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The CORDIC Algorithm: New Results 
for Fast VLSI Implementation 

Jean Duprat and Jean-Michel Muller, Member, IEEE 

Abstract- After a brief survey on the CORDIC algorithm, 
we give some new results which enable fast and easy signed- 
digit implementation of CORDIC, without modifying the basic 
iteration step. A slight modification would make it possible to 
use carry save representation of numbers, instead of signed-digit 
one. Our method, called branching CORDIC method, consists of 
performing in parallel two classic CORDIC rotations. It gives 
a constant normalization factor. Then, we propose an on-line 
implementation of our algorithm with an on-line delay equal to 
5 for the sine and cosine functions. 

Index Terms-CORDIC, elementary functions on line, signed- 
digit representations. 

I. INTRODUCTION 
HE CORDIC algorithm was introduced in 1959 by Volder T [16]. In Volder's version, CORDIC makes it possible to 

perform rotations (and therefore to compute sine, cosine, 
and arctangent functions) and to multiply or divide num- 
bers, using only shift-and-add elementary steps. In 1971, 
Walther [17] generalized this algorithm in order to compute 
logarithms, exponentials, and square roots. CORDIC is not 
the fastest way to perform multiplications or to compute 
logarithms and exponentials, but, since the same algorithm 
enables the computation of most mathematical functions using 
basic operations of the form a f b . 2T2, it is attractive for 
hardware implementations. CORDIC has been implemented 
in pocket calculators like Hewlett Packard's HP 35 [3], and 
in arithmetic coprocessors like the Intel 8087. Some authors 
proposed to use CORDIC processors for signal processing 
applications (DIT [6], filtering [5], SVD [9]), for image 
processing [2], or for solving linear systems [l], [ l l ] .  The 
first part of this paper is a brief survey on CORDIC. The 
reader familiar with this algorithm may skip this part. In the 
second part, we propose a new algorithm, called branching 
CORDIC, for performing rotations very quickly, using a 
redundant number system. In the last part, we propose an on- 
line implementation of our algorithm for computing sine and 
cosine functions. On-line arithmetic [lo] is a digit-serial mode 
of computation where digits circulate most significant digit 
first. On-line implementations of CORDIC have been already 
proposed by Ercegovac and Lang [8], and by Lin and Sips 
[=I. 
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11. A BRIEF SURVEY 

A. The Classical CORDIC Iteration 
Volder's algorithm is based upon the following iteration: 

x,+1 = X, - d,y,2-" 
y,+i = Y, + d,xn2-" 
z,=1 = z ,  - d, arctan 2 Y .  

The terms arctan 2-n are precomputed and stored, and the d i ' s  
are equal to -1 or 4-1. In the rotation mode of CORDIC, d, 
is chosen equal to the sign of z,  (+1 if z ,  2 0, else -1). 

arctan 2-k = 1.743 . . ., 
then 

If Izo( is less than or equal to 

where the scale factor K is equal to n?==, 1/ cos(d, 
arctan2-"). Since for any n., d, equals f l ,  this factor is 
constant and equal to nr?,d- = 1.646760 . . . .  

For instance, to compute the sine and cosine of a number 
8, 181 5 Cr=oarc t an2-k ,  one may take zo = 1/K = 
0.607252 . . - ,  yo = 0, and zo = 0 .  

CORDIC may be understood as a rewriting of numbers 
in special bases, called discrete bases [4], [13]. After the 
iterations, zo is equal to C & d k  arctan 2Tk. The sequence 
(arctan2-k) is the "base," and the terms d k  are the "digits" 
of the representation of zo. Such a representation is possible 
because for any n, arctan2-, 5 Cr=,+l arctan2-'. 

A positive sequence (e,) satisfying 
33 

V n .  e,  5 e k  
k=,+l 

is called a discrete basis of order 1 [13], and enables such 
representations of numbers. 

The basic idea of the rotation mode of CORDIC is to 
perform a rotation of angle 0 = zo as a sequence of rotations 
of angle f e n ,  with e,  = arctan 2-". We start from (20, yo), 
and the point ( x ,+~ ,  yn+l) is obtained from the point (x,, y,) 
by a rotation of angle d,e, (d, = fl). This gives 

In relation (A), there is only one "true" multiplication, since 
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TABLE I 
DIFFERENT FUNCTIONS COMPUTABLE USING CORDIC 

in radix 2 a multiplication by 2-" reduces to a shift. In order 
to avoid this multiplication, instead of (A), we perform 

= ( 1 4-,) (%) 
d,2-" 1 

which is the basic CORDIC step: it is not a rotation of angle 
e,, but a similarity of angle e, and factor 1/ cos e,. In the fol- 
lowing, we call c-similarity of angle Q a similarity of angle a 
and factor 1/ cos a. In the vectoring mode of CORDIC, d ,  is 
chosen equal to the sign of (-y,) (+l if y, 5 0, else - 1). 
This gives 

where the constant K is the same as in rotation mode. Since 
trigonometric and hyperbolic functions are closely related, one 
may expect that a slight modification of Volder's algorithm 
could be used for calculating hyperbolic functions. In 1971, 
John Walther [ 171 found the correct modification, and obtained 
the generalized CORDIC iteration: 

x,+l = x, - md,y,2-"(") 

?/n+i = yn + d,~,2-"(") 
& + 1  = 2, - d, e,  (n,) 

where the results and the values of d,, m, and .(TI) are 
presented in Tables I and 11. 

