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Some Characterizations of Funct ions 
Computable in On-Line Arithmetic 

Jean-Michel Muller 

Absfmct-After a short introduction to on-line computing, we prove 
that the functions computable in on-line by a finite automaton are 
piecewise afthe functions whose coefikients are rational numbers (i.e., 
the fnnctions f(s) = UP + b, or f(z-, y) = nx + by + c where a. b, and c 
are rational). A consequence of this study is that multiplication, division, 
and elementary functions of operands of arbitrarily long length cannot 
be performed using bounded-she operators. 

Index Zhts4omputer arithmetic, finite automata, on-line arithmetic. 

I. INTRODUCTION 

On-line arithmetic was introduced in 1977 by Ercegovac and 
Trivedi. During on-line computations, the operands and the results 
flow through arithmetic units serially, digit by digit, starting from 
the most significant digit. An important characteristic of an on-line 
algorithm is its delay , i.e., the number 6 such that the jth digit of 
the result is generated after the entrance of the j + 6th digit of the 
operands. 

do) = 0.x1 X’L 

.r(“+‘) =  2.d”) +  &+:’ - q,zy 

i 

1 if .r(“) > 0 
qn = -1 if .rc7’) < 0 

0 if J-(“) = 0. 

The intermediate values .r(() are multiples of l/4 and satisfy -u + 
l/4 5 .r(‘) 5 y  - l/4; therefore their storage and their computation 
only require a bounded space. 

A consequence of this remark is that affine functions (i.e., functions 
of the form f( .r, y  ) = m.r + 13~ + 5 ) whose coefficients are rational 
numbers belong to this class. 

On-line arithmetic enables a digit-level pipelining, which makes 
it possible to compute large expressions in an efficient manner. 
A consequence of the flow from the most significant digit to the 
least significant one is the need to use a redundant number system. 
Although on-line arithmetic would have been possible using carry- 
save representation of numbers, the number systems used in the 
literature are Avizienis’ signed-digit systems [ 11. 

2) Second Class: Functions that can be computed in on-line us- 
ing an operator whose size is proportional to the length of the 
operands. Squaring, multiplication, division, and square-root (and the 
expressions obtained by combining these functions) belong to this 
class. 

A lot of on-line algorithms have been proposed, in the literature, 
for arithmetic operations [2]-[6] and elementary functions [7], [8]). 
An overview is given in [9]. Some authors have studied general 
properties of on-line arithmetic: For instance, Owens [lo] points out 
several limitations of on-line arithmetic (he shows that fixed-point 
multiplication and division cannot be performed without assuming 
restrictions-e.g., quasi-normalization for division-on the values of 
the input operands), then he gives solutions to partially overcome 
these limitations. Sips and Lin [ 1 l] give a model for on-line arithmetic 
that makes it possible to evaluate tight bounds on the min imum 
delay of an arbitrary arithmetic function, and to perform on-line 
computations by table look-up. Independently, Duprat, Herreros, and 
Muller [ 121 found similar bounds on on-line delays. In a more general 
and theoretical context (computations with infinite objects), Wiedmer 
[ 131 gives some results on “approximately computable functions,” 
which are applicable to on-line calcuIations (for example, he shows 
that a function computable in on-line arithmetic is continuous). 
Vuillemin [I41 represents computable real numbers by continued 
fractions. He gives serial algorithms for computing sums and products 
of such fractions. His arithmetic has properties very similar to those 
of on-line arithmetic. 

3) Third Class: Functions for which the known operators have a 
size that grows more than linearly with the size of the operands. 
For instance, the trigonometric functions belong to this class (as 
an example, the shift-and-add Cordic-like methods seem to need 
operators of size proportional to the length of the operands, but 
they need the storage of constants, and the space occupied by these 
constants is proportional to the square of the length of the operands). 

