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1 INTRODUCTION

THE computation of reciprocal and square root has been
considered of importance for many years since these

functions appear in many applications. Recently, inverse
square root has also received attention because of the
increased significance of multimedia and graphics applica-
tions. Moreover, because of their similar characteristics, it is
considered advantageous to have a single scheme to
implement all three functions. We consider such a scheme
here. In addition, it allows the computation of logarithms
and exponentials.

The progress in VLSI technology now allows the use of

large tables with short access time. As a consequence, many

methods using tables have emerged during the last decade:

high-radix digit-recurrence methods for division and

square root [1], [15], inverse square root [16], convergence

methods for division and square root [9], combination of

table-lookup and polynomial approximation for the ele-

mentary functions [8], [6], [12], or (for single precision) use

of table-lookups and addition only [14], [3], [10].
We are interested in computations in high precision,

such as IEEE-754 double-precision (53-bit significand)

format. For double precision, these are hard to achieve

with today's technology by direct table lookup, tables and
additions, or linear approximations.

The standard scheme to compute reciprocal, square-root,
and inverse square root with high precision is based on
Newton-Raphson iterations. Although the scheme has a
quadratic convergence, the iterations consist of multiplica-
tions and additions and are therefore relatively slow. A
variation of this method is presented in [5].

We now briefly review other methods. In [2], a method to
compute reciprocal, square root, and several elementary
functions is presented (and probably could also implement
inverse square root). The method is based on series
expansion and the implementation consists of several
tables, two multipliers, and an adder. For an approximation
with relative error 2ÿm, the tables have about m=3 input
bits, which is too large for double precision.

In [13], a method is proposed for double-precision
calculations. This requires several tables with an input of
10 bits and rectangular multiplications (typically of 16� 56
bits). In Section 5, we compare this scheme with the one
presented here.

The bipartite table methods [10], [3], [11] require the use
of tables with approximately 2m=3 address bits and do not
need multiplications to get the result (an addition suffices).
These methods might be attractive for single precision
calculations, but, with currently available technology, they
would require extensively large tables for double precision
calculations.

In this paper, we propose a unified algorithm that allows
the evaluation of reciprocal, square root, inverse square
root, logarithm, and exponential, using one table access, a
few ªsmallº multiplications, and at most one ªlargeº
multiplication. To approximate a function with about
m-bit accuracy, we use tables with m=4 address bits. This
makes our method suitable up to and including double
precision.
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As in other methods of this type, it is possible to obtain

an error which is bounded (say by 2ÿm). However, it is not

possible in general to obtain results that can be directly

rounded to nearest. It has been shown [4] that, for the

special cases of reciprocal and square root to round to m

bits, it is sufficient to compute a result with an error of less

than 2ÿ2m. Similarly, for inverse square root, the error has to

be less than 2ÿ3m. Since this overhead in accuracy might be

prohibitive, another alternative is to produce an error of less

than 2ÿmÿ1 and determine the exact value by computing the

corresponding remainder, which is possible for division

and square-root, but not for the transcendental functions

[8], [7]. We do not discuss this issue further in this paper

and, in the sequel, we will aim to obtain an error which is

less than 2ÿm, for m-bit operands.

2 RECIPROCAL, SQUARE ROOT, AND INVERSE

SQUARE ROOT

We want to evaluate reciprocals, square roots, and inverse

square roots for operands and results represented by m-bit

significands. To achieve an error which is smaller than 2ÿm,

we use an internal datapath of n bits (to be determined)

with n > m. We do not consider the computation of the

exponent since this is straightforward.
Let us call the generic computation g�Y �, where Y is the

m-bit input significand and, as in the IEEE standard,

1 � Y < 2. The method is based on the Taylor expansion of

the function to compute, which converges with few terms if

the argument is close to 1. Consequently, the method

consists of the following three steps:

1. Reduction. From Y , we deduce an n-bit number A
such that ÿ2ÿk < A < 2ÿk. To produce a simple
implementation that achieves the required precision,
we use k � n=4. For the functions considered, we
obtain A as

A � Y � R̂ÿ 1; �1�
where R̂ is a �k� 1�-bit approximation of 1=Y .

