Elementary functions

Jean-Michel Muller
CNRS - Laboratoire LIP

http://perso.ens-1lyon.fr/jean-michel.muller/

http://perso.ens-lyon.fr/jean-michel.muller/

Elementary functions

@ real name: elementary transcendental functions. The ones than can be
built from the complex exponential and logarithm;

@ the ones listed by IEEE-754 are:

e, X —1,2%,2X _1,10%,10 — 1,
log(x), log(x), logy0(x), log(1 + x), logy (1 + x), log1(1 + x),
VX2 4 y2 1//x, (14 x)", x", x1/"(n is an integer), x”,
sin(mx), cos(mx), tan(mx), arcsin(x) /7, arccos(x)/m, arctan(x)/m, arctan(y /x) /=,
sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x).

@ the C Standard defines a rather similar list;

@ a few functions (sin, cos, exp, log, ...) are very frequently called, and are
used as building blocks for implementing the other functions — efficient
and accurate implementation of these functions is necessary.

A
"

0k

ok
Jewweby
ewwesby
Hduey
1duey
Jyuey
yuey
Juey

= 52006

ndugs
durs
uuis

Jsoduls
sosuls

subss
ubss
shmod
Amod

Jo160)
£588T 0" 0w 01501

P
ewwes|
n{

#calff to Standard functions per second
s

6660 m———————— 450
s0>

e
ua
squere
yuere
Juere
uee
s+zuee
OZT@Y" Tomm— +ZUEIC
yuise
yuse
Juise

usode
ysode

sose

3 k) k) %

E 2] 2
Pu039s 1ad SUORIUN; PIEPUEIS O3 SIfedH

Elementary functions

Number of calls per second of various functions in a CERN proton collision

application.

Elementary functions

@ core set of “atomic functions”:
exp, log, sin, ...

@ highest possible quality:
reproducibility, proven error
bounds, etc.

@ best possible quality: correct
rounding.

Work still needs to be done. ..

library GNU libe IML AMD Newlib OpenLibm Musl Apple LLVM MSVC FreeBSD ArmPL CUDA ROCm
version 240 202402 42 440 083 125 145 1818 2022 141 2404 1221 5.7.0
acos 0.523 0531 1.36 0930 0930 0.930 1.06 0.934 0930 152 <1.53~0.772
acosh 225 0509 132 225 2.25 225 225 322 225 (266> 252 0.661
asin 0.516 0.531 1.06 00981 0981 0.981 0.709 105 0981 (269) 1.99 0.710
asinh 192 0.507 1.65 192 1.92 192 158 1.92 04_ 257 0.661
atan 0.523 0.528 0.863 0.861 0.861 0.861 0.876 0863 0861 C 2240 177 173
atanh 178 0.507 _1.04 181 1.81 180 2.01 250 1.81 2.50 0.664
cbrt 3.67 0.523 0.670 0.668 0.668 0.729 1.86 0668 1.79 0.501 0.501
cos 0.516 0.518 0919 0.887 0834 0834 0948 Inf 0.897 0.834 0.797
cosh 193 0.516 185 147 1.04 0.523 191 147 193 140 0.563
erf 143 0.773 1.00 1.02 1.02 1.02 (641D 462 102 229 150 112
erfc 519 0.826 4.08 4.08 3.72 10D 846 4.08 171 451 4.08
exp 0.511 0.530 101 0.511 0.521 0.500 1.50 0.511 0.928 0.929

Largest errors in ulps for double-precision calculation of some math functions. ulp (x) is the distance
between two FP numbers in the neighborhood of x (so the largest values should be 0.5 — which is the
case with +, —, X, +, and \/)

(Extracted from Gladman, Innocente, Mather, and Zimmermann, Accuracy of Mathematical

Functions. . ., Aug. 2024)

Elementary functions

@ hardware arithmetic of our processors: +, x, ab+ ¢ (FMA), and +
(costs more than + and x);

cache L1 main memory
1 5 10 50 100
| L | - !
f { [! \ !
Integer + FP + FP + FP sin
FP x FP /-

Typical current latencies in number of cycles (logarithmic scale). These figures vary from one

processor to another, but the orders of magnitude remain similar.

@ functions of one variable one can build from £ and x: polynomials;

@ No choice: approximate the functions by piecewise polynomials.