This separation of functions into three classes is purely empirical. 
Our purpose is to give the beginning of a theoretical explanation’ 
of this separation by delimiting the first class. In the following, 
a bounded-size on-line operator of delay 5 is represented by a 
transducer, i.e., a finite automaton (Fig. I) which computes, at step 
n. its new state (i.e., its new “memory configuration”) ?,,+I and its 
new output digit yn-n from its previous state en and its input digit 
.I’,, (or its input digits .rn.r ; . . . ; .I’, .,, if we compute a function of 
p variables). The state e, is assumed to belong to a finite state set. 
Since the number system we use is redundant, a given number .I 
can be represented by several different digit chains. If these claims 
are fed into the automaton, the output chains can be different, but 
they must represent the same number. Thus we do not deal with any 
automaton, but only with those who satisfy this requirement, i.e., with 
transducers whose inputs and outputs can be interpreted as numbers. 

When designing algorithms and arithmetic units for on-line com- 
putations, the different functions of one or more variables computable 
in on-line seem to be classifiable in three different classes: 
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W e  show in this brief contribution that if a function f is computable 
by an on-line finite automaton, and if f has a piecewise continuous 
second derivative (i.e., if f is “sufficiently regular”), then f is a 
piecewise affine function whose coefficients are rational numbers. As. 
a consequence, it is not possible to perform on-line multiplication or 
division, or to compute square roots of arbitrarily long length numbers 
using an operator of bounded size (i.e., an operator independent of 
the length of the input operands). 

In the following, numbers are represented using a fixed-point 
radix-r sign-digit system. The digits belong to the digit set DI = 

0018-9340/94$04.00 0 1994 IEEE 

I) First Class: Functions that can be computed in on-line using 
an operator of bounded size (i.e., independent from the length of the 
input operands). Addition, max imum or min imum of two numbers, 
absolute value, multiplication by a cons~aanl integer, division by a  
cons&ant integer belong to this class. To our knowledge, it has 
not been clearly stated that division by a constant integer may be 
performed using an operator of bounded size, but it is a consequence 
of the fact that when performing the following “parallel-serial” 
division algorithm (we divide .r = O..ri.~.~.ra . . . by g, and we 
obtain the quotient digits Q~ serially): 
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T Y”s= f, (X” . e” ) 

e” 
&+,= f2(X” *en ) 

Fig. I. An on-line finite automaton. 

{-a, -a +  1.. . . ,o, 1,. . . , n}, with 0 < n 5 T - 1. W e  also assume 
that the numbers manipulated here are elements of the interval [0, l] 
(however, the results shown in this brief contribution are obviously 
valid in any interval). The digit chain O..riszsa . . . .rl . . . .r, E D,, 
represents the number yz=, .r,~-j. If n is a digit, we denote 7 the 
digit equal to 4. 

II. FUNCTIONS OF ONE VARIABLE 

In this section, we show that if a function of one variable has 
piecewise continuous second derivatives, and if this function is 
computable in on-line by a finite automaton, then it is an affine 
function with rational coefficients. As a consequent, functions like 
.r”.sclrt.(.~).sill(.~),..., cannot be computed using an on-line oper- 
ator of bounded size. 

First of all, we need to prove that if a function f is computable 
in on-line by a finite automaton and derivable, then in any interval 
there exist two distinct points .r and y such that f’(s) = f’(y). 
where f’ is the first derivative of f. This result is obtained from the 
two following lemmas. 

Lemm’l: Let n and 3 be two numbers satisfying 
0 5 n < ,3 5 1. There exist an integer p and 
a II-digit chain 0.~1 .ra.ra . . . .rP such that the interval 
10 .x,.)‘*.r:j . . . .r,,annnn . . . . O.X~.1.2.(.3 . . . xpaanaa ...I (i.e., the 
set of the numbers representable with .rr , .ra. .~‘a.. . . , .rP as first p 
digits) is included in [n, :3]. El 

Proof: Define 

{ 

n + ;3 7n = - =  O.ni~ni~rn~ni~~~~. 

a  =  :3 -2,. 

we have obviously: 

1 

L 2-Z 
OTC’ for anyi./nt - O.~)i~rn~m~...n?,I 5  C are’ =x< r-‘. 

k=t+l 

Let p be an integer satisfying rpp 5 d/4. From the relations: 

l 

o.nt 1 n12nt3 . . . my - O.m1 rt121113.. . m,aaaaa . . . 5  rpp 5  - 

i* 
O.nf~m2m3 ... n~,aaaaa ... - O.m~m2n13 ... mp  5  rep <  -. 

