
Elementary functions

Jean-Michel Muller

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Elementary functions

real name: elementary transcendental functions. The ones than can be
built from the complex exponential and logarithm;

the ones listed by IEEE-754 are:

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
log(x), log2(x), log10(x), log(1 + x), log2(1 + x), log10(1 + x),√

x2 + y2, 1/
√
x , (1 + x)n, xn, x1/n(n is an integer), xy ,

sin(πx), cos(πx), tan(πx), arcsin(x)/π, arccos(x)/π, arctan(x)/π, arctan(y/x)/π,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),

sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x).

the C Standard defines a rather similar list;

a few functions (sin, cos, exp, log, . . .) are very frequently called, and are
used as building blocks for implementing the other functions → efficient
and accurate implementation of these functions is necessary.

2

Elementary functions

Number of calls per second of various functions in a CERN proton collision
application.

3

Elementary functions

core set of “atomic functions”:
exp, log, sin, . . .

highest possible quality:
reproducibility, proven error
bounds, etc.

best possible quality: correct
rounding.

4

Work still needs to be done. . .

Largest errors in ulps for double-precision calculation of some math functions. ulp (x) is the distance
between two FP numbers in the neighborhood of x (so the largest values should be 0.5 – which is the
case with +, −, ×, ÷, and √

.).

(Extracted from Gladman, Innocente, Mather, and Zimmermann, Accuracy of Mathematical

Functions. . . , Aug. 2024)

5

Elementary functions

hardware arithmetic of our processors: ±, ×, ab + c (FMA), and ÷
(costs more than + and ×);

1 5 10 50 100

Integer + FP +

FP ×
FP ÷

FP
√
·

FP sin

cache L1 main memory

Typical current latencies in number of cycles (logarithmic scale). These figures vary from one

processor to another, but the orders of magnitude remain similar.

functions of one variable one can build from ± and ×: polynomials;

No choice: approximate the functions by piecewise polynomials.

6

Approximating the functions by polynomials ?

polynomial approximation: valid
in small interval only;

need to reduce the initial
argument to that interval;

three steps:

range reduction;
polynomial evaluation;
reconstruction. The sine function and its best degree-5

approximation in [−π/2, π/2].

(clearly valid only in [−π/2, π/2])

7

The advantage of small intervals

− log2(error) of the best degree-5 approximation to et in [0, x] as a function of x .

8

How do you compute an exponential?

I want to compute ex , I have a polynomial approximation to exp in [− ln(2)
2 ,+ ln(2)

2].

Range reduction: x → y = x − k log(2), with k ∈ Z and
y ∈ [− ln(2)

2 ,+ ln(2)
2]

Polynomial evaluation: get approximation z to ey using the polynomial;

Reconstruction: obtain ex = z · 2k .

9

How do you compute a cosine?

I want to compute cos(x). I have polynomial approximations to sin and cos in [−π
4 ,

π
4].

Argument reduction: x → y = x − k π
2 , with k ∈ Z and y ∈ [−π

4 ,
π
4]

Polynomial evaluation: compute

{
c = cos(y) (if k is even), or
s = sin(y) (if k is odd).

Reconstruction: obtain cos(x) =


c if k mod 4 = 0

−s if k mod 4 = 1
−c if k mod 4 = 2
s if k mod 4 = 3;

10

“Naive” range reduction: example with the constant = π
2

Naive reduction: we set C = RN (π/2), and we successively compute

k = ⌈x/C⌋,

y = RN (x − kC) with an FMA, or RN (x − RN (kC)) if no FMA..

11

Error analysis assuming FMA instruction is available

k = ⌈x/C⌋ ⇒ x
C
− 1

2 ≤ k ≤ x
C
+ 1

2

⇒ |x − kC | ≤ C
2 .∣∣RN (x − kC)−

(
x − k π

2

)∣∣ ≤ |RN (x − kC)− (x − kC)|
+
∣∣(x − kC)−

(
x − k π

2

)∣∣
≤ u · |x − kC |+ k ·

∣∣C − π
2

∣∣
≤ u C

2 + ku.

