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Abstract. We propose a radix-r digit-recurrence algorithm for complex square-root. The operand is prescaled
to allow the selection of square-root digits by rounding of the residual. This leads to a simple hardware
implementation of digit selection. Moreover, the use of digit recurrence approach allows correct rounding of the
result if needed. The algorithm, compatible with the complex division presented in Ercegovac and Muller
(“Complex Division with Prescaling of the Operands,” in Proc. Application-Specific Systems, Architectures, and
Processors (ASAP’03), The Hague, The Netherlands, June 24-26, 2003), and its design are described. We also
give rough estimates of its latency and cost with respect to implementation based on standard floating-point

instructions as used in software routines for complex square root.

Keywords:
1. Introduction
1.1. Complex Square-root

Complex square-root appears in numerical computa-
tions such as complex Givens rotation [3], complex
singular value decomposition [1, 13, 25], and in ap-
plications such as principal component analysis [7],
quantum defect theory [19] and wave propagation
[23].

Complex square-root operation is commonly im-
plemented in software based on various algorithms
developed for reliable and accurate evaluation in
languages like FORTRAN 90 [14]. There are also
collections of Fortran routines for multiple-precision
complex arithmetic which include complex square-
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root [24]. These implementations rely on standard
floating-point instructions and, consequently, their
execution time is significantly longer than that of a
single arithmetic instruction. In today’s processors it
is quite common to have hardware implementation
of all basic operations on real fixed/floating-point
operands. To our knowledge, there are no imple-
mentations of complex square-root at the hardware
level on conventional processors. The only hardware
implementation of complex arithmetic, including
square-root, we are aware of is an FPGA implemen-
tation due to Mcllhenny [16], who used an adapta-
tion of on-line arithmetic to Eq. (1). With a rapid
increase in capacity of integrated circuits, it is timely
to consider hardware-based implementation of an ex-
tended set of operations. In this research we focus on
hardware-oriented algorithms and implementations
of operations on operands in the complex domain. In
[11] we proposed and developed an algorithm and its
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implementation for complex division compatible
with a standard radix-r digit-recurrence division
scheme. In this paper we extend our approach to
complex square-root operation.

Since a nonzero complex number has two square
roots, we will define 1/Z as the square root whose real
part is positive when z is not a negative real number.
The simplest algorithm for evaluating a complex
square root u + iv of x + iy, based on real square
roots, consists in successively computing

t=/2 12
({+x)/2 (1)
v==12+({l—x)/2

with sign(v) = sign(y) [2]. This algorithm is optimal
in the algebraic sense, i.e., in the number of exact
operations +, —, X, +, /- However, it suffers from
several drawbacks:

« x> 4+y? can overflow or underflow, even if the
exact square root is representable, leading to very
poor results;

. 3 real square roots, 2 squares and 3 additions/
subtractions are required. Even if this is
“algebraically optimal,” this is quite costly and
one could hope that a direct hardware implemen-
tation of complex square root could be better.
Another solution [21] is to first compute

0 if x=y=0
1
wod VN —Hm) it >
/v +4/1+ (x/y)?
W' /| ¢2 T

and then obtain

u—+iv=-/x-+1iy

0 if w=0

w+izs if w#Oandx>0

MJriw if w#0andx<0andy>0
%—Lw if w#0andx<0andy<0.
This avoids intermediate overflows at the cost of
more computation including several tests, divisions
and real square roots which make the complex square

root evaluation quite slow compared to a single

arithmetic instruction. Also, estimating the final accu-
racy is very difficult.

Kahan [15] gives a better solution, that also cor-
rectly handles all special cases (infinities, zeros,
NaNs, etc.), also at the cost of significantly more
computation than the naive method (1).

This paper presents an algorithm similar to the
usual digit-recurrence real square-root algorithm [9,
10, 20], suitable for hardware implementation. The
original approach was presented in [12]. For com-
puting +/x, this algorithm uses the recurrence

j+l’ E (2)

where w[0] = x, and the square root digits s;’s are
chosen in a radix-r redundant digit-set, so that the
residual w[j] is bounded.

