
IMPLEMENTATION OF A VLSI POLYNOMIAL EVALUATOR
FOR REAL-TIME APPLICATIONS

Guy Corbazl, Jean Duprat2, Bertrand Hochet' and Jean-Michel Muller2

Ecole Polytechnique FCdCrale de Lausanne
LEG-Ecublens, 1015 Lausanne, SWrrZERLAND

2CNRS, Laboratoire LIP-IMAG
ENS Lyon, 46 AllCe dItalie, 69364 Lyon Cedex 07, FRANCE

Abstract

In [.SI, Duprat and Muller present a new architecture, called a polynomier, able to
evaluate quickly polynomials and elementary functions. In this paper, we propose a very
regular VLSI implementation of the polynomier, and we extend this architecture to 2's
complement arithmetic. Some applications are presented, and the performances enable
real-time processing.

Introduction

Fast evaluation of polynomials is a major goal of computer science, since any
continuous function may be approximated as accurately as desired by a polynomial. For
instance, most part of current computers evaluate elementary functions using polynomial
or rational approximations [3].

In [5] , Duprat and Muller present a new operator, a polynomier, suitable for
VLSI implementation, and specifically designed for polynomials computations. This
polynomier is composed of two pipe-lined subparts : a squarer (i.e. an operator able to
compute the square of a number), and a binomier (i.e. an element which computes
expressions of the form Ax + B).

In the first part of this paper, we present some possible applications of the
polynomier. Then, we recall briefly the main characteristics of the architecture proposed
in [5] , in order to give a background for understanding the two following sections. The
third part of the paper is devoted to a VLSI implementation of this architecture, designed
in the Ecole Polytechnique FCdkrale de Lausanne, Switzerland. The final part presents an
extension of this architecture to the two's complement computation.

Possible applications

An interesting application of the polynomier is the computation of elementary
functions. In 1885, Weiertrass showed that every continuous function may be appro-
ximated as accurately as desired, in a given interval [a,bl, by a polynomial. Chebyshev
gave a characterization of the best polynomial of approximation of degree n of a conti-

TH0382-2/911Pooo~13$o1.00 (D 1991 IEEE 13

1

14 International Conference on Application Spcc@c Array Processors

nuous functionf in [a,b], and this characterization has been used in 1934 by Remes [111
in order to give an algorithm which computes this best polynomial approximation. Poly-
nomial approximants of classical elementary functions may be found in [8] and [3]. In
[5], Duprat and Muller show that the polynomier computes the sine, the cosine and the
exponential in [O,lJ with p significant bits, in time T = e (p Log p).

Therefore, the polynomier may be used in order to compute any continuous
function : it may be viewed as a "programmable coprocessor". The user has to provide to
the polynomier the coefficients of a polynomial approximation of the function be wants to
evaluate. A possible application is in the field of telecommunication: in data
compression techniques, the input data (supposed to be a fixed-point number between 0
and l), must be transformed following a concave function. This function - and its
reverse - may be easily approximated by a polynomial.

Architecture of the polynomier

A recursive strategy

n
We evaluate polynomials using a recursive strategy : the polynomial c aixi is

i = O

w 2 1
equal to aixi + xP/21+' . Thus evaluating a polynomial of

i = O
degree n is equivalent to evaluate two polynomials of degree n/2. These two evaluations
may be performed in parallel (in practice, we perform them in pipe-line on the same
operator). This kind of decomposition is due to G. Estrin ([6] , [lo]). For instance, if n is
equal to 7, the different computations of the algorithm are described by the tree of Fig. 1.

P(x) = ao.3 = a1.z x2 + ao.2

n n n -
a7.0 = a as.0 = as as.0 = a5 ad.0 = a4 a3.0 = a3 a2.0 = az a1.0 = 21 q . 0 = a0

Fig. 1 The computational tree.