Hence:

the absolute error is ≤ u(k + C
2) (the bound grows linearly with x , since k

is proportional to x);

the relative error depends on how small
∣∣x − k π

2

∣∣ can be.

→ continued fractions.

12

In prectice the naive reduction can be very inaccurate

In binary64 arithmetic (p = 53):

if x = 355:

y is 7230134.89 ulp away from the exact reduced argument if we do
not use an FMA, and
4084406.89 ulp away with an FMA.

If x = 37362253, even with an FMA, y is 440183437673129 ulp away
from the exact value.

(remember: for us good accuracy means final error not much larger than
0.5 ulp !)

Continued fraction convergents to π
2 :

1, 2,
3
2
,
11
7
,
344
219

,
355
226

,
51819
32989

,
52174
33215

,
260515
165849

,
573204
364913

,
4846147
3085153

,
5419351
3450066

,
37362253
23785549

, . . .

13

Cody and Waite reduction

Idea: approximate π
2 by two FP numbers C1 and C2 such that

C1 fits in p −m bits, where m is the max. number of bits of k for which
we want an accurate result → kC1 will be a FP number

C2 = RN(π2 − C1), so that C1 + C2 represents π
2 with significantly more

than p bits of precision.

More precisely:
∣∣π

2 − C1 − C2
∣∣ < 2−2p+m.

Then we compute (here with an FMA)

RN (RN (x − kC1)− kC2).

14

Cody and Waite reduction

We compute
RN (RN (x − kC1)− kC2).

kC1 is a FP number;

as x and kC1 are very near, their difference is a FP number (Sterbenz)
→ RN (x − kC1) = x − kC1. Hence we obtain

RN (x − k(C1 + C2)).

same error analysis as the naive reduction:∣∣∣RN (x − k(C1 + C2))−
(
x − k

π

2

)∣∣∣ < u
C

2
+ ku22m.

With m = 26, if x = 355, y is 0.108 ulp away from the exact result (still
bad for x = 37362253, but not as much).

15

Generalizations, variants

More than 2 constants: one may have C2 fit in p −m bits too, and
approximate π

2 by a sum C1 + C2 + C3. One then evaluates

RN (((x − kC1)− kC2)− kC3);

systematic study of the numbers γ ≈ π
2 such that x − kγ is a FP number;

express the reduced argument in double-word arithmetic.

16

After range reduction: using a polynomial approximation to
the function

Two issues:

choosing the right polynomial;

evaluating it quickly and accurately.

Function f , approximated by p(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·+ anx
n;

frequently evaluated as

a0 + x · (a1 + x · (a2 + x · (· · · (an−1 + x · an))) · · ·)

(called Horner’s scheme (1819). Was already known by Newton, and probably
by chinese mathematicians centuries before Horner)

17

Forget about Taylor series

error of degree-5 Taylor series of
sin vs error of best “minimax”
degree-5 approximation in
[−π

2 ,+
π
2];

Taylor series are local best
approximations: they cannot
compete on a whole interval.

18

Taking a much smaller domain does not change the difference

Error of degree-5 Taylor series of sin vs error of best “minimax” degree-5
approximation in [− π

128 ,+
π

128].

19

Minimax approximation of functions by polynomials

Pn =
{
polynomials of degree ≤ n with coefficients ∈ R

}
;

L∞ norm (also called supremum norm):

∥g∥∞ = sup
x∈[a,b]

|g(x)|;

function f , interval [a, b];

first, we look for P∗ ∈ Pn such that

∥f − P∗∥∞ = min
Q∈Pn

∥f − Q∥∞.

20

Continuous world: everything was done in the 19th and early
20th centuries

Theorem 1 (Weierstrass, 1885)
Let f be a continuous function on [a, b]. For any ϵ > 0 there exists a
polynomial p such that ∥p − f ∥∞,[a,b] ≤ ϵ.

→ so it’s not hopeless. . . but the theorem gives no clue on the necessary
degree n to reach a given accuracy;

for some functions it can be quite large.

The square root and its best
degree-4 approximation in [0, 1].