The main problem of digit-recurrence algorithms
is to find a practical result-digit selection function for
higher radices. Several approaches have been sug-
gested for higher radix square-root digit selection. In
[4] the use of digit selection tables is analyzed and
applied to the radix-4 case. The hardware complexity
of this approach grows rapidly with the radix. An
alternative, applied to higher radix digit-recurrence
algorithms for division [9, 10], uses prescaling of the
operands and rounding of the truncated residual to
achieve a feasible digit-selection function for higher
radices. This approach using prescaling and rounding
has been also developed for higher radix square
rooting [17, 18]. It consists of multiplying x by a
constant K so that Kx is close to 1, and using the
standard residual recurrence to compute \/Kx. The
prescaling allows the selection of s;1; by rounding
the residual w[j] (or, merely, an approximation made
up with a few most significant digits of wij]) to the
nearest integer. For fast implementation, a truncated
residual is used. K is deduced from a few most signi-
ficant bits of x. To simplify the multiplication K x x,
it is desirable to choose a low-precision value of K.

Throughout the paper, i is v/—1, and if z is a
complex number, then $(z) and 3(z) denote the real
and imaginary parts of z. The norm ||z||., denotes
max{|R(z)|,|S(z)|}, whereas |z| denotes the usual
complex absolute value

wlj+ 1] = rwlj] — 25180 -

VRGO + (86

Since |R(z)| and |3(z)| are both less than or equal to

|I2]] o» we deduce: |z] < (/I + [ = V2][z]| .



In the next section we describe the basic recur-
rence and prescaling of the argument. In Section 3
we discuss implementation of the method and give
some rough measures of its latency and cost. We also
compare with a conventional implementation of
complex square root operation.

2. Complex Square-root Algorithm
2.1. Basic Iteration

Assume we wish to compute /x, where x is a
complex number satisfying ||x||., < 2. We consider
a digit-recurrence algorithm that produces a radix-r
representation of /x in the form sq.s1595384 ... with
sj = s + isf, where s and s are in the redundant
digitset S={—a,—a+1,...,a} ,a<r—1,and r
is the radix (in practice, r is a power of 2).

Assume that we have already computed SJj]
represented by sq.51525384...5;. The jth residual is
defined as

Wi = (x = (SI)°) (3)
Using Eq. (3), we obtain the residual recurrence
Wi+ 1] = rW[j] — 2s;.18]j] — sﬁ_lr—j_] (4)

which is the same recurrence as in the real case. It is
important to note that, from Eq. (3), any choice of
the s;’s for which the W[j]’s remain bounded will
ensure that S[j]* — x. After separating the real and

imaginary parts of W[j + 1] in Eq. (4), we get
WR[j+1] = WR[j] - ZSﬁlSR[/'] + 2sJ-I+lSI[j}
()7 = (55!

AWY] - 257, S%(] — 2% 57

AR T —j-l
2sj+1sj+1r .

WE[j+1]

(5)

Selection of digits s’ and s/, | so that W*[j + 1] and
WZ[j + 1] remain bounded is not obvious and we
now discuss our approach in obtaining a selection
function. Indeed, Fig. 1 shows that, at least in some
cases, choosing the “complex digits” s, cannot be

done at a reasonable cost.
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However, we notice that:

. The terms (s}il)2 - (sjﬂl)Q) r/7t and 2s%,

stHr’f’l decrease rapidly as j increases, so that

their influence can be neglected when choosing s

after, possibly, a few first iterations.

. If S[j] is close to 1 (i.e., if S®[j] is close to one and
SZ[j] close to zero), then WX[j + 1] would be close
to rWR[j] — 2s17_3H and WZ[j + 1] would be close to
rWEj] = 257, so that a “natural” choice for s7%,
would be the integer closest to 1/WR[j], and a
“natural” choice for st+1 would be the integer
closest to 2rWZ[j].

To make S[j] close to 1, we perform prescaling of
the operand. This allows the iterations (4) to start at
step jo > 1 and to use for the selection the “natural”
choices presented above. For a fast implementation
of the iteration, we will use low-precision estimates
of the shifted real and imaginary residuals. Of course,
we have to make sure that this suffices to ensure
convergence.

