
EEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

position of A and B is involved; the other n - 1 bits are arbitrary.
Hence, SI = 2 - 4n-1. For i > 1, the leftmost 2i-2 bits must generate
ESG = 100 (equal), and the other 2i-2 bits of the 2'-' involved bits
must generate ESG = 010 or 001 (smaller than or greater than),
since otherwise the completion signal would be generated either
before or after the ith level. The 2'2 bits generating ESG = 100
correspond to 222 configurations. The other 2i2 bits correspond to
(42'-2- 22i-2 configurations since the total number of configu-
rations is 42i , among which 222 correspond to ESG = 100. Thus,
for i > 1:

Si = 222(422 - 22 2)4n-2l = 4n(2 - 22)

The average delay through P- and I-modules (in unit d)

D = I{S + >.iSi4 4n

k+I

{2 * 4n-1 + E i4n(2-2i-2 2-2i-1) 4n

k+I

= 2-1 + E i(2-2i-2 - 2-2i-1)
i=2

< 2' + > i(222 _ 221
i=2

= 2-1 + (i + 1)2-2i-1 -2i-
i=l i=2

=2 1+ 1 + 2 221
i=2

= 1 + 2I + 22 + 2-I + 2- + 2-.
i=4

Since

j -2i < f22xdx 2-Y dy < 2=-3 2-Y dy =

i=4 3f2Y ~I2nf2d 2
-2 -4 -8 ~2-11D < 1 + 2-1 + 22 + 2- + 28 In 2

< 1.8187.

If double-rail inputs of A and B are available, then from the P-
and I-module logic expressions, it is obvious that d is 2 AND or OR
gate delays, whenever we use two-level logic. Therefore, the aver-
age delay through the P- and I-modules is 3.6374 gate delay. Includ-
ing the delay of the OR gates, which generate the completion signal
and the final result, the time duration of processing ranges from 4
to 2(log n) + 4 gate delay, with the average less than 5.6374 gate
delay. If only single-rail inputs of A and B are available, then we
have to add in one mnore inverter delay.
We have assumed that the input configurations have a uniform

distribution. However, in different implementation environments,
the probability distributions might be different. Thus, in certain
cases, the average computing time might be larger than the value
derived here. This is particularly true when the equality ofA and B,
the worst case for the computation delay, occurs with relatively
large frequency.
The number of inputs to the OR gates S (and G) is (log n) + 1. Let

r be the gate fan-in. Then for (log n) + 1 c r, i.e., n < 2r1, this
will not cause any problem. For very large n, such that (log n) +
1 > r, i.e., n > 2r1, the completion circuit could be implemented by
a tree-type multilevel gate network. This would introduce an addi-

tional delay, approximately logr(log n). On the other hand, to im-
plement this tree-type gate network, approximately 2{(log n) -
1}1(r - 1) OR gates are required.

ACKNOWLEDGMENT
The author is deeply indebted to Prof. S. H. Unger for his encour-

agement and advice during this work. His special thanks are to Prof.
J. F. Tratjb for his valuable comments.

REFERENCES

[1] W. H. Molesworth, "Simpler carry look-ahead digital comparison," Elec-
tron. Eng., vol. 50, no. 610, p. 20, Aug. 1978.

[2] C. A. Papachristou, "Parallel implementation of binary comparison cir-
cuits," Int. J. Electron., vol. 47, no. 4, pp. 187-192, Aug. 1979.

[3] M. V. Subba Rao and S. C. Mittal, "SN 7485 gives carry look ahead
digital comparison," Electron. Eng., vol. 5Q, no. 603, p. 21, Mar. 1978.

[4] The TTL Data Book for Design Engineers, 2nd ed., Texas Instruments,
Inc., Dallas, TX.

[5] S. H. Unger, "The generation of completion signals in iterative combina-
tional circuits," IEEE Trans. Comput., vol. C-26, Jan. 1977.

[6] , "Tree realization of iterative circuits," IEEE Trans. Comput.,
vol. C-26, Apr. 1977.

[7] , Asynchronous Sequential Switching Circuits. New York: Wiley,
1969.

