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Floating-Point Arithmetic ?

used everywhere in scientific calculation;
x = mx × βex ;
“fuzzy” approach: computed value of x + y = (x + y)(1 + ε).

Better approach ?
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Needs ? A few figures. . .

span:

Estimated diameter of observable universe
Planck’s length

≈ 1062

accuracy: some predictions of general relativity or quantum
mechanics verified within relative accuracy 10−14

intermediate calculations: quad precision and smart tricks
required for very-long term stability of the Solar system
(J. Laskar, Paris Observatory).
Good news: we seem to be safe for the next 40 million years;
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We can do a very poor job. . .

Pentium 1 division bug:
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

On some Cray computers, it was possible to get an overflow
when multiplying by 1;
Maple version 7.0, enter 5001!

5000! and you get 1 instead of 5001;
Version 6.0 was even worse. Enter 214748364810, you get 10.

Note that 2147483648 = 231.
Excel’2007, compute 65535− 2−37, you get 100000;
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Floating-Point System

Parameters: 
base β ≥ 2
precision p ≥ 1
extremal exponents Emin,Emax

A finite FP number x is represented by 2 integers:
integral significand: M, |M| ≤ βp − 1;
exponent e, Emin ≤ e ≤ Emax.

such that
x = M × βe+1−p

Real significand, or significand of x the number

m = M × β1−p,

so that x = m × βe .
-5-



Normal representation

Goal: uniqueness of representation.

The normal representation of x (if any) is the one for which
1 ≤ m < β. It is the one for which the exponent is minimum.

Base 2, the leftmost bit of the significand of a normal number is a
“1” → no need to store it (implicit 1 convention).
A subnormal number has the form

M × βEmin+1−p.

with |M| ≤ βp−1− 1. Such a number has no normal representation.
Corresponds to ±0.xxxxxxxx × βEmin .
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IEEE-754 Standard for FP Arithmetic (1985)

put an end to a mess (no portability, variable quality);
leader: W. Kahan (father of the arithmetic of the HP35 and
the Intel 8087);
formats;
specification of operations and conversions;
exception handling (max+1, 1/0,

√
−2, 0/0, etc.);

under revision.
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Correct rounding

Definition 1 (Correct rounding)

The user defines an active rounding mode among:
round to the nearest (default) in case of a tie, value whose
integral significand is even;
round towards +∞.
round towards −∞.
round towards zero.

An operation whose entries are FP numbers must return what we
would get by infinitely precise operation followed by rounding.
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Correct rounding

IEEE-754 (1985): Correct rounding for +, −, ×, ÷, √ and some
conversions. Advantages:

if the result of an operation is exactly representable, we get it;
if we just use the 4 arith. operations and √, deterministic
arithmetic: one can elaborate algorithms and proofs that use
the specifications;
accuracy and portability are improved;
playing with rounding towards +∞ and −∞→ certain lower
and upper bounds: interval arithmetic.

FP arithmetic becomes a mathematical structure in itself, that can
be studied.
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Error of FP addition (Møller, Knuth, Dekker)

First result: representability. RN (x) is x rounded to the nearest.

Lemma 2

Let a and b be two FP numbers. Let

s = RN (a + b)

and
r = (a + b)− s.

if no overflow when computing s, then r is a FP number.
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Error of FP addition (Møller, Knuth, Dekker)

Proof: Assume |a| ≥ |b|,
1 s is “the” FP number nearest a + b → it is closest to a + b

than a is. Hence |(a + b)− s| ≤ |(a + b)− a|, therefore

|r | ≤ |b|.

2 denote a = Ma × βea−p+1 and b = Mb × βeb−p+1, with
|Ma|, |Mb| ≤ βp − 1, and ea ≥ eb.
a + b is multiple of βeb−p+1 ⇒ s and r are multiple of
βeb−p+1 too ⇒ ∃R ∈ Z s.t.

r = R × βeb−p+1

but, |r | ≤ |b| ⇒ |R| ≤ |Mb| ≤ βp − 1⇒ r is a FP number.
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Get r : the fast2sum algorithm (Dekker)

Theorem 3 (Fast2Sum (Dekker))

β ≤ 3, subnormal numbers available. Let a and b be FP numbers,
with exponents s.t. ea ≥ eb (if |a| ≥ |b|, will be satisfied).
Following algorithm: s and r such that

s + r = a + b exactly;
s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum)

s ← RN (a + b)
z ← RN (s − a)
r ← RN (b − z)