4  

we deduce easily: 

O.ni,nz2... m,aaaaa ... 5  O.mlm2-.. m,, 

O.nf1m~ ... m,aaaaa ... 1: O.n,lmp ... mp  

Then the lemma is proved, by choosing O..ris2 . . ..I‘~ = 
o.m1ru2.. *mp. cl 
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Lemma 2: Let Q  and ;3 be two real numbers satisfying 0 5 N < 
.3 5 1. Let f be a derivable function of one variable, computable 
in on-line mode by a finite automaton. There exist two distinct real 
numbers .r and 2 E [N, 131, such that f’(x) = f’(z). q 

Proof: Assume that f is computable in on-line with delay 6 
by a finite automaton, and let M  be the number of states of the 
automaton. Since, from Lemma 1, there exist an integer p and a p- 
digit chain such that each number whose representation begins with 
this digit chain belongs to [(Y, a], we assume in the sequel of the 
proof that all the numbers taken into account here begin with this 
digit chain. Then we renumber the digits: the p + 1st digit of a real 
number .r is called si , and we ignore the previous entrances of digits 
in the automaton (they are the same for every number): this p + 1st 
digit is now considered the first one, and the step when it enters the 
automaton is now considered as the first one. 

So, at step 1, the automaton receives the first digit .rr of the 
input data. There are 2n + 1 possible values for this digit, namely 
-- a,n+1,5+2;... a  - 1, a. The number constituted by this digit (i.e., 
the real number O.si ) also has 2a + 1 possible values; -a/r, (-a +  
l)/r....,+a/r. 

At step 2, the automaton receives the second digit 22 of the input 
data. There are (2a + 1)2 possible input chains ~1x2; however, there 
are only 2ar + 2a + 1 different numbers representable by these digits, 
namely the numbers: 

-ar-a -ar-a+1 -ar-a+2 ar +  a  
r2 3 T2 3 r2 3 ..-* 7’ 

This difference is due to the redundancy of the signed-digit represen- 
tation (for instance, in radix 2, 0.17 = 0.01). 

At step n, the automaton receives the nth digit TV of the input 
data. There are (2a + 1)” possible input chains ~i.ra.ra . . . s,, , and 
2ar “-1+2aT”-2 +...+2ar2+2ar+2a+1 = 2a(r”-l)/(r-1)+1 
possible numbers O.si ~a.ra . . . sn. Let n be an integer such that the 
number 2a( r” - l)/( r - l)+ 1 of possible n-digit numbers is greater 
than the number M  of states of the automaton. Then there exists at 
least a state 0, two distinct n-digit numbers s and Z, with signed- 
digit representations O..rlsz . . . stZ and 0.~132 . . . G, such that the 
entering of the chain .T1s2.r3 . . . .I *n in the automaton produces at 
step n the state e,+i = 0. as well as the entering of the chain 
;1:2;3”‘Z,. 

Now, assume that after the chains .rr 1’Zra . . . .rn or ~132 33 . . . &, 
for both numbers the same sequence t,1+ltn+2fn+3tn+4 ... Of 

digits enters the automaton. Since for both computations the 
state c,+i at step n is the same, we deduce that the outputs 
y,+1-n. Y1z+2-hr yn+3-n:.. and the states ~~+a, en+3, en+4, ... 
will be the same. 

Let us denote: 

.I’ = 0.x1 .(‘2s3 . . xn 000000~ . . 