Specifically, define Y �k� as Y truncated to the kth bit.

Then,

Y �k� � Y < Y �k� � 2ÿk:

Hence,

1 � Y

Y �k�
< 1� 2ÿk: �2�

Using one lookup in a k-bit address table, one can

find R̂ defined as 1=Y �k� rounded down (i.e.,

truncated) to k� 1 bits. Then,

ÿ 2ÿkÿ1 < R̂ÿ 1

Y �k�
� 0:

Therefore, since 1 � Y �k� < 2,

1ÿ 2ÿk < R̂Y �k� � 1: �3�
From (2) and (3), we get

1ÿ 2ÿk < R̂Y < 1� 2ÿk: �4�
The reduced argument A is such that g�Y � can be
easily obtained from a value f�A�, which is
computed during the next step.

2. Evaluation. We compute an approximation of B �
f�A� using the series expansion of f , as described
below.

3. Postprocessing. This is required because of the
reduction step. Since reduction is performed by
multiplication by R̂, we obtain g�Y � fromB � f�A� as

g�Y � �M �B;
where M � h�R̂�. The value of M depends on the
function and is obtained by a similar method as R̂.
Specifically,

. for reciprocal M � R̂,

. for square root M � 1=
����̂
R

p
,

. for inverse square root M �
����̂
R

p
.

Hence, although R̂ is the same for all functions
considered here, M depends on the function being
computed. There is a different table for M for each function
we wish to implement. Let us now consider the evaluation
step.

2.1 Evaluation Step

In the following, we assume that we want to evaluate
B � f�A�, with jAj < 2ÿk. The Taylor series expansion of f is

f�A� � C0 � C1A� C2A
2 � C3A

3 � C4A
4 � . . . �5�

at the origin where the Cis are bounded.
Since ÿ2ÿk < A < 2ÿk, A has the form

A � A2z
2 �A3z

3 �A4z
4 � . . . ; �6�

where z � 2ÿk and jAij � 2k ÿ 1.
Our goal is to compute an approximation of f�A�, correct

to approximately n � 4k bits, using small multiplications.
From the series (5) and the decomposition (6), we deduce

f�A� � C0 � C1 A2z
2 �A3z

3 �A4z
4

ÿ �
� C2 A2z

2 �A3z
3 �A4z

4
ÿ �2

� C3 A2z
2 �A3z

3 �A4z
4

ÿ �3

� C4 A2z
2 �A3z

3 �A4z
4

ÿ �4� . . . :

�7�

After having expanded this series and dropped out all
the terms of the form W � zj that are less than or equal to
2ÿ4k, we get (see the Appendix)

f�A� � C0 � C1A� C2A
2
2z

4 � 2C2A2A3z
5 � C3A

3
2z

6: �8�
We use this last expression to approximate reciprocals,
square roots, and inverse square roots. In practice, when
computing (8), we make another approximation: after
having computed A2

2, obtaining A3
2 would require a 2k� k

multiplication. Instead of this, we take only the k most-
significant bits of A2

2 and multiply them by A2.
Now, we determine the coefficients for the three

functions

. For reciprocal, jCij � 1 for any i, and
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1

1�A � 1ÿA2z
2 ÿA3z

3 � ÿA4 �A2
2

ÿ �
z4

� 2A2A3z
5 ÿA3

2z
6

� �1ÿA� �A2
2z

4 � 2A2A3z
5 ÿA3

2z
6:

�9�

. For square root, C0 � 1, C1 � 1=2, C2 � ÿ1=8,
C3 � 1=16. This gives������������

1�A
p

� 1�A
2
ÿ 1

8
A2

2z
4 ÿ 1

4
A2A3z

5 � 1

16
A3

2z
6:

�10�

. For inverse square root, C0 � 1, C1 � ÿ1=2,
C2 � 3=8, C3 � ÿ5=16. This gives

1=
������������
1�A
p

� 1ÿA
2
� 3

8
A2

2z
4 � 3

4
A2A3z

5 ÿ 5

16
A3

2z
6:

�11�

2.2 Error in the Evaluation Step

We now consider the error produced by the evaluation step

described above. In the Appendix, we prove the following

result:

Theorem 1. f(A) can be approximated by

C0 � C1A� C2A
2
2z

4 � 2C2A2A3z
5 � C3A

3
2z

6

(where we use the k most-significant bits1 only of A2
2 when

computing A3
2), with an error less than

2ÿ4k Cmax
1ÿ 2ÿk

� 3jC2j � 4jC3j � 8:5 maxfjC2j; jC3jg � 2ÿk
� �

with Cmax � maxi�4 jCij, and k � 5.
In particular, assuming jCij � 1 for any i (which is

satisfied for the functions considered in this paper), this error is
less than

� � 2ÿ4k 1:04Cmax � 3jC2j � 4jC3j � 0:27� �:

Now, we determine the error bound � for the three

functions, assuming A is exactly equal to

A � A2z
2 �A3z

3 �A4z
4:

. For reciprocal, since jCij � 1 for all i,

� � 8:31� 2ÿ4k:

. For square root, C2 � 2ÿ3, C3 � 2ÿ4, and
Cmax � 5� 2ÿ7,

� � 0:94� 2ÿ4k:

. For inverse square root, C2 � 3� 2ÿ3, C3 � ÿ5� 2ÿ4,
and Cmax � 35� 2ÿ7,

� � 2:93� 2ÿ4k:

These errors are committed by evaluating (8) in infinite
precision arithmetic (and using the k most-significant bits of
A2

2 only). To this, we have to add the following two errors:

. A has more than 4k bits. Consequently, we have to
add the error 2ÿ4kÿ1 maxA f

0�A� due to having
rounded A to A2z

2 �A3z
3 �A4z

4.
. If the evaluation step returns a value rounded to the

nearest multiple of 2ÿ4k, we have to add the
maximum error value 2ÿ4kÿ1 due to this rounding.

All this gives an upper bound �eval due to the evaluation
step.

2.3 Total Error and Value of k

We now take into account the postprocessing step (multi-
plication by M). To get an upper bound �total on the total
computation error, we multiply �eval by the maximum
possible value of M. We do not include an error due to
rounding M to n bits: It is preferable to round M to m bits
directly. Table 1 gives the value of �total. If a �3k� 1� �
�3k� 2� multiplier is used for the postprocessing step (as
suggested in Section 3.3), then we need to add 0:5� 2ÿ4k to
this value.

Now, let us determine the value of k. Since the computed
final result g�Y � is between 1=2 and 1 for reciprocation,
between 1 and

���
2
p

for square root, and between 1=
���
2
p

and 1
for inverse square-root, the first nonzero bit of the result is
of weight 20 for square-root and of weight 2ÿ1 for the other
two functions. Considering the error given in Table 1, the
required values of n and k are given in Table 2.

3 IMPLEMENTATION

We now describe implementation aspects of the proposed
method. Fig. 1 shows a functional representation of the
general architecture. In the sequel, we assume that A is in
the sign-magnitude form which requires complementation.
The multiplications produce products in the signed-digit
form, and the addition of the four terms in the evaluation
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1. It would be more accurate to say digits since it is likely that, in a
practical implementation, A2

2 will be represented in a redundant (e.g., carry-
save or borrow-save) representation.

TABLE 1
Upper Bound on the Total Absolute Error

TABLE 2
Values of k for Functions Evaluated (n � 4k)

SPÐsingle precision with faithful rounding;
DPÐdouble precision with faithful rounding.



step is performed using signed-digit adders. Modifications
for using different number representations are straightfor-
ward.

3.1 Reduction

Fig. 2 shows a functional representation of the reduction
module which computes A and M from Y . The factor M is
obtained by table lookup from block ctb for functions other
than reciprocal.