2.2. Prescaling the Operand

2.2.1. How Prescaling the Operand Simplifies the
Selection. The prescaling part of the algorithm is
very similar to that of complex division [11]. Before
discussing different ways of performing the prescal-
ing, let us show how having prescaled the input
operand simplifies our problem.

Using an input number x (for simplicity, we
assume 1/2 <||x||, < 1), we first obtain (from a
look-up table, either by direct look-up or using a
method presented in Section 2.4) a complex number
K such that ||[Kx — 1]|,, < 279, where ¢ is a param-
eter of the square-root algorithm. We then obtain
d = Kx and use the digit-recurrence algorithm with
selection by rounding to compute v/d. The table
stores also precomputed values 1/ VK, so that at the
end of the computation we can obtain the final result

VX as
V= Vd x (1/\/1—()

The multiplication by 1/v/K can be performed in
parallel with the recurrence: as we compute a new
complex digit s; of \/;1, we accumulate s; X 1 / VK in
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Y

domain where we can choose
s1 =141

domain where we can
choose s1 =0 —+

Figure 1. The domains where digit s can be chosen equal to 1,
prescaling is needed to simplify the digit selection.

two registers, one for the real and another for the
imaginary part.

After the prescaling step, we have obtained d =
Kx such that ||6]|,, < 279, where § =d — 1. Let us
try to bound ||\/3— 1||OO. We use the Taylor
expansion

§ & & 56
Vd=l+5-c+e—gt (0

Define R and @ by 6 = Re?. From & = RFe'*,
one gets ||6¢]|,. < R¥, and since R < v/2||6|| ., we
finally obtain ||6%]| < 2"/2||5||];o < 2K/29-4k Com-
bining the last result with the power series (6), we
get

r=1-—1y2/4

“\_‘\““
-“""‘-H-J
domain where we can

choose s1 = 1

1+ or 0, assuming sy = 0. The complexity of these shapes shows that

279 2x 272 2\/2x 2%
_ <
IVd =1l < 5+ —5—+—¢
Sx4x24
128
271 2 x 274
<4 4o
N + 3 +
In particular, for g > 2:
9 _
[va-1| <2, (7)

Hence, there exists a radix-2 representation of \/c—i
that starts with



. For the real part:

1.000---00
—_——

q zeros
. For the imaginary part:

0.000---00
—_——

q zeros

These digits can be used to initialize S[jy] for some
Jo- More precisely, assume that the digits s; are radix-
r = 2k digits in the set {—a,...,+a}. From Eq. (7),
one can easily show that there exists a representation
of v/d in this radix-r system that starts with

« For the real part:

1. 000---00
—_——

0o=\q/k] zeros

. For the imaginary part:

0. 000---00
——
0o=\q/k] zeros

. o0 7’ i 7q .
ifa) 2 r ' >5279 de,

24, (8)

Assume g = kjp + ¢, with 0 < £ < k — 1. Eq. (8) gives

a 9
S 2 ot
r—1_162 ®)

The ratio a/(r — 1) = p is the redundancy factor
which, for a redundant digit set {—a,...,+a},
satisfies 1/2 < p<1. If £>1 the condition (9)
can be satisfied for any r and a. For £ =0, the
condition requires that @ > r/2, i.e., the minimally
redundant system cannot be used.

2.3. Making the Iterations Work

We assume that the radix of the iteration is r = 2F.
We start the iterations from step jo = |¢/k| since Eq.
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(8) is satisfied in all practical cases. The initial
values are

SRljo] = 1

sz =0

Wi = ey 00
W] = r(d").

The selection function that returns the s;’s is as
follows. We will choose 973_ | as the integer closest to
the number constituted by 1/ ZrWR [/] truncated after
the o-th borrow-save position." We choose s, as the
integer closest to the value 1/2/WZ[j] truncated after
the o-th borrow-save position. This implies that

Sial — 1W[/]H 42, (11)

For convergence of the algorithm, we have to :

1. Bound [|W[j+ 1]||,., that is, bound [W™[j+ 1]|

and |[WZ[j+1][;
2. Choose ¢ and o so that the selection function
returns digits in the set {—a,...,+a}.