Discrete Basis and Computation of Elementary Functions

JEAN-MICHEL MULLER

Abstract-We give necessary and sufficient conditions in order that the
infinite product or sum of the terms of a positive decreasing sequence
generates the reals in a given interval.
Such a sequence will be called a discrete basis. We derive a class of

algorithms without multiplications for the computation of elementary
functions. We then obtain a unified theory for different existing algo-
rithms, in particular Voider and Walther's CORDIC methods.

Index Terms -CORDIC-like algorithms, hardware computation of ele-
mentary functions, representation of real numbers by infinite series.

I. INTRODUCTION
The aim of this work is to generate and justify some hardware

algorithms, using only additions and shifts, for computing the ele-
mentary functions.

Such algorithms have been previously introduced: Volder and
Walther's CORDIC system [7], [9], [13], [15], [17], [18], and
De Lugish's algorithms [5].

Schelin [13] proves the convergence of the CORDIC scheme by
the mean of a decomposition theorem, which gives a sufficient
condition to approximate the reals in an interval by a sum of prede-
fined coefficients. Our attempt is to generalize this concept and to
show its ability to generate algorithms.
To compute f(t), the basic idea of the CORDIC scheme is to

approximate t by a sum:

Manuscript received July 9, 1984; revised November 19, 1984.
The author is with Laboratoire TIM3, Institut IMAG, Universite de Gren-

oble, BP 68, 38402 Saint-Martin D'Heres Cedex, France.

0018-9340/85/0900-0857$01.00 © 1985 IEEE

857

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

t = d0e0+ die, + * + dnen, di = ±1

where the ei are precomputed constants, chosen such that

fi+1 = f(d0e0 + die, + + di+lei+1)

can be computed "easily" fromf (i.e., with only a few additions and
"shifts," where a shift is a multiplication or a division by a power
of the radix of the computer).
Our method, derived from the precedent, is to build a sequence

(ta) such that

f(t0) is known,
ti t as i -oo,

Ji+1 f(ti+,) can be computed "easily" fromf.

Thus, iff is continuous, then we have

fi f(t) asi oo .

We present two classes of methods for generating the se-
quence (ta).

1) Additive Methods:

t = tn + dnen

where

the ei's are precomputed constants,

di = 0, 1, 2, ,p (p- unidirectional method),
or di = -p, -p + I, 'p (p- bidirectional method).

2) Multiplicative Methods:

tn+ = tn edn

where

-di = 0, 1, ,*- p (p-unidirectional method)
or di = -p, 'p (p- bidirectional method)
the ei's are such that a multiplication by ei (and by e' with

the bidirectional method) can be performed easily
(for instance, with a binary computer, a multiply by
ei = (1 + 2-') reduces to a shift and an addition).

(ei) must be chosen such that every t included in a prede-
fined interval can be generated by an appropriate choice of the
sequence. (di).

In the first part of this paper, we present some characterizations
of the proper sequences (ei) and some algorithms for generating (ti).

In the last part, we study the way to generate algorithms for the
computation of some functions, using the theory of Section II, and
we introduce some examples.

II. THE DISCRETE BASIS THEORY

A. Additive Methods
We want here to characterize the sequences (ei) such that any t

included in a given interval can be written t = E'=. dnen where di is
in {-p, - ,p} or {0, - * ,p}. For reasons of simplicity, we shall
take decreasing positive sequences, such that E 0en < +oo. The
following definition is a consequence of these choices.

Definition: If B = (en) is a decreasing infinite sequence of
strictly positive reals such that

00

E = E en < +0,
n=o

then for any integer p : 1:
i) B is a bidirectional discrete basis of order p (p -BDB) for

I = [-pE, +pE] if for any t E I there exists (d"), dn E {-p,
-p + 1,, 0, 1, ,p} such that

t = dnen
n=o

ii) B is a unidirectional discrete basis of order p (p-UDB) for
J = [O,pE]ifforany t E J thereexists (dn),d, E {O,1,2,**,p}
such that

co

t =E dnen
n=o

The following result reveals that (3-n) is a 1-BDB but not a 1-UDB,
(2-) is both, and (10-l) is neither.
Theorem 1: B is A) a p-BDB if and only if for any n, en S

2p Skn+1 ek, and B) a p-UDB if and only if for any n, en > p
ak=n+± ek.

