
in parallel with the CORDIC iterations, and then to divide the
results x, and yn by this factor.

a c-similarity of angle - arctan 2-'-'.

170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

TABLE I1
VALUES OF u (n) AND e,, IN TABLE I

772 = +1
m = -1
m = O

a (n) = n

a (n) = n
~ (n) = 1 . 2 , 3 . 4 . 4 . 5 . 6 1 2 . 1 3 . 1 3 . 1 1 . 1 5 . " . .39.10.10.11. . .

e , = arctan 2- ,
c , = tanh-' 2-"
e , = 2-n

As Takagi, Asada, and Yajima's methods, our solution gives
a constant scale factor. Moreover, it needs no repetition of
iterations, and is therefore faster than theirs. However, it
leads probably to a little more hardware, since we perform
in parallel 2 classical CORDIC iterations, in a way similar to
Ercegovac and Lang's on the fly conversion of numbers from
redundant to nonredundant binary representation [7].

111. BRANCHING CORDIC ROTATION

We shall use the following properties:
cc

(PI) arctan 2-" < arctan 2-k < 2-"
k=n+l

,+P
(~ 2) arc tan^, - a r c t a n 2 ~ ' < 2-"-p.

(Pl) is well known (see for instance [13] for proof). (P2) is a
consequence of (Pl). Indeed, one can deduce from (Pl):

arctan2-, - arctan2-' 5 arctan2pk

k=n+l

,+P cc

k=n+1 k=n+p+l
M

k=n+p+l

A. Computation of the Sequence z,,

Let us examine the basic principle of our method. We
look for a decomposition arctan 2-'" of a number
0, with dk = f l . In order to do that, we start like the
methods presented above. We build a sequence z , defined

by z,+1 = z , - d, arctan 2-". At each step, we examine p
digits of z , in order to decide the value of d, (in practice,
p = 3). Then
0 If the examination of these p digits is sufficient to be

sure that z , > 0, we take d, = +l.
0 If the examination of these p digits is sufficient to be

sure that z , < 0, we take d, = -1.
0 If the examination of these p digits is not sufficient to

know the sign of z,, then we try two computations in
parallel: the former assuming 2, > 0 (and therefore with
d, = l), the latter assuming z , < 0 (with d, = -1).
We call branching this operation.

One may believe that in one or both of the parallel compu-
tations, new branchings may occur, creating a lot of parallel
computations. This is not true since if a computation causes
a branching, this proves that the associated value of z , is
sufficiently small to ensure the convergence (z , -+ 0) of
at least one of its two subcomputations, therefore, all other
computations performed in parallel with it can be stopped.
Thus, there are always at most two parallel computations.
Another objection may be: if no new branching appears, how
does one decide which computation is the correct one. We shall
see that in such a case, both computations lead to a correct
approximation of the sine and cosine.

In practice, we build in parallel two sequences z? and z;
(in two CORDIC modules called "+" and "-") defined by
the following algorithm. We suppose that we have a function
eval(z,) which returns at step n a value in { - 1 , O , l}, such
that
0 If eval (2,) # 0, then eval (z,) = sign (2,)
0 If eval(z,) = 0 then Iz,I < 2-"-l.

Algorithm branching - CORDIC
Procedure updatez (n) ;

begin
i n p a r a l l e l :

ZZ+~ := z: - d: arctan2-";
:= z; - d; arctan2-,;

{ i n module "+"}
{ i n module "-"}

i n p a r a l l e l :
s+ := e v a l
s- := e v a l z i+ l

end ;
Begin

i : = 0 ; { i n i t i a l i z a t ions}

s+ := s- := eva l (0) ;
while s+ # 0 and s- # 0 do {while no branching}

zo' := z; := 0 :

1 :
begin

DUPRAT AND MULLER: CORDIC ALGORITHM: RESULTS FOR VLSI IMPLEMENTATION 171

d: := s+ ;
d- ._ s- .

a .- 1

u p d a t e z (i) ;
i := i + 1 ;

end ;
2 : {a branching is occurr ing}

d: := 1 ;
d i := -1 ; {branching}
updatez (2) ;
i := i + 1 ;

