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Needs 7 A few figures. ..

m span:

Estimated diameter of observable universe 1062
Planck’s length -

m accuracy: some predictions of general relativity or quantum
mechanics verified within relative accuracy 10714

m intermediate calculations: quad precision and smart tricks
required for very-long term stability of the Solar system
(J. Laskar, Paris Observatory).
Good news: we seem to be safe for the next 40 million years;
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We can do a very poor job. ..

m Pentium 1 division bug:
8391667/12582905 gave 0.666869 - - -
instead of 0.666910- - -;

m On some Cray computers, it was possible to get an overflow
when multiplying by 1;

m Maple version 7.0, enter gggéi and you get 1 instead of 5001;

m Version 6.0 was even worse. Enter 214748364810, you get 10.
Note that 2147483648 = 231.

m Excel'2007, compute 65535 — 2737, you get 100000;



Floating-Point System

Parameters:

base 8>2
precision p>1
extremal exponents  Enin, Emax
A finite FP number x is represented by 2 integers:
m integral significand: M, |M| < gP — 1,
m exponent e, Eqin < e < Emax.
such that
x = M x [);e—&-l—p

Real significand, or significand of x the number
m=M x 3P,

so that x = m x (€.
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Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which
1 < m < 3. Itis the one for which the exponent is minimum.
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Normal representation

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which
1 < m < 3. Itis the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a
“1" — no need to store it (implicit 1 convention).
A subnormal number has the form

M x IBEmil‘I‘Flip.

with [M| < 3P~ — 1. Such a number has no normal representation.
Corresponds to 0.xxx00cxx x 3Emin.



|IEEE-754 Standard for FP Arithmetic (1985)

put an end to a mess (no portability, variable quality);

leader: W. Kahan (father of the arithmetic of the HP35 and
the Intel 8087);

formats;
specification of operations and conversions;
exception handling (max+1, 1/0, v/—2, 0/0, etc.);

under revision.
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Correct rounding

Definition 1 (Correct rounding)

The user defines an active rounding mode among:

m round to the nearest (default) in case of a tie, value whose
integral significand is even;

m round towards +oco.
m round towards —oo.
m round towards zero.

An operation whose entries are FP numbers must return what we
would get by infinitely precise operation followed by rounding.



Correct rounding

IEEE-754 (1985): Correct rounding for +, —, x, +, |/ and some
conversions. Advantages:
m if the result of an operation is exactly representable, we get it;

m if we just use the 4 arith. operations and |/, deterministic
arithmetic: one can elaborate algorithms and proofs that use
the specifications;

m accuracy and portability are improved;

m playing with rounding towards 400 and —oo — certain lower
and upper bounds: interval arithmetic.

FP arithmetic becomes a mathematical structure in itself, that can
be studied.

~-10-



Error of FP addition (Mgller, Knuth, Dekker)

First result: representability. RN (x) is x rounded to the nearest.

Let a and b be two FP numbers. Let

s= RN(a+b)

and
r=(a+b)—s.

if no overflow when computing s, then r is a FP number.

_11-



Error of FP addition (Mgller, Knuth, Dekker)

Proof: Assume |a| > |b],

s is “the” FP number nearest a+ b — it is closest to a + b
than ais. Hence |(a + b) — s| < |(a+ b) — a|, therefore

[r[ < [B].

~12-



Error of FP addition (Mgller, Knuth, Dekker)

Proof: Assume |a| > |b],

s is “the” FP number nearest a+ b — it is closest to a + b
than ais. Hence |(a + b) — s| < |(a+ b) — a|, therefore

[r[ < [B].

denote a = M, x 3%=P*1 and b = M, x B%~PtL with
IMa|, [Mp| < P —1, and e, > ep.
a+ b is multiple of 3%~PT! = s and r are multiple of
Be=P+l oo = IR € Z s.t.
r=R x ge%Pt!

but, |r| < |b] = |R| < [Mp| < P — 1= ris a FP number.

~12-



Get r: the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))

0B < 3, subnormal numbers available. Let a and b be FP numbers,
with exponents s.t. e, > ey, (if |a| > |b|, will be satisfied).
Following algorithm: s and r such that

B s+ r=a+ b exactly;

m s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum) C Program 1

s — RN(a+ b) sl
z+ RN(s—a) r - b—zj
r— RN(b-z) ’

Proof: Show that s — a and b — z are exactly representable.