In the hyperbolic mode ( m  = -l), the iterations 
4,13,40, . . .  , l c ,3k  + 1, . . .  are repeated (this is why we 
need to use the function n). This is necessary since the 
sequence tanh-I 2-" does not satisfy relation (1). The 
sequence tanh-' 2-"(") satisfies this relation. K' equals 

In Walther's version CORDIC makes it possible to compute 
a lot of mathematical functions [17]. For instance, e" is 
obtained by adding ch x and sh x, and In x is obtained using 
the relation 

I-Ip=ldl - 2-2u(n) = 0.82815 . . . . 

B. CORDIC Iteration with Redundant Number Systems 
In order to accelerate the CORDIC iterations, one can use 

redundant number systems, which enable additions without 
carry propagation. Here, we focus our attention on binary 
signed digit representations, however, the results would be 
similar in carry-save representation. The sequence of dig- 
its u g ,  7L1, . . . , i i m ,  u, = -1,0, 1, represents the number 
~ ~ & i ~ , 2 - ~ .  With redundant notations, the main problem is 
the evaluation of d,. Assume that we are in rotation mode, 
and that numbers are represented with m digits. In classical 
CORDIC, d, is equal to the sign of 2,. In signed-digit 
representation, this sign is the sign of the most significant 
nonzero digit: the knowledge of it requires the examination of 
some number of digits which may be close to m. Thus, the 
choice "d, = sign (z,)" is not satisfactory: the advantage of 
the redundant representation (a constant time elementary step) 

dn = sign (zn) 
(rotation mode) 

dn = - sign (yn) 
(vectoring mode) 

U U 

would be lost. An alternative is to accept the value d, = 0. 
One examines only the most p significant digits of z,. The 
number z: constituted by these p digits is close to z,. The 
basic idea is the following: 

If z: # 0, then z: and z ,  have the same sign, thus the 

If z: = 0, then lz,J is very small. Therefore one can take 

Of course, this is not a proof, and the correct value of p which 
ensures convergence of z, to zero must be calculated. The 
main drawback of such a method is that the scale factors 
K and K' are no longer constants. Since K is equal to 
np=g 1/ cos(d, arctan 2-"), it is a constant if the d,'s are all 
equal to -1 or $1, but it is no longer a constant if the d,'s are 
allowed to be equal to zero. Some authors suggested different 
solutions to that problem. Takagi, Asada, and Yajima [ 141, 
[15] propose two methods, called double rotation method and 
correcting rotation method. The basic principle of the double 
rotation method is that at step I, one performs, instead of a 
c-similarity of angle d, arctan 2-': 

choice d, = sign(z2) is convenient. 

d, = 0. 

0 If d, = 5 1 ,  two c-similarities of angle d, arctan 2-"' 
0 If d, = 0, a c-similarity of angle + arctan 2-'-l, then 

With such a method, the scale factor is constant. However, 
it leads to more complicated iterations (or twice as many 
iterations if they remain unchanged). 

The basic idea of the correcting rotation method is the 
following: as above, one examines the number z: constituted 
by the p most significant digits of z,. Then, one takes, in 
rotation mode, d, = sign(z:) if 2: # 0, +1 otherwise. 
Sometimes, an error occurs, but it is possible to show that a 
repetition of the iterations p ,  2p, 3p . . . is sufficient to correct 
this error. 

Ercegovac and Lang [9] propose to evaluate the scale factor 
in parallel with the CORDIC iterations, and then to divide the 
results x, and yn by this factor. 

a c-similarity of angle - arctan 2-'-'. 
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TABLE I1 
VALUES OF u ( n )  AND e,, IN TABLE I 

772 = +1 
m = -1 
m = O  

a ( n )  = n 

a ( n )  = n 
~ ( n )  = 1 . 2 , 3 . 4 . 4 . 5 . 6 .  . . .  . 1 2 . 1 3 . 1 3 . 1 1 . 1 5 .  " .  .39.10.10.11. . .  

e ,  = arctan 2- ,  
c ,  = tanh-' 2-" 
e ,  = 2-n 

As Takagi, Asada, and Yajima's methods, our solution gives 
a constant scale factor. Moreover, it needs no repetition of 
iterations, and is therefore faster than theirs. However, it 
leads probably to a little more hardware, since we perform 
in parallel 2 classical CORDIC iterations, in a way similar to 
Ercegovac and Lang's on the fly conversion of numbers from 
redundant to nonredundant binary representation [7]. 