3.2 Evaluation

The evaluation step computes (9), (10), and (11). All three
require the computation of A2

2, A2A3, and A3
2. As indicated

before, for A3
2 we use the approximation

A3
2 � �A2

2�high �A2:

Consequently, these terms can be computed by three k by k
multiplications. Moreover, the first two can be performed in

parallel. Alternatively, it is possible to compute the terms by

two multiplications as follows:

B1 � A2
2 � 2A2A3z � A2 � �A2 � 2A3z�
and A3

2 � �B1�high �A2:

The first of the two multiplications is of k� 2k bits and the

second is of k� k.
Then, the terms (either the output of the three multi-

plications or of the two multiplications) are multiplied by

the corresponding factors which depend on the function, as

shown in Table 3. Note that, for division and square root,

these factors correspond to alignments, whereas, for inverse

square root, multiplications by 3 and 5 are required.2

Finally, the resulting terms are added to produce B.
Fig. 3 shows the weights of these terms in the case of the

reciprocal function. The sum of these terms is rounded to

the nearest multiple of 2ÿ4k. As shown in Fig. 3, this gives a

�3k� 1�-bit number B̂. Then, B is equal to 1� B̂. An

implementation is shown in Fig. 4.

3.3 Postprocessing

The postprocessing (Fig. 5) consists in multiplying B by M,

where M � h�R̂� depends on the function and is computed

during the reduction step. Since B � 1� B̂ and jB̂j < 2ÿk�1,

to use a smaller multiplier it is better to compute

g�Y � �M �B �M �M � B̂: �12�
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Fig. 1. General organization.

2. These ªmultiplicationsº will be implemented as (possibly redundant)
additions since 3 � 2� 1 and 5 � 4� 1.

Fig. 2. Organization of the reduction module. M depends on the function

being computed.

TABLE 3
Multiplication Factors

Fig. 3. The terms added during the evaluation step for reciprocal.



Note also that, for square root and inverse square root, in

the multiplication it suffices to use the bits of M of weight

larger than or equal to 2ÿ3kÿt, where t is a small integer.

Since the error due to this truncation is smaller than or

equal to 2ÿ4k�1ÿt, choosing t � 2 makes the error bounded

by 0:5� 2ÿ4k and allows the use of a �3k� 1� � �3k� 2�-bit

multiplier. Hence, although we need to store n bits of M (to

be added in (12)), only 3k� 2 bits will be used in the

multiplication M � B̂.
Table 4 shows the operation that must be performed

during the postprocessing step and the value of M that

must be used.

4 ESTIMATION OF EXECUTION TIME AND

HARDWARE

We now evaluate the method proposed in terms of

execution time and hardware required. This evaluation

serves for the comparisons presented in the next section.

4.1 Execution Time

The critical path is given by the following expression:

Tcrit � trb � tm3k�k � 2tmk�k � ta4k � tm3k�3k;

where trb is the table access time, tm multiplication, and ta

addition time.
For instance, for double precision with faithful rounding

and implementation of rb directly by table, we obtain the

sum of the following delays:

. Access to table of 15 or 14 input bits.

. One multiplication of 46� 16 bits (with product in
conventional form).

. Two multiplications of 15� 15 bits (with product in
redundant form).

. Signed-digit addition of the four terms. This addi-

tion is the most complex for inverse square root (10):

All three multiplications produce signed-digit re-

sults and, because the coefficients 3/8, 3/4, and

-5/16 are replaced by shifts and adds, this leads to

3� 2 signed-digit operands with a total of 1� 6 � 7.

The multiplications 3
8A

2
2 and 3

4A2A3 are performed in

parallel, followed by a 5-to-1 signed-digit addition

SDA5. This addition is performed concurrently with

the multiplication 5
16A

3
2, which produces two oper-

ands, so a 3-to-1 signed-digit addition SDA3

completes the critical path in the evaluation module.

The result of this addition is used as the multiplier of

the next multiplication; consequently, it is possible

to directly recode the signed-digit form to radix-4

multiplier.
. Multiplication of 45� 43 bits (with product in

conventional form).

4.2 Hardware

Table 5 gives the table sizes and number of various

operations required by our method, depending on the

function being computed, and the value of k. Table 6 gives

the required table sizes depending on the function

computed and the format (single precision and double

precision).

5 COMPARISON WITH OTHER METHODS

We restrict our comparison to three methods which also

deal with reciprocals, square roots, and inverse square

roots. We briefly review these methods and then compare
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Fig. 4. Functional representation of the evaluation module. (The

computations of A2
2 and A2A3 can be regrouped into one rectangular

multiplication.)