C Program 1
s = a+b;
z = s-a;
r = b-z;

Proof: Show that s − a and b − z are exactly representable.
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The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b;

6 operations instead of 3 yet very cheap in front of wrong
branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)

s ← RN (a + b)
a′ ← RN (s − b)
b′ ← RN (s − a′)
δa ← RN (a − a′)
δb ← RN (b − b′)
r ← RN (δa + δb)

Knuth: ∀β, if no underflow nor over-
flow occurs then a + b = s + r , and s
is nearest a + b.

Boldo et al: (formal proof) in radix
2, underflow does not hinder the result
(overflow does).

Formal proofs (in Coq) of many useful such algorithms:
http://lipforge.ens-lyon.fr/www/pff/Fast2Sum.html.
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How about products ?

FMA: fused multiply-add, computes RN (ab + c). RS6000,
Itanium and PowerPC. Will be in IEEE 754-R;
if a and b are FP numbers, then r = ab − RN (ab) is a FP
number;

obtained by Algorithm TwoMultFMA
{

p = RN (ab)
r = RN (ab − p)

→ two operations only. p + r = ab.
without a fma, Dekker algorithm: 17 operations (7 ×, 10 ±).

Itanium 2 PowerPC 5

-15-



Compensated summation methods (Kahan, Priest,
Rump. . . )

2sum 2sum 2sum 2sum...

an

rn−1

S

a3a2 a4

a1

r1 r2 r3

S + (r1 + r2 + · · · + rn−1) = a1 + a2 + · · · + an−1 exactly;
1st solution: compute S + (r1 + r2 + · · · + rn−1) as usual. If
all ai s have same sign, in double precision (β = 2, p = 53) and
RN, one can add

√
2× 226 values and get error ≤ weight of

last bit;
2nd solution: use again the same trick for adding the ri ’s

-16-



Evaluating powers

Algorithm 3 (DblMult(ah,a`,bh,b`))

Computes approx. to
(ah + a`)(bh + b`).

t := RN (a`bh);
s := RN (ahb` + t);
(x ′, u) := TwoMultFMA (ah, bh);
(x ′′, v) := Fast2Sum (x ′, s);
y ′ := RN (u + v);
(x , y) := Fast2Sum (x ′′, y ′);

Not an exact product!

Algorithm 4 (LogPower(x , n), n ≥ 1)

i := n;
(h, `) := (1, 0);
(u, v) := (x , 0);
while i > 1 do

if (i mod 2) = 1 then
(h, `) := DblMult (h, `, u, v);

end;
(u, v) := DblMult (u, v , u, v);
i := bi/2c;

end do;
return DblMult (h, `, u, v);
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Evaluating powers

If algorithm LogPower is run in double-extended precision
(β = 2, p = 64), and 3 ≤ n ≤ 284, then by rounding the final value
to the nearest double-precision number, we get a correctly rounded
result.

rather error-prone error analysis;

special algorithm for computing hardest-to-round cases;

For 3 ≤ n ≤ 284, the hardest-to-round case for xn is for n = 51. It is

x = 1.0100010111101011011011101010011111100101000111011101

x51 = 1.1011001110100100011100100001100100000101101011101110| {z }
53 bits

1

00000000000000000000000000000000000000000000000000000000000| {z }
59 zeros

100 · · · × 217
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Error term of a FMA

Joint work with Sylvie Boldo (2005);
β = 2, p ≥ 3, fma, no underflow nor overflow;
a, x , y : FP numbers;
a fma computes r1 = RN (ax + y);
Two questions:

how many FP numbers are necessary for representing
r1 − (ax + y) ?
can these numbers be easily computed?

