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Abstract

We aim at finding the best possible seed values when computing a1/p using the Newton–Raphson iteration in a given interval.7
A natural choice of the seed value would be the one that best approximates the expected result. It turns out that in most cases, the
best seed value can be quite far from this natural choice. When we evaluate a monotone function f (a) in the interval [amin, amax],9
by building the sequence xn defined by the Newton–Raphson iteration, the natural choice consists in choosing x0 equal to the
arithmetic mean of the endpoint values. This minimizes the maximum possible distance between x0 and f (a). And yet, if we11
perform n iterations, what matters is to minimize the maximum possible distance between xn and f (a). In several examples, the
value of the best starting point varies rather significantly with the number of iterations.13
© 2005 Elsevier B.V. All rights reserved.

Keywords: Computer arithmetic; Newton–Raphson iteration; Division; Square-root; Square-root reciprocal; Root extraction15

1. Introduction

Newton–Raphson (NR) iteration is a well-known and useful technique for finding zeros of functions. It was first17
introduced by Newton around 1669 [12], to solve polynomial equations (without explicit use of the derivative), and
generalized by Raphson a few years later [17]. NR-based division and/or square-root have been implemented on many19
recent processors [14,8,15,13,9].

As a matter of fact, the classical “Newton–Raphson” iteration for evaluating square-roots (deduced from the general21
iteration by looking for the zeros of function x2 − a) goes back to much earlier. Al-Khwarizmi mentions this method
in his arithmetic book [2]. Moreover, it was already used by Heron of Alexandria (this is why it is frequently quoted23
as “Heron iteration”), and seems to have been known by the Babylonians 2000 years before Heron [6].

Let us now turn to the modern NR iteration. Assume we want to compute a root � of some function �. The NR25
iteration consists in building a sequence

xn+1 = xn − �(xn)

�′(xn)
. (1)27

If � has a continuous derivative and if � is a single root (i.e., �′(�) �= 0), then the sequence converges quadratically to
�, provided that x0 is close enough to �.29
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The choice of a good starting value for the square-root iteration has been the subject of some research since the1
1960s. An early reference is [7] and later [1] also attempted to minimize the maximal error expressed as

max
x∈[a,b]

∣∣∣∣log
G(x)√

x

∣∣∣∣ ,3

using a polynomial or rational function G(x) of some prescribed degree. Similarly [4,11] minimized the relative error:

max
x∈[a,b]

∣∣∣∣
√

x − G(x)√
x

∣∣∣∣ ,5

where the latter reference showed, that for such functions the optimal starting value is independent of the number of
iterations to be performed, except when the approximation is chosen to be a constant. Ref. [5] provided nine different7
such approximating functions. Ref. [18] showed some simple relations between several of these optimization criteria.
Ref. [19] investigated similarly the alternative iteration for the square-root reciprocal9

xn+1 = xn(3 − ax2
n)/2,

which avoids division, also minimizing the relative error.11
More recently [10] discuss using absolute instead of relative error for the classical square-root iteration, attempting

to minimize the absolute error after a predetermined number of iterations. They concentrate on approximations in the13
form of linear functions, and a very small number of iterations (n = 1, 2).

Due to the increased interest in speeding up division, algorithms based on obtaining good reciprocals has spurred a15
lot of activity in also obtaining good initial values for the NR reciprocal iteration

xn+1 = xn(2 − axn).17

In 1994 [16] developed explicit formulas for the optimal starting values for this iteration, as functions of the number n

of iterations, and the interval (a, b)19

�n = a2−n + b2−n

a2−n
b + b2−n

a
, (2)

and [3] discuss the construction of initial value tables for reciprocation.21
Here we shall develop similar optimal starting values for obtaining roots of the function

�(x) = xp − a,23

i.e., for use in NR iterations to approximate f (a) = a1/p.
In general we find the following iteration:25

xn+1 = xn

p

(
p − 1 + a

x
p
n

)
,

which specializes into27
p = −1

�(x) = 1

x
− a and iteration xn+1 = xn(2 − axn).29

This sequence goes to 1/a: hence it can be used for computing reciprocals.
p = 231

�(x) = x2 − a and iteration xn+1 = 1

2

(
xn + a

xn

)
.
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This sequence goes to
√

a. Note that this iteration requires a division, usually a fairly “expensive” operation, and1
thus often avoided.

p = −23

�(x) = 1

x2
− a and iteration xn+1 = xn

2
(3 − ax2

n).

