
On complex multiplication and division with an FMA

Jean-Michel Muller

Joint work with C.-P. Jeannerod, P. Kornerup and N. Louvet
INVA 2014

Thank you!

Complex multiplication and division

Given complex numbers x = a + ib and y = c + id , their product z = xy
can be expressed as

z = ac − bd + i(ad + bc);

and their quotient x/y can be expressed as

q =
ac + bd
c2 + d2 + i

bc − ad
c2 + d2 .

In floating-point arithmetic, several issues:
accuracy,
spurious overflow/underflow (e.g., c2 + d2 overflows, whereas the real
and imaginary parts of q are representable);

Here: focus on accuracy problems. Scaling techniques to avoid spurious
overflow/underflow dealt with in further work.
We assume that an FMA instruction is available.

Floating-Point numbers, roundings

Precision-p binary FP number: either 0 or

x = X · 2ex−p+1,

where X and ex ∈ Z, with 2p−1 6 |X | 6 2p − 1. We denote this set by Fp.

unlimited exponent range → results valid in usual FP arithmetic unless
underflow/overflow occurs;
X : integral significand of x ;
21−p · X : significand of x ;
ex : exponent of x .

This presentation: binary arithmetic only.

Floating-Point numbers, roundings

In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded;
correct rounding: Rounding function ◦, and when (a>b) is performed,
the returned value is ◦(a>b);
default rounding function: round to nearest even: RN;
for any real number t, |RN(t)− t| 6 u · |t|, where u = 2−p;

→ all arithmetic operations performed with relative error 6 u;
we assume that an FMA instruction is available: computes RN(ab+c).

Here: we try to analyze several simple algorithms.

Componentwise and normwise relative errors

When ẑ approximates z :
componentwise error:

max
{∣∣∣∣Re (z)− Re (ẑ)

Re (z)

∣∣∣∣ ; ∣∣∣∣ Im (z)− Im (ẑ)
Im (z)

∣∣∣∣} ;

normwise error: ∣∣∣∣z − ẑ
z

∣∣∣∣ .
Choosing between both kinds of error depends on the application.

componentwise error 6 ε⇒ normwise error 6 ε;
the converse is not true.

Naive multiplication algorithm without an FMA

A0 : (a+ ib, c + id) 7→ RN
(
RN(ac)−RN(bd)

)
+ i ·RN

(
RN(ad) +RN(bc)

)
componentwise error: can be huge (yet finite);
Normwise accuracy: studied by Brent, Percival, and Zimmermann
(2007). The computed value has the form

ẑ0 = z(1 + ε), |ε| <
√
5 u,

→ the normwise relative error |ẑ0/z − 1| is always 6
√
5 · u.

For any p > 2 they provide FP numbers a, b, c , d for which
|ẑ0/z − 1| =

√
5 u − O(u2)→ the relative error bound

√
5 u is

asymptotically optimal as u → 0 (or, equivalently, as p → +∞).

Can we do better if an FMA instruction is available?

Naive multiplication algorithm with an FMA

With an FMA, the simple way of evaluating ac − bd + i(ad + bc) becomes:

A1 : (a + ib, c + id) 7→ RN
(
ac − RN(bd)

)
+ i · RN

(
ad + RN(bc)

)
Algorithm A1 is just one of 4 variants that differ only in the choice of the
products to which the FMA operations apply.

componentwise error: can be huge (even infinite);
normwise error:

for any of these 4 variants the computed complex product ẑ1 satisfies

|ẑ1 − z | 6 2u|z | (1)

we build inputs a, b, c , d for which |ẑ1/z − 1| = 2u − O(u1.5) as
u → 0⇒ the relative error bound (1) is asymptotically optimal (given
later on).

→ the FMA improves the situation from a normwise point of view.

The CHT algorithm

Given FP numbers a and b, the error e = ab − RN(ab) satisfies

e = RN
(
ab − RN(ab)

)
→ it is computed exactly with an FMA;
→ compensated algorithms: we "re-inject" that error later on in the

calculation.
(without an FMA and using only +, −, ×, the cheapest algorithm we are
aware of for computing e uses 17 operations)

Cornea, Harrison, and Tang use this property in the following algorithm to
evaluate

r = ab + cd

accurately in 7 floating-point operations.