.T’ =  O..rl.r2x3 . . . .rntn+1tn+2tn+3tn+4 ... 

r =0.;,32;3...~,~000000~~~ 

Since the first n digits of .r and .r’ (of L and 2’. respectively) 
are the same, if .r or .r’ (Z or z’, respectively) enter the automaton, 
then the first tt - 6 digits of the result, namely yt, ~2,. . . , yn--d 
are the same. Therefore, f(.r’ ) - f(.r) only depends upon the digits 
y,~-l-r.ynr2-~.yn+3-4:... therefore f(.r’) - f(r) =  f(z’) - 
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f ( 2 ) , therefore: 

f(.r’) - f(x) 
0.0000~ * * ot “+ltn+ztn+3tn+4.‘* 

= 0.0000 
A:‘) - f(z) 

*a* Of,+1 tn+2tn+3tn+4 *. * 

Since this last result holds for any value of the digits 
tn+l,tn+z.tn+3,“., we deduce that for any positive real number E 
sufficiently small (we take e = 0.0000.. . Ot,+l tvz+2tn+3tn+4 . . .): 

f(x + 6) - f(x) = f(- + e) - f(z) 
F  E 

Therefore, by taking the limit value of these terms when c goes to 
zero: 

f’(x) = f’(z). 0 

Theorem I: Let f be a function of one variable, with a piecewise 
continuous second derivative. If f is computable in on-line mode by 
a finite automaton, then in each interval where f is continuous, f is 
an affine function of the form f(s) = as + b, where n and b are 
rational numbers . 0 

Proofi Let I be an interval where f has a continuous second 
derivative. First of all, we show that in this interval, f is an affine 
function, i.e., that there exist a and b such that for any s E I, f(s) = 
az+b (after we will prove that a and b are rational numbers). In order 
to show this, it suffices to prove that f”(z) = ( d2f/&r2 )(s) = 0 
for any x E I. 

Let N be an integer. Let us divide I into iV subintervals of equal 
sizes (if I = [c, d] then the kth interval is [c+ (k - l)( d - c/n;), c+ 
k(d - c)/N)]). From Lemma 2, in each of these subintervals, there 
exist two distinct real numbers T  and 2 satisfying f’(.r) = f’( 3 ). 
Since f” is continuous, we deduce that there exists a number 
t (t E [.r, ~1) such that f”(t) = 0. 

W e  have shown that if we divide I in N subintervals of equal sizes 
(S may be as large as wanted), in each of these intervals there exists 
a point where f” equals zero. Now, since f is continuous, by taking 
n; -+ m, we deduce that f”(.r) = 0 for any x E 1. Thus, there exist 
two numbers n and b such that for any z E I, f(x) = nx + b. 

Now, we have to show that a and b are rational numbers. W e  start 
from the well-known fact that, in a classical nonredundant numeration 
system, the rational numbers are the numbers whose representation 
is eventually periodic. Let M  be the number of possible states of the 
automaton. Assume that an eventually periodic sequence of period 
p enters the automaton. After at most M  entrances of the beginning 
of the periodic part, the state of the automaton will be equal to a 
state already encountered during an entrance of the beginning of the 
periodic part. Therefore, the output is also eventually periodic, with 
a period bounded by Alp. 

A surprising property of signed-digit systems is that a ratio- 
nal number may have an aperiodic representation: if a number is 
equal to O.ffocrn ... , where o is a representation of the period, 
and if there exists another representation ;3 of this period, then 
o.;3n;3~cr;3ann;3nn(Ind . . . is aperiodic and represents the same 
number. However a rational number has also eventually periodic 
representations. 

l In radix 2, it is obvious since its classical nonredundant repre- 
sentation is also a representation using the digit set { -1, 0, 1). 

l In radix r > 2, let us start from the nonredundant radix- r 
representation of this number, say x = 0.~1~2~3~4 . . . . Since .r is 
rational, this representation is eventually periodic. If the signed-digit 
number system used is maximally redundant (i.e., if o = r - l), then 
this representation is a signed-digit representation too. If n < r - 1, 
we can obtain an eventually periodic signed-digit representation of .r 
in the number system we deal with as the following. 