3 : while (s+ = -1) and (s - = +1) do {while branching}
begin

d t := s+ ;
d i := s- ; {branching cont inuing}
u p d a t e z (i) ;
i .- . - i i l ;

end ;
{new branching, o r end of branching}
if s+ = 0 then {module "+" performed t h e good computation}

begin
,527 := z+ ;
g o t o 2 {branchingt rea tment}

end ;

begin
else if s+ = +1 then {module "+" performed t h e good computation}

za7 := z+ ;
s- := s+ ;
go t o 1 {branchingtermina ted}

end ;

begin
else if s- = 0 then {module "-" performed t h e good computation}

z+ := 2 , ;
g o t o 2 {branchingt rea tment}

end ;

begin
else if s- = -1 then {module "-" performed t h e good computation}

.+ := - ' zi 1

s+ .- - . , - s ,
go t o 1 {branchingtermina ted}

end ;

Fig. 1 sums up the different cases occurring when perform-

Theorem I : The sequences (2:) and (2;) generated by the

(1) At step i , at least one of the terms Iz+I and lzaTl is
lower than or equal to I F i arctan 2-k 5 2-2+'.

(2) Both terms are lower than or equal to 3.2-2+'.

ing the algorithm.

previous algorithm satisfy

H

First, let us prove 1) by induction. We assume that 1) is true
at step i - 1: at least one of the terms (Z F - ~) and (zaY1) has
an absolute value lower than or equal to CFi-' arctan 2-k,
and we compute s+ = e v a l (z z l) and s- = eval (zzLl).

Proof: a) Proof of (I) :

I) If s+ # 0 and .Y- # 0 then

0 If we are not in a branching (both modules produce the
same computation), then lzLll 5 cr=i-l arctan 2Tk.
Since s+ # 0, s+ has the sign of ZT-~, and we take
d:-l = s+. Therefore

IzTI = lzLll - a r c t a n P + '
03

5 arctan 2pk - arctan F+'
k = i - 1

hence:
03 03

- arctan 2pk 5 z+ 5 arctan 2-k.
k=i k=i

0 If we are in a branching
if s+ = -1 and s- = +1 (label 3 of the algorithm:

~

172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

/
/ \

Branching :
module "+" tries +1
module "-" tries -1

Branching : - module "+" tries +1 -
module "-" tries -1

f 1 \
2 different computations
performed in parallel

1
\ s-=+1 f

I
f

S+ 2 0 2 different computations s- I O
performed in parallel copies module "-"

Fig. 1. Diagram of branching-CORDIC.

branching is continuing). Consider the case where
z L l has an absolute value lower than or equal
to Cr= ia rc t an2-k (if not, the case is absolutely
symmetrical by interchanging modules "+" and "-").
As previously, we take d:-l = s+. Therefore Iz+I 5
Cp=i arctan 2-k.
if s+ = +1 or s- = -1 (end of branching). Assume that
s+ = +1 (the case s- = -1 is symmetrical), and that
the current branching started at step k - 1. Since no new
branching or end of branching occurred before step i , all
values of s+, from step IC to step i - 2 have been found
equal to -1. Therefore, z:-2 < 0 and z z l > 0. Thus,
since z:-l = z L 2 + arctan2-i+2:

00

z:-l 5 arctan 2-i+2 5 arctan 2-k.
k = i - 1

From this last result, we deduce as previously

00

5 E a r c t a n 2 p k .
k = l

2,' or 2;) such that
i-1

z+ = 2 0 - arctan2-P + a r c t a n ~ ~ and

zzr = zp" + arctan2-P

Therefore zz: - z+ = 2 (a r ~ t a n 2 - ~ - ~ ~ ~ ~ + 1 arctan
2-') < 2.2-2+' [from (P2)]. Moreover, since we are in
a branching, z2r1 was positive and zLl was negative,
thus zi = zzyl - arctan2-2+' 2 - a r ~ t a n 2 - ~ + l , and
z: = z:-l + arctan 2-i+1 2 arctan 2-i+1. Therefore,
zzT - z: 2 - 2 a r ~ t a n 2 - ~ + ' 2 -2-i+2. Therefore