Proof: We give only the proof of A), for p 1; that of B) is
similar and easier than the previous one for p = 1, and for p > 1
the proof is immediate if we consider the fact that (en) is a p-BDB
(p-UDB) if and only if the sequence (an) defined by

aO = a, = = ap_ = eO

an= eLnlpj, where LxI is the integer part of x,

is a 1-BDB (1-UDB).
1) The Condition Is Necessary: Let us suppose that there exists

an integer n such that

(i)
co

e,>2 E ek-
k=n+ 1

Define

n-I

S = Se,
k=o

= lek = E - S -en,
k=n+ I

I =]S + o,S + en- '[.

Equation (i) implies that I # 0.
Let us suppose a E I; we have a S E. We shall show that for any

sequence (din), Y =o dmem # a.
Let b = 0 dmem

If dn = 0 or dn =-l then b - S + o- < a.
If dn = 1 then

If every k < n verifies dk = 1 then

b : S + en -o,- > a.

If there exists i < n such that di # 1
then b (S - ei) + en + o-

S S + u, because ei ¢ en
(the sequence (ek) is decreasing)

< a

Hence, in any case, b # a.
2) The Condition Is Sufficient: The proof is given by the con-

vergence of the following algorithm.
Algorithm J-BBDB (Bidirectional on J-BDB):
Let B = (en) be a sequence verifying the conditions of Theo-

rem 1, and t be such that Itt E. If the sequence (tk) is defined by

858

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

Algorithm p-BUDB (Bidirectional on p-UDB):

((en) is ap-UDB, t - pE)

to = 0

awn+l = an -en

tn+=tIn + dnen

where dn = [+1 if t ¢ tn + 'Tn+1

-l if t > tn OJn+I

else 0

then we have

tn-> t as n -> +oo,

and more exactly

tn - t 'Tn (1)

Proof: We have obviously a'n = ,k=fek; thus, 'Tn > 0 as
n -> +0o.
We want to prove (1) by induction.

(1) is true if n = 0

if n - 0, let us suppose (1) is true for n

if t B tnthenwehavedn = if t B tn + on+ elseO
if dn =0 then tn+ = tn 6 t 6 tn + Tn+I

tn+1 + 0Tn+1
thus Itn+1 - tj Un+1

if dn = 1 then
if t- tn + en then

tn+lI t < tn + 'Tn = tn+I + 'n+I

therefore It,,l - tj on+l
-if t < tn + en then

tn + an+ i -, t tn + en = tn+ I (ii)
but we have en 20'n+I
therefore tn + en S tn + 20Tn+I
i.e. tn + en 'Tn+ I t tn + Orn+ I
i.e. tn+1 - awn+1 tn + O'n+1
i.e., with (ii): tn+I - 'Tn+± I t tn+I
therefore Itn+1 - tj O n+1

if t < tn then the proof is similar since the relations
are symmetrical with respect to t.

This ends the proof of the theorem.
Example: The geometric sequences.
If en = an, n = 0, 1, 2, , for some a > 1, then E = al

(a) and B = (en)is a p -BDB if and only if a - 2p + 1, while
B is a p-UDB if and only if a - p + 1. To see this we note that

00

E a-k = a-n/(a - 1)
k=n+

These geometric sequences were studied by Renyi [12] for p -

UDB, and are called ",8-expansions," and by Derrida, Gervois, and
Pommeau [6] for 1-BDB ("A-expansions"). It is worth noting that if
a is an integer, we find the classical notion of numeration basis;
thus, our theory appears to be a generalization of that concept.
We give two other algorithms: a unidirectional and a bi-

directional, which converge on p-UDB. The proof of their con-
vergence is similar and easier than that of 1-BBDB.