(with the exponential function, the
two curves would be undistinguish-
able at this scale)

21

Some functions may need high-degree polynomials

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

N
u
m
b
e
r

o
f

b
i
t
s

Degree of the approximation

exp(x)
log(1+x)
sqrt(x)
tan(x)

− log2(error) of the minimax polynomial approximations to various functions on [0, 1],

as a function of the degree. 22

Continuous world: everything was done in the 19th and early
20th centuries

Theorem 2 (Kirchberger 1902 – frequently attributed to
Chebyshev)

P∗ ∈ Pn is the minimax degree-n approximation to f on [a, b] if and only if
there exist at least n + 2 points

a ≤ x0 < x1 < x2 < · · · < xn+1 ≤ b

such that:

p∗(xi)− f (xi) = (−1)i
[
p∗(x0)− f (x0)

]
= ±

∥∥f − p∗∥∥
∞.

23

Example: f (x) = cos(x + ex), degree 2, interval [0, 1]

24

25

Continuous world: everything was done in the 19th and early
20th centuries

Remez algorithm (1934): iteratively builds the set of points x0, . . . , xn+1 of
Kirchberger’s theorem.

Start from an initial set of points x0, x1, . . . , xn+1 in [a, b].
(can be arbitrary, but xi =

a+b
2 + (b−a)

2 cos
(

iπ
n+1

)
, 0 ≤ i ≤ n + 1, called

Chebyshev points, is in general a good choice)

Consider the linear system of equations

p0 + p1x0 + p2x
2
0 + · · · + pnx

n
0 − f (x0) = +ϵ

p0 + p1x1 + p2x
2
1 + · · · + pnx

n
1 − f (x1) = −ϵ

p0 + p1x2 + p2x
2
2 + · · · + pnx

n
2 − f (x2) = +ϵ

· · · · · ·
p0 + p1xn+1 + · · · + pnx

n
n+1 − f (xn+1) = (−1)n+1ϵ.

(1)

n+ 2 equations, with n+ 2 unknowns: p0, p1, p2, . . . , pn and ϵ. Nonzero
determinant (Vandermonde matrix) → exactly one solution
(p0, p1, . . . , pn, ϵ).

26

Continuous world: everything was done in the 19th and early
20th centuries

→ gives a polynomial P(x) = p0 + p1x + · · · + pnx
n.

We now compute the set of points yi in [a, b] where P − f has its
extremes, and we start again (step 2), replacing the x ′

i s by the yi ’s.

In practice: extremely fast convergence.

27

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

we start with 0, 0.1909830057, 0.6909830062, 1.309016994,
1.809016994, 2 (heuristic: Chebyshev points);
the corresponding linear system is



p0 −0.8414709848 = ϵ

p0 +0.1909830057p1 +0.03647450847p2 +0.00696601126p3
+0.00133038977p4 −0.9357708449 = −ϵ

p0 +0.6909830062p1 +0.4774575149p2 +0.3299150289p3
+0.2279656785p4 −0.9110882027 = ϵ

p0 +1.309016994p1 +1.713525491p2 +2.243033987p3
+2.936169607p4 +0.5319820928 = −ϵ

p0 +1.809016994p1 +3.272542485p2 +5.920084968p3
+10.70953431p4 +0.1777912944 = ϵ

p0 +2p1 +4p2 +8p3
+16p4 −0.8938549549 = −ϵ.

solving this system gives the polynomial:

P(1)(x) = 0.7808077493 + 1.357210937x
−0.7996276765x2 − 2.295982186x3 + 1.189103547x4.

28

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

difference P(1)(x)− sin(exp(x)):

–0.1

0

0.1

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

extremes of P(1)(x)− sin(exp(x)) in [0, 2]: 0, 0.3305112886,
0.9756471625, 1.554268282, 1.902075854, 2.