111. BRANCHING CORDIC ROTATION 

We shall use the following properties: 
cc 

(PI) arctan 2-" < arctan 2-k < 2-" 
k=n+l 

,+P 
( ~ 2 )  arc tan^, - a r c t a n 2 ~ '  < 2-"-p. 

(Pl) is well known (see for instance [13] for proof). (P2) is a 
consequence of (Pl). Indeed, one can deduce from (Pl): 

arctan2-, - arctan2-' 5 arctan2pk 

k=n+l 

,+P cc 

k=n+1 k=n+p+l 
M 

k=n+p+l 

A.  Computation of the Sequence z,, 

Let us examine the basic principle of our method. We 
look for a decomposition arctan 2-'" of a number 
0, with dk = f l .  In order to do that, we start like the 
methods presented above. We build a sequence z ,  defined 

by z,+1 = z ,  - d, arctan 2-". At each step, we examine p 
digits of z ,  in order to decide the value of d, (in practice, 
p = 3). Then 
0 If the examination of these p digits is sufficient to be 

sure that z ,  > 0, we take d, = +l.  
0 If the examination of these p digits is sufficient to be 

sure that z ,  < 0, we take d, = -1. 
0 If the examination of these p digits is not sufficient to 

know the sign of z,, then we try two computations in 
parallel: the former assuming 2, > 0 (and therefore with 
d, = l), the latter assuming z ,  < 0 (with d, = -1). 
We call branching this operation. 

One may believe that in one or both of the parallel compu- 
tations, new branchings may occur, creating a lot of parallel 
computations. This is not true since if  a computation causes 
a branching, this proves that the associated value of z ,  is 
sufficiently small to ensure the convergence ( z ,  -+ 0) of 
at least one of its two subcomputations, therefore, all other 
computations performed in parallel with it can be stopped. 
Thus, there are always at most two parallel computations. 
Another objection may be: if no new branching appears, how 
does one decide which computation is the correct one. We shall 
see that in such a case, both computations lead to a correct 
approximation of the sine and cosine. 

In practice, we build in parallel two sequences z? and z; 
(in two CORDIC modules called "+" and "-") defined by 
the following algorithm. We suppose that we have a function 
eval(z,) which returns at step n a value in { - 1 , O ,  l}, such 
that 
0 If eval (2,) # 0, then eval (z,) = sign (2,) 
0 If eval(z,) = 0 then Iz,I < 2-"-l. 

Algorithm branching - CORDIC 
Procedure updatez (n) ; 

begin 
i n p a r a l l e l  : 

ZZ+~ := z: - d: arctan2-"; 
:= z; - d; arctan2-,; 

{ i n  module "+"} 
{ i n  module "-"} 

i n p a r a l l e l  : 
s+ := e v a l  
s- := e v a l  z i+ l  

end ; 
Begin 

i : = 0 ;  { i n i t  i a l i z a t  ions} 

s+ := s- := eva l (0 )  ; 
while s+ # 0 and s- # 0 do {while no branching} 

zo' := z; := 0 : 

1 : 
begin 
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d: := s+ ; 
d- ._ s- . 

a .- 1 

u p d a t e z  ( i )  ; 
i := i + 1 ; 

end ; 
2 : {a branching is  occurr ing} 

d: := 1 ; 
d i  := -1 ; {branching} 
updatez (2) ; 
i := i + 1 ; 

3 : while (s+ = -1) and ( s -  = +1) do {while branching} 
begin 

d t  := s+ ; 
d i  := s- ; {branching cont inuing} 
u p d a t e z  ( i )  ; 
i .- . - i i l ;  

end ; 
{new branching,  o r  end of branching} 
if s+ = 0 then {module "+" performed t h e  good computation} 

begin 
,527 := z+ ; 
g o t o  2 {branchingt rea tment}  

end ; 

begin 
else if s+ = +1 then {module "+" performed t h e  good computation} 

za7 := z+ ; 
s- := s+ ; 
go t o  1 {branchingtermina ted}  

end ; 

begin 
else if s- = 0 then {module "-" performed t h e  good computation} 

z+ := 2 ,  ; 
g o t o  2 {branchingt rea tment}  

end ; 

begin 
else  if s- = -1 then {module "-" performed t h e  good computation} 

.+ := - ' zi 1 

s+ .- - .  , - s  , 
go t o  1 {branchingtermina ted}  

end ; 

Fig. 1 sums up the different cases occurring when perform- 

Theorem I :  The sequences (2:) and (2;) generated by the 

(1) At step i ,  at least one of the terms Iz+I and lzaTl is 
lower than or equal to I F i  arctan 2-k 5 2-2+'. 

