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Abstract 

In [.SI, Duprat and Muller present a new architecture, called a polynomier, able to 
evaluate quickly polynomials and elementary functions. In this paper, we propose a very 
regular VLSI implementation of the polynomier, and we extend this architecture to 2's 
complement arithmetic. Some applications are presented, and the performances enable 
real-time processing. 

Introduction 

Fast evaluation of polynomials is a major goal of computer science, since any 
continuous function may be approximated as accurately as desired by a polynomial. For 
instance, most part of current computers evaluate elementary functions using polynomial 
or rational approximations [3]. 

In [ 5 ] ,  Duprat and Muller present a new operator, a polynomier, suitable for 
VLSI implementation, and specifically designed for polynomials computations. This 
polynomier is composed of two pipe-lined subparts : a squarer (i.e. an operator able to 
compute the square of a number), and a binomier (i.e. an element which computes 
expressions of the form Ax + B). 

In the first part of this paper, we present some possible applications of the 
polynomier. Then, we recall briefly the main characteristics of the architecture proposed 
in [5 ] ,  in order to give a background for understanding the two following sections. The 
third part of the paper is devoted to a VLSI implementation of this architecture, designed 
in the Ecole Polytechnique FCdkrale de Lausanne, Switzerland. The final part presents an 
extension of this architecture to the two's complement computation. 

Possible applications 

An interesting application of the polynomier is the computation of elementary 
functions. In 1885, Weiertrass showed that every continuous function may be appro- 
ximated as accurately as desired, in a given interval [a,bl, by a polynomial. Chebyshev 
gave a characterization of the best polynomial of approximation of degree n of a conti- 
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nuous functionf in [a,b], and this characterization has been used in 1934 by Remes [ 111 
in order to give an algorithm which computes this best polynomial approximation. Poly- 
nomial approximants of classical elementary functions may be found in [8] and [3]. In 
[5], Duprat and Muller show that the polynomier computes the sine, the cosine and the 
exponential in [O,lJ with p significant bits, in time T = e (p Log p). 

Therefore, the polynomier may be used in order to compute any continuous 
function : it may be viewed as a "programmable coprocessor". The user has to provide to 
the polynomier the coefficients of a polynomial approximation of the function be wants to 
evaluate. A possible application is in the field of telecommunication: in data 
compression techniques, the input data (supposed to be a fixed-point number between 0 
and l), must be transformed following a concave function. This function - and its 
reverse - may be easily approximated by a polynomial. 

Architecture of the polynomier 

A recursive strategy 

n 
We evaluate polynomials using a recursive strategy : the polynomial c aixi is 

i = O  

w 2 1  
equal to aixi + xP/21+' . Thus evaluating a polynomial of 

i = O  
degree n is equivalent to evaluate two polynomials of degree n/2. These two evaluations 
may be performed in parallel (in practice, we perform them in pipe-line on the same 
operator). This kind of decomposition is due to G. Estrin ( [6 ] ,  [lo]). For instance, if n is 
equal to 7, the different computations of the algorithm are described by the tree of Fig. 1. 

P(x) = ao.3 = a1.z x2 + ao.2 

n n n -  
a7.0 = a as.0 = as as.0 = a5 ad.0 = a4 a3.0 = a3 a2.0 = az a1.0 = 21 q . 0  = a0 

Fig. 1 The computational tree. 
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Architecture of the  polynomier 

Our operators are designed starting from Braun's cellular multiplier ([ 1],[9]). 
Cellular multipliers seems to be a good compromize between time of computation and 
circuit area. Fig. 2 presents such a multiplier, whose operands ( A ~ A ~ A ~ A ~ A ~ A o )  and 
( B s B ~ B ~ B ~ B ~ B o )  are unsigned numbers . The square cells are classical Full-Adder cells. 

Fig. 2 Braun's multiplier. 

The previous algorithm is implemented using two blocks : a squarer, which 
computes the successive squares xk = x2k, and a pipe-lined binomier, which computes 
the expressions a2m+lkxk + a2mk. Since we want to perform easily the multiplications, 
we shall suppose that all the terms Xk and ai,k have the same binary p-bit fixed point 
format. In [SI it is assumed that we manipulate fixed-point positive numbers, written 

0.b-1b-2 ... b-, = Cb-i2-i. In such a notation, we have to assume : 
P 

i= 1 

. 0 1 x < 1  

0 the coefficients of P are positive 

0 C a i <  1 
n 

i=O 

0 p > n (n is the degree of P). 