Therefore, since Iz+I 5 2-i+1 or lzz:l 5 2-i+1, and

Now, we give a convenient method enabling the computa-
tion of function eval(z,). Let us assume that we are at step i :
we want to evaluate zz- and z: from z2T1 and zL1. The
absolute values of z2L1 and z L l are less than or equal to
3.2Ti, and eval(zi) must satisfy at step i :

If eval (z i) # 0 then eval (z i) = sign(zi)
If eval(z2) = 0 then lzil 5 2 T - l .

k = p + l
i-1

a r ~ t a n 2 - ~ .
k = p + l

Iz2r - 5 2-i+2.

lz2-l are less than 2-i+2 + 2-2+' = 3.2Tif1.

Let us define the truncation of a digit chain as r(x-px-p+l . . .

T is not the classical truncation or integer part function,
and depends on the representations of numbers. For instance,
the numbers lO. i l0l and li.1117 represent the same value,
however

T (l O . i l O 1) = lO(radix 2) = 2(radix 10) # T(lT.111i) = 1.

The following lemma will help us to find the sign of a number
by examining only 3 digit positions.

Lemma I : Let z = Z - ~ Z - ~ + ~ . . . z - 1 ~ 0 . ~ 1 ~ 2 . ~ 3 ... be
a number satisfying IzI < 3.2-3. Let C be the integer
z3-2z3-1z3 modulo 8 = 7 (2") modulo 8.

2) Zfs+ = 0 then (the case s- = 0 is symmetrical): Since

z t = z L l - arctan2-2+1
z2- = zLl + arctan2-'+l

2-120 . X I 2 2 . . .) = LP . ' . 2 - 1 5 0 .
s+ = 0, we deduce lzLll 5 2-'. Now we compute

and deduce that Min (I z t l ; Iz2-1) 5 Max (2-';arctan 2 P + l)
5 Cr=2 arctan 2pk.

Thus (1) is proved.

b) Proof of (2):
0 If we are not in a branching, then l z t l = lz2-l 5

CE2 a r ~ t a n 2 - ~ < 2-'+' < 3.2Y2+l.
0 If we are in a branching: Assume that the current

branching started at step p . There exists z i (equal to

173 DUPRAT AND MULLER: CORDIC ALGORITHM: RESULTS FOR VLSI IMPLEMENTATION

’ If C is equal to 1, 2, or 3 then z 2 0.
If C is equal to 5, 6, or 7 then z 5 0.
If C = 0 then IzI 5 2-j.
the case C = 4 is impossible.
Proof: From IzI < 3.2-j we deduce l2jzl < 3. There-

fore, since for every +(.) - ZJ < 1, I ~ (2 j z) I < 4. n u s ,
~ (2 j . z) is -3, -2, -1, 0, 1, 2, or 3, and C = 4 is impossible.

If 7 (2j 2) is not equal to zero, then obviously, the signs of
z and ~ (2 j z) are equal. Therefore

if c = 1, 2, or 3 then, since c = ~ (2 j z) modulo 8 and
~ (2 j z) E {-3,-2,-1,0,1,2,3}, ~ (2 j z) is equal to 1,
2, or 3, hence z 2 0.
if C = 5, 6, or 7 then, since C = ~ (2 j z) modulo 8 and
~ (2 j . z) E {-3,-2,-1,0,1,2,3}, 7(2jz) is equal to-1,
-2, or -3, hence z 5 0.
if c = 0 then, since C = 7 (2j 2) modulo 8 and 7 (2jz) E
{ -3, -2, - l , O , 1,2,3} , T(2jz) is equal to zero, hence
12jzI 5 1, i.e., Iz(5 2 - 3 .

Example: If zj-2 = zj-1 = z j = 1, then zj-2zj-lzj = -7,
Le., z j -2z j - l z j = 1 mod 8, and we deduce from the lemma
that z is nonnegative.