Answers:

two numbers;
you need 19 operations (1 TwoMultFMA, 2 TwoSum, 2
additions, 1 FastTwoSum);
I did not trust our proof before Sylvie wrote it in Coq.
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Humans don’t need computers to do silly things

The Mars Climate Orbiter probe
crashed on Mars in 1999;

one of the software teams
assumed the unit of length was
the meter;
the other team assumed it was
the foot.
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Multiplication by “infinitely precise” constants

Joint work with Nicolas Brisebarre;
We want RN (Cx), where x is a FP number, and C a real
constant (i.e., known at compile-time).
Typical values of C : π, 1/π, ln(2), ln(10), e, 1/k!, Bk/k!,
1/10k , cos(kπ/N) and sin(kπ/N), . . .
another frequent case: C = 1

FP number (division by a
constant);

-21-



The naive method

replace C by Ch = RN (C );
compute RN (Chx) (instruction y = Ch * x).

p Prop. of correctly-
rounded results

5 0.93750
6 0.78125
7 0.59375
· · · · · ·
16 0.86765
17 0.73558
· · · · · ·
24 0.66805

Proportion of FP numbers x for which RN (Chx) = RN (Cx) for C = π

and various p.
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The algorithm

Cx with correct rounding (assuming rounding to nearest even);
C is not a FP number;
A correctly rounded fma instruction is available. Operands
stored in a binary FP format of precision p;
We assume that the two following FP numbers are
pre-computed: {

Ch = RN (C ),
C` = RN (C − Ch),

-23-



The algorithm

Algorithm 5 (Multiplication by C with a product and an fma)

From x, compute {
u1 = RN (C`x),
u2 = RN (Chx + u1).

Returned result: u2.

Warning! There exist C and x s.t. u2 6= RN (Cx) – easy to
build;
Without l.o.g., we assume that 1 < x < 2 and 1 < C < 2,
that C is not exactly representable, and that C − Ch is not a
power of 2;
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The algorithm

Algorithm 5

From x, compute {
u1 = RN (C`x),
u2 = RN (Chx + u1).

Returned result: u2.

Two methods for checking if ∀x , u2 = RN (Cx).

Method 1: simple but does not always give a complete answer;
Method 2: gives all “bad cases”, or certify that there are none,
i.e. that the algorithm always returns RN (Cx).
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Analyzing the algorithm

Bound on maximum possible distance between u2 and Cx :

Property 1

For all FP number x, we have

|u2 − Cx | < 1
2
ulp (u2) + 2 ulp (C`).

ulp(t) (unit in the last place) = distance between consecutive FP
numbers around t. Correct rounding ↔ error ≤ 1

2 ulp.

ulp (t0.t1t2 · · · tp−1 × 2et ) = 2et−p

-26-



Analyzing the algorithm

Reminder: |u2 − Cx | < 1
2 ulp (u2) + η with η = 2 ulp (C`).

u2

FP numbers

located

If Cx is here, then RN (Cx) = u2

Can Cx be here?

2η
Domain where
Cx can be

2η
1
2 ulp (u2)
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Analyzing the algorithm

We know that Cx is within 1/2 ulp (u2) + 2 ulp (C`) from the
FP number u2.

If we prove that Cx cannot be at a distance ≤ η = 2 ulp (C`)
from the middle of two consecutive FP numbers, then u2 will
be the FP number that is closest to Cx .

-28-



Analyzing the algorithm

We know that Cx is within 1/2 ulp (u2) + 2 ulp (C`) from the
FP number u2.
If we prove that Cx cannot be at a distance ≤ η = 2 ulp (C`)
from the middle of two consecutive FP numbers, then u2 will
be the FP number that is closest to Cx .

-28-



A reminder on continued fractions

We will use the following well-known results:

Theorem 4

Let (pj/qj)j≥1 be the convergents of β. For any (p, q), with
0 ≤ q < qn+1, we have

|p − βq| ≥ |pn − βqn|.

Theorem 5

Let p, q be nonzero integers, with gcd(p, q) = 1. If∣∣∣∣pq − β
∣∣∣∣ < 1

2q2

then p/q is a convergent of β.
-29-



Method 1: use of Theorem 4

Remark: Cx can be in [1, 2) or [2, 4)→ two (very similar)
cases;
define xcut = 2/C . Let X = 2p−1x and Xcut =

⌊
2p−1xcut

⌋
.

we detail the case x < xcut below.

Middle of two consecutive FP numbers around Cx : 2A+1
2p where

A ∈ Z, 2p−1 ≤ A ≤ 2p − 1→ we try to know if there can be such
an A such that ∣∣∣∣Cx − 2A + 1

2p

∣∣∣∣ < η.

This is equivalent to

|2CX − (2A + 1)| < 2pη.
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Method 1: use of Theorem 4 (cont)

We want to know if there exists X between 2p−1 and Xcut and A
between 2p−1 and 2p − 1 such that

|2CX − (2A + 1)| < 2pη.