Special Purpow Designs I 15

Architecture of the polynomier

Our operators are designed starting from Braun's cellular multiplier ([1],[9]).
Cellular multipliers seems to be a good compromize between time of computation and
circuit area. Fig. 2 presents such a multiplier, whose operands (A ~ A ~ A ~ A ~ A ~ A o) and
(B s B ~ B ~ B ~ B ~ B o) are unsigned numbers . The square cells are classical Full-Adder cells.

Fig. 2 Braun's multiplier.

The previous algorithm is implemented using two blocks : a squarer, which
computes the successive squares xk = x2k, and a pipe-lined binomier, which computes
the expressions a2m+lkxk + a2mk. Since we want to perform easily the multiplications,
we shall suppose that all the terms Xk and ai,k have the same binary p-bit fixed point
format. In [SI it is assumed that we manipulate fixed-point positive numbers, written

0.b-1b-2 ... b-, = Cb-i2-i. In such a notation, we have to assume :
P

i= 1

. 0 1 x < 1

0 the coefficients of P are positive

0 C a i < 1
n

i=O

0 p > n (n is the degree of P).

The third assumption is needed to avoid overflow. In our fixed-point format, we
have to assume that P(x) is lower than 1 for 0 5 x < 1. Since the coefficients ai of P are

positive, the maximal value of P in [0, 11 is equal to P(l) = Cai. Thus we have to

assume that this value is lower than 1. Except for the second, these constraints are not
really restrictive : the first and the third need a pre-normalization of data - necessary in
order to avoid overflow -, and if P is the polynomial of best uniform approximation of
an usual elementary function, this assumption is true (see for instance the approximations
presented in [8] or [3]).

n

i=O

16 International Conference on Application Specific Array Processors

The binomier

In Braun's multiplier, the last row propagates the carry. It needs a time
proportional to the size of the multiplier, thus this last row is not synchronous with the
other rows. In a pipe-line implementation, one must suppress this row, thus the result of
the multiplication will be given in a redundant "Carry-Save'' notation : each digit of the
result will be defined by a couple (carry, sum). A column is added to the left part of the
multiplier in order to add the coefficient b of a binomial computation ax+b to the product
ax. We shall use the elementary cells of Fig. 2, slightly modified (Fig. 3) in order to have
a different topology.

Y

C

Fig. 3 Elementary binomier cell.

The binomier has the following structure (Fig. 4). The circular cells are AND gates :

0
0 x-1 0 x-2 0 x-3 0 x.4

a-4

a-3

a- 2

a- 1

s-1 c2 s-2 c-3 s.3c.4 s-4c.5 s5

Fig. 4 A 4-bit binomier for unsigned numbers

The propagators

During the computation of ax + b, the outputs of the binomier will be used as
coefficient a or b for the next step. Since these outputs are given in a redundant form, it is
necessary to propagate a carry in order to obtain them in non-redundant binary form. At
each step of the pipe line, only one bit of a and one bit of b are used, starting from the

Special Purpose Designs I 11

least significant position. Therefore, the carry propagation may be executed in a
triangular systolic propagator synchronized with the binomier (see Fig. 5).

c - 5

overflow

Fig. 5 A 4-bit propagator

The propagators make it possible to start the next iteration of the computation of
the binomials during the current one. The high part of the binomier should start some
calculations with Xk+l, while the lowest part ends some calculations with Xk. Thus, we
must be able to segment the bus which cames x using registers at each level of the
binomier.

The Squarer

We have to give to the binomier the successive squares xZk, at the rate of one per
p cycles, where a cycle is the time needed by an elementary cell. If we use Braun's
multiplier in order io compute xZk+' = xZk * xZk, the time of calculation is too large
(2p cycles), because we cannot avoid the carry propagation : the terms xZk must not be
in redundant form.

Let us consider the binary representation of x : x = xj 2J.We have :
j = .p

-1 S j S p
-15 k < j

On Braun's multiplier, the terms Xj2 are computed on the diagonal part, while the
terms xjxk are computed two times : on the upper triangular part, and on the lower
triangular part. Thus, it is possible to perform the whole computation on the lower
triangular part. In order to multiply by 2 the products XjXk, these products are shifted to
the left in the multiplier. Thus it is possible to compute x2 (in redundant form) in the
lower triangular part in p cycles, using during the k h cycle the k least significant bits of
x, which can be given by a carry propagator synchronized with the multiplier.