Let us first bound ||W[j+ 1]||,,. Denote S[j] =
1+e=1+€® +ie’. From Eq. (10), we get ||€||
max{|e?|,|f|} < r~l9/%), Since

WR[[+1]:(rWR[I]_2S/+1) 25 16 —|—2]+16

— (637 = ()

we find

[WR[j+ 1] <1 42777 4 dar~ /M 4 2!

<1 4270t 4 agp-la/kl 4 g2 la/k=1
Similarly, from WI[/'Jr 1= (rWI[/} - 2s7,) —
2S]I+ — 2s — 2s7-2+1sZ 771 we  find
WZji+1] <1 +2 41 | dg L) § og2p—lalkin—a,
Therefore, we get the following bound

Wi+ ]|, <1427

2 (12)
+<4a + 201—)r_t‘7/kJ =Q
,

Let us now determine conditions to assure that the
real and imaginary parts of computed digits s
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belong to {—a,...,+a}. These digits are obtained by
rounding to the nearest integer an estimate with
accuracy £277 of a number whose absolute value
can be as large as $rQ. To satisfy [s; 1| < a we must
have

1 1
FrQ+27 <aty (13)

Combining Eqgs. (12) and (13), we get:

Property 1 If

L @\ i) o !
r 5—1—2"—1— 2a+—|r 4 +2”§a—|—§
.

(14)

then the recurrence (5), initialized at step jo =
lg/k| with the values defined in Eq. (10) returns a
representation of v/d in radix r with digits in
{-a,...,+a} which can be selected by rounding
the residual estimate of o fractional bits.

2.4. Two Ways of Prescaling the Argument

Our method requires that, from a given argument x, we
obtain a complex scaling factor K such that ||Kx —
1]l < 277 by a table-lookup. We must also get
1/ VK. Let us examine two approaches to obtaining K.

2.4.1. First Approach: Direct Table-lookup. We
assume that

< [l < L.

| =

This is obtained by a mere shift of the argument x.
We can also assume that $(x) and 3(x) are both
nonnegative, and that ®(x) > J(x). This comes from
the elementary properties:

1 - ix 1
a—liib = X ThYa
L~ [+ ).

and

=X
U
x

%H

b

K =i
a—+i

S
I
Q
+
&

where a + ib = a — ib is the complex conjugate and*
A=2(1—i).

Now, if we write x =a +1ib, a and b can be
represented as binary fixed-point numbers

a = O.aqiarazays - -
b 0.b1babsby - - -, .

where a; = 1. Define a and b as a and b rounded
to the nearest m-fractional-bit number. Our first
solution consists in looking-up

|
K=—
a+ib

in a table with 2m — 1 address bits.> Now, by
denoting £ = 4 + ib, we easily find

1
by

<=1 =2 -2
X 00

<4 -1, <27
.

Therefore, to assure that ||[Kx — 1|, will be less than
2749, it suffices to choose m = g+ 1. Hence the
lookup table will have 2g + 1 address bits.

2.4.2. Second Approach: Two-step Table-lookup.
Another solution is to first use the previous method
with a much smaller value of ¢, so that from a and b
we get ay, by, Ky and 1/4/K; that satisfy

l—a| < 27
|b1] < 2™
aq = Kla
by = Kib

To do that, we need a table with 2¢; + 1 address
bits. Then, we use the same method again (with a
different table), to find from a; and by, values as, bs,
K> and 1/4/K; that satisfy

|1 — a2| < 271
‘b2| < 271
a = K
by = Kb

Since the first ¢; fractional bits of a; are zeros or
ones, and since the first ¢; fractional bits of b; are
zeros, the second table lookup requires a tables with



Table 1. Parameters ¢ and o and number of address bits as
function of r and a.

