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Introduction Floating-Point Arithmetic

Floating-Point Arithmetic

too often, viewed as a set of cooking recipes ;
many “theorems” that hold. . . frequently ;
simple–yet correct !–models such as the standard model

in the absence of overflow and underflow,

�(a>b) = (a>b) · (1 + �), |�|  2�p,

(in radix 2, rounded to nearest, arithmetic) are very useful, but do not
allow to catch subtle behaviors such as those in

s = a + b ; z = s - a ; r = b - z

and many others.
by the way, are these “subtle behaviors” robust ?
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Introduction Desirable properties

Desirable properties

Speed : tomorrow’s weather must be computed in less than 24 hours ;
Accuracy, Range ;
“Size” : silicon area and/or code size ;
Power consumption ;
Portability : the programs we write on a given system must run on
different systems without requiring huge modifications ;
Easiness of implementation and use : If a given arithmetic is too
arcane, nobody will use it.
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Introduction Famous failures

Some can do a very poor job. . .

1994 : Pentium 1 division bug :
8391667/12582905 gave 0.666869 · · ·
instead of 0.666910 · · · ;

Maple version 6.0. Enter 214748364810, you get 10.
Notice that 214748364810 = 100 · 231 + 10 ;
Excel’2007 (first releases), compute 65535� 2�37, you get 100000 ;
November 1998, USS Yorktown warship, somebody erroneously
entered a «zero» on a keyboard ! division by 0 ! series of errors !
the propulsion system stopped.
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Introduction Famous failures

Some strange things

Setun Computer, Moscow University, 1958. 50 copies ;
radix 3 and digits �1, 0 and 1 ;
idea : radix �, n digits, “Cost” : � ⇥ n ;
if we wish to be able to represent M numbers, minimize � ⇥ n

knowing that �n � M.

as soon as :
M � e

5

(2/ ln(2))�(3/ ln(3)) ⇡ 1.09⇥ 1014

the best � is always 3
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Introduction Definition

Floating-Point System

Parameters :
8
<

:

radix (or base) � � 2 (almost always 2 in this presentation)
precision p � 1
extremal exponents e

min

, e
max

,

A finite FP number x is represented by 2 integers :
integral significand : M, |M|  �p � 1 ;
exponent e, e

min

 e  e

max

.
such that

x = M ⇥ �e+1�p

with |M| largest under these constraints (! |M| � �p�1, unless e = e

min

).
(Real) significand of x : the number m = M ⇥ �1�p, so that x = m ⇥ �e .
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Introduction Definition

Normal and subnormal numbers

normal number : |x | � �e

min . The absolute value of its integral
significand is � �p�1 ;
subnormal number : |x | < �e

min . The absolute value of its integral
significand is < �p�1.

Subnormal numbers (believed to be) difficult to implement efficiently, but
their availability allows for nice properties, e.g.,

the relative error of a rounded-to-nearest FP addition is always

bounded by (1/2) · ��p+1
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Introduction Definition

IEEE-754 Standard for FP Arithmetic (1985 and 2008)

leader : Kahan (father of the arithmetics of the HP35 and Intel 8087) ;
I formats ;
I specification of operations and conversions ;
I exception handling (max+1, 1/0,

p
�2, 0/0, etc.) ;

put an end to a mess (no portability, variable quality) ;
a ⇥ 1! overflow on some machines

new version of the standard : August 2008.
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Introduction Correct rounding

Correct rounding

Definition 1 (Correct rounding)
The user chooses a rounding function among :

toward �1 : RD (x) is the largest FP number  x ;
toward +1 : RU (x) is the smallest FP number � x ;
toward 0 : RZ (x) is equal to RD (x) if x � 0, and to RU (x) if x  0 ;
to nearest : RN (x) = FPN closest to x . If halfway between two
consecutive FPN : the one whose integral significand is even (default).