Table 111 gives the sign of z for the different cases that may
occur. This table may be used to implement the function eval,
which may be reduced to a function of 3 digits:

function eval(a, b, c): returns 1 if [abc] mod 8 is 1, 2,

1 if [abc] mod 8 is 5, 6,

0 if [abc] mod 8 is 0
anything if [abc] mod 8

-

or 3

or 7

-

is 4.

B. Computation of Rotations

(2 , y) rotation. Module “+” performs
Now, with each sequence (xi) and (z?) is associated a

while module “-” performs the rotations

In the algorithm branching-CORLMC presented above, one has
to add the two following instructions:
0 In parallel with updatez (i) , perform the two (x,y)

When a new branching or end of branching occurs:
rotations.

In parallel with an instruction “z? := z i ,” perform

In parallel with an instruction “z2; := z+,” perform xi :=

Fig. 2 presents the global architecture of a CORDIC pro-

x’ := xi and y: := yz; .

x: and y i : = y?.

cessor that implements our algorithm.

TABLE 111
SIGN OF Z AT STEP J - 1 OBTAINED BY EXAMINING ONLY 3 DIGIT POSITIONS

n

Fig. 2. Global architecture of a branching CORDIC processor.

Iv. ON-LINE IMPLEMENTATION OF ALGORITHM
Now, we propose an on-line implementation of our algo-

rithm for sine and cosine functions. On-line algorithms receive
their input data and give their results serially, most significant
digit first. The delay of an on-line algorithm is the number 6
such that v digits of the result are deduced from v + 6 digits of
the input values. 6 may be either positive or negative. The use
of on-line arithmetic implies some changes in our algorithm:

1) The input value zo = 0 of the rotation angle is carried
serially. Therefore, at step i , only z digits of this value
will be available.

2) 2 , and yn will be output on-line. In order to do that,
these values have to be transformed: it is the digitization
process.

174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

Since we assume that we compute only sine and cosine
functions, the angle zo is the only input value; zo = 1/K
and yo = 0 are internal constants. It is possible to imagine an
on-line rotation using our algorithm, with z o and yo carried
serially. However, it would be necessary to multiply 20 and
yo by the inverse of the scale factor, in on-line mode, before
the rotation (or to multiply the final values of z and y after the
rotation). First, we examine the modification to our algorithm,
called for by the on-line input of the rotation angle.

A. Modifications Due to the On-Line Inpul
Let us assume that we want to compute the sine and

cosine of zo = 6' = ~zoO_0Bi2-i. Since at the beginning zo
is not known with full precision, instead of the sequences
z; and z; defined above, we manipulate two sequences 2:
and 2; defined by the following on-line branching CORLIIC
algorithm. We assume that now, function eval(2,) satisfies at
step n

If eval(2,) = 1 then 2, 2 2-"-2
If eval(2,) = -1 then in 5 -2-n-2
If eval(2,) = 0 then (2,l 5 2-"-'.

This new function eval may be implemented in a way very
similar to the one presented in Section III-A, examining only
4 digits of 2,. The algorithm becomes

AlgorithmOn-linebranching-CORDIC
procedure updatez (n) ;

begin
i n p a r a l l e l :
i,=, :=
~- z,+l :=

i n p a r a l l

2: - d: arctan 2-" + 19,+32-,-~. , { i n module "+"}
2; - d; arctan 2-" + { i n module "-"}

. e l :
s+ := e v a l 2z+1;
s- := e v a l in+,;

end ;
Begin

1 :

2 :

3 :

i : = 0 ; { i n i t i a l i z a t i o n s }

s+ ._ - .- .- s .- e v a l (so+) ;

begin

2; := 2; := 0.6'16'2 = 6'12-1 + 6'22-2 ;

while s+ # 0 and s- # 0 do {while no branching}

d: := s+ ;
d- .- s - .
updatez (2) ;
i := 2 + 1 ;

2 .- ,

end ;

d: := 1 ;
d i := -1 ; {branching}
updatez (2) ;

while (s+ = -1) and (s - = +1) do

{a branching is occurr ing}

i := i + 1 ;

begin
{while branching}

d: := s+ ;
d, := s- ; {branching cont inuing}
updatez (i) ;
i : = i f 1 ;

end ;
{newbranching, o r e n d o f b r a n c h i n g)
if s+ = 0 then {module "+" performedthegood computation}

begin
..- zi := 2; ;
go t o 2 ; {branching t rea tment)

end ;

begin
else if s+ = +I then {module "+" performedthe good computation}

..- zi := 5: ;
s- := s+ ;