(2) Both terms are lower than or equal to 3.2-2+'. 

ing the algorithm. 

previous algorithm satisfy 

H 

First, let us prove 1) by induction. We assume that 1) is true 
at step i - 1: at least one of the terms ( Z F - ~ )  and (zaY1) has 
an absolute value lower than or equal to CFi-' arctan 2-k, 
and we compute s+ = e v a l ( z z l )  and s- = eval (zzLl). 

Proof: a) Proof of ( I ) :  

I )  If s+ # 0 and .Y- # 0 then 

0 If we are not in a branching (both modules produce the 
same computation), then lzLll 5 cr=i-l arctan 2Tk. 
Since s+ # 0, s+ has the sign of ZT-~, and we take 
d:-l = s+. Therefore 

IzTI = lzLll - a r c t a n P + '  
03 

5 arctan 2pk - arctan F+' 
k = i - 1  

hence: 
03 03 

- arctan 2pk 5 z+ 5 arctan 2-k. 
k=i  k=i  

0 If we are in a branching 
if s+ = -1 and s- = +1 (label 3 of the algorithm: 
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/ 
/ \ 

Branching : 
module "+" tries +1 
module "-" tries -1 

Branching : - module "+" tries +1 - 
module "-" tries -1 

f 1 \ 
2 different computations 
performed in parallel 

1 
\ s-=+1 f 

I 
f 

S+ 2 0 2 different computations s- I O 
performed in parallel copies module "-" 

Fig. 1. Diagram of branching-CORDIC. 

branching is continuing). Consider the case where 
z L l  has an absolute value lower than or equal 
to Cr= ia rc t an2-k  (if not, the case is absolutely 
symmetrical by interchanging modules "+" and "-"). 
As previously, we take d:-l = s+. Therefore Iz+I 5 
Cp=i arctan 2-k. 
if s+ = +1 or s- = -1 (end of branching). Assume that 
s+ = +1 (the case s- = -1 is symmetrical), and that 
the current branching started at step k - 1. Since no new 
branching or end of branching occurred before step i ,  all 
values of s+, from step IC to step i - 2 have been found 
equal to -1. Therefore, z:-2 < 0 and z z l  > 0. Thus, 
since z:-l = z L 2  + arctan2-i+2: 

00 

z:-l 5 arctan 2-i+2 5 arctan 2-k. 
k = i - 1  

From this last result, we deduce as previously 

00 

5 E a r c t a n 2 p k .  
k = l  

2,' or 2;) such that 
i-1 

z+ = 2 0  - arctan2-P + a r c t a n ~ ~  and 

zzr = zp" + arctan2-P 

Therefore zz: - z+ = 2 ( a r ~ t a n 2 - ~  - ~ ~ ~ ~ + 1  arctan 
2-') < 2.2-2+' [from (P2)]. Moreover, since we are in 
a branching, z2r1 was positive and zLl was negative, 
thus zi = zzyl - arctan2-2+' 2 - a r ~ t a n 2 - ~ + l ,  and 
z: = z:-l + arctan 2-i+1 2 arctan 2-i+1. Therefore, 
zzT - z: 2 - 2 a r ~ t a n 2 - ~ + '  2 -2-i+2. Therefore 

Therefore, since Iz+I 5 2-i+1 or lzz:l 5 2-i+1, and 

Now, we give a convenient method enabling the computa- 
tion of function eval(z,). Let us assume that we are at step i :  
we want to evaluate zz- and z: from z2T1 and zL1. The 
absolute values of z2L1 and z L l  are less than or equal to 
3.2Ti, and eval(zi) must satisfy at step i :  

If eval ( z i )  # 0 then eval ( z i )  = sign(zi) 
If eval(z2) = 0 then lzil 5 2 T - l .  

k = p + l  
i-1 

a r ~ t a n 2 - ~ .  
k = p + l  

Iz2r - 5 2-i+2. 

lz2-l are less than 2-i+2 + 2-2+' = 3.2Tif1. 

Let us define the truncation of a digit chain as r(x-px-p+l . . . 

T is not the classical truncation or integer part function, 
and depends on the representations of numbers. For instance, 
the numbers lO. i l0l  and li.1117 represent the same value, 
however 

T ( l O . i l O 1 )  = lO(radix 2) = 2(radix 10) # T(lT.111i) = 1. 

The following lemma will help us to find the sign of a number 
by examining only 3 digit positions. 

Lemma I :  Let z = Z - ~ Z - ~ + ~  . . .  z - 1 ~ 0  . ~ 1 ~ 2 . ~ 3  ... be 
a number satisfying IzI < 3.2-3. Let C be the integer 
z3-2z3-1z3 modulo 8 = 7 (2") modulo 8. 