~-13-



The TwoSum Algorithm (Mgller-Knuth)

m no need to compare a and b;

_14-


http://lipforge.ens-lyon.fr/www/pff/Fast2Sum.html

The TwoSum Algorithm (Mgller-Knuth)

m no need to compare a and b;

m 6 operations instead of 3 yet very cheap in front of wrong
branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

s« RN(a+b)
a — RN(s—b)
b — RN(s— &)
d,— RN(a—a)
dp — RN(b—b)
r < RN(53+5,,)
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The TwoSum Algorithm (Mgller-Knuth)

m no need to compare a and b;

m 6 operations instead of 3 yet very cheap in front of wrong
branch prediction penalty when comparing a and b.

AT IPAQICRTTUVI  Knuth: V3, if no underflow nor over-
s RN(a+ b) flow occurs then a4+ b=s+r, and s

o — RN(s— b) is nearest a + b.
b — RN(s— &)
d,— RN(a—a)
dp — RN(b—V)
r < RN(53+5,,)
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The TwoSum Algorithm (Mgller-Knuth)

m no need to compare a and b;

m 6 operations instead of 3 yet very cheap in front of wrong
branch prediction penalty when comparing a and b.

AT IPAQICRTTUVI  Knuth: V3, if no underflow nor over-

s— RN(a+b) flow occurs then a+b=s+r, and s
o — RN(s— b) is nearest a + b.
/ /
([;a : I;I/\\//((Z _Z,)) Boldo et al: (formal proof) in radix
5 RN (b — b) 2, underflow does not hinder the result
b —
r— RN(S,+ 8 (overflow does).

Formal proofs (in Coq) of many useful such algorithms:
http://lipforge.ens-1lyon.fr/www/pff/Fast2Sum.html.

14
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How about products 7

m FMA: fused multiply-add, computes RN (ab + ¢). RS6000,
[tanium and PowerPC. Will be in IEEE 754-R;

m if a and b are FP numbers, then r = ab— RN (ab) is a FP
number;

m obtained by Algorithm TwoMultFMA { f z

— two operations only. p + r = ab.
m without a fma, Dekker algorithm: 17 operations (7 x, 10 £).

RN (ab)
RN (ab — p)

Itanium 2 PowerPC 5

~15-



Compensated summation methods (Kahan, Priest,

Rump. . .)

an as da dp
a1 — 2sum [—=| 2sum [ 2sum [ oo —=| 2sum [—= S
n r2 r3 rn—1

mS+(n+n+-+r1)=a+a+- + a1 exactly;

m 1st solution: compute S+ (rp +r+ -+ + rp—1) as usual. If
all ajs have same sign, in double precision (8 =2, p = 53) and

RN, one can add v/2 x 220 values and get error < weight of
last bit;

m 2nd solution: use again the same trick for adding the r;'s

~16-



Evaluating powers

. Algorithm 4 (LogPower(x, n), n > 1)
Algorithm 3 (DbIMult(ap,a¢,bn,be))

Computes approx. to ii=n:
(an + ac)(bn + by). (h,£) := (1,0);
; = RN(aby); (u,.v) .:: (x,0);
< RN (anbe -+ t) while i > 1 do
= hbe ; s _
(x';u) = TwoMultFMA (ap, bp); H( m0(.1_2) — Lthen .
i f (h,£) := DbIMult (h, £, u, v);
(x",v) = Fast2Sum(x',s); end:
y' = RN(u+v); u \’/ := DbIMult (u, v, u, v);
(x,y) = Fast2Sum(x",y’); f = )L;/QJ; (v v)
end do;
Not an exact product! return DbIMult (h, ¢, u, v);

-17-



Evaluating powers

If algorithm LogPower is run in double-extended precision
(6=2,p=64), and 3 < n < 284, then by rounding the final value
to the nearest double-precision number, we get a correctly rounded
result.

m rather error-prone error analysis;
m special algorithm for computing hardest-to-round cases;

For 3 < n < 284, the hardest-to-round case for x" is for n = 51. It is

x =1.0100010111101011011011101010011111100101000111011101

x°! = 1.1011001110100100011100100001100100000101101011101110 1

53 bits
00000000000000000000000000000000000000000000000000000000000 100 - - - x 27

59 Zeros

~-18-



Error term of a FMA

Joint work with Sylvie Boldo (2005);
B =2, p> 3, fma, no underflow nor overflow;

|

|

m 3, x, y: FP numbers;

m a fma computes n = RN (ax + y);
|

Two questions:

m how many FP numbers are necessary for representing
n—(ax+y)?
m can these numbers be easily computed?