DUPRAT AND MULLER: CORDIC ALGORITHM: RESULTS FOR VLSl IMPLEMENTATION 175

go t o 1 ; {branching te rmina ted}
end ;

begin
else if s- = 0 then {module "-" performed t h e good computation}

2+ := 2; ;
go t o 2 ; {branching t rea tment }

end ;

begin
else if s- = -1 then {module "-" performedthe good computation}

2: := i2: ;
s+ := s- ;
go t o 1 ; {branching terminated}

end ;

Now, let us define (only for proof they are not computable Therefore
in practice) two sequences z: and z; as

0 If eval(2$) = 1 then z$ 2 0
0 If eval(f2:) = 1 then zz7 2 0
0 If eval(2:) = -1 then z$ 5 0

1) zo' = z; = 8.
2) add to procedure updatez (n) in the algorithm the

instructions

+ z,+~ = z,' - df arctan 2-"
'n+1 = z , - d, arctan 2-"
-

3) in the algorithm, when an instruction "2: := iZ-" is per-
formed, perform also "z: := zZ-" and when instruction
z , := 2:" is performed, perform also "zt- := z:."

Obviously, in a practical implementation, we do not com-
pute these sequences (this is impossible since at the beginning
of the computation, 8 is not known with full precision). They
are defined only for proof. We assume that we have taken
xo = 1/K and yo = 0, in order to obtain a final scale
factor equal to 1. The values x, and yn of the nth step of
the CORDIC iteration are equal to R, cos 8, and R, sin On,
where R, is equal to nzn (1 + 2--22) -''2, with 0 , = 0 - z,.
Therefore we need to bound lznl = 10, - 01.

Theorem 2: 1) at step 2 , at least one of the terms l.zTl
and lz,l is lower than or equal to
Cp=z arctan 2pk 5 2-'+'

2) Both terms are lower than or equal to
3.2-"'.

Proof: We do not give a detailed proof, since it is very

A -

similar to that of theorem 1 if we remark that

which implies

0 If eval(2;) = -1 then zz: 5 0
0 If eval(2:) = 0 then Iz:I 5 3 Z P 2

If eval(2:) = 0 then lzz:l 5 3.2- i -2 .

B. Error Evaluation
1) Use of the Outputs of One Module: Let us consider here

the values x,, yn and z, of any of the 2 modules "+" and
. As previously, we assume that we want to compute the

sine and/or cosine of 0, 101 5 1, and we denote 0, = 0 - z,.
Since we have: Iz,I 5 3 . 2Tn+', we deduce 18, - 01 5
3 . 2Yn+l. Therefore we have

''- 7 7

1 cos 0, - cos 01 5 3.2-"+'
I sin 8, - sin 01 5 3.2-"+' '

- 1 / 2
We assume that we have taken xo = nzo(l + 2-")
and yo = 0, in order to obtain a final scale factor equal to
1. The values x, and yn of the nth step of the CORDIC
iteration are equal to R, cos 0, and R, sin d,, where R, is
equal to nzn(l + 2-22)- ' /2 . In order to output cos0 and
sin0 in on-line mode, we have to estimate JIC, - cos01 and
Iy, - sinOI.

We have

{

We obtain in a similar fashion

1xn-sin81 5 3 . 2 - " + ' + I R n - l l .

Therefore, we have to estimate the value IR, - 11 = 1 - R,.
Lemma: 1 - R, 5 (2 / 3) 2T2,.

176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

Proof: R, is equal to ng, (1 + 2-2")-1/2, therefore
log R, = -(1/2) log(1 + 4Ci) 2 -(1/2) CE,4Ki.
Therefore logR, 2 -(1/2)[4-"+l/3], thus R, 2
e-(1/2)[4-"+'/31 2 1 - 1/2[4-"+l/3] thus 1 - R, 5 (1/2)

From the lemma, we deduce the following result:
Theorem3: The values x, = (x i or x;) and yn =

(y; or y;) satisfy (x, - cosdl and Iy, - s i n 0 are less than

[4-"+l/3] = 2-'" and the lemma is proved.