For a function f : Rn 7! R, correctly rounded implementation with rounding
function � : we get �[f (x

1

, . . . , x
n

)] for all input FP numbers x

1

, x

2

, . . . , x

n

.

J.-M. Muller Proof of Properties in FP Arithmetic Nov. 2012 9 / 44



Introduction Correct rounding

Correct rounding

IEEE-754 (1985) : Correct rounding for +, �, ⇥, ÷, p and some
conversions. Advantages :

if the result of an operation is exactly representable, we get it ;
if we just use the 4 arith. operations and p 1, deterministic arithmetic :
one can elaborate algorithms and proofs that use the specifications ;
accuracy and portability are improved ;
playing with rounding towards +1 and �1! certain lower and/or
upper bounds : interval arithmetic.

1. and if the compiler is kind enough. . .
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A few elementary algorithms and properties Sterbenz Lemma

First example : Sterbenz Lemma

Lemma 2 (Sterbenz)
Radix �,with subnormal numbers available. Let a and b be positive FPNs. If

a

2
 b  2a

then a � b is a FPN (! computed exactly, with any rounding function).

Proof : straightforward using the notation x = M ⇥ �e+1�p.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

Error of FP addition (Møller, Knuth, Dekker, . . . )

First result : representability. RN (x) is x rounded to nearest.

Lemma 3
Let a and b be two FP numbers. Let

s = RN (a + b)

and

r = (a + b)� s.

If no overflow when computing s, then r is a FP number.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

Error of FP addition (Møller, Knuth, Dekker)

Proof : Assume |a| � |b|,
1

s is “the” FP number nearest a + b ! it is closest to a + b than a is.
Hence |(a + b)� s|  |(a + b)� a|, therefore

|r |  |b|.

2 denote a = M

a

⇥ �ea�p+1 and b = M

b

⇥ �eb�p+1, with
|M

a

|, |M
b

|  �p � 1, and e

a

� e

b

.
a + b is multiple of �eb�p+1 ) s and r are multiple of �eb�p+1 too
) 9R 2 Z s.t.

r = R ⇥ �eb�p+1

but, |r |  |b|) |R|  |M
b

|  �p � 1) r is a FP number.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

Get r : the fast2sum algorithm (Dekker)

Theorem 4 (Fast2Sum (Dekker))
�  3, subnormal numbers available. Let a and b be FP numbers, s.t.

|a| � |b|. Following algorithm : s and r such that

s + r = a + b exactly ;

s is “the” FP number that is closest to a + b.

Algorithm 1 (FastTwoSum)
s  RN (a + b)
z  RN (s � a)
r  RN (b � z)

C Program 1
s = a+b;

z = s-a;

r = b-z;

Important remark : Proving the behavior of such algorithms requires use of
the correct rounding property. . . beware of “optimizing” compilers.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

Proof in the case � = 2

s = RN (a + b)
z = RN (s � a)
t = RN (b � z)

if a and b have same sign, then |a|  |a + b|  |2a| hence (radix
2! 2a is a FP number, rounding is increasing) |a|  |s|  |2a| !
(Sterbenz Lemma) z = s � a. Since r = (a + b)� s is a FPN and
b � z = r , we find RN (b � z) = r .
if a and b have opposite signs then

1 either |b| � 1
2 |a|, which implies (Sterbenz Lemma) a + b is a FPN, thus

s = a + b, z = b and t = 0 ;
2 or |b| < 1

2 |a|, which implies |a + b| > 1
2 |a|, hence s � 1

2 |a| (radix
2! 1

2a is a FPN, and rounding is increasing), thus (Sterbenz Lemma)
z = RN (s � a) = s � a = b � r . Since r = (a + b)� s is a FPN and
b � z = r ,we get RN (b � z) = r .
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

The TwoSum Algorithm (Møller-Knuth)

no need to compare a and b ;
6 operations instead of 3 yet, on many architectures, very cheap in
front of wrong branch prediction penalty when comparing a and b.