Approximating the functions by polynomials ?

@ polynomial approximation: valid
in small interval only;

@ need to reduce the initial 5 5 T Z
argument to that interval; 2

@ three steps:

@ range reduction;

@ polynomial evaluation;
@ reconstruction. The sine function and its best degree-5
approximation in [—7/2,7/2].

(clearly valid only in [—7/2,7/2])

The advantage of small intervals

404

-log2(ermor)

— log,(error) of the best degree-5 approximation to ef in [0, x] as a function of x.

How do you compute an exponential?

| want to compute €, | have a polynomial approximation to exp in [7@7 +
@ Range reduction: x — y = x — klog(2), with k € Z and
In(2 In(2
y €[, +2
@ Polynomial evaluation: get approximation z to €” using the polynomial;

@ Reconstruction: obtain &* = z - 2%,

How do you compute a cosine?

| want to compute cos(x). | have polynomial approximations to sin and cos in [—

Argument reduction: X—=>y=x—k%

o with keZ and ye[-7,7]

. . ¢ = cos if k is even), or
Polynomial evaluation: compute { W) ()

s =sin(y) (if k is odd).

c if kmod4=0
—s if kmod4=1
—c if kmod4=2

s if kmod4=3;

Reconstruction: obtain cos(x) =

T T

4041

10

“Naive’ range reduction: example with the constant =

Naive reduction: we set C = RN (7/2), and we successively compute

@ k=[x/C|,
® y = RN (x — kC) with an FMA, or RN (x — RN (kC)) if no FMA..

x

2

11

Error analysis assuming FMA instruction is available

k=[x/C] = Z2-1<k<z+1
= |x—kC|<S.
|RN (x — kC) — (x — kZ)| < |RN(x—kC)— (x—kC)|
+|(X_kc)_(2)|
< u-|x—kC|+k-|C— 3]
< ug—|—ku.

Hence:
@ the absolute error is < u(k + <) (the bound grows linearly with x, since k
is proportional to x);
@ the relative error depends on how small ‘X — kg’ can be.

— continued fractions.

12

In prectice the naive reduction can be very inaccurate

In binary64 arithmetic (p = 53):

@ if x = 355:

@ y is 7230134.89 ulp away from the exact reduced argument if we do
not use an FMA, and
@ 4084406.89 ulp away with an FMA.

@ If x = 37362253, even with an FMA, y is 440183437673129 ulp away
from the exact value.

(remember: for us good accuracy means final error not much larger than
0.5ulp!)

Continued fraction convergents to 7:

3 11 344 355 51819 52174 260515 573204 4846147 5419351 37362253

99

27 772197 226’ 32989 33215’ 165849 364913’ 3085153’ 3450066 23785549 "

13

Cody and Waite reduction

Idea:

approximate 7 by two FP numbers C; and G such that

G fits in p — m bits, where m is the max. number of bits of k for which
we want an accurate result — kC; will be a FP number

G = RN(% — (1), so that Gy + G represents 5 with significantly more
than p bits of precision.

More precisely: |5 — Ci — C2’ € P,

Then we compute (here with an FMA)

RN (RN (x — kG;) — kGy).

14

Cody and Waite reduction

We compute
RN (RN (x — kGy) — k().

@ kCi is a FP number;

@ as x and k(i are very near, their difference is a FP number (Sterbenz)
— RN (x — kC1) = x — kGy. Hence we obtain

RN (X — k(C]_ + Cz))
@ same error analysis as the naive reduction:
7T C 2~m
RN (x — k(Ci + C2)) — (X’ki)‘ < uz + k2",

@ With m = 26, if x =355, y is 0.108 ulp away from the exact result (still
bad for x = 37362253, but not as much).

15

Generalizations, variants

@ More than 2 constants: one may have G fit in p — m bits too, and
approximate g by a sum C; + G + Gs. One then evaluates

RN (((X — kC1) — kCz) — kC3);

@ systematic study of the numbers v ~ 7 such that x — kv is a FP number;

@ express the reduced argument in double-word arithmetic.

16

After range reduction: using a polynomial approximation to

the function

Two issues:

@ choosing the right polynomial;

@ evaluating it quickly and accurately.