2-n+3.
Proof: From the lemma, and from the relations

we deduce that Ix, - cos01 and 15, - sin01 are lower than
or equal to

3 . 2 - n + l + 2 2-2, - 3 + - 2-n-1 .2-n+l
3 4 3 2 ,

2) Use of the Outputs of Both Modules: Assume that 0 E
[0, +7r/2]. In Section IV-B1, we used the outputs xn and
yn of any of the 2 modules "+" and "-". It is possible to
obtain a better result if we use the values (1/2)(x; + x;) and
(1/2)(y: + y;). We already showed in Section IV-B1 that

Moreover, using the relations given by Theorem 2, it may be
easily shown (the proof is the same as in Section IV-Bl) that

at least one value X , E {x:, x;} satisfies IX, -cos 01 <

at least one value Y, E {I&, y,} satisfies lY, - sin d l <
2-n+2

2-n+2

Let us define x, and yn as x, = (x,f + x;)/2 and yn =

1) If we are not in a branching, then, since x, = x$ = x i
and y, = y: = y;, we deduce from (B) that 15, -cos 01
and Iyn - sin01 are less than 2-n+2.

(9: + Y,)/2.

2) If we are in a branching. Let us define 0; and 0; as

Wehavex: = R,cosO:, y: = R,sinO:, xi = R,cosO;,
and y; R, sin 0;. Therefore

5: - coso
+

2; - coso
I 2 2

15, - C O S O) =

R, COS 0: - COS 0 R, COS 0, - COS 0
2 + =I 2

coso; - coso coso; - coso
+ 2

+ IR, - 1).

Since we are in a branching, z; 5 0 and z; 2 0. Therefore
0: 2 0 and 0; 5 0.

Therefore, since 0 E [-7r/2,7r/2], (cos 0; - cos 0) and
(cos 0; - cos 0) have opposite signs. From this we deduce

coso; - coso coso, - coso
1 2 + 2

I) 5 3.2-". cos 0, - cos 0
1 2

Thus ~ x , - c o s ~ I 5 3.2-"+IRr,-ll 5 3.2-"+(2/3).2-2" 5
2Tnf2 . Since the same proof may be used for the sine function,
we deduce

Theorem 4: The values x, = (x,f + x;)/2 and yn =
(y; + y;)/2 satisfy Ix, - cosdl and Iy, - sin01 are less
than 2-n+2.

C. Digitization
the ith digit of the

mth iterate value dm) of x. dm) may be obtained as in
Section III-B1 or as in Section IV-B2. Theorems 3 and 4 do
not ensure that dn) and y(,) are output-on-line. Although the
value of each module satisfies I z (~) - c o s 01 5 2-n+3, this
does not prove that the n - 3 most significant digits of dn) are
the n - 3 most significant digits of an on-line result. In order to
produce an on-line result, x(,) and y(,) must be transformed in
order to give a new digit result at each iteration. This procedure
is sometimes called digitization (see for instance [121).

Assume that at step m an algorithm for computing function
f (O) gives a result dm) satisfying

In the following, we shall denote

Ix(m) - f (0) (5 2rm+p.

then at step m, we can give in on-line mode the p + 2 - mth
digit of f (0) .

The algorithm presented below gives in on-line mode the
successive digits X I , x 2 , x3, . . . in, . . . of a signed-digit
representation of f (0) .

Digitization Algorithm
Assume we are at step m + 2. We have obtained a value

x(m+2) satisfying (x(m+2) - f (0) l 5 2-m-2+p. From x(~+')

obtained by truncating the signed-digit representation of
x(m+2) after its m + 2 - pth position satisfies

Let us denote 4 = O . x l x 2 X 3 , . . . xm-p-l.
The interval Ii of the numbers representable if we choose

xm-p = 1 is [4 - 2Ymfp+l, 41, the interval Io of the numbers
representable with im-p = 0 is [q!~ - 2-m+p, 4 + 2-m+p],
and the interval I1 of the numbers representable with xmPp =
1 is [4,q5+2-m+p+1] (see Fig. 3) . From this we deduce
easily (see Fig. 3):
0 If ximf2) < 4 - 2Tm+pP1 then, from (R), f (0) 5 q5

-

- -

thus f (0) E IT: we choose imp, = 1.