Solving the linear system associated to this list of points gives the
polynomial:

P(2)(x) = 0.6800889007 + 2.144092090x
−1.631367834x2 − 2.226220290x3 + 1.276387351x4. 29

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

difference P(2)(x)− sin(exp(x)):

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

the extreme values of |P(2)(x)− sin(exp(x))| are very close together: P(2)

already “almost” satisfies the condition of Kirchberger’s theorem;

extremes of P(2)(x)− sin(exp(x)) in [0, 2]: 0, 0.3949555564,
1.048154245, 1.556144609, 1.879537115, 2 → the linear system
associated to these points gives a polynomial P(3), etc.

30

But the world of Floating-Point numbers is not continuous. . .

If we want ultimate accuracy, i.e., correct rounding (or even just an error not
larger than ≈ 1 ulp), this will not work:

by approximating the coefficients of the minimax polynomial by FP
numbers, we already loose a significant amount of accuracy;

need to take into account the error due to evaluating the polynomial.

31

Example: function log(1 + x) in [0, 1]

Goal: binary32/single precision arithmetic (β = 2, p = 24);
Withe the Remez algorithm, we get a degree-9 polynomial;

P∗(x) = 4.5312626764178853045083975073772119446839784174464956459529643270987 · 10−9

+0.999999025258539069369331280889443153540235373687738534675639041879165305 · x
−0.4999653017333068626463502632864949694222430843003074565833086084942028155 · x2

+0.332849806189948672280944634938400232746236110583281184032142726147068820 · x3

−0.246517965788047515383441886060448202153937598635915727063060602574084424 · x4

+0.185154569966668361477975368769654445113328710403271118930768041265705015 · x5

−0.126057455452415889884958065630540564789570519172717287039473166654700319 · x6

+0.0672945529992441805619775364650010239787939256621502918569305409951238042 · x7

−0.02345535069051077538074324049760472948991145589046990280611685936442020761 · x8

+0.00384529980982606902249675587076617855256867202322449811715889629373844490 · x9.

error ≈ 4.53 × 10−9.

32

Example: function log(1 + x) in [0, 1]

error curve log(1 + x)− P∗(x): nice illustration of Kirchberger’s theorem

Problem: P∗ has real coefficients;

I want to implement the function in binary32 arithmetic (β = 2, p = 24).
What happens if I round each coefficient of P∗ to the nearest FP number?

33

The disaster. . .

Error multiplied by ≈ 2.66

34

Near best polynomial approximations with FP coefficients

algorithms that give near-best polynomials approximations under the
constraint that the coefficients be FP numbers;

more complex than Remez yet reasonable cost (and done once for all):
Brisebarre and Chevillard, Efficient Polynomial L∞-Approximations, 18th
IEEE Symposium on Computer Arithmetic, 2007.
https://hal.inria.fr/inria-00119513

still very active domain: various other constraints on coefficients, norms
other than L∞, rational approximations, taking into account the
evaluation error when choosing the polynomial. . .

Sollya software (Chevillard, Joldes, Lauter). Widely used for designing
function libraries.

https://www.sollya.org

It also provides a Certified supnorm: proven bound on ∥f − p∥∞.

35

https://www.sollya.org

With our example of function log(1 + x) in [0, 1]

Sollya prompt: P3 = fpminimax(log(1+x),9,[|24...|],[0;1],absolute);

Error Sollya / Error minimax ≈ 1.012

→ we recover almost all the loss due to the discretization of the polynomial.

36

Polynomial evaluation error

Horner scheme

use of interval arithmetic to know where each intermediate variable can
lie;

standard model to bound the error of each operation;

can be very accurate if initial interval cut into many subintervals (a
separate study for each subinterval);

Gappa (https://gappa.gitlabpages.inria.fr), designed by G.
Melquiond does this automatically and can generate a formal proof.

37

https://gappa.gitlabpages.inria.fr

But what should be recommended?

reproducibility, portability → the result of sin(x), cos(x), exp(x). . . should
be uniquely specified (no “fuzzy” specification of the form “error < ϵ”);

specifying the result of an algorithm? Dangerous:

might make progress of elementary function algorithms difficult;
if somebody comes up with functions “better than the standard”,
the standard is dead

→ what should be required is that we return the best possible result, i.e.,
correct rounding of the exact result.

However: difficult because of the table maker’s dilemma.