~-10-
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Error term of a FMA

Joint work with Sylvie Boldo (2005);

B =2, p> 3, fma, no underflow nor overflow;

|
|
m 3, x, y: FP numbers;
m a fma computes n = RN (ax + y);
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Error term of a FMA

Joint work with Sylvie Boldo (2005);

B =2, p> 3, fma, no underflow nor overflow;

|
|
m 3, x, y: FP numbers;
m a fma computes n = RN (ax + y);
m Two questions:

m how many FP numbers are necessary for representing
n—(ax+y)?
m can these numbers be easily computed?
m Answers:

®m two numbers;
m you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2
additions, 1 FastTwoSum);

~-10-



Error term of a FMA

Joint work with Sylvie Boldo (2005);

B =2, p> 3, fma, no underflow nor overflow;

|
|
m 3, x, y: FP numbers;
m a fma computes n = RN (ax + y);
m Two questions:
m how many FP numbers are necessary for representing
n—(ax+y)?
m can these numbers be easily computed?
m Answers:
m two numbers;
m you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2
additions, 1 FastTwoSum);
m | did not trust our proof before Sylvie wrote it in Cog.

~-10-



Humans don't need computers to do silly things

m The Mars Climate Orbiter probe
crashed on Mars in 1999;
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Humans don't need computers to do silly things

m The Mars Climate Orbiter probe
crashed on Mars in 1999;

m one of the software teams
assumed the unit of length was
the meter;

m the other team assumed it was
the foot.

20-



Multiplication by “infinitely precise” constants

m Joint work with Nicolas Brisebarre;

m We want RN (Cx), where x is a FP number, and C a real
constant (i.e., known at compile-time).

m Typical values of C: =, 1/7, In(2), In(10), e, 1/k!, By/k!,
1/10%, cos(km/N) and sin(km/N), ...

m another frequent case: C = m (division by a
constant);

21-



The naive method

m replace C by C, = RN (C);
m compute RN (Cpx) (instruction y = Ch * x).

Prop. of correctly-
rounded results

0.93750
0.78125
0.59375

P No G| o

16 | 0.86765
17 | 0.73558
24 | 0.66805
Proportion of FP numbers x for which RN (Cpx) = RN(Cx) for C ==
and various p.

290_



The algorithm

m Cx with correct rounding (assuming rounding to nearest even);
m Cis not a FP number;

m A correctly rounded fma instruction is available. Operands
stored in a binary FP format of precision p;

m We assume that the two following FP numbers are
pre-computed:

{Ch = RN(O),
G = RN(C-Gp),

273_



The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

u = RN(C(X),
u = RN(Cpx+ u).

Returned result: u,.
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The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute

u = RN(C(X),
uy = RN(Cpx+ u1).

Returned result: u,.

m Warning! There exist C and x s.t. u» # RN (Cx) — easy to
build;
m Without l.o.g., we assume that 1 < x <2 and 1< C < 2,

that C is not exactly representable, and that C — Cj, is not a
power of 2;



The algorithm

Algorithm 5

From x, compute

u = RN(C[X),
v = RN(Cpx+ u1).

Returned result: u;.

Two methods for checking if Vx, uo = RN (Cx).

m Method 1: simple but does not always give a complete answer;

m Method 2: gives all “bad cases”, or certify that there are none,
i.e. that the algorithm always returns RN (Cx).



Analyzing the algorithm

Bound on maximum possible distance between u> and Cx:

Property 1

For all FP number x, we have
1
luy — Cx| < 5 ulp (up) + 2 ulp (Cy).
ulp(t) (unit in the last place) = distance between consecutive FP
numbers around t. Correct rounding « error < % ulp.

ulp (to.tltg s tpo1 X 2et) =267 P

“26-



Analyzing the algorithm

Reminder: |uy — Cx| < 3 ulp (u2) + 7 with = 2ulp (Cp).

