On complex multiplication and division with an FMA J

Jean-Michel Muller

Joint work with C.-P. Jeannerod, P. Kornerup and N. Louvet
INVA 2014

N

E Ve

— e — UnNIv=rRsITE D= LyoN s [y S—
— - — 5)
EEEEEEE 2LAA—

Yy

Thank youl

HOMNESTETWNWET

Complex multiplication and division

Given complex numbers x = a+ ib and y = ¢ + id, their product z = xy
can be expressed as

z = ac — bd + i(ad + bc);
and their quotient x/y can be expressed as

ac+bd . bc— ad

BT R

In floating-point arithmetic, several issues:
@ accuracy,
e spurious overflow/underflow (e.g., c® 4+ d? overflows, whereas the real
and imaginary parts of g are representable);

Here: focus on accuracy problems. Scaling techniques to avoid spurious
overflow/underflow dealt with in further work.
We assume that an FMA instruction is available.

Floating-Point numbers, roundings

Precision-p binary FP number: either 0 or
x = X .28 PHL

where X and e, € Z, with 2P~ < |X| < 2P — 1. We denote this set by Fp.

@ unlimited exponent range — results valid in usual FP arithmetic unless
underflow/overflow occurs;

@ X: integral significand of x;
@0 21-P. X: significand of x;
@ e, exponent of x.

This presentation: binary arithmetic only.

Floating-Point numbers, roundings

@ In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded:

e correct rounding: Rounding function o, and when (aTb) is performed,
the returned value is o(aTb);

@ default rounding function: round to nearest even: RN;
e for any real number t, |[RN(t) — t| < u - |t|, where u = 27P;
— all arithmetic operations performed with relative error < u;

@ we assume that an FMA instruction is available: computes RN(ab+c).

Here: we try to analyze several simple algorithms.

Componentwise and normwise relative errors

When Z approximates z:

@ componentwise error:

|Im(z) —Im (Z)
' Im (2)

b

@ normwise error: R
zZ—Z

z
Choosing between both kinds of error depends on the application.

@ componentwise error < € = normwise error < ¢;

@ the converse is not true.

Naive multiplication algorithm without an FMA

Ao : (a+ib, ¢+ id) — RN(RN(ac) — RN(bd)) + i - RN(RN(ad) + RN(bc)

@ componentwise error: can be huge (yet finite);

@ Normwise accuracy: studied by Brent, Percival, and Zimmermann
(2007). The computed value has the form

20 =z(1+e¢), le| < V5 u,
— the normwise relative error |Zy/z — 1| is always < /5 - u.

For any p > 2 they provide FP numbers a, b, ¢, d for which
Z0/z — 1| = V5 u — O(u?) — the relative error bound v/5u is
asymptotically optimal as u — 0 (or, equivalently, as p — +00).

Can we do better if an FMA instruction is available?

Naive multiplication algorithm with an FMA

With an FMA, the simple way of evaluating ac — bd + i(ad + bc) becomes:

A; : (a+ ib,c + id) — RN(ac — RN(bd)) + i - RN(ad + RN(bc))

Algorithm A; is just one of 4 variants that differ only in the choice of the
products to which the FMA operations apply.

@ componentwise error: can be huge (even infinite);
@ normwise error:

o for any of these 4 variants the computed complex product Z; satisfies
|z1 — z| < 2ul|z| (1)
o we build inputs a, b, ¢, d for which [z1/z — 1| = 2u — O(u'%) as

u — 0 = the relative error bound (1) is asymptotically optimal (given
later on).

— the FMA improves the situation from a normwise point of view.

The CHT algorithm

Given FP numbers a and b, the error e = ab — RN(ab) satisfies

e = RN(ab — RN(ab))

— it is computed exactly with an FMA,;
— compensated algorithms: we "re-inject" that error later on in the
calculation.

(without an FMA and using only 4+, —, X, the cheapest algorithm we are
aware of for computing e uses 17 operations)

Cornea, Harrison, and Tang use this property in the following algorithm to
evaluate
r=ab+cd

accurately in 7 floating-point operations.

The CHT algorithm

We approximate
r=ab+cd

by 7 obtained as follows

algorithm CHT(a, b, ¢, d)
wy := RN(ab); wy := RN(cd);
e; := RN(ab — w1); &2 := RN(cd — w»); // exact operations

f = RN(wy + wo);
e := RN(e; + &);
7:=RN(f +2);
return 7;

Cornea, Harrison, and Tang show that the error is O(u).

Properties of the CHT algorithm

@ we have shown that
[F—rl<2u-]r| (2)
@ we build a “generic example” parameterized by p, that shows that the
bound (2) is asymptotically optimal (as v — 0);

@ for instance, in double precision arithmetic, with our generic example,
error

u x 1.99999999999999922284 - - -

is attained.

Application of CHT to the complex product

o Evaluate separately the real and imaginary parts of
z = ac — bd + i(ad + bc) using CHT;

@ uses 14 floating-point operations.

Ay (a+ib,c+id)— CHT(a,c,—b,d) +i-CHT(a,d, b, c)

e componentwise error < 2u (asymptotically optimal);

@ consequence: normwise error < 2u.

The normwise bound is also asymptotically optimal.

Application of CHT to the complex product

Theorem 1

Let a,b € F,, be given by
a=RO((1-27)v2P2), b=20T14 Ve E| 11, (3)

where, for t € R, RD(t) = max{f € F, : f < t} denotes rounding down in
Fp. Let also 2, be the approximation to z = (a + ib)? computed by
algorithm As. If p > 5 then, barring underflow and overflow,

122/z — 1| > 2u — 8u™5 — 602,

To be compared with the upper bound 2u.