Fig. 5. Functional representation of the postprocessing module.

TABLE 4
Operation Performed during the Postprocessing Step



estimates of latency (delay) and of cost (mainly of multi-

pliers and tables) for 53-bit precision.

5.1 Newton-Raphson Iteration

The well-known Newton-Raphson (NR) iteration for reci-

procal

xi�1 � xi � xi 1ÿ Y xi� � �13�
converges quadratically to 1=Y provided that x0 is close

enough to 1=Y . We use a k-bit address table to obtain x0 and

perform the intermediate calculations using an n-bit

arithmetic. To compare with our method, we assume

n � 4k. The first approximation x0 is the number Ŷ of

Section 2, a k-bit approximation of 1=Y . To get x1, two

k� n-bit multiplications are required. Since x1 is a 2k-bit

approximation of 1=Y , it suffices to use its 2k most-

significant bits to perform the next iteration. After this,

one needs to perform two 2k� n-bit multiplications to get

x2, which is an n-bit approximation of 1=Y . For k � 15, the

NR method requires:

. one lookup in a 15-bit address table;

. two 15� 30-bit multiplications (Y truncated to
30 bits);

. two 30� 60-bit multiplications.

The multiplications that occur cannot be performed in

parallel.
The NR iteration for reciprocal square-root

xi�1 � 1

2
xi 3ÿ Y x2

i

ÿ � �14�

has convergence properties similar to those of the NR

iteration for reciprocal. Assuming (as previously) that we

use a k-bit address table and that we perform the

intermediate calculations using an n-bit arithmetic, with k �
14 and n � 56 (which are the values required for faithfully

rounded double precision square root or inverse square

root), computing an inverse square-root using the NR

iteration requires:

. one lookup in a 14-bit address table;

. three 14� 56-bit multiplications;

. three 28� 56-bit multiplications.

In the implementation, we assume using a shared 30�
60 multiplier.

Computing a square-root requires the same number of

operations plus a final ªlargeº (56� 56-bit) multiplication.

5.2 Wong and Goto's Method

The method presented by Wong and Goto in [14] requires

tables with m=2 address bits, where m is the number of bits

of the significand of the floating-point arithmetic being

used. This makes that method inconvenient for double-

precision calculations. In [13], they suggest another method

using table-lookups and rectangular multipliers.
The method for computing reciprocals is as follows: Let

us start from the input value Y � 1:y1y2 . . . y53. The first 10

bits of Y are used as address bits to get from a table

r0 � 1

1:y1y2 . . . y10

� �
:

Then, compute r0 � Y using a rectangular multiplier. The

result is a number A of the form:

A � 1ÿ 0:000 . . . 0a9a10 . . . a18 . . . a56:

Then, using a rectangular multiplier, compute:

B � A� �1� 0:000 . . . 0a9a10 . . . a18�
� 1ÿ 0:000000 . . . 00b17b18 . . . b26 . . . b56:

Again, using a rectangular multiplier, compute:

C � B� �1� 0:000000 . . . 00b17b18 . . . b26�
� 1ÿ 0:00000000000 . . . 0000c25c26 . . . c56:

In parallel, use the bits b27b28 . . . b35 as address to get from a

table � consisting of the nine most significant bits of

�0:0000 . . . b27b28 . . . b35�2. The final result is:

1

Y
� r0 � 1:00000 . . . a9a10 . . . a18

� 1:000000 . . . 00b17b18 . . . b26

� 1:000000000 . . . 000c25c26 . . . c56 � �� �:
�15�

Fig. 6 illustrates the computational graph for 56-bit

reciprocal computation.
Therefore, this method for reciprocation requires one

table look-up in a 10-bit address table, one look-up in a 9-bit

address table, five rectangular 10� 56 multiplications, and

one 56� 56 multiplication. The critical path is roughly

tWG � tLUT10 � 3� tMULT �10�56� � tMULT �56�56�: �16�
To compute reciprocal square-roots, the Wong-Goto

method uses one look-up in an 11-bit address table, one

look-up in a 9-bit address table, nine rectangular multi-

plications, and one full multiplication. The critical path
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TABLE 5
Table Sizes and Number of Operations for Our Method

TABLE 6
Tables Required by Our Method (in Bytes)



consists of one 11-bit table lookup, five rectangular multi-

plications, and one full multiplication.