Algorithm p-UUDB (Unidirectional on p-UDB):

((en) is a p -UDB, 0 S t -s pE)

to= 0

dn max{j S p, tn + jen S t}

tn+i = tn + dnen

to = 0

if t, - t then

dn = max{ I j p, tn + (j - l)e, S t}

else dn = min{-p S j - -1, t, + (j + l)e, > t}

tn+I = tn + dnen

It is interesting to note that if en = 2-', then for any t E [0, 2],
1-UUDB and I-BBDB give the same sequence (dn) because the
variable o,,, of the 1-BBDB algorithm is equal to en_,. It is not true
for other l-UDB's. For instance, if en = 1.5 n and t = 2, then
1-BBDB gives do = 1 and d, = O while 1-UUDB gives do =

d,= 1.
These algorithms still converge if we replace large inequalities by

strict inequalities when comparing t, to t.
With these algorithms, we have for every n

|tn - t % p E ek
k=n

(2)

The convergence of p-BUDB is a generalization of Schelin's de-
composition theorem [13].
Theorem 1 enables us to verify if a sequence (en) is a p -BDB or

a p-UDB. Unfortunately, in most cases, A) and B) are difficult
to prove directly. We give here a second theorem which simplifies
this task.
Theorem 2: Let B = (en) be a p-BDB (p-UDB), ind letf be a

function of a real variable, verifying

tf' is continuous on I = [0, 2pE] (I = [O, pE])

f(O) = 0

f is concave and strictly increasing on I.

We have: f(B) = (f(en)) is a p-BDB (p-UDB).
Proof:

a) f(en) is a decreasing sequence.
It is obvious, since (en) is a decreasing sequence, and f is in-

creasing on [0,E].
b) For any n, f(en) > 0.

f is strictly increasing, thus, for any n, f(en) > f(O) = 0.

c) O f(en) < +°°
This result is a consequence of the fact that for every integer n,

f(en) - enf'(0). To see this we note that if f is concave with f'
continuous on I, then f' is decreasing on I; thus,

f(en) f'(x) dx =<ff'(0) dx = enf'(0)

Thus,

x0 00

E f(e,,) f'(0) E en < +oo.
n=O n=O

d) f(B) verifies A) (respectively, B)).
Let k bep ifB is ap-UDB and 2p ifB is ap-BDB. The concavity

off implies that for every sequence a,, a2, * * *, an of reals included
in I such that k(a1 + a2 + * * *+ an) is in I we have

f(k(a1 + a2 + * * * + an)) k(f(aI) + f(a2) + * * * + f(an)) .

f is continuous; therefore, if (an) is an infinite sequence such that
k I' oan exists and is included in I, then

1-BBDB:

, = E

859

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

f k ian > k E f(an)
n=O n=O

For every n, we have en 6 k Yp=n+1 e,. Thus,
00 00

f(en) < f k> ep > k E f(ep)
p=n I p=n+l

Thus, f(B) is a p-BDB (p-UDB).
Example: (Arctg(a k)) and (Logb(l + a k)) (b > 1) arep -UDB

for 1 < a < p + 1 andp-BDB for 1 < a 2p + 1.

B. Multiplicative Methods
Definition: IfB = (en) is a decreasing infinite sequence of reals,

en > 1, such that
00

1 < H en = K < +0,
n=O

then the following hold.
i) B is a multiplicative bidirectional discrete basis of order p

(p-MBDB) for I = [K-P,KP] if for any t E I there exists (dn),
dn E {-p, -p + 1, *0, 1, 2, ,p}, such that

t= Ie n
n=O

ii) B is a multiplicative unidirectional discrete basis of order p
(p-MUDB) for I = [1,KP] if for any t E I there exists (dn),
dn E {0, 1 ... ,p}, such that

n0t = 1edn
n=O

The following result proves that an exhaustive study of multi-
plicative discrete basis is not necessary because the properties and
the algorithms of the additive discrete basis can be easily translated
to the multiplicative discrete basis. It reveals that (1 + a n) is a
p-MUDB if 1 < a S p + 1, which will be very useful for building
some algorithms (see Section III).
Theorem 3: (en) is ap-MBDB if and only if (ln(en)) is ap-BDB,

while (en) is a p-MUDB if and only (ln(en)) is a p -UDB. (The proof
is obvious.)