This sequence goes to 1/
√

a. It is also frequently used to compute
√

a, obtained by multiplying the final result by a.5
To make the iterations converge quickly, we have to make sure that x0 is close enough to the wanted result. It is also

important to make sure that the number of required iterations is a small constant. This is frequently done by using the7
first, say k, bits of the input value a to address a table of suitable initial values. Hence, for all the input values with the
same first k bits (they constitute some interval [amin, amax]), the iterations will be started with the same x0. A natural9
choice consists in choosing the value of x0 that minimizes

max
a∈[amin,amax] |f (a) − x0|.11

If f is monotone, this is traditionally done (e.g., [3]) by taking x0 equal to the arithmetic mean

1
2 (f (amin) + f (amax)).13

As said above, this minimizes the maximum possible distance between x0 and f (a). And yet, if we perform n

iterations, what really matters is to minimize the maximum possible distance between xn and f (a). In the following,15
we develop expressions for starting values for a specific number of iterations. These choices turn out to be much better
than the natural choice. In the case of reciprocation, we actually find again the optimal choice of Eq. (2) from [16].17

2. Estimating the error

We wish to compute19

� = a1/p,

where p is a nonzero integer (p can be either positive or negative). This will be done by computing the zero of21

�(x) = xp − a,

using the NR iteration. The obtained iteration is23

xn+1 = xn

p
(p − 1 + ax

−p
n ). (3)

We wish to find the best starting point for a ∈ [amin, amax], assuming we will perform n iterations. To do that, we25
want to estimate |xn − �| from |x0 − �|.

Since the NR iteration has a quadratic convergence (that is, if x0 is close to �, then |xn+1 −�| is roughly proportional27
to the square of xn − �), we shall try to estimate the coefficient of proportionality.

From (3), we get29

xn+1 − �

(xn − �)2
= 1

2

p − 1

�
− 1

6

p2 − 1

�2
(xn − �) + 1

24

(p + 2)(p2 − 1)

�3
(xn − �)2

− 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(xn − �)3 + O((x − �)4). (4)

The formula shows that ifp = −1 (i.e., in the case of the computation of a reciprocal), the coefficient of proportionality31
is a constant (it does not depend on xn). In that particular case, the solutions given later will be exact, not approximate.33
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For p �= −1 we have not succeeded in getting from (4) a direct expression for xn − � in terms of x0 − �. And yet,1
since we assume that the interval [amin, amax] is small, it makes sense to assume that, as soon as n�1, the terms

−1

6

p2 − 1

�2
(xn − �) + 1

24

(p + 2)(p2 − 1)

�3
(xn − �)2

− 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(xn − �)3 + O((xn − �)4) (5)

become negligible compared to (p − 1)/(2�). Also, we may assume that for n = 0, the terms3

1

24

(p + 2)(p2 − 1)

�3
(x0 − �)2 − 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(x0 − �)3

+ O((x0 − �)4) (6)

can be neglected compared to

−1

6

p2 − 1

�2
(x0 − �).5

Thus we have

x1 − � ≈
(

p − 1

2�
− p2 − 1

6�2
(x0 − �)

)
(x0 − �)2 (7)7

and, for n�1:

xn+1 − � ≈ p − 1

2�
(xn − �)2. (8)9

From (7) and (8), we find

xn − � ≈
(

p − 1

2�

)2n−1−1 (
p − 1

2�
− p2 − 1

6�2
(x0 − �)

)2n−1

(x0 − �)2n

. (9)11

Now, we have to find a starting point x0 that minimizes the maximum absolute value of |xn −�| (the maximum is taken
for all a ∈ [amin, amax], i.e., for all � ∈ [a1/p

min , a
1/p
max]—by convention, if y < x, then [x, y] is the interval [y, x]).13

It can be shown that the maximum value is attained for � = a
1/p

min or � = a
1/p
max, hence it will be minimized when the

values for � = a
1/p

min and � = a
1/p
max are equal. Denoting �min = a

1/p

min and �max = a
1/p

min we get the following equation:15
(

p − 1

2�min

)2n−1−1 (
p − 1

2�min
− p2 − 1

6�min
2
(x0 − �min)

)2n−1

=
(

p − 1

2�max

)2n−1−1 (
p − 1

2�max
− p2 − 1

6�max
2
(x0 − �max)

)2n−1

. (10)

After some simplifications, this equation becomes17

�1−1/2n−1

max

(
3

�min
− (x0 − �min)

p + 1

�min
2

)
(x0 − �min)

2

= ±�1−1/2n−1

min

(
3

�max
− (x0 − �max)

p + 1

�max
2

)
(x0 − �max)

2. (11)

This new equation is a 3rd degree polynomial equation in x0 (or more precisely, a set of two 3rd degree equations,19
depending on the “±”). It is therefore very easily solvable numerically, obtaining the root located in the interval
[a1/p

min , a
1/p
max].21

Now, let us as an example focus on the case of reciprocation. This is what we do in practice, and we call �n the
obtained starting point for n iterations.23
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Fig. 1. Radix-2 logarithm of the maximum distance (for all a in [1, 2]) between iterate x4 and 1/a, depending on the choice of x0 in [1/2, 1].