Pl P2
Case 7 a q o (# address bits)  (# address bits)
1. 2 1 4 4 9 7
2. 2 1 6 3 13 9
3. 4 2 6 5 13 9
4. 4 3 6 3 13 9
5. 8 4 9 5 19 12
6. 8 5 9 319 12
7. 8 6 6 5 13
8. 8 7 6 4 13
9. 16 8 12 6 25 15
10 16 9 8 9 17 11
11 16 10 8 5 17 11
12 16 11 8 4 17 11
13 16 12 8 317 11
14 16 15 8 2 17 11

2m address bits, where m = (¢ + 1) — (¢1 — 1) (the
“—1"1in “g; — 1"’ comes from the fact that we need
to know the sign of b; and whether the first bits of a;
are all zeros or ones). After that, we compute K =
KK, and 1/vVK = 1/\/K| x 1/\/Ks.

Hence we need to lookup a table with 2¢g; + 1
address bits and a table with 2((¢ + 1) — (g1 — 1))
address bits. The best solution is obtained by
equating the sizes of both tables, which gives

2+3
q =" e,

q1 = [q/2 +3/4]
Therefore, the tables have ¢ + 3 address bits each.
2.5. Relations among Algorithm Parameters

Table 1 gives parameters ¢ and o that satisfy Eq. (14),
depending on r and a. The table required by the
prescaling step has 2¢ + 1 address bits if we perform
a direct table look-up. With the two-step prescaling
method, the tables use ¢ + 3 address bits. Table 1 also
indicates the number of address bits for the direct (P1)
and the two-step prescaling (P2) approaches. Note
that Case 4 (radix 4 max. redundancy) and Case
8 (radix 8 max. redundancy) have the same table size
requirements. Since the prescaling for the complex
square root is similar to the one for the complex
division algorithm [11], a combined scheme is
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possible, which makes hardware implementation more
attractive.

3. Implementation and Comparison

We are considering only the computation of the
significand, ignoring exponent handling and related
adjustments to the argument. The argument is x =
(x®, %) and the result is z = /x = (2%, z) with the
real and imaginary components in a fixed-point
format. The overall scheme for computing complex
square root is outlined in Fig. 2.

There are four main parts in the scheme: prescaling,
recurrence evaluation, postscaling, and on-the-fly con-
version with rounding. The prescaling part uses a table
lookup to determine the scaling factor K = (K*, K7)
and the postscaling factor 1/vK = (C®,C%), and a
complex multiplier to obtain the scaled argument
d = x x K. The postscaling factor is needed to obtain
z from the computed result as \/t_z' as z = \/(7 X
(CR,ch).

The real and imaginary residual recurrences can be
implemented using a modified conventional square-
root recurrence. As discussed in [10], it is convenient
to define the residual recurrence as

wlj + 1] = rw[j] + FJj] (15)
where
Flj) = =2S[jlsj1 — 57,7 VY (16)

Since s[j] digits are produced in signed-digit form,
the partial result S[j] is also in signed-digit form.
Depending on the adder used, S[j] is converted to
adapt to the adder. If a carry-save adder is used, F
has to be in two’s complement form. This conver-
sion can be done on-the-fly. In this paper we assume
that the adder is of a carry-save type. We now apply
the form of Eq. (15) to the complex residual recur-
rence 5:

FRJj) = _2Sﬁ1$RU] - (Sﬁl)z"_j_l
G [/] = 2SJ'I+1SI [/] + (SJZH)Z,.—/‘—I
WR[j+1] = rWR[j] + FR[j] + GRj]
FIjl - = =258 SR+ 1]
Gl = =258
WZ[j+ 1] WL + FZ[j] + G[j] .

(17)
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41

PRESCALING

d® d!
whrj w'[j]

« gRp:
[jI r r

k

Re RESIDUAL Im RESIDUAL

A l
# 8’1

>
e

S

\ilj
+
~

R
Sj+1

Yy ‘ * vy ; *

Re LR MULTS; Im LR MULTS;
RECODE;ADD RECODE;ADD
s7| si
¢ ¢
Re OFC/RND Im OFC/RND

A

Figure 2. Overall scheme for computing complex square root.

The real SJEI and imaginary SJZH digits are selected
by rounding of the corresponding shifted residual

estimates rW*[j] and rW™{j], respectively:

fu = SELOWFL) (18)
sy = SEL(rWZ[j])

where SEL function consists of rounding the residual
estimate and recoding of the result digit into radix-4
signed digits.