-1

I

18 International Conference on Application Specific Array Processors

In practice, it is easier to shift to the right the squares of the diagonal part, and to
position the results instead of shifting the products xjxk. Using the cells of Braun's
multiplier, we can obtain a triangular squarer. We shall not use such a squarer, since at
each time, only one of its rows would be active, we shall use only one row, looped on
itself (see Fig. 6). The connections will be different whether the cell is or is not on the
diagonal part. We have to distinguish the cells by a control mechanism which shows
what cell appears on the diagonal part at the time considered. This control is done by a
token running into a shift register (i-4 j-3 j-2 j-1 jo) synchronized with the circuit. The
outputs of the shift register control two-ways multiplexers, represented by diamonds in
Fig. 6 and 7 (the output is equal to the left input if the command is set to 1, else to the
right input). The 3 input and 2 output rectangular cells are full adders, and circular cells
are AND gates.

Fig. 6 Linear multiplier of a 4-bit squarer.

We need to convert the output values of this linear multiplier from carry-save
representation to binary representation. This conversion is performed using a linear carry
propagator depicted in Fig. 7, and is controlled by the bit j o of the shift register.

0 8
*.
- 1

Fig. 7
X

c s c s c s
s-l - 1 -2 -2 -3 -3 -4

X X X
-2 -3 -4

Carry propagator of a 4-bit squarer.

Special Purpse Designs I 19

VLSI implementation

Presentation

The design of the circuit was achieved using a 2 microns twin tub CMOS
technology with 2 metal layers. In this version, only static logic has been used, although
a fully dynamic version could be realized.

Since the propagators of the binomier have a triangular shape, it is possible to
assemble them in such a way that they form a rectangular functional block. This leads to
a very regular implementation of the whole circuit. Notice that it would be possible to use
only one propagator, because only one of them is used at the same time. However, this
would have led to some complication in the sequencer. Furthermore, the price for
obtaining a compact regular shape for the remaining triangular propagator would be a
loss of regularity. Figure 8 shows the disposition of the functional blocks of the data
path. Since the squarer and the propagators have been designed in order to give to the
binomier the correct data at the correct time, the control part is very simple.

Cocff. Cocff.

Fig. 8 Disposition of the functional bocks of the circuit

U) International Confcence on Application SpccjFc Array Processors

Basic elements

All the cells of the circuit are composed of a master-latch, a combinatorial element
and a slave-latch. The most complex element is the combinatorial adder, for which we
choose the well known symmetric version described in [13], which leads to a very
regular and simple layout. The adder cell is associated with a NAND gate to form the
multiplier cell. The elementary cell of the squarer is obtained by adding some passgates to
the multiplier cell.

The schematic of the latch is given in Fig. 9. It is a 2-phase clocked latch, thus
needing the use of clock amplifiers with inverting and non-inverting outputs. Note that
between the clock generator and their destination, all clock signals pass through the same
number of amplifiers, in order to equilibrate the clock skews.

-
@1

-
@2

Fig. 9 Schematic of the latch.

Realization and performances estimation

We designed a version of a 12-bit polynomier. The size of the chip is 6.4" x
3.2 mm. The clock frequency depends closely on the performances of the most complex
gate, which is an elementary addedmultiplier cell. Electrical simulations using SPICE
have shown that the propagation delay of such a gate is near to 211s. Thus, taking in
account synchronization latches, a 100 MHz clock rate may be easily reached. Previous
works on pipelined multipliers design [121 have shown that higher clock rates may be
achieved. With such a 12-bit polynomier, a polynomial of degree n may be computed in
120 [log2 nl + T a nanoseconds, where Tdd is the time needed to convert the final carry-
save result in 2's complement notation. In our implementation, Tadd is near 10 ns.

Fig. 10 presents a floorplan of the circuit.

