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Floating-Point Arithmetic
Floating-Point Arithmetic

@ too often, viewed as a set of cooking recipes;
@ many “theorems” that hold. . . frequently;
@ simple—yet correct l-models such as the standard model
in the absence of overflow and underflow,
o(aTh)=(aTh)-(1+9), o <27P,
(in radix 2, rounded to nearest, arithmetic) are very useful, but do not
allow to catch subtle behaviors such as those in

s=a+b;z=s-a;r=>ob-z

and many others.

@ by the way, are these “subtle behaviors” robust ?
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Introduction Desirable properties

Desirable properties

Speed : tomorrow's weather must be computed in less than 24 hours;

Accuracy, Range;

°
°
@ "Size" : silicon area and/or code size;
@ Power consumption;

°

Portability : the programs we write on a given system must run on
different systems without requiring huge modifications;

Easiness of implementation and use : If a given arithmetic is too
arcane, nobody will use it.
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L ITSH M Famous failures

Some can do a very poor job. ..

N

@ 1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 - - -
instead of 0.666910- - - ;

@ Maple version 6.0. Enter 214748364810, you get 10.
Notice that 214748364810 = 100 - 23! + 10;

o Excel’2007 (first releases), compute 65535 — 2737, you get 100000 ;

@ November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard — division by 0 — series of errors —
the propulsion system stopped.
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L ITSH M Famous failures

Some strange things

Setun Computer, Moscow University, 1958. 50 copies;

radix 3 and digits —1, 0 and 1;

idea : radix 3, n digits, “Cost” : 3 x n;

if we wish to be able to represent M numbers, minimize 3 x n
knowing that 8" > M.
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L ITSH M Famous failures

Some strange things

radix 3 and digits —1, 0 and 1;
idea : radix 3, n digits, “Cost” : 3 x n;

knowing that 8" > M.
@ as soon as :
M > e@WE)-GmE) ~ 1.09 x 10

the best 3 is always 3

Setun Computer, Moscow University, 1958. 50 copies;

if we wish to be able to represent M numbers, minimize 3 x n

Nov. 2012
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(RS ISHSI  Definition

Floating-Point System

Parameters :
radix (or base) (B > 2 (almost always 2 in this presentation)
precision p>1

extremal exponents

€min ) emax’

A finite FP number x is represented by 2 integers :
e integral significand : M, M| < gP —1;
@ exponent e, enin < € < Enax-
such that
x = M x ﬂe+17P

with | M| largest under these constraints (— |M| > 3P, unless e = e).
(Real) significand of x : the number m = M x 317P so that x = m x €.
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(RS ISHSI  Definition

Normal and subnormal numbers

e normal number : |x| > [(®min. The absolute value of its integral
significand is > P~ 1;
@ subnormal number : |x| < 3%in. The absolute value of its integral
significand is < 3P1.
Subnormal numbers (believed to be) difficult to implement efficiently, but
their availability allows for nice properties, e.g.,
the relative error of a rounded-to-nearest FP addition is always
bounded by (1/2) - 3=P+1
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(RS ISHSI  Definition

|IEEE-754 Standard for FP Arithmetic (1985 and 2008)

o leader : Kahan (father of the arithmetics of the HP35 and Intel 8087);

» formats;
» specification of operations and conversions;;
» exception handling (max+1, 1/0, /-2, 0/0, etc.);

@ put an end to a mess (no portability, variable quality) ;
a x 1 — overflow on some machines

@ new version of the standard : August 2008.
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Introduction Correct rounding

Correct rounding

Definition 1 (Correct rounding)
The user chooses a rounding function among :
e toward —oo : RD (x) is the largest FP number < x;
@ toward 00 : RU(x) is the smallest FP number > x;
@ toward 0 : RZ(x) is equal to RD (x) if x > 0, and to RU (x) if x <0;

@ to nearest : RN (x) = FPN closest to x. If halfway between two
consecutive FPN : the one whose integral significand is even (default).

For a function f : R” — R, correctly rounded implementation with rounding
function o : we get o[f(x1,...,xs)] for all input FP numbers x1, x2, ..., xp.

y
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Introduction Correct rounding

Correct rounding

IEEE-754 (1985) : Correct rounding for +, —, x, +, |/ and some
conversions. Advantages :
o if the result of an operation is exactly representable, we get it;

o if we just use the 4 arith. operations and /!, deterministic arithmetic :
one can elaborate algorithms and proofs that use the specifications;;

@ accuracy and portability are improved ;

e playing with rounding towards +o00 and —oo — certain lower and/or
upper bounds : interval arithmetic.