The block-diagram of implementation of the
complex recurrence is shown in Fig. 3.

The postscaling to obtain z = /d x (C®,C?) is
performed using four sequential left-to-right carry-
free (LRCF) multipliers without final adders [8].
Each LRCF multiplier produces one product digit

per step. Since these digits are in an over-redundant
digit set, they are recoded and added to produce the
real and imaginary digits in signed-digit form. These
are then used sequentially by on-the-fly converters to
produce the final real and imaginary parts of the
result in a conventional form. The implementation
combines postscaling with on-the-fly conversion.
Moreover, as discussed in [10], the rounding can be
integrated with the on-the-fly conversion. These
multipliers do not have final adders since the product
digits are used left-to-right in redundant form.

We now discuss the postscaling and conversion in
more detail. In step j the following increments are
added to the accumulated real and imaginary partial
products:

R R _ I I
$711CT = 5534C (19)
SR CI _ SI CR

1 1

These are implemented using four LRCF multipliers
and the corresponding recurrences are

UR[j+1] = r(frac(UR[j] + CRsK ) = r(frac(UR))
VRj+1] = r(frac(VR[j] - CISJ.IH)) = r(frac(VR))
prlisn = int(UR)
pr2iyi = int(VR)
Ulli+1] = r(frac(UT[j] + Czs}il)) = r(frac(UI))
V1] = r(rac(VEf] - C7h)) = rifrac(Vi))
piliyr = int(UI)
Pi2in = int(VI)

(20)

where frac(g) and int(g) are the fractional and
integer parts of g, respectively. Since

[UR| <r+(r—1)xa (21)

the range of prlj;; exceeds one radix r digit.
Similarly for the other output digits. Dividing the
postscaling factors by r, we obtain the output digits
in the set {—(r+a—1),...,(r+a— 1)} which are
recoded to the set {—(r — 1),...,r — 1} to simplify
the remaining modules. After recoding the digits are
added using on-line addition to produce the real
(imaginary) radix-r signed-digits of the result. These
digits are then converted using on-the-fly conversion
to obtain the final result in conventional radix-r
representation. The design details are omitted.



The proposed scheme has an estimated latency
Tpmposed = tprescal + titer + tpostsc'ale + trecode
+ toL—add + teonvert—rnd (22)

For r < 16 we estimate the delays of the terms in the
expression for Ty,,, as follows. t,..s4 is the time to
perform the table lookup to get K and C and perform
d =x-K which we estimate to be < 2t.... The
iteration time is fi;r = (1 — jo)feycre. The postscaling
and conversion/rounding are overlapped with the
residual recurrence: tecoqe = 2tcyeie because of the
scaling of C as discussed above; the remaining stages
have single cycle delay. We estimate that the cycle
time ... of the recurrence loop (see Fig. 3),
measured in full-adder delays (#7,4), is

Leycle = ISEL + IrG + t[6:2] + lreg = 61ra (23)

where tggp = 1.5tp4 is the delay of the selection
function, tpG = 1.5tp4 is the delay of the F (G)

Complex Square Root with Operand Prescaling 9

Table 2. Area of primitive modules (in Ars units).
Module Area

Register Areg = 0.6n

2-to-1 MUX Aoy = 0.4n

k-to-1 MUX, k=3, 4 Agmux = 0.8n

[2:1] adder A1) = 0.5nlogn

[3:2] adder. Apg =n

[4:2] adder Ay = 2.3n

[6:2] adder Ao = 4.3n

SEL (round and recode  Aggz = 6

On-the-fly converter
OFC with rounding
LR multiplier

Complex rect.