III. APPLICATIONS

A. How to Build an Algorithmfor the Computation ofa Function
1) The Primal Method: Let us assume that we want to compute

f(t) for any t included in an interval I.
f is expected to be continuous and to verify

f(xTy) = g(f(x),f(y))(P)
where T represents addition or multiplication.

Examples:

Logarithm:

Exponential:

ff(x) = ln(x)

T = *

tg(u,v) = u + V.

f(x) = exp(x)
uT= +

g(u, v) = uv .

SinelCosine: [f(x) = exp(ix)

gT = +

g(u, v) = uv .

Power Functions: [1(x) = xa

T=*

g(u, v) = uv.

Let us suppose that there exists a discrete basis (en) of order p,
additive if T = +, and multiplicative if T = *, such that for any
u, g(u, a,) can be computed with additions and shifts where an E
{f(en), z} (z = 0 if T = +, l if T = *) (in that case we will take
unidirectional algorithms), or an E {f(en)f(en*),z} where
en Ten = z (in that case we will take bidirectional algorithms).

Thus, while we have written t = 1n=o dnen or t = [In=Q edn we
obtainfi ->f(t) as i - + oo where

fo = z,
fJ+ I = g(fj, ai), with ai = f(ei Tei T .. *Tei)

(k times) if di = k
z if di = 0

f(e* Te* T ... Te*
(k times) if di =-k.

This method (computation of f(t) using a sequence ti t such
that f(ti+1) can be obtained from f(ti)) will be called the primal
algorithm.

Before studying another method (the dual algorithm), we shall
see some examples of the primal algorithm. Our purpose is not to
present all the functions that can be computed in such a way, but to
show how our building-algorithms method can be used.

a) Computation of the exponential function: Property (P) is
verified by the exponential function:

exp(x + y) = exp(x) * exp(y).

T = +, and thus we have to use an additive discrete basis (en)
such that the product by exp(en) can be done with additions and
shifts only. We have seen that ln(1 + b-n) is a (b - I)-UDB where
b - 2 is an integer; moreover, in a radix b computer, the product
u(I + b-n) = u + u. bVn can be computed using only an addition
and a shift. Thus, we choose en = ln(1 + b n).

Since we cannot easily divide a number by en, we choose
(b - I)-UUDB algorithm. We present the obtained algorithm for a
binary computer (b = 2).

If N is the number of steps of the following algorithm (we ap-
proximate t = 1:=Odnenby tN = doeo + *. + dNeN), it can easily
be shown, using (2) and the fact that for every x > 0, ln(1 +
x) < x, that tN - t 22

Thus, the relative error on the result "exp" of the following algo-
rithm, equal to lexp(tN) - exp(t)l/exp(t), will be bounded by
exp(2 N) - 1 - 2-N.

Algorithm Exponential-UUDB [15]:
(Input: the argument t. Output: exp)

(en = ln(1 + 2-') are precomputed and stored constants)
Begin

x := 0;
exp := 1;
k := 0;
while k < N do

begin
while (x + ek> t) and (k N) do k := k + 1;
exp := exp + exp 2-k;
x := x + ek;
k := k + 1; (*)

end;
End.

Interval of convergence: [0,E] = [0, 1.566
b) CORDIC computation of sine and cosine functions:

Volder and Walther's CORDIC algorithms [7], [9], [15], [17], [18]
are a class of algorithms included in the I-BUDB class. Here we
study only one application of CORDIC: the computation of sine and
cosine functions.
We suppose that we have a binary computer, and we want to

860

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

compute f(t) = exp(it), using the 1-BUDB algorithm. We have

f(t,+1) = f(tn + d,e,) = exp(itj) - exp(idne,).