Function f, approximated by p(x) = ao + aix + a2x® 4 azx® + - - + a,x™;
frequently evaluated as

a+x-(an+x-(a2+x-((an-1+x-an)))

(called Horner's scheme (1819). Was already known by Newton, and probably
by chinese mathematicians centuries before Horner)

17

Forget

about Taylor series

0.004
0.0034
0.0024

0.0014

]3]
EJE]
« sl

—=0.0014

—=0.0024

—0.003

—0.004 4

ola 4

@ error of degree-5 Taylor series of
sin vs error of best “minimax”
degree-5 approximation in
=550

@ Taylor series are local best
approximations: they cannot
compete on a whole interval.

18

Taking a much smaller domain does not change the difference

1.x107"
5.x107°4
b T T ~
__m _3n __=n __m 0 n n 3n
128 512 256 512

—=5.x10" "

—1.x107"

512 256

Error of degree-5 Taylor series of sin vs error of best “minimax” degree-5

approximation in [—5z, +155]-

19

Minimax approximation of functions by polynomials

® P, = {polynomials of degree < n with coefficients € R};

@ L[*° norm (also called supremum norm):

llglle = sup |g(x)I;

x€[a,b]

@ function f, interval [a, b];

@ first, we look for P* € P, such that

If = P7lloe = min [|f — Qlloo.

20

Continuous world: everything was done in the 19th and early
20th centuries

Theorem 1 (Weierstrass, 1885)

Let f be a continuous function on [a, b]. For any € > 0 there exists a
polynomial p such that ||p — f||o (2,6 < €.

@ — so it's not hopeless. . . but the theorem gives no clue on the necessary
degree n to reach a given accuracy;

@ for some functions it can be quite large.

The square root and its best
degree-4 approximation in [0, 1].

(with the exponential function, the
two curves would be undistinguish-
able at this scale)

21

Some functions may need high-degree polynomials

35 T

30

25 -

20

Nunber of bits

10

! ! !

T
exp(x)

1 og(1+x)~---

sqrteK)
n(x)

— log, (error) of the minimax polynomial approximations to various functions on [0, 1],

as a function of the degree.

4 5 6
Degree of the approximation

22

Continuous world: everything was done in the 19th and early
20th centuries

Theorem 2 (Kirchberger 1902 — frequently attributed to
Chebyshev)

P* € P, is the minimax degree-n approximation to f on [a, b] if and only if
there exist at least n + 2 points

a<x<x1<x< " <Xpp1<b

such that:

p*(xi) — f(xi) = (=1)[p"(x0) — f(x0)] = £||f — p° o

23

Example: f(x) = cos(x + €¥), degree 2, interval [0, 1]

06 0.10
044
024 003
0

=02 0 T 1
02 04 1
—04
—0.6 0.05
—08
i 0.10
—f——p" f-pY

24

faord Ak W ol 3 afficsd
lﬁeamﬁ,ﬁ%mw
Toagi fe 6« Qe f s Bd)

i neiomly Lot | & ()3 < |l
Lo 2 Y P > 5 (x) Aem Q)< P2

g P < f (7) Hom & () > PES
“’P\“A“-T*ﬂp‘fwu’w" o nd s
Ae otoﬁ"\u;,q}‘%a_?

- Q’?l“ﬂ& ”vﬂ)’\»&\’wm x;a«)rxhj

m+2 (ﬂ;ﬁ 5 kA D

aled @WJ\Z Ak @_OB&M?QW

25

Continuous world: everything was done in the 19th and early
20th centuries

Remez algorithm (1934): iteratively builds the set of points xo, ..., Xp41 of
Kirchberger's theorem.

@ Start from an initial set of points xo, x1, ..., Xa+1 in [a, b].
(can be arbitrary, but x; = %b + @ cos (n’fl) ,0<i<n+1, called

Chebyshev points, is in general a good choice)

@ Consider the linear system of equations

Po + pixo + p2xg + -+ + pax§ — f(x0) = e
Po+ pixi+ paxi + -+ + paxi — f(xa) = —e
Po+ pixz + paxs + -+ 4 paxs — f(x2) = e (1)
Po + P1Xnt1 + -+ + PXpy1 — f(Xn+1) = (71)n+16'
n—+ 2 equations, with n+ 2 unknowns: po, p1, p2, ..., pn and €. Nonzero

determinant (Vandermonde matrix) — exactly one solution
(p07 pP1i,.--, Pn, 6)'
26

Continuous world: everything was done in the 19th and early
20th centuries

— gives a polynomial P(x) = po + p1x + « -+ + pax".