1. and if the compiler is kind enough. ..
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A few elementary algorithms and properties S PA R

First example : Sterbenz Lemma

Lemma 2 (Sterbenz)
Radix 3,with subnormal numbers available. Let a and b be positive FPNs. If

< b<2a

N L

then a — b is a FPN (— computed exactly, with any rounding function).

Proof : straightforward using the notation x = M x 3¢t1=P,
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AN VR T EL TR XTI T ERE T BTG5 Error of FP addition (Mgller, Knuth, Dekker, ...)

Error of FP addition (Mgller, Knuth, Dekker, .. .)

First result : representability. RN (x) is x rounded to nearest.

Lemma 3
Let a and b be two FP numbers. Let

s= RN(a+b)
and
r=(a+b)—s.

If no overflow when computing s, then r is a FP number.
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AN SR BT TG T BRE R BT SO Error of FP addition (Mgller, Knuth, Dekker,

Error of FP addition (Mgller, Knuth, Dekker)

Proof : Assume |a| > |b],

)

@ s is “the” FP number nearest a+ b — it is closest to a + b than a is.

Hence |(a+ b) — s| < |(a + b) — a|, therefore
|r| < [B].

@ denote a= M, x 3% P+l and b= M, x % PTL with
IMa|, [IMp| < P —1, and e, > ep.

a+ b is multiple of 3%~P+1 = s and r are multiple of 3% =P+ too

= 3IREeZst.
r=Rx g Pt

but, |r] < |b| = |R| < [Mp| < P —1 = ris a FP number.
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VAN VR Y TR XTI T ERE T BT O Error of FP addition (Mgller, Knuth, Dekker, . ..)

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))

0B < 3, subnormal numbers available. Let a and b be FP numbers, s.t.
|a| > |b|. Following algorithm : s and r such that

@ s+r=a+ b exactly;

@ s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum) C Program 1
s« RN(a+ b) s = atb;
z+— RN(s—a) z = s-a;
r«— RN(b-—z) r = b-z;

<

Important remark : Proving the behavior of such algorithms requires use of
the correct rounding property. . . beware of “optimizing” compilers.
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VAN VR Y TR XTI T ERE T BT O Error of FP addition (Mgller, Knuth, Dekker, . ..)
Proof in the case § =2

s= RN(a+ b)
z=RN(s—a)
t=RN(b-2)

e if a and b have same sign, then |a| < |a + b| < |2a| hence (radix
2 — 2ais a FP number, rounding is increasing) |a| < |s| < |2a] —
(Sterbenz Lemma) z = s — a. Since r = (a+ b) — s is a FPN and
b—z=r, wefind RN(b—2z)=r.
e if a and b have opposite signs then
@ either |b| > 1|a|, which implies (Sterbenz Lemma) a+ b is a FPN, thus
s=a+b z=band t=0;
@ or |b| < 3|a|, which implies |a + b| > %|a|, hence s > 1|a| (radix
2 — 1ais a FPN, and rounding is increasing), thus (Sterbenz Lemma)
z=RN(s—a)=s—a=b—r.Sincer=(a+b)—sisaFPN and
b—z=rweget RN(b—2z)=r.
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Error of FP addition (Mgller, Knuth, Dekker, ...)
The TwoSum Algorithm (Mgller-Knuth)

@ no need to compare a and b;

@ 6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Knuth : if no underflow nor overflow
occurs then a4+ b = s+ r, and s is

Algorithm 2 (TwoSum) | + b.

s« RN(a+ b)

a' «— RN(s—b) Boldo et al : formal proof + underflow
b’ — RN(s —a') does not hinder the result (overflow
ds — RN(a—a') does).

dp — RN(b—V)
r < RN(da + dp) | TwoSum is optimal, in a way we are
going to explain.
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VAN VR Y TR XTI T ERE T BT O Error of FP addition (Mgller, Knuth, Dekker, . ..)

TwoSum is optimal

Assume an algorithm satisfies :
@ it is without tests or min/max instructions ;
@ it only uses rounded to nearest additions/subtractions : at step i we
compute RN (u+ v) or RN (u — v) where u and v are input variables
or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum,
then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

@ proof : most inelegant proof award ;
» 480756 algorithms with 5 operations (after suppressing the most

obvious symmetries) ;
» each of them tried with 2 well-chosen pairs of input values.
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(Fiar &7 (P ectifien (Vallan Rouidh, DERar, o..)
What about products?

o fused multiply-add (fma), computes RN (ab + ¢). RS6000, Itanium,

PowerPC. AMD Bulldozer, Intel Haswell. Specified in IEEE 754-2008.
e if a and b are FP numbers, then r = ab— RN (ab) is a FP number;
= RN(ab)

. . . P
@ obtained with algorithm TwoMultFMA { . RN (ab — p)

operations only. p + r = ab.
e without fma, Dekker's algorithm : 17 operations (7 x, 10 +).