3. Example, p = −1, Newton–Raphson reciprocation1

As mentioned above, NR iteration for computing the reciprocal of a number a consists in performing the iteration

xn+1 = xn(2 − axn). (12)3

In practice, when we wish to compute the reciprocal of a number a that will be assumed to be between 1 and 2, the
first k bits of the binary representation of a − 1 (the “implicit one” being omitted) are used as address bits to find in a5
table an adequate value of the seed x0. This means that the same x0 will be used for all values of a in an interval

[amin, amax],7

with amax − amin of the form 2−k in the most frequent cases. Fig. 1 shows that the choice of the starting point can have
a huge influence on the final approximation error (for other values of p, we may get very similar figures).9

As said in the introduction, it is frequently suggested to choose the arithmetic mean, e.g., as used in [3],

�0 = 1

2

(
1

amin
+ 1

amax

)
.11

Let us try to minimize the distance between xn and 1/a. First, let us compute that distance. From (12), we get

xn+1 − 1

a
= 2xn − ax2

n − 1

a
= −a

(
xn − 1

a

)2

,13

which is the very same equation as we would obtain with p = −1 from (4).
Hence, by induction15

xn − 1

a
= −a2n−1

(
x0 − 1

a

)2n

. (13)

What we now have to find is the value x0 (between 1/amin and 1/amax) such that the maximum value (for a between17
amin and amax) of |xn − 1/a| is as small as possible. By examining the derivative of function:

g(a) = a2n−1
(

x0 − 1

a

)2n

19

one immediately deduces that, for a given x0, the maximum value of |xn − 1/a| is obtained for a = amin or a = amax.
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That is, the maximum error is either1

E1 = a2n−1
min

(
x0 − 1

amin

)2n

or3

E2 = a2n−1
max

(
x0 − 1

amax

)2n

.

As before, this maximum value will be minimized when E1 = E2. This gives an equation that x0 must satisfy to be5
the best starting point for n iterations

a2n−1
min

(
x0 − 1

amin

)2n

= a2n−1
max

(
x0 − 1

amax

)2n

. (14)7

To solve this equation define

�n = a1−2−n

min and �n = a1−2−n

max .9

From (14) we get
[
�nx0 − �n

amin

]2n

=
[
�nx0 − �n

amax

]2n

.11

And, since

1

amax
�x0 � 1

amin13

this gives

�nx0 − �n

amin
= �n

amax
− �nx0.15

This is now very easily solved, and gives

x0 = (�n/amax) + (�n/amin)

�n + �n

.
17

From this we deduce the following result, which is identical to the result quoted above from [16].

Theorem 1. The maximum possible distance between xn and 1/a is smallest when x0 is equal to the number19

�n = a2−n

max + a2−n

min

a2−n

maxamin + a2−n

min amax
. (15)

Some values of �n are of particular interest:21
• �0 is the arithmetic mean of 1/amin and 1/amax: we find again (which is not surprising) the value that minimizes the

maximum distance between 1/a and x0;23
• �1 is the geometric mean of 1/amin and 1/amax, that is,

�1 = 1√
aminamax

.
25

• the limit value (when n → ∞) of �n is

�∞ = 2

amin + amax27
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that is, the reciprocal of the midpoint of the interval [amin, amax]. This shows (and this will be confirmed below by1
the experiments) that this “naive” choice for x0 is far from being naive, and turns out to be a much better choice than
the sophisticated value �0 that minimizes the maximum distance between 1/a and x0.3

3.1. First example: amin = 1 and amax = 2

This example corresponds to the direct computations of reciprocals of mantissas of floating-point numbers without5
any tabulation. By (15) we find the following starting values:



�0 = 3/4,

�1 = 1/
√

2,

�2 = 0.68644 . . .

�3 = 0.67642 . . .