@ We now compute the set of points y; in [a, b] where P — f has its
extremes, and we start again (step 2), replacing the x/s by the y;'s.

In practice: extremely fast convergence.

27

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

@ we start with 0, 0.1909830057, 0.6909830062, 1.309016994,
1.809016994, 2 (heuristic: Chebyshev points);

@ the corresponding linear system is

po —0.8414709848 =
po +0.1909830057p; +0.03647450847p2 +0.00696601126p3
+0.00133038977pg —0.9357708449 =
po +0.6909830062p; +0.4774575149p> +0.3299150289p3
+0.2279656785p4 —0.9110882027 =
po +1.309016994p; +1.713525491p; +2.243033987p3
+2.936169607ps +0.5319820928 =
po +1.809016994p; +3.272542485p, +5.920084968p3
+10.70953431p, +0.1777912944 =
po +2p1 +4p2 +8p3
+16pg —0.8938549549 =

@ solving this system gives the polynomial:

P®M(x) = 0.7808077493 + 1.357210937x
—0.7996276765x> — 2.295982186x> + 1.189103547x*.

28

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

@ difference P (x) — sin(exp(x)):

02 \

\
\

|
\ |
© 02" 04 O 038 1 12/ 14 16 18 2
.
\
01 \
\

@ extremes of P (x) — sin(exp(x)) in [0,2]: 0, 0.3305112886,
0.9756471625, 1.554268282, 1.902075854, 2.

@ Solving the linear system associated to this list of points gives the
polynomial:

P®)(x) = 0.6800889007 + 2.144092090x
—1.631367834x% — 2.226220290x> + 1.276387351x%. 29

Illustration: degree-4 approximation to sin(exp(x)) in [0, 2]

o difference P®(x) — sin(exp(x)):

-0.15

@ the extreme values of |P®)(x) — sin(exp(x))| are very close together: P?)
already “almost” satisfies the condition of Kirchberger's theorem;

@ extremes of P®)(x) — sin(exp(x)) in [0,2]: 0, 0.3949555564,
1.048154245, 1.556144609, 1.879537115, 2 — the linear system
associated to these points gives a polynomial P®),| etc.

30

But the world of Floating-Point numbers is not continuous. . .

If we want ultimate accuracy, i.e., correct rounding (or even just an error not
larger than = 1ulp), this will not work:

@ by approximating the coefficients of the minimax polynomial by FP
numbers, we already loose a significant amount of accuracy;

@ need to take into account the error due to evaluating the polynomial.

31

Example: function log(1 + x) in [0, 1]

@ Goal: binary32/single precision arithmetic (8 = 2, p = 24);
@ Withe the Remez algorithm, we get a degree-9 polynomial;

P*(x) = 4.5312626764178853045083975073772119446839784174464956459529643270987 - 107°
+0.999999025258539069369331280889443153540235373687738534675639041879165305 - x
—0.4999653017333068626463502632864949694222430843003074565833086084942028155 - x2
+0.332849806189948672280944634938400232746236110583281184032142726147068820 - x
—0.246517965788047515383441886060448202153937598635915727063060602574084424 - x
+0.185154569966668361477975368769654445113328710403271118930768041265705015 - x

—0.126057455452415889884958065630540564789570519172717287039473166654700319 - x
+0.0672945529992441805619775364650010239787939256621502918569305409951238042 - x
—0.02345535069051077538074324049760472948991145589046990280611685936442020761 - x°
+0.00384529980982606902249675587076617855256867202322449811715889629373844490 - x°.

@ error ~ 4.53 x 107°.

32

Example: function log(1 + x) in [0, 1]

@ error curve log(1 + x) — P*(x): nice illustration of Kirchberger's theorem

WAWAWAY|
TRVRVAY

5.x107°

o

—5.x107"q

—1.x107"

15x107"4

@ Problem: P* has real coefficients;

@ | want to implement the function in binary32 arithmetic (8 = 2, p = 24).
What happens if | round each coefficient of P* to the nearest FP number?

33

The disaster. . .