DUPRAT AND MULLER CORDIC ALGORITHM: RESULTS FOR VLSI IMPLEMENTATION

I
I

I

I I I I

I I I R
I I I I I

I I I
I 4 p s s i b F x (m+2) * I I I I I I

ihterval wher f(e) may be located I I
&cording to s possible value I I

I
I I
I I

I I I
I I I
I I I
I I I
I I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- A

4 *
numbers representable with o.Xl X2xJ . . . Xm-p-l as 1st digits

Fig. 3. The digitization process.

0 If 4 - 2-m+p-1 5 x!m+2) < d, + 2TmfpP1 then, from
(R), 4-2-“+P 5 x!m+2) <-d,+Z-”+P - thus f (0) E IO:
we choose xm-p = 0.

0 If 2!m+2) 2 d, + 2-m+p-1 then, from (R), f (6 ’) 2 d,
thus f (0) E 11: we choose xmPp = 1.

This algorithm is easily implementable since it needs the
examination of only 5 digits of z ! ~ + ~) . Let us call K the
integer 2m-P+2 - 4). From (R) and the obvious
relation I f - f (0) l 5 2Tm+P+l, we deduce Id, - ximf2)1 5
5.ZPm+P-l. Thus, (K J 5 10. The algorithm becomes

07 if K 5 -3
07 or Oif K = -2

00 or 1 if K = 2
01 if K > 3

00 if - 1 < K 5 + 1 .

Since 1K(5 10, it is easy to show (see the proof of Lemma 1)
that if we replace K by the value K* obtained by taking only
its 5 least significant digits (K* = K mod 32), we obtain

07 if 22 5 K* mod32 5 29
07 or 0 if K’ mod32 = 30

00 or 1 if K* mod32 = 2 I 01 if 3 5 K*mod32 5 10

00 if K’ mod32 = 31 0 or 1 . xmPp =

The values K * mod 32 = 11, 12, 13, . . . , 21 are impossible.

D. On-Line Delay of Our Algorithm
Both CORDIC modules produce a result. Assume that we

want to compute the cosine function (the same applies for the

sine function). If we use for digitization the output values
of onIy one module (e.g., module “+”), then at step i of
the algorithm, we have an error Izi - cos01 5 2-i+3 using
digits 6’0, 6’1, . . . , 6’i, Oi+l of 6‘. Our digitization algorithm
enables us to give in on-line mode the i 5 t h digit of cos6.
Therefore, from digits 0 to i + 1 of 6’ we deduce digits 0 to
i-5 of f (6 ‘) . Therefore the on-line delay of our algorithm is

If we use for digitization the average values of the outputs
of both modules (as in part Section IV-B2), since at step i , we
have an error (zi - cos6’l 5 2- i+2 , the on-line delay of the
algorithm becomes 5.

(i + 1) - (i - 5) = 6.

V. CONCLUSION
We have obtained a very fast version of the CORDIC

algorithm, which makes it possible to perform constant-time
elementary iterations, independent from the length of the
operands, with a constant scale factor. The main drawback of
our method is the necessity of performing two conventional
CORDIC iterations in parallel, which consumes more silicon
area than classical methods. However, it leads to a fast and
convenient on-line implementation, with a small delay.

REFERENCES

[1] H. M. Ahmed, J. -M. Delosme, and M. Morf, “Highly concurrent com-
puting structures for matrix arithmetic and signal processing,” IEEE
Comput. Mug., Jan. 1982.

[2] J. R. Cavallaro and F. T. Luk, “CORDIC arithmetic for a SVD proces-
sor,’’ in Proc. 8th Symp. Comput. Arifhmet., Como, Italy, May 1987.