Algorithm 2 (TwoSum)
s  RN (a + b)
a

0  RN (s � b)
b

0  RN (s � a

0)
�
a

 RN (a � a

0)
�
b

 RN (b � b

0)
r  RN (�

a

+ �
b

)

Knuth : if no underflow nor overflow
occurs then a + b = s + r , and s is
nearest a + b.

Boldo et al : formal proof + underflow
does not hinder the result (overflow
does).

TwoSum is optimal, in a way we are
going to explain.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

TwoSum is optimal

Assume an algorithm satisfies :
it is without tests or min/max instructions ;
it only uses rounded to nearest additions/subtractions : at step i we
compute RN (u + v) or RN (u � v) where u and v are input variables
or previously computed variables.

If that algorithm algorithm always computes the same results as 2Sum,

then it uses at least 6 additions/subtractions (i.e., as much as 2Sum).

proof : most inelegant proof award ;
I 480756 algorithms with 5 operations (after suppressing the most

obvious symmetries) ;
I each of them tried with 2 well-chosen pairs of input values.
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

What about products ?

fused multiply-add (fma), computes RN (ab + c). RS6000, Itanium,
PowerPC. AMD Bulldozer, Intel Haswell. Specified in IEEE 754-2008.
if a and b are FP numbers, then r = ab � RN (ab) is a FP number ;

obtained with algorithm TwoMultFMA
⇢

p = RN (ab)
r = RN (ab � p)

! 2

operations only. p + r = ab.
without fma, Dekker’s algorithm : 17 operations (7 ⇥, 10 ±).

Itanium 2 PowerPC 5
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A few elementary algorithms and properties Error of FP addition (Møller, Knuth, Dekker, . . . )

Relative error – unit roundoff

If z = �(a>b), where � 2 {RU , RD , RZ , RN }, and if no overflow occurs,
then

z = (a>b)(1 + ✏) + ✏0,

with
|✏|  1

2

�1�p and |✏0|  1

2

�e

min

�p+1 if � = RN , and
|✏| < �1�p and |✏0| < �e

min

�p+1 otherwise.
Moreover, ✏ and ✏0 cannot both be nonzero. Notice that

if |z | � �e

min then ✏0 = 0 ;
if |z | < �e

min then ✏ = 0. Moreover, if > is + or �, then the result is
exact, so that z = a>b (i.e., ✏0 = 0 too).

The bound on ✏ (namely 1

2

�1�p of �1�p) is frequently called the unit
roundoff, denoted u.
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A few elementary algorithms and properties Adding n numbers

Adding n numbers : x1 + x2 + x3 + · · · + x

n

large literature, some recent and smart algorithm ;
here : Pichat, Ogita, Rump, and Oishi’s algorithm

RN : rounding to nearest

Algorithm 3
s  x

1

e  0
for i = 2 to n do

(s, e
i

) 2Sum(s, x
i

)
e  RN (e + e

i

)
end for

return � = RN (s + e)
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A few elementary algorithms and properties Adding n numbers

Adding n numbers : x1 + x2 + x3 + · · · + x

n

Theorem 5 (Ogita, Rump and Oishi)
Let

u =
1
2
��p+1

and

�
n

=
nu

1� nu
.

If nu < 1, even in case of underflow (but without overflow), the computed

result � satisfies

������ �
nX

i=1

x

i

�����  u

�����

nX

i=1

x

i

����� + �2

n�1

nX

i=1

|x
i

|.
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A few elementary algorithms and properties Adding n numbers

ad � bc with fused multiply-add (radix 2)
Assume an fma instruction is available. Kahan’s algorithm for x = ad � bc :