If we choose

e= Arctg(2-n) (we saw that it is a 1-UDB)
N-1 N-1 -1/2

n= l cos ek (1 + 2
k=n k=n

Xn= COS(tn) *Kn

Yn = sin(tn) *Kn

then it can easily be shown that, for t E [-E,E],E =

Yn=o Arctan(2-n) = 1.74 - the following algorithm gives us

IxN = cos t + 2

yN= sin t + 2

CORDIC:

Begin
Xo = Ko;oY = 0;zo =t;
fork := OtoN - do

begin
if Zk >0 then dk: = else dk = -

Xk+1 = Xk - dkYk2k;

Yk+1 = Yk + dkXk2k;
Zk+ I Zk -dkek

end
End.
One can modify this algorithm for use in a radix-p computer

with the algorithm (p - 1)-BUDB applied to the (p - 1)-UDB
(Arctan(p n)).

c) Square rooting: We saw that (1 + pf-) is a (p - I)-MUDB;
thus, it is easy to show that ((1 + pf-)2) is a (p - 1)-MUDB.
The basic idea of our algorithm is to write any t included in [1,

(fj:.0 (1 + p -n))2(P- 1)] in the form

00

t = n| ((1 + p--n)2)dn
n=O

and to obtain

f= (1 + p -n)dn
n0n=O

We give this algorithm forp = 10, using a multiplicative version
of the unidirectional algorithm.
SQRT:

(correct for t E [1, K9], K = 4.948 ,K9 = 1778586.2 ..)

Begin
x := I;sq := 1;
fork :=OtoNdo

begin
d := 0;u := 0;
while (u S t) and (d < 9) do

begin
U : = x + 102kX + lOx + lOkx;

if u - t then
begin

x :u;
sq: = sq + sq l0 ;

end;
d := d + 1

end
end

End.

This algorithm gives sq = Vt within an error given by
(Hk=N±i (1 + 10-k))I9 sq/lt - 1; thus, the relative error is
bounded by 1 - 1/(Hlk=N+l (1 + 10-))9 10-N. Such an algo-
rithm can be built to compute t, using the (p - I)-MUDB
((1 + -n)k).
One can easily find algorithms for computing monomials (and

therefore polynomials) using the same unidirectional multiplicative
algorithm associated with the (p - 1)-discrete basis (1 + pfl) on
a radix-p computer.

2) The Dual Method: Now, we shall study a way to computef-
when f is a monotonic function computable by the mean of the
primal method.

Let us suppose thatf is strictly monotonic on the interval I = [0,
pE] (or [-pE, +pE], or [1,KP], or [K-P,KP]).

If we want to compute t = f-'(u), the monotonicity off implies
that comparing t' to t is equivalent to comparing f(t') to u. Thus,
iff is increasing, and if we replace, for instance, the line

dn= max{j S p, tn + jen S t}

of p -UUDB algorithm with the line

dn = max{j < p,f(tn + jen) u

then we obtain the same result: tn ->f'(u) as n > oo.
It is obvious that we can translate this modification to the other

additive or multiplicative algorithms. There are two interesting con-
sequences of that, as follow.

1) A dual algorithm differs from this primal version only on
the choice of dn; thus, for instance, one can transform the
exponential-UUDB algorithm into an algorithm which computes the
logarithm on the interval [exp(0), exp(E)], exp(E) = 4.7 * , by
replacing the line

"while(x +ek>t) and (k N)dok :=k + 1;"

by

"while ((exp + exp . 2-k) > u) and (k - N) do k := k + 1;"

The desired result will be x = ln(u) ± ae, ae 2-N
It is interesting to note that this algorithm can be interpreted as a

primal multiplicative algorithm using the 1-MUDB (1 + 2-').
2) The error at step N can easily be found using (2); if we take

an additive algorithm, the absolute error will be p -N+o ek, and
with a multiplicative algorithm, if we note KN = 1i=N+I ei, then the
relative error will be bounded by max{ 1 - 1/KN, -1-} =
KN- 1.

Examples:
1) The previous algorithm, which computes the natural loga-

rithm [or any base b logarithm if we replace ln(1 + p-nf) by
logb(l + p-n)], is also true for the exponential function.

2) The CORDIC "vectoring mode" [13], [17], [18] is the dual
mode of the "rotation mode." For instance, the dual mode of the
sine/cosine algorithm presented here enables us to compute the
arctangent function.