. 
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l By subtracting n to each digit .I’; of .r, we obtain an eventually 
periodic signed-digit representation of .r - O.nnnnnrtrrrr . . . . 

l By adding to this last result the number O.nnnnrrnncr . . . using 
Avizienis’s algorithm [l], we obtain an eventually periodic signed- 
digit representation of .r in the number system we deal with. 

Let ri be a rational number. If an eventually periodic representation 
of ri enters the automaton, then, since the output is also eventually 
periodic, f(rl) = .si is a rational number too. Let us consider 
f(n) = s2 3 where r2 is another rational number. From the relations 
nrl+b = st andrrrz+b = $2, wededucethats = (rrl-x2)/(r,-r2) 
and b = (szr1 - slrz)/(rl - rz) are rational numbers. 0 

Now, we can delimit a little more carefully the set of the functions 
computable in on-line using a finite automaton. W e  saw previously 
that if such a function has piecewise second derivatives, then it is 
a piecewise affine function. Let us show that the points where the 
second derivative of this function is not continuous are rational 
numbers. 

Theorem 2: Let f be a function of one variable, with a piecewise 
continuous second derivative. If f is computable in on-line mode by 
a finite automaton, then the breakpoints of f, i.e. the points where 
the second derivative of f is not continuous, are rational numbers.0 

Proof: From Theorem 1, we deduce that f is a piecewise affine 
function whose coefficients are rational. In the neighborhood of a 
breakpoint o of f, at the left of (Y, f is equal to an affine function, 
say nx + b, at the right of (Y, f is equal to another affine function 
c.r + d, where n, b, c, and d are rational numbers. From previous 
studied [ 121, [ 131 we know that f is a continuous function. Therefore, 
nru+b = ccu+d. Therefore o = (d-b)/(n-c) is a rational number.0 

It is possible to show that a continuous piecewise affine function 
with one rational breakpoint is computable in on-line by a finite 
automaton. Let f be such a function. W e  keep the same notations 
(values o, a, b, c, and d) as in the proof of Theorem 2. Define a 
function g(s) = f(.r) = cs - d. Since g(x) is computable using ~ 
a finite automaton (we can compute affine functions with rational 
coefficients, and minimum of two numbers, and g( .r) is equal to 
(a-c)(min(.r,n))+(b-d),wededucethatf(.r)=g(.r)+c.r+rl 
is computable in on-line using a finite automaton. Thus, we have 
proved that a continuous piecewise affine function with one rational 
breakpoint is computable by an on-line finite automaton. This can be 
extended to a function with ajinite number of rational breakpoints. 

III. FUNCTIONS OF Two VARIABLES 

Now, we are going to extend Theorem 1 to functions of two 
variables. The proof may be generalized to functions of more than 
two variables. A consequence of the following result is that arithmetic 
operations like multiplication or division cannot be computed in 
on-line using a bounded-size operator. 

Theorem 3: Let f be a function of two variables, with continuous 
second derivatives (a”f)/(O.r’), (a’f)/(??y’), (DZf)/(&8y). and 
(d’f)/(dydx) in rectangles. If f is computable in on-line mode by 
a finite automaton, then in each rectangle where f” is continuous, f 
is an affine function of the form f( .I’) = ;3.r + *, y  + (, where ;3, *, , and 
6 are rational numbers. This result can be generalized to functions 
of more than two variables. d 

Pro08 Let us consider a rectangle where the second derivatives 
(a”f)/(a.r’). (a2f)/(8y2), (B’f)/(8.rDy),crnfl(D”f)/(ayD.r) are 
continuous. For any rational number yo, on the straight line y = yr), 
the function f,, ( .I’) = f( .I’, ya ) satisfies the conditions of Theorem 
1. Therefore f(s,yo) = rc(yo).r + b(yo), where a(yo) and b(yo) are 
rational numbers. It is worth noticing that this is not necessari ly true 
if yo is irrational: Theorem 1 can be. applied if and only if a finite 
automaton with two entries (namely T  and yo ), which computes a 
function of .r and yo can be assimilated to a finite automaton with 
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one entry (namely s), which computes the function f,,(s). It is true 
if yo is a rational number, since the entrance of this number may be 
replaced by the knowledge of a finite amount of information (e.g., the 
periodic part of its representation), while it may be false if yo is an 
irrational number: For instance, the function fz ( .I-) = .r+ A cannot be 
computed by a finite automaton, while the function f( s, y ) = .r + y 
can be computed by an on-line finite automaton at point (.r, K). 