38

The Table Maker’s Dilemma

39

The Table Maker’s Dilemma

40

The Table Maker’s Dilemma

41

The Table Maker’s Dilemma

Consider the binary64 FP number (β = 2, p = 53)

x =
8520761231538509

262

We have

2x =
(
9018742077413030.999999999999999998805240837303 · · ·

)
× 2−53

So what ?
Hardest-to-round case for function 2x and binary64 FP numbers.

42

Correct rounding of the elementary functions

radix 2, precision p;

FP number x and integer m (with m > p) → one can compute an
approximation y to f (x) whose error on the significand is ≤ 2−m.

can be done with a possible wider format, or using algorithms such as
TwoSum, TwoMult, Double-Word (or triple-word) arithmetic, etc.

getting a correct rounding of f (x) from y : not possible if f (x) is too
close to a breakpoint: a point where the rounding function changes.

43

Correct rounding of the elementary functions

2k 2k+1
f (x) is here

RN (f (x))

f (t) is here

RN (f (t))? RN (f (t))?

From the knowledge that f (x) lies in the blue interval, we can deduce the value of

RN (f (x)). However, knowing that f (t) lies in the red interval does not allow us to

know if RN (f (t)) is the FP number below f (t) or the FP number above it.

44

We are in trouble when f (x) has the form

RN rounding function,

m bits︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

1000000 · · · 000000 xxx · · ·

or
m bits︷ ︸︸ ︷

1.xxxxx · · · xxx︸ ︷︷ ︸
p bits

0111111 · · · 111111 xxx · · · ;

other rounding functions,

m bits︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

0000000 · · · 000000 xxx · · ·

or
m bits︷ ︸︸ ︷

1.xxxxx · · · xxx︸ ︷︷ ︸
p bits

1111111 · · · 111111 xxx · · · .

45

An example from the sixties

no pocket calculators → tables of
functions + interpolation were very
useful;

when designing his tables, Laborde
was, for rare input values, unable
to decide in which direction a
result needed to be rounded;

for these values, he used to choose
a random rounding direction, and
he would carefully record them to
detect plagiarism of his tables.

46

Lindemann’s theorem (1882)

algebraic number: root of a nonzero polynomial with integer coefficients;

the algebraic numbers are a field (proof not so easy); the√ of an
algebraic number is algebraic (straightforward:

∑
aiX

i →
∑

aiX
2i);

transcendental number = not algebraic. Historical examples:∑∞
k=0 10−k!, π, e;

the FP numbers are rational ⇒ they are algebraic.

Theorem 3
If z ∈ C is a nonzero algebraic number then ez is transcendental.

47

Consequences of Lindemann’s theorem

The sine, cosine of a nonzero algebraic number is transcendental.

x algebraic nonzero → ix algebraic nonzero → u = e ix

transcendental;
if sin(x) was algebraic, then w = 2i sin(x) = u − 1/u would be
algebraic too;

(note that w = u − 1/u implies that u2 − wu − 1 = 0)

therefore (w ±
√
w2 + 4)/2 would be algebraic too;

but u ∈ (w ±
√
w2 + 4)/2 → contradiction;

obviously similar for hyperbolic sine and cosine;

true for the tangent function, since sin(x) = tan(x)/
√
tan2 x + 1;

obviously true for their inverses: log, arcsin, arctan, . . .

48

Finding m beyond which there is no problem ?

function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,

Lindemann’s theorem → except for straightforward cases (e0, ln(1),
sin(0), . . .), if x is a FP number, there exists an m, say mx , s.t. rounding
the mx -bit approximation ⇔ rounding f (x);

finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x , rounding
the mmax-bit approximation to f (x) is equivalent to rounding f (x);

this reasoning does not give any hint on the order of magnitude of mmax.
Could be huge.

49

A bound derived from a result due to Baker (1975)

α = i/j , β = r/s, with i , j , r , s < 2p;

C = 16200;

|α− log(β)| > (p2p)−Cp log p

Application: To evaluate ln et exp in double precision (p = 53) with correct
rounding, it suffices to compute an approximation accurate to around

10244 bits
oooops. . .