3) Extension of the Domain: One can extend the domain of con-
vergence of our algorithms by allowing the coefficients di to be
greater thanp (practically, it is equivalent to repeat several times the
same ei in the sequence). For instance, if we delete the line (*) of
the exponential-UUDB, we obtain an algorithm which converges on
[0, +oo] instead of [0, E], but if we want a relative precision 2N the
time of computation is not necessarily proportional to N.

IV. CONCLUSION
The methods studied here enable us to find many of the hardware

algorithms. These algorithms must be tested, but relation (2) is very
useful for predicting their accuracy and speed. The principal interest
of this study is the proof that some well-known methods, which
seemed independent, are in fact based upon the same principles.

861

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 9, SEPTEMBER 1985

ACKNOWLEDGMENT
The author thanks the referees, whose helpful and detailed cri-

tiques were responsible for significant improvements in the paper,
and Dr. M. Cosnard for his encouragement.

REFERENCES

[1] P. W. Baker, "More efficient radix-2 algorithms for some elementary
functions," IEEE Trans. Comput., vol. C-24, pp. 1049-1054,
Nov. 1975.

[2] T. C. Chen, "Automatic computation of exponentials, logarithms, ratios
and square roots," IBM J. Res. Develop., vol. 16, pp. 380-388, July
1972.

[3] W. Cody and W. Waite, Software Manual forthe Elementary Functions.
Englewood Cliffs, NJ: Prentice-Hall, 1980.

[4] J. M. Delosme, "VLSI implementation of rotations in pseudo-Euclidian
spaces," in Proc. 1983 IEEEInt. Conf. Acoust., Speech, Signal Process-
ing, Boston, MA, Apr. 1983, pp. 927-930.

[5] B. De Lugish, "A class of algorithms for automatic evaluation of certain
elementary functions in a binary computer," Ph.D. dissertation, Dep.
Comput. Sci., Univ. Illinois, Urbana, IL, June 1970.

[6] B. Derrida, A. Gervois, and Y. Pomeau, "Iteration of endomorphisms on
the real axis and representation of numbers," Commissariat Energ. Atom-
ique, Serv. Phys. Theor., CEN Saclay.

[7] A. M. Despain, "Fourier transform computers using CORDIC itera-
tions," IEEE Trans. Comput., vol. C-23, Oct. 1974.

[8] M. D. Ercegovac, "Radix- 16 evaluation of certain elementary functions,"
IEEE Trans. Comput., vol. C-22, June 1973.

[9] G. H. Haviland and A. A. Tuszynsky, "A CORDIC arithmetic processor
chip,"IEEE Trans. Comput., vol. C-29, Feb. 1980.

[10] J. Kropa, "Calculator algorithms," Math. Mag., vol. 51, no. 2,
pp. 106-109, Mar. 1978.

[11] J. M. Muller, "Le logiciel FONCTELEM, Presentation et tests," Inst.
IMAG, Grenoble, France, Rapport Recherches, to appear.

[12] A. Renyi, "Representations for real numbers and their ergodic func-
tions," Acta Math. Acad. Sci., Hungary, pp. 477-493, 1957.

[13] C. W. Schelin, "Calculator function approximation," Amer. Math.
Monthly, vol. 90, no. 5, May 1983.

[14] H. Schmid and A. Bogocki, "Use decimal CORDIC for generation of
many transcendental functions," Elec. Des. Mag., pp. 64-73, Feb.
1973.

[15] O. Spaniol, ComputerArithmetic and Design. New York: Wiley, 1981.
[16] W. H. Specker, "A class of algorithms for ln(x), exp(x), sin(x), cos(x),

arctan(x) and arcot(x)," IEEE Trans. Electron. Comput., vol. EC-14,
pp. 85-86. 1965.

[17] J. Volder, "The CORDIC computing technique," IRE Trans. Electron.
Comput., vol. EC-8, pp. 330-334, Sept. 1959.

[18] J. Walther, "A unified algorithm for elementary functions," in Joint
Comput. Conf. Proc., vol. 38, pp. 379-385.