The third assumption is needed to avoid overflow. In our fixed-point format, we 
have to assume that P(x) is lower than 1 for 0 5 x < 1. Since the coefficients ai of P are 

positive, the maximal value of P in [0, 11 is equal to P(l) = Cai. Thus we have to 

assume that this value is lower than 1. Except for the second, these constraints are not 
really restrictive : the first and the third need a pre-normalization of data - necessary in 
order to avoid overflow -, and if P is the polynomial of best uniform approximation of 
an usual elementary function, this assumption is true (see for instance the approximations 
presented in [8] or [3]). 

n 

i=O 
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The binomier 

In Braun's multiplier, the last row propagates the carry. It needs a time 
proportional to the size of the multiplier, thus this last row is not synchronous with the 
other rows. In a pipe-line implementation, one must suppress this row, thus the result of 
the multiplication will be given in a redundant "Carry-Save'' notation : each digit of the 
result will be defined by a couple (carry, sum). A column is added to the left part of the 
multiplier in order to add the coefficient b of a binomial computation ax+b to the product 
ax. We shall use the elementary cells of Fig. 2, slightly modified (Fig. 3) in order to have 
a different topology. 

Y 

C 

Fig. 3 Elementary binomier cell. 

The binomier has the following structure (Fig. 4). The circular cells are AND gates : 

0 
0 x-1 0 x-2 0 x-3 0 x.4 

a-4 

a-3 

a- 2 

a- 1 

s-1 c2 s-2 c-3 s.3c.4 s-4c.5 s5 

Fig. 4 A 4-bit binomier for unsigned numbers 

The propagators 

During the computation of ax + b, the outputs of the binomier will be used as 
coefficient a or b for the next step. Since these outputs are given in a redundant form, it is 
necessary to propagate a carry in order to obtain them in non-redundant binary form. At 
each step of the pipe line, only one bit of a and one bit of b are used, starting from the 
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least significant position. Therefore, the carry propagation may be executed in a 
triangular systolic propagator synchronized with the binomier (see Fig. 5). 

c - 5  

overflow 

Fig. 5 A 4-bit propagator 

The propagators make it possible to start the next iteration of the computation of 
the binomials during the current one. The high part of the binomier should start some 
calculations with Xk+l, while the lowest part ends some calculations with Xk. Thus, we 
must be able to segment the bus which cames x using registers at each level of the 
binomier. 

The Squarer 

We have to give to the binomier the successive squares xZk, at the rate of one per 
p cycles, where a cycle is the time needed by an elementary cell. If we use Braun's 
multiplier in order io compute xZk+' = xZk * xZk, the time of calculation is too large 
(2p cycles), because we cannot avoid the carry propagation : the terms xZk must not be 
in redundant form. 

Let us consider the binary representation of x : x = xj 2J.We have : 
j = .p 

-1  S j S  p 
-15 k <  j 

On Braun's multiplier, the terms Xj2 are computed on the diagonal part, while the 
terms xjxk are computed two times : on the upper triangular part, and on the lower 
triangular part. Thus, it is possible to perform the whole computation on the lower 
triangular part. In order to multiply by 2 the products XjXk, these products are shifted to 
the left in the multiplier. Thus it is possible to compute x2 (in redundant form) in the 
lower triangular part in p cycles, using during the k h  cycle the k least significant bits of 
x, which can be given by a carry propagator synchronized with the multiplier. 

-1 
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In practice, it is easier to shift to the right the squares of the diagonal part, and to 
position the results instead of shifting the products xjxk. Using the cells of Braun's 
multiplier, we can obtain a triangular squarer. We shall not use such a squarer, since at 
each time, only one of its rows would be active, we shall use only one row, looped on 
itself (see Fig. 6). The connections will be different whether the cell is or is not on the 
diagonal part. We have to distinguish the cells by a control mechanism which shows 
what cell appears on the diagonal part at the time considered. This control is done by a 
token running into a shift register (i-4 j-3 j-2 j-1 jo) synchronized with the circuit. The 
outputs of the shift register control two-ways multiplexers, represented by diamonds in 
Fig. 6 and 7 (the output is equal to the left input if the command is set to 1, else to the 
right input). The 3 input and 2 output rectangular cells are full adders, and circular cells 
are AND gates. 

Fig. 6 Linear multiplier of a 4-bit squarer. 

We need to convert the output values of this linear multiplier from carry-save 
representation to binary representation. This conversion is performed using a linear carry 
propagator depicted in Fig. 7, and is controlled by the bit j o  of the shift register. 

0 8 
*. 
- 1  

Fig. 7 
X 

c s  c s  c s  
s-l - 1  -2 -2 -3 -3 -4 

X X X 
-2 -3 -4 

Carry propagator of a 4-bit squarer. 
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VLSI implementation 

Presentation 

The design of the circuit was achieved using a 2 microns twin tub CMOS 
technology with 2 metal layers. In this version, only static logic has been used, although 
a fully dynamic version could be realized. 