The CHT algorithm

We approximate
r = ab + cd

by r̂ obtained as follows

algorithm CHT(a, b, c , d)
ŵ1 := RN(ab); ŵ2 := RN(cd);
e1 := RN(ab − ŵ1); e2 := RN(cd − ŵ2); // exact operations
f̂ := RN(ŵ1 + ŵ2);
ê := RN(e1 + e2);
r̂ := RN

(
f̂ + ê

)
;

return r̂ ;

Cornea, Harrison, and Tang show that the error is O(u).

Properties of the CHT algorithm

we have shown that
|̂r − r | 6 2u · |r | (2)

we build a “generic example” parameterized by p, that shows that the
bound (2) is asymptotically optimal (as u → 0);
for instance, in double precision arithmetic, with our generic example,
error

u × 1.99999999999999922284 · · ·

is attained.

Application of CHT to the complex product

Evaluate separately the real and imaginary parts of
z = ac − bd + i(ad + bc) using CHT;
uses 14 floating-point operations.

A2 : (a + ib, c + id) 7→ CHT(a, c ,−b, d) + i · CHT(a, d , b, c)

componentwise error 6 2u (asymptotically optimal);
consequence: normwise error 6 2u.

The normwise bound is also asymptotically optimal.

Application of CHT to the complex product

Theorem 1

Let a, b ∈ Fp be given by

a = RD
((
1− 2−p)√2p−2

)
, b = 2p−1 +

⌊√
2p−2

⌋
+ 1, (3)

where, for t ∈ R, RD(t) = max{f ∈ Fp : f 6 t} denotes rounding down in
Fp. Let also ẑ2 be the approximation to z = (a + ib)2 computed by
algorithm A2. If p > 5 then, barring underflow and overflow,

|ẑ2/z − 1| > 2u − 8u1.5 − 6u2.

To be compared with the upper bound 2u.

Kahan’s algorithm for ab + cd

algorithm Kahan(a, b, c , d)
ŵ := RN(cd);
e := RN(cd − ŵ); // this operation is exact: e = cd − ŵ .
f̂ := RN(ab + ŵ);

r̂ := RN
(
f̂ + e

)
;

return r̂ ;

4 operations (CHT needed 7);
e = cd − RN(cd) computed exactly thanks to the FMA instruction;

it is added to f̂ in order to yield the approximation r̂ to r = ab + cd .

We have shown that
|̂r − r | 6 2u|r |, (4)

and that this bound is asymptotically optimal (as u → 0).

Application of Kahan’s algorithm to the complex product

Evaluate separately the real and imaginary parts of
z = ac − bd + i(ad + bc) using Kahan’s algorithm;
uses 8 floating-point operations (instead of 14 with CHT);

A3 : (a + ib, c + id) 7→ Kahan(a, c ,−b, d) + i · Kahan(a, d , b, c)

componentwise error 6 2u (asymptotically optimal);
consequence: normwise error 6 2u.

The normwise bound is asymptotically optimal.

Theorem 2

Let a, b ∈ Fp be given by

a = pred
(√

2p−2
)
, b = 2p−1 +

⌊√
2p−2

⌋
+ 1,

where, for t ∈ R>0, pred(t) = max{f ∈ Fp : f < t} denotes the
predecessor of t in Fp. Let also ẑ1 and ẑ3 be the approximations to
z = (a + ib)2 computed by algorithms A1 and A3, respectively. If p > 5
then, barring underflow and overflow,

|ẑh/z − 1| > 2u − 8u1.5 − 4u2, h ∈ {1, 3}.

Conclusion on complex multiplication

the availability of an FMA makes it possible to replace the classical
normwise accuracy bound

√
5u by 2u with simple algorithms,

this new bound is sharp (asymptotically optimal with Algorithms A1,
A2 and A3),
if normwise error only is at stake, the simplest algorithm (naive
multiplication with FMA: Algorithm A1) is juste fine,
however if we also want to reduce the componentwise error the
multiplication based on Kahan’s algorithm (i.e., Algorithm A3) is to
be preferred.