FP numbers

1
y 1 5U4|p(u2) 277 N N

Domain where
X can be
located

- If Cx is here, then RN (Cx) = w2

Caﬁ Cx be here?

7~



Analyzing the algorithm

m We know that Cx is within 1/2ulp (u2) + 2ulp (C;) from the
FP number u>.

_28._



Analyzing the algorithm

m We know that Cx is within 1/2ulp (u2) + 2ulp (C;) from the
FP number u>.

m If we prove that Cx cannot be at a distance <1 = 2ulp ()
from the middle of two consecutive FP numbers, then vy will
be the FP number that is closest to Cx.

_28._



A reminder on continued fractions

We will use the following well-known results:

Let (pj/qj)j>1 be the convergents of 3. For any (p, q), with
0 < g < gni1, we have

lp — B4q| > |pn — B3nl-

Theorem 5

Let p, q be nonzero integers, with gcd(p, q) = 1. If
P 1
Z ﬁ‘ < —
‘q 2q?

then p/q is a convergent of 3.

~20.-



Method 1: use of Theorem 4

m Remark: Cx can bein [1,2) or [2,4) — two (very similar)
cases;

m define xqut = 2/C. Let X = 2P~ 1x and Xeyt = L2p*1xcutJ.

m we detail the case x < x,+ below.

2441

Middle of two consecutive FP numbers around Cx:
AcZ, 2P71 < A<2P —1 — we try to know if there can be such

an A such that
2A+1

Cx — >

<

This is equivalent to

2CX — (2A+1)| < 2Py

~-320-



Method 1: use of Theorem 4 (cont)

We want to know if there exists X between 2P~ and X, and A
between 2P~1 and 2P — 1 such that

2CX — (2A+1)| < 2P

m (pi/qi)i>1: convergents of 2C;
m k: smallest integer such that gx.1 > Xut,
m define § = |px — 2Cqx| .

Theorem 4 = VB, X € Z, with 0 < X < Xeut < Gk,
|2CX — B| > 6.

~-31-



Method 1: use of Theorem 4 (cont)

Therefore
If & > 2Pn then |Cx — A/2P| < 1 is impossible = the
algorithm returns RN (Cx) for all x < xcut;

if § < 2P, we try the algorithm with x = g,27P™! — either
we get a counter-example, or we cannot conclude

Case x > xcyt: similar (convergents of C instead of those of 2C)

~32_



Example: C = 7, double precision (p

> method1(Pi/2,53);

Ch = 884279719003555/562949953421312

Cl = 4967757600021511/81129638414606681695789005144064
xcut = 1.2732395447351626862, Xcut = 5734161139222658
eta = .8069505497e-32

pk/qk = 6134899525417045/1952799169684491

delta = .9495905771e-16

0K for X < 5734161139222658

etaprime = .1532072145e-31

pkprime/gkprime = 12055686754159438/7674888557167847
deltaprime = .6943873667e-16

OK for 5734161139222658 <= X < 9007199254740992

= We always get a correctly rounded result for C = 2%7 and p = 53,
with G, = 2k=48 x 884279719003555 and
Cp = 2k=105 % 4967757600021511.

Consequence 1

Correctly rounded multiplication by =w: in double precision one
multiplication and one fma.

~-33_



Method 2

m Again, two cases. Here: x > xct (case x < xeut = 2/C
similar);

24



Method 2

m Again, two cases. Here: x > xcut (case x < xcut = 2/C
similar);
m We recall the notations: C, = RN (C), G;=RN(C — Cp),

u = RN(C[X),
up = RN(ChX+U1).

m Again, Xeur = 2P Ixeut;
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Method 2

m Again, two cases. Here: x > xcut (case x < xcut = 2/C
similar);
m We recall the notations: C, = RN (C), G;=RN(C — Cp),

u = RN(C[X),
u = RN(ChX+U1).

m Again, Xt = 2P~ 1y i
m We want to determine integers X, X < X < 2P — 1 st
JA € Z, 2P~ < A< 2P — 1 with

X 2A+1

<
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Method 2

Again, two cases. Here: x > xcut (case x < xeut = 2/C
similar);
m We recall the notations: C, = RN (C), G;=RN(C — Cp),

u = RN(C[X),
u = RN(ChX+U1).