ŵ  RN (bc)
e  RN (ŵ � bc)
f̂  RN (ad � ŵ)
x̂  RN (f̂ + e)
Return x̂

u = 2�p

using relative error bound u for
operations :

|x̂ � x |  J|x |

with J = 2u + u2 + (u + u2)u |bc|
|x | ! high

accuracy as long as u|bc| 6� |x |
using properties of RN (Jeannerod,
Louvet, M., 2011)

|x̂ � x |  2u|x |

asymptotically optimal error bound.
Complex division.
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A few elementary algorithms and properties Adding n numbers

Mistakes do not need to be subtle

The Mars Climate Orbiter probe
crashed on Mars in 1999 ;

one of the software teams
assumed the unit of length was
the meter ;
the other team assumed it was
the foot.
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It’s not that simple

So we do live in the best of all possible worlds. . .

correct rounding ! “deterministic arithmetic” ;
we easily compute the error of a FP addition or multiplication ;
we can re-inject that error later on in a calculation, to compute
accurate sums, dot-products, norms. . .
already many such compensated algorithms, maybe more to come.

. . . except life is not that simple !
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It’s not that simple

Deterministic arithmetic ?

C program :

double a = 1848874847.0;

double b = 19954562207.0;

double c;

c = a * b;

printf("c = %20.19e\n", c);

return 0;

Depending on the environment, 3.6893488147419103232e+19 or
3.6893488147419111424e+19 (double number closest to exact product).
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It’s not that simple

Double roundings

several FP formats supported in a given environment ! difficult to
know in which format some operations are performed ;
may make the result of a sequence of operations difficult to predict ;

Assume the various declared variables of a program are of the same format.
Two phenomenons may occur when a wider format is available :

for implicit variables such as the result of “a+b” in “d = (a+b)*c”) :
not clear in which format they are computed ;
explicit variables may be first computed in the wider format, and then
rounded to their destination format ! sometimes leads to a problem
called double rounding.
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It’s not that simple

What happened in the example ?
The exact value of a*b is 36893488147419107329. In binary :

64 bitsz }| {
10000000000000000000000000000000000000000000000000000| {z }

53 bits

10000000000 01

If it is first rounded to the INTEL “double-extended” format, we get
64 bitsz }| {

10000000000000000000000000000000000000000000000000000| {z }
53 bits

10000000000⇥4

if that intermediate value is rounded to the binary64 destination format,
this gives (round-to-nearest-even rounding mode)

10000000000000000000000000000000000000000000000000000| {z }
53 bits

⇥ 2

13

= 36893488147419103232

10

,

! rounded down, whereas it should have been rounded up.
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It’s not that simple

Is it a problem ?

In most applications, these phenomenons are innocuous ;
they make the behavior of some numerical programs difficult to predict
(very interesting examples given by Monniaux) ;
most compilers offer options that prevent this problem. However,

I be ready to dive into huge, unreadable documentation ;
I restricts the portability of numerical programs ;
I may have impact on performance and accuracy

! examine which properties remain true when double roundings may occur
(for instance : some summation algorithms still work, some do not).

No problem with SSE instructions, and IEEE 754-2008 improves the
situation.
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An example : 2Sum and double roundings

An example : 2Sum and double roundings

Precision-p “target” format ; precision p + p

0 wider “internal” format.

Algorithm 4 (2Sum-with-double-roundings(a, b))

(1) s  RN

p

(RN

p+p

0(a + b)) or RN

p

(a + b)
(2) a

0  RN

p

(RN

p+p

0(s � b)) or RN

p

(s � b))
(3) b

0  �(s � a

0)
(4) �

a

 RN

p

(RN

p+p

0(a � a

0)) or RN

p

(a � a

0)
(5) �

b

 RN

p

(RN

p+p

0(b � b

0)) or RN

p

(b � b

0)
(6) t  RN

p

(RN

p+p

0(�
a

+ �
b

)) or RN

p

(�
a

+ �
b

)

�(u) : RN
p

(u), RN
p+p

0(u), or RN
p

(RN
p+p

0(u)), or any faithful
rounding.
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An example : 2Sum and double roundings

An example : 2Sum and double roundings

Theorem 6
p � 4 and p

0 � 2. If a and b are precision-p FPN, and if no overflow

occurs, then Algorithm 4 satisfies :

if no double rounding bias occurred when computing s then

t = (a + b � s) exactly ;

otherwise, t = RN

p

(a + b � s).