[3] D. Cochran, “Algorithms and accuracy in the HP35,” Hewlett Puchrd
J., pp. 10-11, June 1972.

178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 2, FEBRUARY 1993

[4] M Cosnard et al., “The FELIN arithmetic coprocessor chip,” in Proc. Jean Duprat was born in Vic-en-Bigorre, France,
8th Symp. Compur. Arithmet., ARITH8, Como, Italy, May 1987, in 1949. “AgrkgB“ in Mathematics, he taught in high
pp. 107-112. school from 1973 to 1987. He studied computer

[5] E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architec- science in the universities of Paris and Grenoble,
tures for fast VLSI filtering and array processing,” in Proc. ICCD’84, then he received the Ph.D. degree in Grenoble in
pp. 41.A.6.1-.A.6.4. 1988. His Ph.D. dissertation deals with the parallel

[6] A. M. Despain, “Fourier transform computers using CORDIC itera- implementation of Prolog.
tions,” IEEE Trans. Compur., May 1984. He has been in the Computer Science Department

[7] M. D. Ercegovac and T. Lang, “On the fly conversion of redundant into of the Ecole Normale Supkrieure de Lyon (Lip-Imag
conventional representations,” IEEE Trans. Compur., vol. c-36, no. 7, laboratory) since 1988. He teaches Computer Ar-
pp. 895-897, July 1987. chitecture. His research interests include computer

[81 - 3 ‘‘Implementation of fast angle calculation and rotation using
online CORDIC,” in Proc. ZSCAS’88, pp. 2703-2706.

[9] -, “Redundant and on-line CORDIC: Application to matrix triangu-
larization and SVD,” IEEE Trans. Comput., vol. 39, no. 6, pp. 725-740,
June 1990.

[lo] M.D. Ercegovac, “On line arithmetic: An overview,” in Proc. SPIE
Conf Real Time Signal Processing, San-Diego, CA, 1984, pp. 667-680.

[l l] A. Guyot, B. Hochet, C. Mauras, J.M. Muller, and Y. Robert, “SCALA:
une cellule systolique programmable pour l’algbbre lintaire et le traite-
ment du signal,” in Proc. 2nd Symp. C3, Angoul&me, France, May, 1987

architecture, V U I , computer arithmetic, and fine grain parallelism.

(in French).
H. Lin and H.J. Sips, “On-line CORDIC algorithms,” IEEE Trans.
Comput., vol. 39, no. 8, Aug. 1990.
J. M. Muller, “Discrete basis and computation of elementary functions,”
IEEE Trans. Comput., Sept. 1985.
N. Takagi, T. Asada, and S. Yajima, “A hardware algorithm for
computing sine and cosine using redundant binary representation,”
Trans. IECE Japan, vol. J69-D, no. 6, pp. 841-847, June 1986 (in
Japanese). English translation is available in Sysr. and Comput. in Japan,
vol. 18, no. 8, pp. 1-9, Aug. 1987.
__, “Redundant CORDIC methods with a constant scale factor,” ZEEE
Trans. Comput., vol. 40, no. 9, pp. 989-995, Sept. 1991.
J. Volder, “The CORDIC computing technique,” IRE Trans. Comput.,
Sept. 1959.
J. Walther, “A unified algorithm for elementary functions,” in Joint
Comput. Conf Proc., vol. 38, 1971.

Jean-Michel Muller (M’87) was born in Grenoble,
France, in 1961. He received the Engineer degree in
applied mathematics and computer science in 1983
and the Ph.D. degree in computer science in 1985,
both from the Institut National Polytechnique de
Grenoble, France.

In 1986, he joined the CNRS (French national
center for scientific research). He has been posted
from 1986 to 1989 to Tim3-Imag laboratory. Greno-
ble, and then to Lip-Imag laboratory, Lyon. He
teaches computer arithmetic in the Institut National

Polytechnique de Grenoble and the &ole Normale Supkrieure de Lyon. His
research interests include computer arithmetic and computer architecture.

Dr. Muller served as General Chairman of the 10th Symposium on Com-
puter Arithmetic.