(pi/qi )i≥1: convergents of 2C ;
k : smallest integer such that qk+1 > Xcut,
define δ = |pk − 2Cqk | .

Theorem 4 ⇒ ∀B,X ∈ Z, with 0 < X ≤ Xcut < qk+1,
|2CX − B| ≥ δ.
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Method 1: use of Theorem 4 (cont)

Therefore
1 If δ ≥ 2pη then |Cx − A/2p| < η is impossible ⇒ the

algorithm returns RN (Cx) for all x < xcut;
2 if δ < 2pη, we try the algorithm with x = qk2−p+1 → either

we get a counter-example, or we cannot conclude

Case x > xcut: similar (convergents of C instead of those of 2C )
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Example: C = π, double precision (p = 53)

> method1(Pi/2,53);
Ch = 884279719003555/562949953421312
Cl = 4967757600021511/81129638414606681695789005144064
xcut = 1.2732395447351626862, Xcut = 5734161139222658
eta = .8069505497e-32
pk/qk = 6134899525417045/1952799169684491
delta = .9495905771e-16
OK for X < 5734161139222658
etaprime = .1532072145e-31
pkprime/qkprime = 12055686754159438/7674888557167847
deltaprime = .6943873667e-16
OK for 5734161139222658 <= X < 9007199254740992

⇒ We always get a correctly rounded result for C = 2kπ and p = 53,
with Ch = 2k−48 × 884279719003555 and
C` = 2k−105 × 4967757600021511.

Consequence 1

Correctly rounded multiplication by π: in double precision one
multiplication and one fma.
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Method 2

Again, two cases. Here: x > xcut (case x < xcut = 2/C
similar);

We recall the notations: Ch = RN (C ),C`=RN (C − Ch),{
u1 = RN (C`x),
u2 = RN (Chx + u1).

Again, Xcut = 2p−1xcut;
We want to determine integers X , Xcut ≤ X ≤ 2p − 1 s.t.
∃A ∈ Z, 2p−1 ≤ A ≤ 2p − 1 with∣∣∣∣C X

2p−1 −
2A + 1
2p−1

∣∣∣∣ ≤ 2 ulp (C`).

Once we know the X candidate, we compute u2 and RN (Cx)
to check if they coincide or not.
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Method 2

We are looking for x = X/2p−1, Xcut ≤ X ≤ 2p − 1 s.t. ∃A
with ∣∣∣∣C X

2p−1 −
2A + 1
2p−1

∣∣∣∣ ≤ 2 ulp (C`). (1)

We know that ulp (C`) ≤ 2−2p;
Two cases: ulp (C`) ≤ 2−2p−1 and ulp (C`) = 2−2p.
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Method 2

First, we assume ulp (C`) ≤ 2−2p−1.
In that case, the integers X that satisfy (1) satisfy∣∣∣∣2C − 2A + 1

X

∣∣∣∣ < 1
2X 2 :

(2A + 1)/X is a convergent of 2C from Theorem 5.

It suffices then to check all the convergents of 2C of
denominator less than or equal to 2p − 1.
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Method 2

Now, assume ulp (C`) = 2−2p.

We are led to the following problem: determine the
X , Xcut ≤ X ≤ 2p − 1 s.t.{

X (Ch + C`) +
1

2p+1

}
≤ 1

2p ,

where {y} is the fractional part of y : {y} = y − byc.
Algorithm (see later) to determine the integers
X ,Xcut ≤ X ≤ 2p − 1 solution of this inequality;
check the algorithm (i.e., compute u2 and compare with
RN (Cx)) with these values of X .
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An example: multiplication by 1/π in double precision

Consider the case C = 4/π and p = 53

Method 1 gives a (family of) counterexample(s):
x = 6081371451248382× 2±k .
Method 2 certifies that x = 6081371451248382× 2±k are the
only FP values for which our algorithm fails.
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Implementation

Maple programs that implement Methods 1 and 2;
These programs (along with explanations) can be downloaded
from

http://perso.ens-lyon.fr/jean-michel.muller/MultConstant.html
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Some results