Kahan's algorithm for ab + cd

algorithm Kahan(a, b, c, d)
w = RN(cd);
e := RN(cd — w); // this operation is exact: e = cd — w.
f := RN(ab + w);
7:=RN(f +e);
return 7;

@ 4 operations (CHT needed 7);
@ e = cd — RN(cd) computed exactly thanks to the FMA instruction;

o it is added to f in order to yield the approximation 7 to r = ab + cd.

We have shown that
[T —r| <2ulr|, (4)

and that this bound is asymptotically optimal (as u — 0).

Application of Kahan's algorithm to the complex product

o Evaluate separately the real and imaginary parts of
z = ac — bd + i(ad + bc) using Kahan's algorithm;
@ uses 8 floating-point operations (instead of 14 with CHT);

’ A3z : (a+ib,c+ id) — Kahan(a,c,—b,d) + i - Kahan(a, d, b, c)

@ componentwise error < 2u (asymptotically optimal);

@ consequence: normwise error < 2u.

The normwise bound is asymptotically optimal.

Theorem 2

Let a,b € F,, be given by
a = pred (\/ 2P—2>, b=2r"14 L\/ 2P—2J +1,

where, for t € R-q, pred(t) = max{f € F, : f < t} denotes the
predecessor of t in . Let also z; and Z3 be the approximations to

z = (a+ ib)? computed by algorithms A; and As, respectively. If p > 5
then, barring underflow and overflow,

Zn/z — 1| > 2u — 8u™® — 4u?, h e {1,3}.

Conclusion on complex multiplication

@ the availability of an FMA makes it possible to replace the classical
normwise accuracy bound \/5u by 2u with simple algorithms,

@ this new bound is sharp (asymptotically optimal with Algorithms A;,
Az and A3),

@ if normwise error only is at stake, the simplest algorithm (naive
multiplication with FMA: Algorithm A;) is juste fine,

@ however if we also want to reduce the componentwise error the
multiplication based on Kahan's algorithm (i.e., Algorithm 43) is to
be preferred.

More on this: http://perso.ens-1lyon.fr/jean-michel.muller/
JeKoLoMul3-submission.pdf

http://perso.ens-lyon.fr/jean-michel.muller/JeKoLoMu13-submission.pdf
http://perso.ens-lyon.fr/jean-michel.muller/JeKoLoMu13-submission.pdf

A few words on complex division with an FMA

_ac+bd+_bc—ad
2442 Ic2+d2'

@ here: componentwise error only;

e basic idea: separately compute ac + bd, bc — ad, and ¢? + d? using
one of the previously seen methods (naive without FMA, naive with
FMA, CHT, Kahan);

o c? 4 d? is a special case: cancellation cannot occur;

@ notice that ac + bd and bc — ad cannot cancel simultaneously:

e if abcd > 0 then ac and bd have the same sign;
o otherwise bc and —ad have the same sign (unless one of the inputs is
zero: case easily dealt with).

@ straight-line algorithms: no tests.

The special case c? + d?

e more generally, computation of ac 4+ bd with ab and cd of the same
sign;

@ the naive method, the naive method with FMA, Kahan's algorithm
have the same relative error bound 2u;

e the bound is sharp, even if we restrict ourselves to ¢ + d?.

Consequence: for c? + d?, the naive algorithm (3 operations) or the
naive-with-FMA algorithm (2 operations) suffice.

A 5u + O(u?) componentwise error bound

@ we use Kahan's algorithm or CHT for ac + bd and bc — ad
@ we use naive-with-fma for c? + d?;
e consider the real part (ac + bd)/(c? + d?). We have:

Re(q)(1+¢)

Re@=@rayar o

where |e|, |€'| < 2u, and where the relative error |¢”| of FP division is
bounded by wu.

— the real part of § has the form (1 + 6) - Re (g), with

1+2u

0 1 -1
ol < (4 u)— 1,

@ the same holds for the imaginary part.

Consequence: componentwise error < 5u + 13u?.

A 5u + O(u?) componentwise error bound

The obtained algorithm is:

algorithm CompDivS(a + ib, ¢ + id)
5 := RN(c2 + RN(d?));
Gre := Kahan(a, b, c, d); // evaluates ac + bd
gm := Kahan(b, —a, c, d); // evaluates bc — ad
are = F\:N(Ere/g); aim = RN(§1m/g),
return Ge + i Zim;

When p is even the bound is asymptotically optimal

If we choose:

a 2”—5-23_1,

b = —275.(2»—5.257143),
c = 2°P-2,

d = 25t (2p~14 2571,

then the quotient g computed by CompDivS satisfies

[Re (q) — Re(q)|

=5u— O(4%/?).
Reg) v o)

(5)

When p is odd. ..

We have no proof of asymptotic optimality, however:

p | example
53 | a =252 41

b = —142398041
252

c=
d = 94906267 - 252 = (1 + [25%/2]) . 252
|Ze — Rez|/|Rez| =4.9987... x u

113 | a=212 41

b = —152857240142482713

c = 2112

d = 101904826760412363 - 2112

|Zze — Rez|/|[Rez| =4.9999... x u

Table 1: Relative error in Z,, computed using CompDivS close to the upper
bound 5u + 13u2.

Conclusion on complex division

@ accurate complex division is feasible with simple algorithms:
componentwise error bound 5u + 13u?;

e that bound is asymptotically optimal (at least for even p);

@ to be done: use scaling techniques to avoid spurious
overflow/underflow.

Thank you for your attention.