Implementation of a Constrained Regularization Program
(CONTIN) on a Desktop Computer

KEITH J. STELZER AND MICHAEL A. GORDON

Abstract -A constrained regularization program for inverting linear
algebraic and integral equations (CONTIN) [l]-[3] has been implemented
on an MC68000 based desktop computer supplemented with floating point
accelerator hardware. Implementation of CONTIN on a desktop com-

Manuscript received January 22, 1985; revised March 1, 1985. This work
was supported in part by NIH under Grant 7 ROI NS10977-01, in part
by USPHS under Training Grant ES 07079, and by a Procter and Gamble
Fellowship.
The authors are with the Department of Pharmacology, Toxicology and

Therapeutics, University of Kansas College of Health Sciences and Hospital,
Kansas City, KS 66103.

puter system enhances interactive capabilities and allows economical and
time-efficient use of this program on a regular basis within the laboratory.

Index Terms -Constrained regularization, molecular weight deter-
mination, particle size distribution, photon correlation spectroscopy,
quasi-elastic light scattering, Stokes radius determination.

INTRODUCTION
CONTIN is a constrained regularization program which has been

developed and made available by Provencher [1]-[3]. This program
is applicable to the analysis of several types of experimental data
encountered in the natural sciences. CONTIN may be used to solve
linear algebraic equations containing unknown noise components
which may be representative of data obtained with experiments such
as X-ray and neutron scattering, photon correlation spectroscopy,
circular dichroism, and others [1]. The program has proven particu-
larly useful for solving integral equations for effectively continuous
distributions [2] of diffusion coefficients or molecular weights by
photon correlation spectroscopy [4], [5].

IMPLEMENTATIONS
The particular application of the constrained regularization pro-

gram is defined by numerous user variables and subprograms
[I]-[3]. Typically, CONTIN is implemented in Fortran IV, with a
minimum of ANSI extensions and exceptions [2], on time-shared
mainframe systems, such as the IBM 370, or minicomputers, such
as the VAX-11/780 [2]. Typical execution times on these systems
have been reported to range from 180 to 360 s [2], [3]. The extent
of user interaction required for most efficient use of CONTIN leads
to certain difficulties with mainframe or minicomputer imple-
mentations. Since CONTIN is computationally intensive, one ap-
parent difficulty rests in the cost of frequent use of the program on
time-shared mainframe systems. Another difficulty may be the lack
of availability of suitable large computer systems for actual imple-
mentation. However, the most significant difficulty may be that,
fundamentally, CONTIN is not most appropriately implemented on
large time-shared or undedicated systems.
The most effective use of CONTIN involves continuous evalu-

ation of the process of convergence to an acceptable constrained
model of the system under investigation. If user-defined parameters
are, for example, noted to be inappropriate for a given data set, the
most time-effective remedy may involve program termination with
subsequent parameter correction and execution. This observation is
reinforced by the fact that CONTIN provides a continuous set of
graphical output for each potential solution. It is our view that the
solution to these concerns rests with program implementation on a
suitable low-cost desktop computer.
We have determined that a suitable compromise between speed of

computation and cost can be met by implementation of CONTIN in
Fortran 77 on an MC68000 (Motorola) based system with floating
point hardware capabilities. The particular solution which we have
implemented uses the Hewlett-Packard 9000 series 200 computer,
model 220 (MC68000 8 MHz). A suitable Fortran 77 compiler for
this computer is available from International Electronic Machinery,
Inc. (Fort Collins, CO). This compiler compiles Fortran 77 source
text into native 68000 object code. However, as such, there is
insufficient computational speed for the necessary double precision
floating point operations. The execution of resulting object code
files is implemented under the Pascal 2.0 operating system with
floating point acceleration provided by the use of an FP-200 floating
point coprocessor provided by Infotek Systems (Anaheim, CA).
This floating point coprocessor results in up to a 600 percent in-
crease in floating point computational speed.
CONTIN was implemented on the desktop computer system de-

scribed above under its default configuration for application to

0018-9340/85/0900-0862$01.00 © 1985 IEEE

862