510774

—5.x107°

—1.x107%

1.5x107%

[— — error of minimax polynomial

error of rounded minimax|

Error multiplied by ~ 2.66

34

Near best polynomial approximations with FP coefficients

algorithms that give near-best polynomials approximations under the
constraint that the coefficients be FP numbers;

more complex than Remez yet reasonable cost (and done once for all):
Brisebarre and Chevillard, Efficient Polynomial L°°-Approximations, 18th
IEEE Symposium on Computer Arithmetic, 2007.
https://hal.inria.fr/inria-00119513

still very active domain: various other constraints on coefficients, norms
other than L°°, rational approximations, taking into account the
evaluation error when choosing the polynomial. ..

Sollya software (Chevillard, Joldes, Lauter). Widely used for designing
function libraries.

https://www.sollya.org

It also provides a Certified supnorm: proven bound on ||f — pl|oc-

35

https://www.sollya.org

With our example of function log(1 + x) in [0, 1]

5.%107° 5.x107°

L
UATRIE

=5.x107"
44x107
—Lx107"
42x107°q
" 4.%107 T r \
15%10°" 019 020 021
[= —exror of minimax polynomial crtor of Sollya's near best with FP coefficients 2

[—= —error of minimax polynomial error of Sollya's near best with FP coefficients|

Sollya prompt: P3 = fpminimax(log(1+x),9,[124...]],[0;1],absolute);
Error Sollya / Error minimax ~ 1.012

— we recover almost all the loss due to the discretization of the polynomial.

36

Polynomial evaluation error

Horner scheme

@ use of interval arithmetic to know where each intermediate variable can
lie;
@ standard model to bound the error of each operation;

@ can be very accurate if initial interval cut into many subintervals (a
separate study for each subinterval);

@ Gappa (https://gappa.gitlabpages.inria.fr), designed by G.
Melquiond does this automatically and can generate a formal proof.

37

https://gappa.gitlabpages.inria.fr

But what should be recommended?

@ reproducibility, portability — the result of sin(x), cos(x), exp(x). . .should
be uniquely specified (no “fuzzy” specification of the form “error < ¢");

@ specifying the result of an algorithm? Dangerous:

@ might make progress of elementary function algorithms difficult;
e if somebody comes up with functions “better than the standard”,
the standard is dead

— what should be required is that we return the best possible result, i.e.,
correct rounding of the exact result.

However: difficult because of the table maker’'s dilemma.

38

The Table Maker’s Dilemma

39

The Table Maker’s Dilemma

HANDBOOK
MATHEMATIC/

with Formulz

40

The Table Maker’'s Dilemma

Table 4.2
z Inz

0,900 -0,10536 05156
0.901 -0,10425 00213
0.902 -0.10314 07589
0.903 -0.10203 27255
0.904 -0.10092 59185
0.905 -0,09982 03352
0.906 -~0,09871 59729
0.907 ~0.09761 28288
0.908 -0,09651 09003
0.909 -0.09541 01848
0,910 -0.09431 06794
0,911 -0,09321 23817
0.912 -0,09211 52889
0.913 -0.09101 93983
0.914 -0,08992 47075

0.924

12137
89143
78067
78883
. 08446 91566
-0.08338 16089
-0.08229 52427
-0,08121 00554
-0,08012 60444
-0, 07904 32073