However, since for any rational number yo, (a”f)/(a.r*)(s, yo) = 
0, and since d*f/& * is a continuous function, we deduce that for 
any real number y/0, (8*f/d.r2)(.r, y0) = 0. Therefore, for any real 
numbery~.f(.r,yo) =n(yo);r+b(yo) (butn(yo) and6(y0) arenot 
necessarily rational numbers). 

Now, let us apply Theorem 1 to the computation of f(.ro, y) = 
n ( y).ro + b( y ) for a given rational number x0. We deduce: 

g(r0.y) = n”(y).ro + b”(y) = 0. 

Since this relation holds for any rational number SO (and in practice 
for any real number xo since a*f/ay* is continuous), we deduce 
that for any y. o”(y) = b”(y) = 0. Therefore, there exist four real 
numbers n. J. 7. and 6 satisfying: 

{ 
n(y) = my + ;3, 
b(Y) = yy + 5. 

Therefore, in the rectangle that we considered: f(.r, y) = cvsy + 
,ir + ?y + 6. 

Now, since the function &.r) = f(.r,.r) = cx.r* + (13 + y)y + 6 
satisfies the conditions of Theorem 1,$ is an affine function, therefore 
n is equal to zero. As in the proof of Theorem 1, from the fact that 
if eventually periodic sequences enter the automaton then the output 
is eventually periodic too, we deduce that if .r and y are rational 
numbers, then f(.r, y) is rational too. An obvious consequence of 
this is that ;j. 7, and 6 are rational numbers. q 

IV. CONCLUSION 

We have proved here that if a (sufficiently regular) function is 
computable in on-line using a bounded size operator, then this 
function is a piecewise affine function whose coefficients are rational. 
Therefore, although it is possible to design, for instance, infinite 
precision on-line adders, it is impossible to design infinite precision 
on-line multipliers or dividers. 

Hence, we have delimited the first class of functions presented in 
the introduction. Since multiplication, division, and square root (and 
more generally 71th root) belong to the second class, we conjecture 
that this class is the set of the algebraic functions. However, we did 
not succeed in proving that. 
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On the Genus of Star Graphs 

David A. Hoelzeman and Sdid Bettayeb 

Akbacl--The star graph has recently been suggested as an alternative 
to the hypercube. The star graph has a rich structure and symmetry 
properties as well as desirable fault-tolerant characteristics. The star 
IPph’S maximm~ vertex degree and diameter, viewed as fknctions of 
network size, grow leas rapidly than the correqnmding measures in a 
hypercube. We investigate the genus of the star graph and compare it 
with the genus of the hypercube. 

Index Temts-Genus, 
star network. 

hypercube, permutation, rotatioMI 

I. INTR~DIJ~TI~N 

The star graph was proposed by Akers et al. as an interconnection 
network for parallel computation [I], [2]. The star graph belongs 
to a class of graphs called Cayley graph, a family of graphs that 
possesses group theoretic properties. The star graph’s maximum 
vertex degree and diameter, viewed as functions of network size, grow 
less rapidly than the corresponding measures in the binary hypercube. 
The star graph also has a rich structure and symmetry properties 
as well as desirable fault-tolerant characteristics [ 11. The star graph 
G, = (S,, E, ) of dimension n is defined as follows: S,, = {PIP 
is a permutation of {1,2,...,n}} and E, = {(F’,Q)I there is a 
transposition (1 K) for 2 5 k < R such that Q = P( 1 k)}. Fig. 
1 illustrates star graphs G2 and GB , and Fig. 2 depicts Ga. 
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