5.3 Method Proposed by Ito, Takagi, and Yajima

This proposal [5] considers the operations division (actually
reciprocal) and square root performed using a multiply-
accumulate unit (as in Newton-Raphson's method). It
discusses a linear initial approximation and proposes
accelerated convergence methods. Since the linear initial
approximation can also be used for the method proposed in
this paper, for comparison purposes we do not include it
and use the direct table lookup approach.

For reciprocal, the proposal in [5] results in a speedup
with respect to traditional NR by modifying the recurrence
so that additional accuracy is achieved by each multiply-
accumulate and by adding a cubic term, which requires an
additional table look-up. For square root, a novel direct
algorithm is proposed, instead of going through inverse
square root, as done in NR.

For the comparison of reciprocal, we use a look-up table
of 15 input bits for the initial approximation (direct table
method). In this case, three multiply-accumulate operations
are required and the cubic term uses a table of nine input
bits.

For square root, also with a table of 15 input bits for the
initial approximation, four multiply-accumulate operations
are required.

5.4 Estimates of Delay and Cost

We now estimate the delays and costs (size of tables and
size of multipliers) of the schemes. Following [14], the
delays are expressed in terms of �Ðthe delay of a complex
gate, such as one full adder. In this unit, we estimate the
delays of multipliers and tables; these delays can vary
somewhat depending on the technology and implementa-
tion, but, since all schemes use the same modules, the
relative values should not vary significantly.

The delay on the critical path of a multiplier is the sum of
1, 2, and 3:

1. Radix-4 multiplier recoding, multiple generation
and buffering: 2� .

2. Partial product reduction array: 1� � number of
SDA (Signed-Digit Adder) stages;

3. Final CPA (Carry Propagate Adder)Ðwhen needed:
4� for > 30 bits; 3� for � 30 bits.

The delays of the various multipliers used are summar-

ized in Table 7.
For the delay of a look-up table with 14-15 address bits,

we estimate around 8� and with 10-12 bits around 5� . The

size is given directly in Table 8.
From the description of the methods given above, we

summarize their characteritics in Table 8 and obtain the

estimates of Table 9. We conclude that, for reciprocal, our

method has a similar delay as the other schemes, but is

significantly faster for square root and for inverse square

root. On the other hand, the Wong-Goto method requires

smaller tables.
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Fig. 6. The Wong-Goto reciprocal computation.

TABLE 7
Delays of Multipliers: trecode � treduce � tCPA (in �s)

TABLE 8
Modules Required for Double Precision Computation
of Reciprocal, Square Root, and Inverse Square Root

in Related Methods



6 ELEMENTARY FUNCTIONS

Using the same basic scheme, our method also allows
computation of some of the elementary functions. We
briefly describe this below. Implementation is not dis-
cussed: It is very similar to what we have previously
described for reciprocal, square root, and inverse square
root.

6.1 Computation of Logarithms

In a similar fashion, we get:

ln�1�A� � Aÿ 1

2
A2

2z
4 ÿA2A3z

5 � 1

3
A3

2z
6:

Again, we only need to compute A2
2, A2A3, and A3

2. The
multiplication by 1

3 can be done with a small multiplier. The
postprocessing step is performed as g�Y � �M �B, where
M � ÿln�R̂� and B � ln�1�A�. When the argument is
close to 1, no reduction is performed and, consequently,
there is no cancellation.

6.2 Computation of Exponentials

Now, let us assume that we want to evaluate the exponential
of ann-bit numberY � 1�A1z�A2z

2 �A3z
3 �A4z

4, where
z � 2ÿk (k � n=4), and the Ais are k-bit integers. We suggest
first computing the exponential of

A � A2z
2 �A3z

3 �A4z
4;

using a Taylor expansion, and then to multiply it by the

number

M � exp�1�A1z�:
M will be obtained by looking up in a k-bit address table.

The exponential of A can be approximated by:

1�A� 1

2
A2

2z
4 �A2A3z

5 � 1

6
A3

2z
6: �17�

This shows that the same architecture suggested in

Section 3 can be used as well for computing exponentials,

with similar delay and accuracy.