More on this: http://perso.ens-lyon.fr/jean-michel.muller/
JeKoLoMu13-submission.pdf

http://perso.ens-lyon.fr/jean-michel.muller/JeKoLoMu13-submission.pdf
http://perso.ens-lyon.fr/jean-michel.muller/JeKoLoMu13-submission.pdf

A few words on complex division with an FMA

q =
ac + bd
c2 + d2 + i

bc − ad
c2 + d2 .

here: componentwise error only;
basic idea: separately compute ac + bd , bc − ad , and c2 + d2 using
one of the previously seen methods (naive without FMA, naive with
FMA, CHT, Kahan);
c2 + d2 is a special case: cancellation cannot occur;
notice that ac + bd and bc − ad cannot cancel simultaneously:

if abcd > 0 then ac and bd have the same sign;
otherwise bc and −ad have the same sign (unless one of the inputs is
zero: case easily dealt with).

straight-line algorithms: no tests.

The special case c2 + d2

more generally, computation of ac + bd with ab and cd of the same
sign;
the naive method, the naive method with FMA, Kahan’s algorithm
have the same relative error bound 2u;
the bound is sharp, even if we restrict ourselves to c2 + d2.

Consequence: for c2 + d2, the naive algorithm (3 operations) or the
naive-with-FMA algorithm (2 operations) suffice.

A 5u +O(u2) componentwise error bound

we use Kahan’s algorithm or CHT for ac + bd and bc − ad
we use naive-with-fma for c2 + d2;
consider the real part (ac + bd)/(c2 + d2). We have:

Re (q̂) =
Re (q)(1 + ε)

(c2 + d2)(1 + ε′)
(1 + ε′′),

where |ε|, |ε′| 6 2u, and where the relative error |ε′′| of FP division is
bounded by u.

→ the real part of q̂ has the form (1 + θ) · Re (q), with

|θ| 6 1 + 2u
1− 2u

(1 + u)− 1,

the same holds for the imaginary part.

Consequence: componentwise error 6 5u + 13u2.

A 5u +O(u2) componentwise error bound

The obtained algorithm is:

algorithm CompDivS(a + ib, c + id)
δ̂ := RN(c2 + RN(d2));
ĝre := Kahan(a, b, c , d); // evaluates ac + bd
ĝim := Kahan(b,−a, c , d); // evaluates bc − ad
q̂re := RN

(
ĝre/δ̂

)
; q̂im := RN

(
ĝim/δ̂

)
;

return q̂re + i ẑim;

When p is even the bound is asymptotically optimal

If we choose:
a = 2p − 5 · 2

p
2−1,

b = −2−
p
2 ·
(
2p − 5 · 2

p
2−1 + 3

)
,

c = 2p − 2,
d = 2

p
2 +1 ·

(
2p−1 + 2

p
2−1),

then the quotient q̂ computed by CompDivS satisfies

|Re (q̂)− Re (q)|
|Re (q)|

= 5u − O(u3/2). (5)

When p is odd. . .

We have no proof of asymptotic optimality, however:

p example

53 a = 252 + 1
b = −142398041
c = 252

d = 94906267 · 252 =
(
1 +

⌈
253/2⌉) · 252

|ẑre − Re z |/|Re z | = 4.9987 . . .× u

113 a = 2112 + 1
b = −152857240142482713
c = 2112

d = 101904826760412363 · 2112

|ẑre − Re z |/|Re z | = 4.9999 . . .× u

Table 1: Relative error in ẑre computed using CompDivS close to the upper
bound 5u + 13u2.

Conclusion on complex division

accurate complex division is feasible with simple algorithms:
componentwise error bound 5u + 13u2;
that bound is asymptotically optimal (at least for even p);
to be done: use scaling techniques to avoid spurious
overflow/underflow.

Thank you for your attention.