2) Zfs+ = 0 then (the case s- = 0 is symmetrical): Since 

z t  = z L l  - arctan2-2+1 
z2- = zLl + arctan2-'+l 

2-120 . X I 2 2  . . . )  = LP . ' .  2 - 1 5 0 .  
s+ = 0, we deduce lzLll 5 2-'. Now we compute 

and deduce that Min ( I z t l ;  Iz2-1) 5 Max (2-';arctan 2 P + l )  
5 Cr=2 arctan 2pk. 

Thus (1) is proved. 

b) Proof of (2): 
0 If we are not in a branching, then l z t l  = lz2-l 5 

CE2 a r ~ t a n 2 - ~  < 2-'+' < 3.2Y2+l. 
0 If we are in a branching: Assume that the current 

branching started at step p .  There exists z i  (equal to 
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’ If C is equal to 1, 2, or 3 then z 2 0. 
If C is equal to 5,  6, or 7 then z 5 0. 
If C = 0 then IzI 5 2-j. 
the case C = 4 is impossible. 
Proof: From IzI < 3.2-j we deduce l2jzl < 3. There- 

fore, since for every +(.) - ZJ < 1, I ~ ( 2 j z ) I  < 4. n u s ,  
~ ( 2 j . z )  is -3, -2, -1, 0, 1, 2, or 3, and C = 4 is impossible. 

If 7 (2j  2 )  is not equal to zero, then obviously, the signs of 
z and ~ ( 2 j z )  are equal. Therefore 

if c = 1, 2, or 3 then, since c = ~ ( 2 j z )  modulo 8 and 
~ ( 2 j z )  E {-3,-2,-1,0,1,2,3}, ~ ( 2 j z )  is equal to 1, 
2, or 3, hence z 2 0. 
if C = 5, 6, or 7 then, since C = ~ ( 2 j z )  modulo 8 and 
~ ( 2 j . z )  E {-3,-2,-1,0,1,2,3},  7(2jz)  is equal to-1, 
-2, or -3, hence z 5 0. 
if c = 0 then, since C = 7 (2j  2 )  modulo 8 and 7 (2jz) E 
{ -3, -2, - l , O ,  1,2,3} ,  T(2jz) is equal to zero, hence 
12jzI 5 1, i.e., Iz( 5 2 - 3 .  

Example: If zj-2 = zj-1 = z j  = 1, then zj-2zj-lzj = -7, 
Le., z j -2z j - l z j  = 1 mod 8, and we deduce from the lemma 
that z is nonnegative. 

Table 111 gives the sign of z for the different cases that may 
occur. This table may be used to implement the function eval, 
which may be reduced to a function of 3 digits: 

function eval(a, b, c):  returns 1 if [abc] mod 8 is 1, 2, 

1 if [abc] mod 8 is 5, 6, 

0 if [abc] mod 8 is 0 
anything if [abc] mod 8 

- 

or 3 

or 7 

- 

is 4. 

B. Computation of Rotations 

(2 ,  y) rotation. Module “+” performs 
Now, with each sequence (xi) and (z?) is associated a 

while module “-” performs the rotations 

In the algorithm branching-CORLMC presented above, one has 
to add the two following instructions: 
0 In parallel with updatez ( i ) ,  perform the two (x,y)  

When a new branching or end of branching occurs: 
rotations. 

In parallel with an instruction “z? := z i ,”  perform 

In parallel with an instruction “z2; := z+,” perform xi := 

Fig. 2 presents the global architecture of a CORDIC pro- 

x’ := xi and y: := yz; . 

x: and y i : =  y?. 

cessor that implements our algorithm. 

TABLE 111 
SIGN OF Z AT STEP J - 1 OBTAINED BY EXAMINING ONLY 3 DIGIT POSITIONS 

n 

Fig. 2. Global architecture of a branching CORDIC processor. 

Iv. ON-LINE IMPLEMENTATION OF ALGORITHM 
Now, we propose an on-line implementation of our algo- 

rithm for sine and cosine functions. On-line algorithms receive 
their input data and give their results serially, most significant 
digit first. The delay of an on-line algorithm is the number 6 
such that v digits of the result are deduced from v + 6 digits of 
the input values. 6 may be either positive or negative. The use 
of on-line arithmetic implies some changes in our algorithm: 

1) The input value zo = 0 of the rotation angle is carried 
serially. Therefore, at step i ,  only z digits of this value 
will be available. 

2 )  2 ,  and yn will be output on-line. In order to do that, 
these values have to be transformed: it is the digitization 
process. 
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Since we assume that we compute only sine and cosine 
functions, the angle zo is the only input value; zo = 1/K 
and yo = 0 are internal constants. It is possible to imagine an 
on-line rotation using our algorithm, with z o  and yo carried 
serially. However, it would be necessary to multiply 20 and 
yo by the inverse of the scale factor, in on-line mode, before 
the rotation (or to multiply the final values of z and y after the 
rotation). First, we examine the modification to our algorithm, 
called for by the on-line input of the rotation angle. 