578263
737991
195134
651516
899606

822109
391577
670004
808438
046582

712413
221787
078057
871686
279870

066157
080068
256722
616466
264500

390511
268302
255432
792849
404529

NATURAL LOGARITHMS

-0, 05129
~0, 05024
-0.04919
-0, 04814
-0. 04709

-0, 04604
-0, 04499
-0.04395
-0. 04290
-0. 04186

-0.04082
-0.03978
-0.03874
-0.03770
-0. 03666

-0, 03562
-0, 03459
-0, 03355
-0, 03252
-0.03149

-0, 03045
-0, 02942
-0, 02839
-0, 02737
-0.02634

Inz

32943
12164
02441
03753
16075

39385
73659
18875
75010
42040

19945
08700
08283
18671
39843

71776
14447
67835
31917
06670

92074
88106
94745
11967
39753

875505
367467
907717
279349
338505

014068
307358
291828
112765
986988

202551
118446
164306
840115
715914

431511
696191
288427
055600
913708

847085
908121
216980
961320
396020

0,00000
0, 00099
0,00199
0. 00299
0,00399

0.00498
0,00598
0.00697
0.00796
0.00895

0.00995
0,01093
0,01192
0.01291
0.01390

0.01488
0,01587
0, 01685
0.01783
0,01882

0.01980
0.02078
0,02176
0, 02273
0,02371

Inz

00000
95003
80026
55089
20212

75415
20716
56137
81696
97413

03308
99400
85708
62252
29051

86124
33491
71170
99181
17542

26272
25391
14917
94869
65266

000000
330835
626731
797985
695375

110391
775475
364252
491769
714719

531681
383344
652738
665463
689914

937507
562901
664229
283310
405878

961797
825285
815127
694894
173160

41

The Table Maker’'s Dilemma

Consider the binary64 FP number (3 = 2, p = 53)

_ 8520761231538509
K= 262

We have

2 = (9018742077413030.999999999999999998805240837303 e

So what 7
Hardest-to-round case for function 2* and binary64 FP numbers.

) x 2753

42

Correct rounding of the elementary functions

@ radix 2, precision p;

@ FP number x and integer m (with m > p) — one can compute an
approximation y to f(x) whose error on the significand is < 27",

@ can be done with a possible wider format, or using algorithms such as
TwoSum, TwoMult, Double-Word (or triple-word) arithmetic, etc.

@ getting a correct rounding of f(x) from y: not possible if f(x) is too
close to a breakpoint: a point where the rounding function changes.

43

Correct rounding of the elementary functions

f(x) is here f(t) is here it

| |
T

2k
| 1 1 1 | Jﬁ\ 1 1 QL |
\

RN (f(x)) RN (f(t))? RN(f(t))?

I T T T %
I S

From the knowledge that f(x) lies in the blue interval, we can deduce the value of
RN (f(x)). However, knowing that f(t) lies in the red interval does not allow us to
know if RN (f(t)) is the FP number below f(t) or the FP number above it.

44

We are in trouble when f(x) has th

@ RN rounding function,
m bits

e form

1.xxxxx - - - xxx 1000000 -
-

p bits

or
m bits

-- 000000 xxx - - -

Lxxxxx -+ - xxx 0111111 -
—_—
p bits
@ other rounding functions,

m bits

111111 xxx - - -

1.xxxxx - - - xxx 0000000 -
—_—

p bits

or
m bits

-- 000000 xxx - - -

L.xooxxx - - - xxx 1111111 -
—_—

p bits

211111 xxx - - -

45

An example from the sixties

@ no pocket calculators — tables of
functions + interpolation were very
useful;

@ when designing his tables, Laborde
was, for rare input values, unable
to decide in which direction a
result needed to be rounded;

@ for these values, he used to choose
a random rounding direction, and
he would carefully record them to
detect plagiarism of his tables.

46

Lindemann’s theorem (1882)

@ algebraic number: root of a nonzero polynomial with integer coefficients;

@ the algebraic numbers are a field (proof not so easy); the,/ of an
algebraic number is algebraic (straightforward: > a; X" — Y a;X?);

@ transcendental number = not algebraic. Historical examples:
oo 1q—k! :
Zk:o 10 , T, €]

@ the FP numbers are rational = they are algebraic.

Theorem 3

If z € C is a nonzero algebraic number then e is transcendental.

47

Consequences of Lindemann’s theorem

@ The sine, cosine of a nonzero algebraic number is transcendental.

e x algebraic nonzero — ix algebraic nonzero — u = e
transcendental;

e if sin(x) was algebraic, then w = 2jsin(x) = u — 1/u would be
algebraic too;

(note that w = u — 1/u implies that u?> — wu — 1 = 0)

o therefore (w & v w? + 4)/2 would be algebraic too;
o but u € (w =+ vw?+ 4)/2 — contradiction;

@ obviously similar for hyperbolic sine and cosine;

@ true for the tangent function, since sin(x) = tan(x)/v/tan?x + 1;

@ obviously true for their inverses: log, arcsin, arctan, ...

48

Finding m beyond which there is no problem ?

@ function f: sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,

@ Lindemann's theorem — except for straightforward cases (€°, In(1),
sin(0), ...), if x is a FP number, there exists an m, say my, s.t. rounding
the my-bit approximation < rounding f(x);

@ finite number of FP numbers — Immax = max.(my) s.t. Vx, rounding
the mmax-bit approximation to f(x) is equivalent to rounding f(x);

@ this reasoning does not give any hint on the order of magnitude of Mmax.
Could be huge.