! many properties remain true, or only require slight changes ;
watch interesting, in-progress, work of Sylvie Boldo
(http://www.lri.fr/~sboldo/), on “hardware-independent” proofs.
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Elementary functions

The Hall of Shame (Ng)

System sin
�
1022

�

exact result �0.8522008497671888017727 · · ·
HP 48 GX �0.852200849762
HP 700 0.0
HP 375, 425t (4.3 BSD) �0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740
matlab V.4.2 c.1 for SPARC �0.8522
Silicon Graphics Indy 0.87402806 · · ·
SPARC �0.85220084976718879
IBM RS/6000 AIX 3005 �0.852200849 · · ·
DECstation 3100 NaN
Casio fx-8100, fx180p, fx 6910 G Error
TI 89 Trig. arg. too large

Until 2008, no standard for the elementary functions.
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Elementary functions

Correctly-rounded elementary functions ?

Evaluating f (x) :
find an approximation f̂ (x) to f (x) ;
round that approximation to “target” format.

To certify that we always return RN (f (x)) :

solve the Table maker’s dilemma : determine the accuracy of the
approximation that guarantees (if this is possible) :
8x , RN (f̂ (x)) = RN (f (x)) ;
guarantee that your approximation is within the required accuracy.
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Elementary functions

Tools for polynomial approximations of functions

Sollya (written by Sylvain Chevillard and Christoph Lauter) : computes
nearly best approximations with constraints on the coefficients (such
as requiring them to be FP numbers, or sums of 2 FP numbers, . . . ) ;

http://sollya.gforge.inria.fr/

Gappa (written by Guillaume Melquiond) : uses interval arithmetic to
manage ranges and errors of straight-line programs (typically a
polynomial evaluation), forces you to express some numerical property
to prove, and outputs a proof of that property suitable for checking by
Coq (or HOL light) ;

http://gappa.gforge.inria.fr

also, watch Flocq (Sylvie Boldo and Guillaume Melquiond) :
floating-point formalization for the Coq system. Comprehensive library
of theorems on a multi-radix multi-precision arithmetic.
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Elementary functions

The Table Maker’s Dilemma

Consider the double precision FP number (� = 2, p = 53)

x =
8520761231538509

262

We have

253+x = 9018742077413030.99999999999999999| {z }
17

8805240837303 · · ·

So what ?

Hardest-to-round case for function 2x and double precision FP numbers.
Joint work with Vincent Lefèvre.
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Elementary functions

Correct rounding of the elementary functions

base 2, precision p ;
FP number x and integer m (with m > p) ! one can compute an
approximation y to f (x) whose error on the significand is  2�m.
can be done with a possible wider format, or using algorithms such as
TwoSum, TwoMultFMA, Dekker product, etc.
getting a correct rounding of f (x) from y : not possible if f (x) is too
close to a breakpoint : a point where the rounding function changes.
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Elementary functions

Correct rounding of the elementary functions

RN mode,

m bitsz }| {
1.xxxxx · · · xxx| {z }

p bits

1000000 · · · 000000 xxx · · ·

or

m bitsz }| {
1.xxxxx · · · xxx| {z }

p bits

0111111 · · · 111111 xxx · · · ;

other modes,

m bitsz }| {
1.xxxxx · · · xxx| {z }

p bits

0000000 · · · 000000 xxx · · ·

or

m bitsz }| {
1.xxxxx · · · xxx| {z }

p bits

1111111 · · · 111111 xxx · · · .
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Elementary functions

Finding m beyond which there is no problem ?