A. Modifications Due to the On-Line Inpul 
Let us assume that we want to compute the sine and 

cosine of zo = 6' = ~zoO_0Bi2-i. Since at the beginning zo 
is not known with full precision, instead of the sequences 
z; and z; defined above, we manipulate two sequences 2: 
and 2; defined by the following on-line branching CORLIIC 
algorithm. We assume that now, function eval(2,) satisfies at 
step n 

If eval(2,) = 1 then 2, 2 2-"-2 
If eval(2,) = -1 then in 5 -2-n-2 
If eval(2,) = 0 then (2,l 5 2-"-'. 

This new function eval may be implemented in a way very 
similar to the one presented in Section III-A, examining only 
4 digits of 2,. The algorithm becomes 

AlgorithmOn-linebranching-CORDIC 
procedure updatez (n )  ; 

begin 
i n p a r a l l e l  : 
i,=, := 
~- z,+l := 

i n  p a r a l l  

2: - d: arctan 2-" + 19,+32-,-~. , { i n  module "+"} 
2; - d; arctan 2-" + { i n  module "-"} 

. e l  : 
s+ := e v a l  2z+1; 
s- := e v a l  in+,; 

end ; 
Begin 

1 :  

2 :  

3 :  

i : = 0 ;  { i n i t i a l i z a t i o n s }  

s+ ._ - .- .- s .- e v a l  (so+) ; 

begin 

2; := 2; := 0.6'16'2 = 6'12-1 + 6'22-2 ; 

while s+ # 0 and s- # 0 do {while no branching} 

d: := s+ ; 
d- .- s - .  
updatez (2)  ; 
i := 2 + 1 ; 

2 .- , 

end ; 

d: := 1 ; 
d i  := -1 ; {branching} 
updatez (2) ; 

while (s+ = -1) and ( s -  = +1) do 

{a branching is  occurr ing} 

i := i + 1 ; 

begin 
{while branching} 

d: := s+ ; 
d, := s- ; {branching cont inuing} 
updatez (i) ; 
i : = i f  1 ; 

end ; 
{newbranching, o r e n d o f b r a n c h i n g )  
if s+ = 0 then {module "+" performedthegood computation} 

begin 
..- zi := 2; ; 
go t o  2 ; {branching t rea tment )  

end ; 

begin 
else if s+ = +I then {module "+" performedthe  good computation} 

..- zi := 5: ; 
s- := s+ ; 
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go t o  1 ; {branching te rmina ted}  
end ; 

begin 
else if s- = 0 then {module "-" performed t h e  good computation} 

2+ := 2; ; 
go t o  2 ; {branching t rea tment  } 

end ; 

begin 
else if s- = -1 then {module "-" performedthe  good computation} 

2: := i2: ; 
s+ := s- ; 
go t o  1 ; {branching terminated} 

end ; 

Now, let us define (only for proof they are not computable Therefore 
in practice) two sequences z: and z; as 

0 If eval(2$) = 1 then z$ 2 0 
0 If eval(f2:) = 1 then zz7 2 0 
0 If eval(2:) = -1 then z$ 5 0 

1) zo' = z; = 8. 
2) add to procedure updatez ( n )  in the algorithm the 

instructions 

+ z,+~ = z,' - df arctan 2-" 
'n+1 = z ,  - d, arctan 2-" 
- 

3) in the algorithm, when an instruction "2: := iZ-" is per- 
formed, perform also "z: := zZ-" and when instruction 
z ,  := 2:" is performed, perform also "zt- := z:." 

Obviously, in a practical implementation, we do not com- 
pute these sequences (this is impossible since at the beginning 
of the computation, 8 is not known with full precision). They 
are defined only for proof. We assume that we have taken 
xo = 1/K and yo = 0, in order to obtain a final scale 
factor equal to 1. The values x, and yn of the nth step of 
the CORDIC iteration are equal to R, cos 8, and R, sin On, 
where R, is equal to nzn (1 + 2--22) -''2, with 0 ,  = 0 - z,. 
Therefore we need to bound lznl = 10, - 01. 

Theorem 2: 1) at step 2 ,  at least one of the terms l.zTl 
and lz,l is lower than or equal to 
Cp=z arctan 2pk 5 2-'+' 

2) Both terms are lower than or equal to 
3.2-"'. 

Proof: We do not give a detailed proof, since it is very 

A -  

similar to that of theorem 1 if we remark that 

which implies 

0 If eval(2;) = -1 then zz: 5 0 
0 If eval(2:) = 0 then Iz:I 5 3 Z P 2  

If eval(2:) = 0 then lzz:l 5 3.2- i -2 .  