7 CONCLUSION

We have proposed a method for computation of reciprocals,

square-roots, inverse square-roots, logarithms, and expo-

nentials. Table 10 summarizes the key implementation

requirements in evaluating these functions. The strength of

our method is that the same basic computations are

performed for all these various functions. As shown in the

section on comparisons, in double precision for reciprocal

our method requires a computational delay quite close to

other related methods, but it is significantly faster for

square root and for inverse square root. We have

considered only faithful rounding.

APPENDIX

To prove the theorem, let us start from the series (7):

f�A� � C0 � C1 A2z
2 �A3z

3 �A4z
4

ÿ �
� C2 A2z

2 �A3z
3 �A4z

4
ÿ �2

� C3 A2z
2 �A3z

3 �A4z
4

ÿ �3

� C4 A2z
2 �A3z

3 �A4z
4

ÿ �4� . . . :

�18�
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TABLE 9
Estimation of Total Delays (in �s) for Double Precision

Computation of Reciprocals, Square Roots,
and Inverse Square Roots

TABLE 10
Summary of the Proposed Method



Let us keep in mind that A � A2z
2 �A3z

3 �A4z
4 is

obviously less than 2ÿk. If we drop out from the previous

series the terms with coefficients C4; C5; C6; C7; . . . , the error

will be:

X1
i�4

Ci A2z
2 �A3z

3 �A4z
4

ÿ �i�����
�����;

which is bounded by

�1 � Cmax
X1
i�4

2ÿk
ÿ �i� Cmax 2ÿ4k

1ÿ 2ÿk
; �19�

where Cmax � maxi�4 jCij.
Now, let us expand the expression obtained from (7)

after having discarded the terms of rank � 4. We get:

f�A� � C0 � C1A� C2A
2
2z

4 � 2C2A2A3z
5

� 2C2A2A4 � C2A
2
3 � C3A

3
2

ÿ �
z6

� 2C2A3A4 � 3C3A
2
2A3

ÿ �
z7

� C2A
2
4 � 3C3A

2
2A4 � 3C3A2A

2
3

ÿ �
z8

� 6C3A2A3A4 � C3A
3
3

ÿ �
z9

� 3C3A2A
2
4 � 3C3A

2
3A4

ÿ �
z10

� 3C3A3A
2
4z

11 � C3A
3
4z

12:

�20�

In this rather complicated expression, let us discard all

the terms of the form W � zj such that the maximum

possible value of W multiplied by zj � 2ÿkj is less than or

equal to z4. We then get (8), that is:

f�A� � C0 � C1A� C2A
2
2z

4 � 2C2A2A3z
5 � C3A

3
2z

6:

To get a bound on the error � obtained when approximating

(20) by (8), we replace the Ais by their maximum value

2k ÿ 1 and we replace the Cis by their absolute value. This

gives:

�2 � 3jC2j � 3jC3j� �2ÿ4k � 2jC2j � 6jC3j� �2ÿ5k

� jC2j � 7jC3j� �2ÿ6k

� 6jC3j2ÿ7k � 3jC3j2ÿ8k � jC3j2ÿ9k

� 3jC2j � 3jC3j � 8:5 maxfjC2j; jC3jg � 2ÿk
ÿ �

2ÿ4k;

assuming that 8� 2ÿk � 6� 2ÿ2k � 3� 2ÿ3k � 2ÿ4k < 0:5,

which is true for k � 5.
As explained in Section 2, when computing (8), we will

make another approximation: after having computed A2
2,

the computation of A3
2 would require a 2k� k multi-

plication. Instead of this, we will take the most k significant

bits of A2
2 only and multiply them by A2. If we write:

A2
2 � A2

2

ÿ �
low
�2k A2

2

ÿ �
high

;

where A2
2

ÿ �
low

and A2
2

ÿ �
high

are k-bit numbers, the error

committed is

C3 A
2
2

ÿ �
low
A2z

6;

whose absolute value is bounded by �3 � jC3j2ÿ4k.
By adding the three errors due to the discarded terms,

we get the bound given in the theorem.
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