Aofe = 2A01mux + 2A10g = 20

Aofernd = 2A91mux + 3Areg = 3n
Arrmul = Agmux + Api2) + 24504 = 30
Acmu = 4(4Akmux + Az + Apg)+

—~ sk s'tj1
R;.
w[j] * ‘
round B FR st Gt
J+l J+l
5t l F¥j G*ij1
w1 ‘ ‘
[6:2] ADDER registers not shown
wRlj+1] ‘
— %1 s'lj1
w'[j] * ‘
round S,Ii: —> F! s,IH — ¢!
5 l Flijl G'ljl
wlij] ‘ ‘
[6:2] ADDER registers not shown
wilj+1] *
Figure 3. Block-diagram of implementation of the real and

imaginary residual recurrences.

multiplier 2Ap:1] + 245, = (27.2 4 0.5logn)n

Divider 716 Adiv = Aset + 2Akmux + Apz:) + 24,0+
Aoerna = 120 + 1.6n + 2n + 1.2n+
3n =120+ 7.8n

SQRT r16 Asgre = Adiv

network, g0 = 3rs is the delay of the redundant
adder, and t,,, = 0.5¢r4. For example, for r = 16 and
54-bit significand, we estimate that T)rposeqd =
Q+1T4+2+ 1414+ Diteyere = 18teyeie = 1081p4.

To get a rough comparison of the latency of the
proposed scheme with a conventional complex
square-root software implementation, we consider
the algorithm defined in [21] which uses 3 real
square-root and 2 real division operations in the
floating-point format. There are also several com-
parison and absolute value operations. The estimated
latency of this implementation is

Teony = tprv + 2tsor + tory = 4tsor~ (24)

To achieve this latency two square-root units in
parallel are required. We ignore exponent processing
and rounding delays. Moreover, assuming a radix-16
digit-recurrence implementation of significand com-
putation, we estimate

tSQR ~ tpresca[ + (n/4) X tcycle + tpostscale + tround
(25)

where Teyele 2 ISEL + tF—net = Ha:2) + treg = dtps. We
assume that prescaling and postscaling is done for
radix 16 so that the selection function is simplified.



10 Ercegovac and Muller

For a 54-bit significand, we estimate that T,,,, =
4% (2414414 1)teyee = 28854 without taking
into account comparison and absolute value oper-
ations. We conclude that the proposed scheme is at
least 2.5 times faster than a conventional one.

To implement the real part of the proposed scheme
we use the following main components: 2 multiple
generators in F' and G networks, a [6:2] adder, two
registers, two sequential left-to-right multipliers
without final adder, one on-line adder, and three
registers for on-the-fly conversion with rounding.
Similarly for the imaginary part. In addition we need
a lookup table of 2¢ + 1 inputs and a complex
rectangular multiplier. The cost is measured as area
occupied by modules using the area of a full-adder
(Ara) as the unit. The area of primitive modules is
given in Table 2.

We also assume r = 16, a = 10, which has pre-
scaling tables of size 2!! x (3 x 9) bits. equivalent to
A = 1.9KAps. The area of the real (imaginary)
recurrence, including postscaling and on-the-fly
conversion/rounding, is

Aveat = Aser + 2(A0fc + Atr + A[B:Z]) + A[6:2]
+ 2Areg

Similarly for the imaginary part A;,,,. The total area
of the proposed scheme for r =16 and n = 54 is
estimated as

ACSQR = 2Am + Acmut + Areal +Aimag + 4 X Argpune

+2x Aofcrnd

~ 75KAFA

We estimate that the cost of a conventional
implementation using two FLPT square-units and a
FLPT divider would be

Acony = Adgiv + 2Asqr ~ 2.5KApa
which is much smaller than the implementation of

the proposed approach.

4. Summary

We proposed a new algorithm for complex square
root. It uses two digit-recurrences and prescaling of
the operand to allow result-digit selection by round-
ing. This makes the proposed scheme suitable for

higher radices. The prescaling is more complicated
than in the real case leading to larger lookup tables.
Since the same prescaling is applicable to the digit-
recurrence complex division proposed in [11], these
two algorithms can be combined. A rough compar-
ison with a conventional implementation based on
floating-point instructions indicates a significant
speedup of the proposed scheme at a higher cost.
The proposed scheme allows correct rounding.
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Notes

1. Adaptation to carry-save notation is straightforward.

2. Multiplication by \ is straightforward: each time we get a
new digit of the square root, we accumulate A\ times that
digit.

3. A straightforward implementation would require 271 address
bits, but we use the fact that a; = 1.
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