C p Method 1 Method 2

π 8
Does not
work for
226

AW
unlessX =

226
π 24 unable AW
π 53 AW AW
π 64 unable AW
π 113 AW AW

Table: The results given for constant C hold for all values 2±jC. “AW”
means “always works” and “unable” means “the method is unable to
conclude”.
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Some results

C p Method 1 Method 2
1/π 24 unable AW

1/π 53
Does not
work for

6081371451248382

AW
unlessX =

6081371451248382

1/π 64 AW AW
1/π 113 unable AW
ln 2 24 AW AW
ln 2 53 AW AW
ln 2 64 AW AW
ln 2 113 AW AW

Table: The results given for constant C hold for all values 2±jC.
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Conclusion on multiplication by a constant

The two methods make it possible to check whether correctly
rounded multiplication by an “infinite precision” constant C is
feasible at a low cost (one multiplication and one fma).

method 1 does not always allow one to conclude, but is quite
simple: use it at compile time?
method 2 always gives the counter-examples or certifies that
the algorithm always works.
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The IEEE-754 Std is under revision

near the end of the process (hopefully);
main ideas remain the same;
fma, base 10, some considerations on the elementary functions
(sin, cos, exp, log, etc.) and their correct rounding;
watch http://754r.ucbtest.org/
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The Table Maker’s Dilemma
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The Table Maker’s Dilemma

Consider the double precision FP number (β = 2, p = 53)

x =
8520761231538509

262

We have

253+x = 9018742077413030.999999999999999998805240837303 · · ·

So what ?
Hardest-to-round case for function 2x and double precision FP
numbers.
Joint work with Vincent Lefèvre.
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The Hall of Shame (Ng)

System sin
(
1022)

exact result −0.8522008497671888017727 · · ·
HP 48 GX −0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC −0.8522
SPARC −0.85220084976718879
IBM RS/6000 AIX 3005 −0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error
TI 89 Trig. arg. too large

No standard for the elementary functions.
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Correct rounding of the elementary functions

base 2, precision p;
FP number x and integer m (with m > p) → one can
compute an approximation y to f (x) whose error on the
significand is ≤ 2−m.
can be done with a possible wider format, or using algorithms
such as TwoSum, TwoMultFMA, Dekker product, etc.
getting a correct rounding of f (x) from y : not possible if y is
too close to a breakpoint: a point where the rounding function
changes.
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Correct rounding of the elementary functions

RN mode,
m bitsz }| {

1.xxxxx · · · xxx| {z }
p bits

1000000 · · · 000000 xxx · · ·

or
m bitsz }| {

1.xxxxx · · · xxx| {z }
p bits

0111111 · · · 111111 xxx · · · ;

other modes,

m bitsz }| {
1.xxxxx · · · xxx| {z }

p bits

0000000 · · · 000000 xxx · · ·

or
m bitsz }| {

1.xxxxx · · · xxx| {z }
p bits

1111111 · · · 111111 xxx · · · .
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Finding m beyond which there is no problem ?

function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh,

Lindemann’s theorem (z 6= 0 algebraic ⇒ ez transcendental)
→ except for straightforward cases (e0, ln(1), sin(0), . . . ), if x
is a FP number, there exists an m, say mx , s.t. rounding the
mx -bit approximation ⇔ rounding f (x);
finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x ,
rounding the mmax-bit approximation to f (x) is equivalent to
rounding f (x);
this reasoning does not give any hint on the order of
magnitude of mmax. Could be huge.
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A bound derived from a result due to Baker (1975)

α = i/j , β = r/s, with i , j , r , s < 2p;
C = 16200;

|α− log(β)| > (p2p)−Cp log p

Application: To evaluate ln et exp in double precision (p = 53)
with correct rounding, it suffices to compute an approximation
accurate to around

10244 bits
Fortunately, in practice, much less (≈ 100).
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Some insight, but no proof. . .

the infinitely precise significand y of f (x) has the form:

y = y0.y1y2 · · · yp−1

kbitsz }| {
01111111 · · · 11 xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

kbitsz }| {
10000000 · · · 00 xxxxx · · ·

with k ≥ 1.