Again, Xeyt = 2p_lxcut;
We want to determine integers X, X, < X <2P —1s.t.
JACZ, 2P~ < A< 2P —1 with

X 2A+1

‘Czp—l - op1

<2ulp(G).

Once we know the X candidate, we compute up and RN (Cx)
to check if they coincide or not.

24



Method 2

m We are looking for x = X/2P71 X, < X <2P —1st. JA
with
X 2A+1

Cop1~ o

< 2ulp (). (1)

~35_



Method 2

m We are looking for x = X/2P71 X, < X <2P —1st. JA
with
X 2A+1

Cop1~ o

< 2ulp (). (1)

m We know that ulp () < 272°;
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Method 2

m We are looking for x = X/2P71 X, < X <2P —1st. JA
with
X 2A+1

Cop1~ o

< 2ulp (&) (1)

m We know that ulp () < 272°;
m Two cases: ulp () <272P71 and ulp () = 272~

_2E6_



Method 2

First, we assume ulp (G;) < 272P7 1,

In that case, the integers X that satisfy (1) satisfy

’2C—2A+1‘ 1

X | Saxze

m (2A+1)/X is a convergent of 2C from Theorem 5.

~-36-



Method 2

First, we assume ulp (G;) < 272P7 1,

In that case, the integers X that satisfy (1) satisfy

2A+1 1
2C - LI
’ X ‘<2x2

m (2A+1)/X is a convergent of 2C from Theorem 5.

m |t suffices then to check all the convergents of 2C of
denominator less than or equal to 2P — 1.

~-36-



Method 2

Now, assume ulp (C;) = 272P.

m We are led to the following problem: determine the
X, Xeut < X <2P —1sit.

1 1
{X(Ch+ Cg)—|—2p+1} < 5

where {y} is the fractional part of y: {y} =y — |y].

m Algorithm (see later) to determine the integers
X, Xeut < X < 2P — 1 solution of this inequality;

m check the algorithm (i.e., compute up and compare with
RN (Cx)) with these values of X.

-37-



An example: multiplication by 1/7 in double precision

Consider the case C =4/ and p = 53

m Method 1 gives a (family of) counterexample(s):
x = 6081371451248382 x 2tk

m Method 2 certifies that x = 6081371451248382 x 2%k are the
only FP values for which our algorithm fails.

-38-



Implementation

m Maple programs that implement Methods 1 and 2;

m These programs (along with explanations) can be downloaded
from

http://perso.ens-1lyon.fr/jean-michel.muller/MultConstant.html

~-30-
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Some results

[ C] p] Method1 | Method 2 |

Does not AW

T 8 work for unless X =
226 226
T | 24 unable AW
m | b3 AW AW
T | 64 unable AW
m | 113 AW AW

Table: The results given for constant C hold for all values 2*C. “AW”
means “always works" and “unable” means “the method is unable to
conclude”.

_40-



Some results

| C ] p]| Methodl | Method2 |

1/m| 24 unable AW
Does not AW

1/m | 53 work for unless X =

6081371451248382 6081371451248382

1/r| 64 AW AW

1/7 | 113 unable AW

n2 | 24 AW AW

In2 | 53 AW AW

In2 | 64 AW AW

In2 | 113 AW AW

Table: The results given for constant C hold for all values 2+ C.

a1



Conclusion on multiplication by a constant

The two methods make it possible to check whether correctly
rounded multiplication by an “infinite precision” constant C is
feasible at a low cost (one multiplication and one fma).
m method 1 does not always allow one to conclude, but is quite
simple: use it at compile time?
m method 2 always gives the counter-examples or certifies that
the algorithm always works.

A9



The IEEE-754 Std is under revision

m near the end of the process (hopefully);
® main ideas remain the same;

m fma, base 10, some considerations on the elementary functions
(sin, cos, exp, log, etc.) and their correct rounding;

m watch http://754r .ucbtest.org/
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The Table Maker's Dilemma

Consider the double precision FP number (5 =2, p = 53)

8520761231538509
262

We have

253+x = 9018742077413030.999999999999999998805240837303 - - -
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The Table Maker's Dilemma

Consider the double precision FP number (5 =2, p = 53)

8520761231538509
262

We have
253+x — 9018742077413030.999999999999999998805240837303 - - -

So what ?

Hardest-to-round case for function 2% and double precision FP
numbers.