function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh, cosh,
Lindemann’s theorem (z 6= 0 algebraic ) e

z transcendental) !
except for straightforward cases (e0, ln(1), sin(0), . . . ), if x is a FP
number, there exists an m, say m

x

, s.t. rounding the m

x

-bit
approximation , rounding f (x) ;
finite number of FP numbers ! 9m

max

= max
x

(m
x

) s.t. 8x , rounding
the m

max

-bit approximation to f (x) is equivalent to rounding f (x) ;
this reasoning does not give any hint on the order of magnitude of
m

max

. Could be huge.
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Elementary functions

A bound derived from a result due to Baker (1975)

↵ = i/j , � = r/s, with i , j , r , s < 2p ;
C = 16200 ;

|↵� log(�)| > (p2p)�Cp log p

Application : To evaluate ln et exp in double precision (p = 53) with correct
rounding, it suffices to compute an approximation accurate to around

10244 bits
Fortunately, in practice, much less (⇡ 100).
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Elementary functions

Results

Table: Worst cases for exponentials of double precision FP numbers.

Interval worst case (binary)

[�1,�2

�30]
exp(�1.1110110100110001100011101111101101100010011111101010⇥ 2

�27)
= 1.111111111111111111111111100 · · · 0111000100 1 1

59
0001...⇥ 2

�1

[�2

�30, 0)
exp(�1.0000000000000000000000000000000000000000000000000001⇥ 2

�51)
= 1.111111111111111 · · · 11111111111111100 0 0

100
1010...⇥ 2

�1

(0, +2

�30]
exp(1.1111111111111111111111111111111111111111111111111111⇥ 2

�53)
= 1.0000000000000000000000000000000000000000000000000000 1 1

104
0101...

[2�30, +1]

exp(1.0111111111111110011111111111111011100000000000100100⇥ 2

�32)
= 1.0000000000000000000000000000000101111111111111101000 0 0

57
1101...

exp(1.1000000000000001011111111111111011011111111111011100⇥ 2

�32)
= 1.0000000000000000000000000000000110000000000000010111 1 1

57
0010...

exp(1.1001111010011100101110111111110101100000100000001011⇥ 2

�31)
= 1.0000000000000000000000000000001100111101001110010111 1 0

57
1010...

exp(110.00001111010100101111001101111010111011001111110100)
= 110101100.01010000101101000000100111001000101011101110 0 0

57
1000...
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Elementary functions

Results

Table: Worst cases for logarithms of double precision FP numbers.

Interval worst case (binary)

[2�1074, 1)
log(1.1110101001110001110110000101110011101110000000100000⇥ 2

�509)
= �101100000.00101001011010100110011010110100001011111111 1 1

60
0000...

log(1.1001010001110110111000110000010011001101011111000111⇥ 2

�384)
= �100001001.10110110000011001010111101000111101100110101 1 0

60
1010...

log(1.0010011011101001110001001101001100100111100101100000⇥ 2

�232)
= �10100000.101010110010110000100101111001101000010000100 0 0

60
1001...

log(1.0110000100111001010101011101110010000000001011111000⇥ 2

�35)
= �10111.111100000010111110011011101011110110000000110101 0 1

60
0011...

(1, 2

1024]
log(1.0110001010101000100001100001001101100010100110110110⇥ 2

678)
= 111010110.01000111100111101011101001111100100101110001 0 0

64
1110...

J.-M. Muller Proof of Properties in FP Arithmetic Nov. 2012 43 / 44



Elementary functions

Floating-point arithmetic on the web

W. Kahan :
http://http.cs.berkeley.edu/~wkahan/

Goldberg’s paper “What every computer scientist should know about
Floating-Point arithmetic”
http://www.validlab.com/goldberg/paper.pdf

D. Hough :
http://www.validlab.com/754R/

The Arenaire team of lab. LIP (ENS Lyon)
http://www.ens-lyon.fr/LIP/Arenaire/

my own web page
http://perso.ens-lyon.fr/jean-michel.muller/
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