B. Error Evaluation 
1) Use of the Outputs of One Module: Let us consider here 

the values x,, yn and z,  of any of the 2 modules "+" and 
. As previously, we assume that we want to compute the 

sine and/or cosine of 0, 101 5 1, and we denote 0, = 0 - z,. 
Since we have: Iz,I 5 3 .  2Tn+', we deduce 18, - 01 5 
3 . 2Yn+l. Therefore we have 

''- 7 7  

1 cos 0, - cos 01 5 3.2-"+' 
I sin 8, - sin 01 5 3.2-"+' ' 

- 1 / 2  
We assume that we have taken xo = nzo(l + 2-") 
and yo = 0, in order to obtain a final scale factor equal to 
1. The values x, and yn of the nth step of the CORDIC 
iteration are equal to R, cos 0, and R, sin d,, where R, is 
equal to nzn(l + 2-22)- ' /2 .  In order to output cos0 and 
sin0 in on-line mode, we have to estimate JIC, - cos01 and 
Iy, - sinOI. 

We have 

{ 

We obtain in a similar fashion 

1xn-sin81 5 3 . 2 - " + ' + I R n - l l .  

Therefore, we have to estimate the value IR, - 11 = 1 - R,. 
Lemma: 1 - R, 5 ( 2 / 3 )  2T2,. 
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Proof: R, is equal to ng, (1 + 2-2")-1/2, therefore 
log R, = -(1/2) log(1 + 4Ci) 2 -(1/2) CE,4Ki. 
Therefore logR, 2 -(1/2)[4-"+l/3], thus R, 2 
e-(1/2)[4-"+'/31 2 1 - 1/2[4-"+l/3] thus 1 - R, 5 (1/2) 

From the lemma, we deduce the following result: 
Theorem3: The values x, = ( x i  or x;) and yn = 

(y; or y;) satisfy (x, - cosdl and Iy, - s i n 0  are less than 

[4-"+l/3] = 2-'" and the lemma is proved. 

2-n+3. 
Proof: From the lemma, and from the relations 

we deduce that Ix, - cos01 and 15, - sin01 are lower than 
or equal to 

3 . 2 - n + l +  2 2-2, - 3 + - 2-n-1 .2-n+l 
3 4 3 2 ,  

2) Use of the Outputs of Both Modules: Assume that 0 E 
[0, +7r/2]. In Section IV-B1, we used the outputs xn and 
yn of any of the 2 modules "+" and "-". It is possible to 
obtain a better result if we use the values (1/2)(x; + x;) and 
(1/2)(y: + y;). We already showed in Section IV-B1 that 

Moreover, using the relations given by Theorem 2, it may be 
easily shown (the proof is the same as in Section IV-Bl) that 

at least one value X ,  E {x:, x;} satisfies IX, -cos 01 < 

at least one value Y, E {I&, y,} satisfies lY, - sin d l  < 
2-n+2 

2-n+2 

Let us define x, and yn as x, = (x,f + x;)/2 and yn = 

1) If we are not in a branching, then, since x, = x$ = x i  
and y, = y: = y;, we deduce from (B) that 15, -cos 01 
and Iyn - sin01 are less than 2-n+2. 

(9: + Y,)/2. 

2) If we are in a branching. Let us define 0; and 0; as 

Wehavex: = R,cosO:, y: = R,sinO:, xi = R,cosO;, 
and y; R, sin 0;. Therefore 

5: - coso 
+ 

2; - coso 
I 2  2 

15, - C O S O )  = 

R, COS 0: - COS 0 R, COS 0, - COS 0 
2 + =I 2 

coso; - coso coso; - coso 
+ 2  

+ IR, - 1). 

Since we are in a branching, z; 5 0 and z; 2 0. Therefore 
0: 2 0 and 0; 5 0. 

Therefore, since 0 E [-7r/2,7r/2], (cos 0; - cos 0) and 
(cos 0; - cos 0) have opposite signs. From this we deduce 

coso; - coso coso, - coso 
1 2  + 2  

I )  5 3.2-". cos 0, - cos 0 
1 2  

Thus ~ x , - c o s ~ I  5 3.2-"+IRr,-ll 5 3.2-"+(2/3).2-2" 5 
2Tnf2 .  Since the same proof may be used for the sine function, 
we deduce 

Theorem 4: The values x, = (x,f + x;)/2 and yn = 
(y; + y;)/2 satisfy Ix, - cosdl and Iy, - sin01 are less 
than 2-n+2. 