Joint work with Vincent Lefévre.
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The Hall of Shame (Ng)

System

sin (10%)

exact result

—0.8522008497671888017727 - - -

HP 48 GX —0.852200849762
HP 700 0.0

HP 375, 425t (4.3 BSD) —0.65365288 - - -
matlab V.4.2 c.1 for Macintosh 0.8740

matlab V.4.2 c.1 for SPARC —0.8522

SPARC

—0.85220084976718879

IBM RS/6000 AIX 3005

—0.852200849 - - -

DECstation 3100

NaN

Casio fx-8100, fx180p, fx 6910 G

Error

T1 89

Trig. arg. too large

No standard for the elementary functions.
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Correct rounding of the elementary functions

m base 2, precision p;

m FP number x and integer m (with m > p) — one can
compute an approximation y to f(x) whose error on the
significand is < 2™,

m can be done with a possible wider format, or using algorithms
such as TwoSum, TwoMultFMA, Dekker product, etc.

m getting a correct rounding of f(x) from y: not possible if y is
too close to a breakpoint: a point where the rounding function
changes.
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Correct rounding of the elementary functions

m RN mode,
m bits
1.xxxxx - - - xxx 1000000 - - - 000000 xxx - - -
_
p bits
or

m bits
L.xxxxx - xxx0111111--- 111111 xxx - - - ;
—————

p bits
m other modes,
m bits

1.xxxxx - - - xxx 0000000 - - - 000000 xxx - - -
-
p bits

or
m bits

Loxoxxxx -+ - xxx 1111111 -- - 111111 xxx - - - .
-

p bits

_40.



Finding m beyond which there is no problem ?

m function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh,
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Finding m beyond which there is no problem ?

m function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh,

m Lindemann's theorem (z # 0 algebraic = e transcendental)
— except for straightforward cases (€°, In(1), sin(0), ...), if x
is a FP number, there exists an m, say my, s.t. rounding the
m,-bit approximation < rounding f(x);
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m Lindemann's theorem (z # 0 algebraic = e transcendental)
— except for straightforward cases (€°, In(1), sin(0), ...), if x
is a FP number, there exists an m, say my, s.t. rounding the
m,-bit approximation < rounding f(x);

m finite number of FP numbers — 3Im,,, = max,(my) s.t. Vx,
rounding the m,,.-bit approximation to f(x) is equivalent to
rounding f(x);
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Finding m beyond which there is no problem ?

m function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh,

m Lindemann’s theorem (z # 0 algebraic = e? transcendental)
— except for straightforward cases (€°, In(1), sin(0), ...), if x
is a FP number, there exists an m, say my, s.t. rounding the
m,-bit approximation < rounding f(x);

m finite number of FP numbers — 3Im,,, = max,(my) s.t. Vx,
rounding the m,,,.-bit approximation to f(x) is equivalent to
rounding f(x);

m this reasoning does not give any hint on the order of
magnitude of m,,.,. Could be huge.
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A bound derived from a result due to Baker (1975)

ma=i/j,=r/s withij rs<?2P,
s C = 16299,
| — log(3)| > (p2°)~ P8P

Application: To evaluate In et exp in double precision (p = 53)
with correct rounding, it suffices to compute an approximation
accurate to around
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A bound derived from a result due to Baker (1975)

ma=i/j,=r/s withij rs<?2P,
s C = 16299,

o — log(B)] > (p2)~PrE?

Application: To evaluate In et exp in double precision (p = 53)
with correct rounding, it suffices to compute an approximation
accurate to around

10%** bits

Fortunately, in practice, much less (=~ 100).
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Some insight, but no proof. ..

m the infinitely precise significand y of f(x) has the form:
kbits

e
Y =Yoyiy2- - ¥p—1 01111111 - - 11 xxxxx - - -
with k > 1.
or
kbits
———
Y = Yo.y1y2 - - - ¥p—1 10000000 - - - 00 xxxxx - - -
m Assuming that after the p*™ position the “1" and “0" are
equally likely, the “probability” of having k > kg is 21 o;

m if we consider N input FP numbers, around N x 217k values
for which k > ko;

— no longer happens as soon as kg is significantly larger than
log,(N) (for one given value of the exponent, as soon as kg > p).
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Worst cases for double precision

m Lefévre's method: split the domain — piecewise linear
approximation to the functions for a pre-filtering, so that there
remain only a few cases to be checked with big precision;

m pre-filtering: variant of the Euclidean algorithm;
m double precision: why ?
m by far the most used,;
m computing all sines of the
hours only;
m precisions higher than double seem out of reach (maybe double
extended in a few years, thanks to Moore's law).