Itanium 2 PowerPC 5
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AN VR T EL TR XTI T ERE T BTG5 Error of FP addition (Mgller, Knuth, Dekker, ...)

Relative error — unit roundoff

If z=o(aTh), where o € {RU, RD, RZ, RN}, and if no overflow occurs,
then

z=(aTh)(l+¢€)+¢,
with
o || <1p1Pand |¢| < ipemin—P+lif o = RN, and
o |e| < B17P and || < Bemin=P+1 otherwise.
Moreover, € and € cannot both be nonzero. Notice that
e if |z| > [3min then ¢ = 0;
o if |z| < Bmin then € = 0. Moreover, if T is + or —, then the result is
exact, so that z=aTh (i.e., € =0 too).

The bound on ¢ (namely 13177 of 17P) is frequently called the unit
roundoff, denoted u.

J.-M. Muller Proof of Properties in FP Arithmetic Nov. 2012 19 / 44



S o EE s
Adding n numbers : x; +x + x3 + - - - + X,

o large literature, some recent and smart algorithm ;

@ here : Pichat, Ogita, Rump, and Oishi's algorithm

RN : rounding to nearest

Algorithm 3

S<— X1

e—0

for i =2 to n do
(s, ei) « 25um(s, x;)
e<— RN(e+e)

end for

return c = RN(s + e)
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S o EE s
Adding n numbers : x; +x + x3 + - - - + X,

Theorem 5 (Ogita, Rump and Oishi)

Let |
= -pPtl
u 2B
and
_ nu
U= 1—nu’

If nu < 1, even in case of underflow (but without overflow), the computed
result o satisfies

n n n
2
U—E Xi| <u E Xj +7n_1§ |xi .
i=1 i=1 i=1
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At  Gursibers
ad — bc with fused multiply-add (radix 2)

Assume an fma instruction is available. Kahan's algorithm for x = ad — bc :

@ using relative error bound u for

W «— RN (bc) operations :

e — RN (W — bc) R

f — RN (ad — W) [ = x| < J|x]

X — RN(f-l—e) . _ 2 2y, . |bel -

Return & with J=2u+u“+ (u+u )UW — high
accuracy as long as u|bc| % |x|

@ using properties of RN (Jeannerod,
Louvet, M., 2011)
2P X — x| < 2u|x]

asymptotically optimal error bound.

o Complex division.
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At  Gursibers
Mistakes do not need to be subtle

@ The Mars Climate Orbiter probe
crashed on Mars in 1999 ;
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At  Gursibers
Mistakes do not need to be subtle

@ The Mars Climate Orbiter probe
crashed on Mars in 1999 ;

@ one of the software teams
assumed the unit of length was
the meter;

o the other team assumed it was
the foot.
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It's not that simple

So we do live in the best of all possible worlds. . .

@ correct rounding — “deterministic arithmetic” ;
@ we easily compute the error of a FP addition or multiplication ;

@ we can re-inject that error later on in a calculation, to compute
accurate sums, dot-products, norms. ..

@ already many such compensated algorithms, maybe more to come.
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It's not that simple

So we do live in the best of all possible worlds. . .

@ correct rounding — “deterministic arithmetic” ;
@ we easily compute the error of a FP addition or multiplication ;

@ we can re-inject that error later on in a calculation, to compute
accurate sums, dot-products, norms. ..

@ already many such compensated algorithms, maybe more to come.

... except life is not that simple!
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It's not that simple

Deterministic arithmetic ?

C program :

double a = 1848874847.0;
double b 19954562207.0;
double c;

c =a *x b;

printf("c = %20.19e\n", c);
return O;

Depending on the environment, 3.6893488147419103232e+19 or
3.6893488147419111424e+19 (double number closest to exact product).
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It's not that simple

Double roundings

@ several FP formats supported in a given environment — difficult to
know in which format some operations are performed;

@ may make the result of a sequence of operations difficult to predict;

Assume the various declared variables of a program are of the same format.
Two phenomenons may occur when a wider format is available :

e for implicit variables such as the result of “a+b” in “d = (a+b)*c") :
not clear in which format they are computed;