C. Digitization 
the ith digit of the 

mth iterate value dm) of x. dm) may be obtained as in 
Section III-B1 or as in Section IV-B2. Theorems 3 and 4 do 
not ensure that dn)  and y(,) are output-on-line. Although the 
value of each module satisfies I z ( ~ ) - c o s  01 5 2-n+3, this 
does not prove that the n - 3 most significant digits of dn)  are 
the n - 3 most significant digits of an on-line result. In order to 
produce an on-line result, x(,) and y(,) must be transformed in 
order to give a new digit result at each iteration. This procedure 
is sometimes called digitization (see for instance [ 121). 

Assume that at step m an algorithm for computing function 
f ( O )  gives a result dm) satisfying 

In the following, we shall denote 

Ix(m) - f ( 0 ) (  5 2rm+p. 

then at step m, we can give in on-line mode the p + 2 - mth 
digit of f ( 0 ) .  

The algorithm presented below gives in on-line mode the 
successive digits X I ,  x 2 ,  x3, . . . in, . . . of a signed-digit 
representation of f ( 0 ) .  

Digitization Algorithm 
Assume we are at step m + 2. We have obtained a value 

x(m+2) satisfying (x(m+2) - f ( 0 ) l  5 2-m-2+p. From x(~+') 

obtained by truncating the signed-digit representation of 
x(m+2) after its m + 2 - pth position satisfies 

Let us denote 4 = O . x l x 2 X 3 ,  . . .  xm-p-l. 
The interval Ii of the numbers representable if we choose 

xm-p = 1 is [4 - 2Ymfp+l, 41, the interval Io of the numbers 
representable with im-p = 0 is [q!~ - 2-m+p, 4 + 2-m+p], 
and the interval I1 of the numbers representable with xmPp = 
1 is [4,q5+2-m+p+1] (see Fig. 3) .  From this we deduce 
easily (see Fig. 3):  
0 If ximf2) < 4 - 2Tm+pP1 then, from (R), f ( 0 )  5 q5 

- 

- - 

thus f ( 0 )  E IT: we choose imp, = 1. 
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Fig. 3. The digitization process. 

0 If 4 - 2-m+p-1 5 x!m+2) < d, + 2TmfpP1 then, from 
(R), 4-2-“+P 5 x!m+2) <-d,+Z-”+P - thus f ( 0 )  E IO: 
we choose xm-p = 0. 

0 If 2!m+2) 2 d, + 2-m+p-1 then, from (R), f ( 6 ’ )  2 d, 
thus f ( 0 )  E 11: we choose xmPp = 1. 

This algorithm is easily implementable since it needs the 
examination of only 5 digits of z ! ~ + ~ ) .  Let us call K the 
integer 2m-P+2 - 4). From (R) and the obvious 
relation I f  - f ( 0 ) l  5 2Tm+P+l, we deduce Id, - ximf2)1 5 
5.ZPm+P-l. Thus, ( K J  5 10. The algorithm becomes 

07 if K 5 -3 
07 or Oif K = -2 

00 or 1 if K = 2 
01 if K > 3  

00 if - 1 < K 5 + 1 .  

Since 1K( 5 10, it is easy to show (see the proof of Lemma 1) 
that if we replace K by the value K* obtained by taking only 
its 5 least significant digits (K* = K mod 32), we obtain 

07 if 22 5 K* mod32 5 29 
07 or 0 if K’ mod32 = 30 

00 or 1 if K* mod32 = 2 I 01 if 3 5 K*mod32 5 10 

00 if K’ mod32 = 31 0 or 1 . xmPp = 

The values K *  mod 32 = 11, 12, 13, . . . , 21 are impossible. 

D. On-Line Delay of Our Algorithm 
Both CORDIC modules produce a result. Assume that we 

want to compute the cosine function (the same applies for the 

sine function). If we use for digitization the output values 
of onIy one module (e.g., module “+”), then at step i of 
the algorithm, we have an error Izi - cos01 5 2-i+3 using 
digits 6’0, 6’1, . . . , 6’i, Oi+l of 6‘. Our digitization algorithm 
enables us to give in on-line mode the i 5 t h  digit of cos6. 
Therefore, from digits 0 to i + 1 of 6’ we deduce digits 0 to 
i-5 of f ( 6 ‘ ) .  Therefore the on-line delay of our algorithm is 

If we use for digitization the average values of the outputs 
of both modules (as in part Section IV-B2), since at step i ,  we 
have an error (zi - cos6’l 5 2- i+2 ,  the on-line delay of the 
algorithm becomes 5. 

( i  + 1) - ( i  - 5 )  = 6. 

V. CONCLUSION 
We have obtained a very fast version of the CORDIC 

algorithm, which makes it possible to perform constant-time 
elementary iterations, independent from the length of the 
operands, with a constant scale factor. The main drawback of 
our method is the necessity of performing two conventional 
CORDIC iterations in parallel, which consumes more silicon 
area than classical methods. However, it leads to a fast and 
convenient on-line implementation, with a small delay. 
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