50

Some improvement

Definition 4 (Weil height)

Let α be an algebraic number of degree n and P(x) =
∑

i≤n pix
i be its minimal

polynomial. Let P(x) = pn ·
∏

i≤n(x − αi) be the factorization of P over the
complex numbers. Then the Weil height of α is

H(α) =

pn ·
∏
i≤n

max(1, |αi |)

 1
n

.

Note: if α = b/a ∈ Q with gcd(a, b) = 1 then H(α) = max{|a|, |b|}.

51

Some improvement

Theorem 5 (Y. Nesterenko and M. Waldschmidt, specialized
here to the rational numbers)

Let α and α′ be rational numbers. Let θ be an arbitrary non-zero real number.
Let A,A′, and E be positive real numbers witha

E ≥ e, A ≥ max (H(α), e) , A′ ≥ H(α′).

Then ∣∣eθ − α
∣∣+ |θ − α′| ≥

exp
{
−211 ·

(
lnA′ + ln lnA+ 2 ln(E · max{1, |θ|}) + 10

)
·
(
lnA+ 2E |θ|+ 6 lnE

)
·
(
3.7 + lnE

)
·
(
lnE

)−2}
.

aHere, e = 2.718 · · · is the base of the natural logarithms.

52

Some improvement

For the evaluation of exponentials in binary64 (p = 53), we find that
m = 7, 290, 678 suffices.

Impossible → too expensive

In recent years, significant further improvements of the theoretical bounds, but
they remain quite large. . .

53

Best current theoretical results

Estimates of current theoretical upper bounds or the hardness to round for exp,

trigonometric and hyperbolic functions in the binary128 format. For each function f ,

we report the values θf such that, over a given binade, the hardness to round f is less

than θf · 113.

Binade exp sin cos sinh cosh tan cot tanh coth

[1/8, 1/4) 226 1371 1359 688 682 303 302 303 298
[1/4, 1/2) 297 2070 2058 1062 1057 410 410 409 405
[1/2, 1) 403 3288 3281 1698 1695 604 604 600 598
[1, 2) 593 5678 6481 2889 2889 1194 1196 931 929
[2, 4) 920 11408 10266 5285 5285 1854 1855 1507 1504
[4, 8) 1485 20395 20395 10155 10155 3361 3360 2634 2631

But in practice it’s much less. Let us see why.

54

Approximation with error ≤ 2−p−k+1 on the significand

f (x)

2
ef (x)

= 1.xxxx · · · xxxxxxx

p bits, followed by:

00
01
10
11

k = 2

000
001
010
011
100
101
110
111

k = 3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

k = 4

Probability of failure: 1/2 1/4 1/8

k bits → probability of failure 21−k

55

Rule of thumb

If we approximate the significand of f (x) with error ≤ 2−p−k+1 (roughly
speaking, if we compute a p + k-bit approximation to f (x)), the probability of
not being able to deduce RN (f (x)) is around 21−k .

exceptions to that rule: if x is tiny, not all bit strings are possible in
sin(x), exp(x), etc. just after the first p bits. For instance,

sin(1.xxxx · · · x1 × 2−p) = 1.xxxx · · · x01111111111 · · · × 2−p.

in practice this is not a problem, just choose polynomial approximations
where the lowest order term is exactly x for sin or sinh or log(1+ x), 1 for
exp(x), etc. They will automatically deliver correct rounding when x is
tiny enough;

the rule is essential for designing efficient algorithms;

56

Expected vs actual worst cases

Rule of thumb → if w is the word size, as there are ≈ 2w FP numbers,
with a p + k-bit approximation there is a total of 2w+1−k failures →
vanishes as soon as k ≈ w + 1.

frequently less in practice: correlations (e.g. log2), function not defined in
full range (exp because of overflow, arcsin, etc.);

actual values (excluding tiny trivial input values):

format p + w + 1 exp log2 arcsin

binary32 57 52 51 54 (|x | > 2−23)

binary64 118 113 108 126 (|x | > 2−25)

→ the rule of thumb is not that bad.