@ explicit variables may be first computed in the wider format, and then
rounded to their destination format — sometimes leads to a problem
called double rounding.
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It's not that simple

What happened in the example ?
The exact value of axb is 36893488147419107329. In binary :

64 bits

10000000000000000000000000000000000000000000000000000 10000000000 01

53 bits

If it is first rounded to the INTEL “double-extended” format, we get
64 bits

10000000000000000000000000000000000000000000000000000 10000000000 x 4
53 bits

if that intermediate value is rounded to the binary64 destination format,
this gives (round-to-nearest-even rounding mode)

10000000000000000000000000000000000000000000000000000 x 213

53 bits

= 36893488147419103232;0,

— rounded down, whereas it should have been rounded up.
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It's not that simple

Is it a problem ?

@ In most applications, these phenomenons are innocuous;

@ they make the behavior of some numerical programs difficult to predict
(very interesting examples given by Monniaux) ;

@ most compilers offer options that prevent this problem. However,

» be ready to dive into huge, unreadable documentation;
» restricts the portability of numerical programs;
» may have impact on performance and accuracy

— examine which properties remain true when double roundings may occur
(for instance : some summation algorithms still work, some do not).

No problem with SSE instructions, and IEEE 754-2008 improves the
situation.
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An example : 2Sum and double roundings

An example : 2Sum and double roundings

Precision-p “target” format; precision p + p’ wider “internal” format.
Algorithm 4 (2Sum-with-double-roundings(a, b))

(1) s« RNp(RNpyp(a+ b)) or RNy(a+ b)
(2) @ < RNp(RNp (s — b)) or RNy(s — b))
(3) b —o(s—4a)

(4) 65— RNp(RNpyp(a—a'))or RNp(a—a')
(5) 0p — RNp( RN pip(b— b)) or RNy(b—b)
(6) t «— RNP( RNp+p/(5a aF 5b)) or RNP(éa aF 5b)

o(u) : RN p(u), RN pip(u), or RN (RN (1)), or any faithful
rounding.
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An example : 2Sum and double roundings

An example : 2Sum and double roundings

Theorem 6
p>4andp' > 2. Ifaand b are precision-p FPN, and if no overflow
occurs, then Algorithm 4 satisfies :
e if no double rounding bias occurred when computing s then
t=(a+ b—s) exactly;
o otherwise, t = RNp(a+ b —s).

— many properties remain true, or only require slight changes;

@ watch interesting, in-progress, work of Sylvie Boldo
(http://www.lri.fr/~sboldo/), on “hardware-independent” proofs.
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The Hall of Shame (Ng)

’ System ‘ sin (1022)
exact result —0.8522008497671888017727 - - -
HP 48 GX —0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) —0.65365288 - - -
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC —0.8522
Silicon Graphics Indy 0.87402806 - - -
SPARC —0.85220084976718879
IBM RS/6000 AIX 3005 —0.852200849 - - -
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G | Error
TI 89 Trig. arg. too large

Until 2008, no standard for the elementary functions.
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Elementary functions

Correctly-rounded elementary functions ?

Evaluating f(x) :

o find an approximation f(x) to f(x);

@ round that approximation to “target” format.
To certify that we always return RN (f(x)) :

@ solve the Table maker's dilemma : determine the accuracy of the

approximation that guarantees (if this is possible) :
Vx, RN (f(x)) = RN (f(x));

@ guarantee that your approximation is within the required accuracy.
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Elementary functions

Tools for polynomial approximations of functions

@ Sollya (written by Sylvain Chevillard and Christoph Lauter) : computes
nearly best approximations with constraints on the coefficients (such
as requiring them to be FP numbers, or sums of 2 FP numbers, ...);

http://sollya.gforge.inria.fr/

e Gappa (written by Guillaume Melquiond) : uses interval arithmetic to
manage ranges and errors of straight-line programs (typically a
polynomial evaluation), forces you to express some numerical property
to prove, and outputs a proof of that property suitable for checking by
Coq (or HOL light);

http://gappa.gforge.inria.fr
e also, watch Flocq (Sylvie Boldo and Guillaume Melquiond) :

floating-point formalization for the Coq system. Comprehensive library
of theorems on a multi-radix multi-precision arithmetic.
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The Table Maker's Dilemma

Consider the double precision FP number (5 =2, p = 53)

8520761231538509
X = 262

We have

253+x = 9018742077413030.999999999999999998805240837303 - - -
17

So what?