Special Purpose Designr I 21

Fig. 10 Floorplan of the circuit.

22 International Conference on Application Specjfic Array Processors

Extension to 2's complement

In part ILb, we assumed the constraints :

0 0 1 x < 1

0 the coefficients of P are positive
n

i=O
C a i < 1

0 p > n (n is the degree of P).

As we saw, the only really resmctive constaint was the second one. In order to
avoid it, we have to manipulate 2's complement numbers. Then the second constraint

vanishes, and the third becomes C lail < 1. Now a number x, 1x1 < 1, will be
n

i=O

n
represented by a sequence xg.xlx2 ... Xn satisfying : x = - xo + xi2-' .

i = 1

In part 11, we started from Braun's cellular multiplier. Now, we have to design
our operators starting from 2's complement cellular multipliers.

Cellular 2's complement multipliers.

In [2], Baugh and Wooley present a cellular multiplier able to receive 2's
complement numbers. This multiplier is presented in Fig. 11 (the elementary cells are the
same as in Braun's multiplier).

- -
Fig. 11 Baugh and Wooley's multiplier.

More recently, Luiggi Dadda [4] proposed a more regular structure, depicted in Fig. 12.

- -
1 51 50 41 40 31 30 21 20 11 10 01 00

As in part 11, from Dadda's multiplier, it it easy to build a binomier. This
binomier is depicted in Fig. 13.

XO X-l x-2 x-3

Fig. 13 A 2's Complement binomier.

-1

24 International Confrrcnce on Application Spec@c h a y Processors

We use the same squarer as in part 11, with a slight modification in the first step
(in the other steps, the terms x2k are positive). During the beginning of this first step, if
the input x is negative (i.e. if xo = l), then the bits xi (i -1) are complemented before
entering the squarer.

Conclusion
We have proposed an architecture dedicated to the evaluation of polynomials.

This architecture may be used for evaluating any continuous function. Our VLSI
realization is only a prototype, but it is sufficient to prove the feasibility of a complete
circuit, and to show that high computational rates are achievable. Our circuit manipulates
only positive numbers, but the last part of this paper shows that with a few
modifications, one can obtain easily a 2's complement polynomier.

References

E.L. Braun, Digital computer design, New York Academic, 1963.
C.R. Baugh and B.A. Wooley, A Two's complement parallel array multiplication
algorithm , IEEE Transactions on Computers, Col. C-22 No 12, December
1973.
W. Cody and W. Waite, Software manual for the elementary functions,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1980.
Luiggi Dadda, 7*Symposium on Computer Arithmetic.
J. Duprat and J.M. Muller, Hardwired Polynomial Evaluation, J. of Parallel and
Distributed Computing 5, pp. 291-309, June 1988.
G. Esmn, Proc. Westem Joint Computing Conf. 17 (1960), pp 33-40.
P.G. Fontolliet, Syst2mes de tklkcommunications, Ecole Polytechnique Fkderale
de Lausanne, Ed. Georgi, Presses Polytechniques romandes, Lausanne,
Switzerland, 1983 (in French).
J.F. Hart, E.W. Cheney, C.L. Lawson, H.J. Maehly, C.K. Mesztenyi, J.R.
Rice, H.C. Tacher and C. Witzgall, Computer approximations, Wiley, New
York, 1968.
K. Hwang, Computer arithmetic principles, architecture and design, New York,
J. Wiley & Sons Inc. 1979.
D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, Addison-Wesley, 1981.
E. Remes, Sur un prockdk convergent &approximations successives pour
determiner les polyn6mes dapproximation, C.R. Acad. Sci. Paris, 198, pp.
2063-2065, 1934 (in French).
D. Schmitt-Landsiedel, T.G. Noll, H. Klar, G. Enders, A pipelined 330 Mhz
multiplier, 1 lth ESSCIRC, Toulouse, France, Sept. 16-18, 1985.
N. Weste, K. Eshraghian, Principles of CMOS VLSI design, A Systems
Perspective, Addison-Wesley VLSI systems Series, 1985.