57

2-step process (Ziv’s strategy) – typically, k ≈ 10

x
Fast step:
p + k bits

Accurate step:
p +M bits

RN (f (x))

probability 1 − 2−k+1

probability 2−k+1

certainty if M
corresponds
to worst case

probability
1 − 2−M+1

otherwise

58

Algorithm that compute the hardest-to-round cases

active domain since ≈ 2000;

best algorithms based on lattice reduction;

time of computation of hardest-to-round cases remains an exponential
function of p;

p = 24 (binary32) is easy, p = 53 (binary64) is feasible but very costly,
larger formats out of reach.

59

Algorithm that compute the hardest-to-round cases

Table 1: Worst cases for exponentials of binary64 FP numbers.

Interval worst case (binary)

[−∞,−2−30]
exp(−1.1110110100110001100011101111101101100010011111101010 × 2−27)
= 1.111111111111111111111111100 · · · 0111000100 1 1590001... × 2−1

[−2−30, 0)
exp(−1.0001 × 2−51)

= 1.111111111111111 · · · 11111111111111100 0 01001010... × 2−1

(0,+2−30]
exp(1.11 × 2−53)

= 1.00 1 11040101...

[2−30,+∞]

exp(1.0111111111111110011111111111111011100000000000100100 × 2−32)
= 1.0000000000000000000000000000000101111111111111101000 0 0571101...

exp(1.1000000000000001011111111111111011011111111111011100 × 2−32)
= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 × 2−31)
= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)
= 110101100.01010000101101000000100111001000101011101110 0 0571000...

60

Results

Table 2: Worst cases for logarithms of binary64 FP numbers.

Interval worst case (binary)

[2−1074, 1) log(1.1110101001110001110110000101110011101110000000100000 × 2−509)
= −101100000.00101001011010100110011010110100001011111111 1 1600000...

log(1.1001010001110110111000110000010011001101011111000111 × 2−384)
= −100001001.10110110000011001010111101000111101100110101 1 0601010...

log(1.0010011011101001110001001101001100100111100101100000 × 2−232)
= −10100000.101010110010110000100101111001101000010000100 0 0601001...

log(1.0110000100111001010101011101110010000000001011111000 × 2−35)
= −10111.111100000010111110011011101011110110000000110101 0 1600011...

(1, 21024]
log(1.0110001010101000100001100001001101100010100110110110 × 2678)

= 111010110.01000111100111101011101001111100100101110001 0 0641110...

61

The CORE-Math library

developed in Nancy by Paul Zimmermann and colleagues;

all binary32 and binary64 functions from the C23 standard except
compound and lgamma, with correct rounding;

binary32 acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, cosh, erf, erfc,
expm1, exp2m1, exp10m1, tgamma, lgamma, log10, log1p, log2p1,
log10p1, sinh, tan, tanh functions integrated into GNU libc

code and an extensive bibliography are available from
https://core-math.gitlabpages.inria.fr/

62

https://core-math.gitlabpages.inria.fr/

Libraries of math functions

Number of
functions

1 "generic"
+ # of

architectures
Number of
FP formats

of priorities:
 accuracy
latency

throughput
...

thousands of function programs

impossible to debug, maintain, keep consistent, improve. . .

and physicists would like many other functions

63

First solution: computer-assisted library design

Metalibm project (http://www.metalibm.org), launched by Florent de
Dinechin. Two versions

fully automated for the end user;

assistance for the specialist.

Metalibm builds upon tools such as Sollya and Gappa.

But this is not the ultimate goal

64

http://www.metalibm.org

Generation of functions at compile-time

take into account the exact context: underlying architecture, accuracy
requirements, priorities (latency/throughput);

possibly, information on input domain (→ simplify/avoid range
reduction), or special cases (e.g., infinities, NaNs known not to happen);

compound functions: if you need

E4(x) =
x

ex − 1
− ln(1 − e−x),

then you directly generate E4(x) instead of generating exp, ln and
combining them.

formal proof absolutely necessary (no library to heavily test beforehand);

need collaboration of people from computer arithmetic, mathematics,
computer algebra, compilation, formal proof. . .

65