49

A bound derived from a result due to Baker (1975)

@ a=i/j, B=r/s withij rs<2P
@ C =16,

—cpl
o — log(B)| > (p2°)~~""¢°
Application: To evaluate In et exp in double precision (p = 53) with correct
rounding, it suffices to compute an approximation accurate to around

10%** bits

0000psS. . .

50

Some improvement

Definition 4 (Weil height)

Let « be an algebraic number of degree n and P(x) = Z,Snp;xi be its minimal
polynomial. Let P(x) = pn - [];<,(x — c) be the factorization of P over the
complex numbers. Then the Weil height of « is

H(a) = (p,, . Hmax(l, oe,-|)> .

i<n

Note: if « = b/a € Q with ged(a, b) = 1 then H(a) = max{|al,|b|}.

51

Some improvement

Theorem 5 (Y. Nesterenko and M. Waldschmidt, specialized
here to the rational numbers)

Let o and o’ be rational numbers. Let 6 be an arbitrary non-zero real number.
Let A, A, and E be positive real numbers with®

E>e, A>max(H(a),e), A >H().
Then

|e® —al +160— /| >
exp{7211- (In A +1InlnA+2In(E - max{1,|0]}) + 10)
~<InA+2E|9| +6ln E) : <3,7+|n E> : (ln 5)72}.

“Here, e = 2.718- - - is the base of the natural logarithms.

52

Some improvement

For the evaluation of exponentials in binary64 (p = 53), we find that

m = 7,290, 678 suffices.

Impossible — too expensive

In recent years, significant further improvements of the theoretical bounds, but
they remain quite large. ..

53

Best current theoretical results

Estimates of current theoretical upper bounds or the hardness to round for exp,

trigonometric and hyperbolic functions in the binary128 format. For each function f,

we report the values 6¢ such that, over a given binade, the hardness to round f is less

than 6f - 113.

Binade exp sin cos sinh cosh tan cot | tanh | coth
[1/8,1/4) | 226 | 1371 | 1359 638 682 303 | 302 | 303 | 298
[1/4,1/2) | 297 | 2070 | 2058 | 1062 | 1057 | 410 | 410 | 409 | 405

[1/2,1) 403 | 3288 | 3281 | 1698 | 1695 | 604 | 604 | 600 | 598

[1,2) 593 | 5678 | 6481 | 2889 | 2889 | 1194 | 1196 | 931 | 929
[2,4) 920 | 11408 | 10266 | 5285 | 5285 | 1854 | 1855 | 1507 | 1504
[4,8) 1485 | 20395 | 20395 | 10155 | 10155 | 3361 | 3360 | 2634 | 2631

But in practice it's much less. Let us see why.

54

Approximation with error < 27P~%*1 gn the significand

) _
2%(x) T

ll.xxxx---xxxxxxx‘ 00 000
01 001

p bits, followed by: 10 010
11 011

100

101

110

111

Probability of failure: 1/2 1/4

k=4

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

|

1/8

k bits — probability of failure 21 %

55

Rule of thumb

If we approximate the significand of f(x) with error < 27P~¥** (roughly
speaking, if we compute a p + k-bit approximation to f(x)), the probability of
not being able to deduce RN (f(x)) is around 2>~

@ exceptions to that rule: if x is tiny, not all bit strings are possible in
sin(x), exp(x), etc. just after the first p bits. For instance,

sin(Looox -+ x1 x 27P) = Lo - - x01111111111 -+ - x 277,

@ in practice this is not a problem, just choose polynomial approximations
where the lowest order term is exactly x for sin or sinh or log(1 + x), 1 for
exp(x), etc. They will automatically deliver correct rounding when x is

tiny enough;

@ the rule is essential for designing efficient algorithms;

56

Expected vs actual worst cases

@ Rule of thumb — if w is the word size, as there are ~ 2" FP numbers,
with a p + k-bit approximation there is a total of 2**1~* failures —

vanishes as soon as k ~ w + 1.

@ frequently less in practice: correlations (e.g. log,), function not defined in

full range (exp because of overflow, arcsin, etc.);

@ actual values (excluding tiny trivial input values):

format p+w+1 | exp | log, | arcsin
binary32 | 57 52 |51 |54 (|x| >27%)
binary64 | 118 113 | 108 | 126 (|x| > 27%)

— the rule of thumb is not that bad.