Since the propagators of the binomier have a triangular shape, it is possible to 
assemble them in such a way that they form a rectangular functional block. This leads to 
a very regular implementation of the whole circuit. Notice that it would be possible to use 
only one propagator, because only one of them is used at the same time. However, this 
would have led to some complication in the sequencer. Furthermore, the price for 
obtaining a compact regular shape for the remaining triangular propagator would be a 
loss of regularity. Figure 8 shows the disposition of the functional blocks of the data 
path. Since the squarer and the propagators have been designed in order to give to the 
binomier the correct data at the correct time, the control part is very simple. 

Cocff. Cocff. 

Fig. 8 Disposition of the functional bocks of the circuit 
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Basic elements 

All the cells of the circuit are composed of a master-latch, a combinatorial element 
and a slave-latch. The most complex element is the combinatorial adder, for which we 
choose the well known symmetric version described in [13], which leads to a very 
regular and simple layout. The adder cell is associated with a NAND gate to form the 
multiplier cell. The elementary cell of the squarer is obtained by adding some passgates to 
the multiplier cell. 

The schematic of the latch is given in Fig. 9. It is a 2-phase clocked latch, thus 
needing the use of clock amplifiers with inverting and non-inverting outputs. Note that 
between the clock generator and their destination, all clock signals pass through the same 
number of amplifiers, in order to equilibrate the clock skews. 

- 
@1 

- 
@2 

Fig. 9 Schematic of the latch. 

Realization and performances estimation 

We designed a version of a 12-bit polynomier. The size of the chip is 6.4" x 
3.2 mm. The clock frequency depends closely on the performances of the most complex 
gate, which is an elementary addedmultiplier cell. Electrical simulations using SPICE 
have shown that the propagation delay of such a gate is near to 211s. Thus, taking in 
account synchronization latches, a 100 MHz clock rate may be easily reached. Previous 
works on pipelined multipliers design [ 121 have shown that higher clock rates may be 
achieved. With such a 12-bit polynomier, a polynomial of degree n may be computed in 
120 [log2 nl + T a  nanoseconds, where Tdd is the time needed to convert the final carry- 
save result in 2's complement notation. In our implementation, Tadd is near 10 ns. 

Fig. 10 presents a floorplan of the circuit. 
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Fig. 10 Floorplan of the circuit. 
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Extension to 2's complement 

In part ILb, we assumed the constraints : 

0 0 1 x < 1  

0 the coefficients of P are positive 
n 

i=O 
C a i <  1 

0 p > n (n is the degree of P). 

As we saw, the only really resmctive constaint was the second one. In order to 
avoid it, we have to manipulate 2's complement numbers. Then the second constraint 

vanishes, and the third becomes C lail < 1. Now a number x, 1x1 < 1, will be 
n 

i=O 

n 
represented by a sequence xg.xlx2 ... Xn satisfying : x = - xo + xi2-' . 

i =  1 

In part 11, we started from Braun's cellular multiplier. Now, we have to design 
our operators starting from 2's complement cellular multipliers. 

Cellular 2's complement multipliers. 

In [2], Baugh and Wooley present a cellular multiplier able to receive 2's 
complement numbers. This multiplier is presented in Fig. 11 (the elementary cells are the 
same as in Braun's multiplier). 

- -  
Fig. 11 Baugh and Wooley's multiplier. 

More recently, Luiggi Dadda [4] proposed a more regular structure, depicted in Fig. 12. 



- -  
1 51 50 41 40 31 30 21 20 11 10 01 00 

As in part 11, from Dadda's multiplier, it it easy to build a binomier. This 
binomier is depicted in Fig. 13. 

XO X-l x-2 x-3 

Fig. 13 A 2's Complement binomier. 

-1 
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We use the same squarer as in part 11, with a slight modification in the first step 
(in the other steps, the terms x2k are positive). During the beginning of this first step, if 
the input x is negative (i.e. if xo = l),  then the bits xi (i -1) are complemented before 
entering the squarer. 

Conclusion 
We have proposed an architecture dedicated to the evaluation of polynomials. 

This architecture may be used for evaluating any continuous function. Our VLSI 
realization is only a prototype, but it is sufficient to prove the feasibility of a complete 
circuit, and to show that high computational rates are achievable. Our circuit manipulates 
only positive numbers, but the last part of this paper shows that with a few 
modifications, one can obtain easily a 2's complement polynomier. 
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