232 single-precision numbers: a few

m algorithm of better complexity, based on LLL: Stehlé, Lefévre,
Zimmermann. Similar in practice.
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Worst cases for double precision

m grid: FP numbers

- and “breakpoints”;
r}// m scaling — integers;
/) m is the line very
/'// close to a point of
— the grid?

m it is very likely that
the answer is “no".

¢ A tiny an — b mod 1

54



| | | | } | } <—>I
i_g?’ dl d2 1
e | | | | —
i_)d3 - 62 d2 =t h2
[ [ T R L [ L [ [ 1(—> 1
i_)d?: d2 d41

m infinitely many times: two lengths;
u h,'_|_1 = max(h,- — f,’,g,'), €;+1 = min(h,- — é,-,é,-) — GCD.
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Smallest distance between an mod 1 and b, n< T 7

i_)d3:€2 b d2:th2
O T R R
LEI3 b & dj'

- =
[ [ |
T 1

m don’t build all the points: just count them (to stop as soon as
more than T);

m just build the two points that surround b, and update the
distance to the left one;
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Complexity ?

N = 2P points;

scaling P(t) = Nf(t/N) — integers;
T points in each subinterval;
accuracy of the filtering:

|P(t) mod 1| < 1

Ma
iff(x):30+31(X—X0)—|—a2(x—x0)2_|_...,
a Lz <l
2N M’

we expect T /M cases in each subinterval — we assume
T <M,

m gives T < N/3;
m we have to consider N/ T ~ N?/3 subintervals.
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Table: Worst cases for exponentials of double precision FP numbers.

Interval

worst case (binary)

o0, =273

exp(—1.1110110100110001100011101111101101100010011111101010 X 2727)
= 1.111111111111111111111111100 - -- 0111000100 1 1%°0001... x 2~

[-27%,0)

exp(—1.0000000000000000000000000000000000000000000000000001 x 2~ 51)
=1.111111111111111---11111111111111100 0 0%°°1010... x 2

(0,+2739

exp(1.1111111111111111111111111111111111111111111111111111 X 2753)
= 1.0000000000000000000000000000000000000000000000000000 1 11°40101...

[273°, +o0]

exp(1.0111111111111110011111111111111011100000000000100100 X 2~ 32)
= 1.0000000000000000000000000000000101111111111111101000 0 0%71101...

exp(1.1000000000000001011111111111111011011111111111011100 X 2732)
= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 X 2_31)
= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)
= 110101100.01010000101101000000100111001000101011101110 0 0571000...
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Table: Worst cases for logarithms of double precision FP numbers.

Interval worst case (binary)
[2-1074 1 log(1.1110101001110001110110000101110011101110000000100000 X 2;°5°‘-’)
’ = —101100000.00101001011010100110011010110100001011111111 1 15°0000...

log(1.1001010001110110111000110000010011001101011111000111 x 2~ 3°%)

= —100001001.10110110000011001010111101000111101100110101 1 05°1010...
log(1.0010011011101001110001001101001100100111100101100000 x 2~ 23%)

= —10100000.101010110010110000100101111001101000010000100 0 05°1001...
log(1.0110000100111001010101011101110010000000001011111000 x 2 >°)

= —10111.111100000010111110011011101011110110000000110101 0 1%°0011...
log(1.0110001010101000100001100001001101100010100110110110 x 257%)

= 111010110.01000111100111101011101001111100100101110001 0 0%41110...

(1, 21024]
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Conclusion

N = 2P FP values — O(N?/3) sub-intervals;

work by Stehlé, Lefévre, Zimmermann and Hanrot using lattice
reduction: better complexity O(N3/5+€), but a big hidden
constant.

correct rounding of the most usual functions is feasible at
reasonable cost;

recommended in the current draft of the IEEE 754 revision;

CRLIBM library available at
https://lipforge.ens-lyon.fr/projects/crlibm/
(within 10% from LIBM)
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