Assuming that after the pth position the “1” and “0” are
equally likely, the “probability” of having k ≥ k0 is 21−k0 ;
if we consider N input FP numbers, around N × 21−k0 values
for which k ≥ k0;

→ no longer happens as soon as k0 is significantly larger than
log2(N) (for one given value of the exponent, as soon as k0 � p).
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Worst cases for double precision

Lefèvre’s method: split the domain → piecewise linear
approximation to the functions for a pre-filtering, so that there
remain only a few cases to be checked with big precision;
pre-filtering: variant of the Euclidean algorithm;
double precision: why ?

by far the most used;
computing all sines of the 232 single-precision numbers: a few
hours only;
precisions higher than double seem out of reach (maybe double
extended in a few years, thanks to Moore’s law).

algorithm of better complexity, based on LLL: Stehlé, Lefèvre,
Zimmermann. Similar in practice.
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Worst cases for double precision

grid: FP numbers
and “breakpoints”;

scaling → integers;

is the line very
close to a point of
the grid?

it is very likely that
the answer is “no”.

tiny an − b mod 1
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an mod 1

0 1

0 1

0 1

0 1

d1 = h1 d2 = `1

d1 d2d3

d3 = `2 d2 = h2

d3 d2 d4

infinitely many times: two lengths;
hi+1 = max(hi − `i , `i ), `i+1 = min(hi − `i , `i )→ GCD.
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Smallest distance between an mod 1 and b, n < T ?

0 1

0 1

0 1

0 1

d1 = h1 d2 = `1

d1 d2d3

d3 = `2 d2 = h2

d3 d2 d4

b

b

b

b

don’t build all the points: just count them (to stop as soon as
more than T );
just build the two points that surround b, and update the
distance to the left one;
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Complexity ?

N = 2p points;
scaling P(t) = Nf (t/N)→ integers;
T points in each subinterval;
accuracy of the filtering:

|P(t) mod 1| < 1
M
,

if f (x) = a0 + a1(x − x0) + a2(x − x0)
2 + · · · ,∣∣∣∣a2

T 2

N

∣∣∣∣ < 1
M
,

we expect T/M cases in each subinterval → we assume
T � M;
gives T � N1/3;
we have to consider N/T ≈ N2/3 subintervals.
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Table: Worst cases for exponentials of double precision FP numbers.

Interval worst case (binary)

[−∞,−2−30]
exp(−1.1110110100110001100011101111101101100010011111101010× 2−27)

= 1.111111111111111111111111100 · · · 0111000100 1 1590001...× 2−1

[−2−30, 0)
exp(−1.0000000000000000000000000000000000000000000000000001× 2−51)

= 1.111111111111111 · · · 11111111111111100 0 01001010...× 2−1

(0, +2−30]
exp(1.1111111111111111111111111111111111111111111111111111× 2−53)

= 1.0000000000000000000000000000000000000000000000000000 1 11040101...

[2−30, +∞]

exp(1.0111111111111110011111111111111011100000000000100100× 2−32)

= 1.0000000000000000000000000000000101111111111111101000 0 0571101...

exp(1.1000000000000001011111111111111011011111111111011100× 2−32)

= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011× 2−31)

= 1.0000000000000000000000000000001100111101001110010111 1 0571010...
exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...
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Table: Worst cases for logarithms of double precision FP numbers.

Interval worst case (binary)

[2−1074, 1)
log(1.1110101001110001110110000101110011101110000000100000× 2−509)

= −101100000.00101001011010100110011010110100001011111111 1 1600000...

log(1.1001010001110110111000110000010011001101011111000111× 2−384)

= −100001001.10110110000011001010111101000111101100110101 1 0601010...

log(1.0010011011101001110001001101001100100111100101100000× 2−232)

= −10100000.101010110010110000100101111001101000010000100 0 0601001...

log(1.0110000100111001010101011101110010000000001011111000× 2−35)

= −10111.111100000010111110011011101011110110000000110101 0 1600011...

(1, 21024]
log(1.0110001010101000100001100001001101100010100110110110× 2678)

= 111010110.01000111100111101011101001111100100101110001 0 0641110...
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Conclusion

N = 2p FP values → O(N2/3) sub-intervals;
work by Stehlé, Lefèvre, Zimmermann and Hanrot using lattice
reduction: better complexity O(N3/5+ε), but a big hidden
constant.
correct rounding of the most usual functions is feasible at
reasonable cost;
recommended in the current draft of the IEEE 754 revision;
CRLIBM library available at
https://lipforge.ens-lyon.fr/projects/crlibm/
(within 10% from LIBM)
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Thank you!

-61-