Hardest-to-round case for function 2* and double precision FP numbers.
Joint work with Vincent Lefévre.
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Elementary functions

Correct rounding of the elementary functions

@ base 2, precision p;

@ FP number x and integer m (with m > p) — one can compute an
approximation y to f(x) whose error on the significand is < 277,

@ can be done with a possible wider format, or using algorithms such as
TwoSum, TwoMultFMA, Dekker product, etc.

@ getting a correct rounding of f(x) from y : not possible if f(x) is too
close to a breakpoint : a point where the rounding function changes.
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Elementary functions

Correct rounding of the elementary functions

@ RN mode,
m bits
1.xxxxx - - - xxx 1000000 - - - 000000 xxx - - -
—_—
p bits
or

m bits
Looooxx - - xxx 0111111111111 xxx - - -
—_—

p bits

@ other modes,
m bits

1.xxxxx - - - xxx 0000000 - - - 000000 xxx - - -
—_—

p bits

or
m bits

Loxxxxx -+ - xxx 1111111 --- 111111 xxx - - - .
-

p bits
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Elementary functions

Finding m beyond which there is no problem ?

@ function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,

@ Lindemann's theorem (z # 0 algebraic = e® transcendental) —
except for straightforward cases (e, In(1), sin(0), ...), if x is a FP
number, there exists an m, say my, s.t. rounding the m,-bit
approximation < rounding f(x);

@ finite number of FP numbers — 3dm,,., = max,(my) s.t. ¥x, rounding
the m,,..-bit approximation to f(x) is equivalent to rounding f(x);

@ this reasoning does not give any hint on the order of magnitude of
Mmax. Could be huge.
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A bound derived from a result due to Baker (1975)

e a=i/j,B=r/s withijrs<2P,;
e C =160,

o — log(3)| > (p2P)~CP'oeP

Application : To evaluate In et exp in double precision (p = 53) with correct
rounding, it suffices to compute an approximation accurate to around
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A bound derived from a result due to Baker (1975)

e a=i/j,B=r/s withijrs<2P,;
e C =160,

o — log(3)| > (p2P)~CP'oeP

Application : To evaluate In et exp in double precision (p = 53) with correct
rounding, it suffices to compute an approximation accurate to around

10%** bits

Fortunately, in practice, much less (=~ 100).
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Elementary functions

Results

Table: Worst cases for exponentials of double precision FP numbers.

Interval

worst case (binary)

[~o0, ~2739]

exp(—1.1110110100110001100011101111101101100010011111101010 X 2727)
=1.111111111111111111111111100 - - - 0111000100 1 15°0001... x 2~

[-273%,0)

exp(—1.0000000000000000000000000000000000000000000000000001 x 2~ °1)
=1.111111111111111---11111111111111100 0 0%°°1010... x 2

(0,+273

exp(1.11111111111111111111111111111111111111111113111111111 X 2753)

= 1.0000000000000000000000000000000000000000000000000000 1 1'°40101...

(2739, +o0]

exp(1.0111111111111110011111111111111011100000000000100100 X 2732)

1.0000000000000000000000000000000101111111111111101000 0 0%71101...

exp(1.1000000000000001011111111111111011011111111111011100 X 2_32)

1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 X 2_31)

= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...
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Elementary functions

Results

Table: Worst cases for logarithms of double precision FP numbers.

Interval worst case (binary)
(2—1074 1 log(1.1110101001110001110110000101110011101110000000100000 x 2~ 599)
’ — —101100000.00101001011010100110011010110100001011111111 1 19°0000...

log(1.1001010001110110111000110000010011001101011111000111 x 2~ 3°%)

= —100001001.10110110000011001010111101000111101100110101 1 0°°1010...
log(1.0010011011101001110001001101001100100111100101100000 x 2 232)

= —10100000.101010110010110000100101111001101000010000100 0 0°°1001...
log(1.0110000100111001010101011101110010000000001011111000 X 2 3°)

= —10111.111100000010111110011011101011110110000000110101 0 15°0011...
log(1.0110001010101000100001100001001101100010100110110110 x 2578)

= 111010110.01000111100111101011101001111100100101110001 0 0%41110...

1, 21024]
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Elementary functions

Floating-point arithmetic on the web

o W. Kahan :
http://http.cs.berkeley.edu/ wkahan/

@ Goldberg's paper “What every computer scientist should know about
Floating-Point arithmetic”
http://www.validlab.com/goldberg/paper.pdf

@ D. Hough :
http://www.validlab.com/754R/

@ The Arenaire team of lab. LIP (ENS Lyon)
http://www.ens-1lyon.fr/LIP/Arenaire/

@ my own web page
http://perso.ens-1lyon.fr/jean-michel.muller/
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