57

2-step process (Ziv's strategy) — typically, k ~ 10

probability 1 — 27*+1

T

Fast step:
p + k bits

certainty if M f probability
corresponds 1 = =i
! .
to worst case / otherwise
/

i o=kt T
probability 2 Accurate step:

p + M bits

58

Algorithm that compute the hardest-to-round cases

@ active domain since ~ 2000;
@ best algorithms based on lattice reduction;

@ time of computation of hardest-to-round cases remains an exponential
function of p;

@ p = 24 (binary32) is easy, p = 53 (binary64) is feasible but very costly,
larger formats out of reach.

59

Algorithm that compute the hardest-to-round cases

Table 1: Worst cases for exponentials of binary64 FP numbers.

Interval

worst case (binary)

[—o0, =273

exp(—1.1110110100110001100011101111101101100010011111101010 X 2727)
=1.111111111111111111111111100---0111000100 1 1520001... x 271

[-27%%,0)

exp(—1.0001 x 2~ 51)
=1.111111111111111---11111111111111100 0 0%°°1010... x 271

(0,+2739

exp(1.11 X 2_53)

1.00 1 1*°40101...

[2739, +o0]

exp(1.0111111111111110011111111111111011100000000000100100 X 2732)

= 1.0000000000000000000000000000000101111111111111101000 0 0571101...

exp(1.1000000000000001011111111111111011011111111111011100 x 2732)

= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 X 2_31)

= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)

=110101100.01010000101101000000100111001000101011101110 0 0571000...

60

Results

Table 2: Worst cases for logarithms of binary64 FP numbers.

Interval

worst case (binary)

[2—1074Y 1)

log(1.1110101001110001110110000101110011101110000000100000 X 27509)

—101100000.00101001011010100110011010110100001011111111 1 19°0000...

log(1.1001010001110110111000110000010011001101011111000111 x 2~ 3°%)

—100001001.10110110000011001010111101000111101100110101 1 0°°1010...

log(1.0010011011101001110001001101001100100111100101100000 x 2~ 23%)

—10100000.101010110010110000100101111001101000010000100 0 0°°1001...

log(1.0110000100111001010101011101110010000000001011111000 x 2~ 3°)

—10111.111100000010111110011011101011110110000000110101 0 1°°0011...

(1Y 21024]

log(1.0110001010101000100001100001001101100010100110110110 X 2678)
111010110.01000111100111101011101001111100100101110001 0 0°41110...

61

The CORE-Math library

@ developed in Nancy by Paul Zimmermann and colleagues;

@ all binary32 and binary64 functions from the C23 standard except
compound and Igamma, with correct rounding;

@ binary32 acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, cosh, erf, erfc,
expml, exp2ml, explOm1, tgamma, Ilgamma, logl0, loglp, log2p1,
log10p1, sinh, tan, tanh functions integrated into GNU libc

@ code and an extensive bibliography are available from
https://core-math.gitlabpages.inria.fr/

62

https://core-math.gitlabpages.inria.fr/

Libraries of math functions

of priorities:

1 "generic"

umber of + # of Number of accuracy
function: e
g architectures FP formats y

throughput

thousands of function programs

@ impossible to debug, maintain, keep consistent, improve. . .

@ and physicists would like many other functions

63

First solution: computer-assisted library design

Metalibm project (http://www.metalibm.org), launched by Florent de
Dinechin. Two versions

@ fully automated for the end user;

@ assistance for the specialist.

Metalibm builds upon tools such as Sollya and Gappa.

But this is not the ultimate goal

64

http://www.metalibm.org

Generation of functions at compile-time

@ take into account the exact context: underlying architecture, accuracy
requirements, priorities (latency/throughput);

@ possibly, information on input domain (— simplify/avoid range
reduction), or special cases (e.g., infinities, NaNs known not to happen);

@ compound functions: if you need

X

Ea(x) = T In(1—e™),

eX_

then you directly generate Es(x) instead of generating exp, In and
combining them.

@ formal proof absolutely necessary (no library to heavily test beforehand);

@ need collaboration of people from computer arithmetic, mathematics,
computer algebra, compilation, formal proof. ..

65