�∞ = 2/37

We get, depending on the choice of x0, the following approximation errors:

x0 max |x1 − 1/a| max |x2 − 1/a| max |x3 − 1/a| max |x4 − 1/a| max |x5 − 1/a|
�0 1.25 × 10−1 3.12 × 10−2 1.95 × 10−3 7.63 × 10−6 1.16 × 10−10

�1 8.56 × 10−2 1.47 × 10−2 4.33 × 10−4 3.75 × 10−7 2.82 × 10−13

�2 9.83 × 10−2 9.67 × 10−3 1.87 × 10−4 6.98 × 10−8 9.76 × 10−15

�3 1.05 × 10−1 1.10 × 10−2 1.20 × 10−4 2.89 × 10−8 1.67 × 10−15

�4 1.08 × 10−1 1.16 × 10−2 1.36 × 10−4 1.83 × 10−8 6.75 × 10−16

�5 1.10 × 10−1 1.20 × 10−2 1.44 × 10−4 2.07 × 10−8 4.28 × 10−16

�∞ 1.11 × 10−1 1.23 × 10−2 1.52 × 10−4 2.32 × 10−8 5.40 × 10−16

9
Observe that the minimal values of the maximum errors occur after n iterations, when �n is used as the starting value
(emphasized in bold face).11

For performing five iterations, choosing �5 is 272245 times more accurate than choosing �0. This corresponds to
more than 18 bits of difference in accuracy.13

3.2. Second example: amin = 3/2 and amax = 7/4

Of course, when amax − amin decreases, the difference tends to be reduced (since the interval where x0 can lie15
shrinks). This is shown in the following table:

x0 max |x1 − 1/a| max |x2 − 1/a| max |x3 − 1/a| max |x4 − 1/a| max |x5 − 1/a|
�0 3.97 × 10−3 2.76 × 10−5 1.33 × 10−9 3.09 × 10−18 1.67 × 10−35

�1 3.67 × 10−3 2.36 × 10−5 9.71 × 10−10 1.65 × 10−18 4.76 × 10−36

�2 3.81 × 10−3 2.17 × 10−5 8.26 × 10−10 1.19 × 10−18 2.49 × 10−36

�3 3.87 × 10−3 2.25 × 10−5 7.61 × 10−10 1.01 × 10−18 1.80 × 10−36

�4 3.91 × 10−3 2.29 × 10−5 7.89 × 10−10 9.33 × 10−19 1.52 × 10−36

�5 3.93 × 10−3 2.31 × 10−5 8.03 × 10−10 9.67 × 10−19 1.40 × 10−36

�∞ 3.94 × 10−3 2.33 × 10−5 8.17 × 10−10 1.00 × 10−18 1.51 × 10−36

17

4. The general case of other roots

In the following we shall now look at other cases of finding roots of equations of the form:19

�(x) = xp − a
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for alternative values of p. For p�2 or p < −1 recall that we can solve the 3rd degree polynomials (11) numerically,1
but that the starting values obtained this way are only approximations, as the error estimates of (9) are solutions to
slightly perturbed problems.3

The table below shows some starting values �n for amin = 1 and amax = 2 for various values of p and 0�n�5,
together with the limiting values �∞.

5
p = −3 p = −2 p = −1 p = 2 p = 3

�0 0.89685026 0.85355339 3/4 1.20710678 1.12996052
�1 0.88695734 0.83671927 0.70710678 1.20829381 1.13288765
�2 0.88401897 0.83051406 0.68644244 1.19901822 1.12904943
�3 0.88255736 0.82744145 0.67642857 1.19439264 1.12713081
�4 0.88182871 0.82591381 0.67151443 1.19208497 1.12617201
�5 0.88146495 0.82515229 0.66908205 1.19093267 1.12569277
�∞ 0.88110158 0.82439236 2/3 1.18978149 1.12521367

4.1. Case p = −2, square-root reciprocal7

The conventional iteration xn+1 = 1
2 (xn + a

xn
) for square-root is not frequently used, since it requires a division

at each step, and division is significantly slower than multiplication on almost all systems. Hence one may prefer the9
following iteration:

xn+1 = xn

2
(3 − ax2

n), (16)11

converging to 1/
√

a. To get
√

a it suffices to multiply the final result by a.
We have performed the NR iteration with the starting values obtained above, and found the following maximum13

errors, with amin = 1 and amax = 2 we obtain

x0 max |x1 − 1√
a
| max |x2 − 1√

a
| max |x3 − 1√

a
| max |x4 − 1√

a
| max |x5 − 1√

a
|

�0 4.86 × 10−2 4.90 × 10−3 5.09 × 10−5 5.49 × 10−9 6.39 × 10−17

�1 3.78 × 10−2 2.98 × 10−3 1.88 × 10−5 7.50 × 10−10 1.19 × 10−18

�2 4.07 × 10−2 2.45 × 10−3 1.26 × 10−5 3.37 × 10−10 2.41 × 10−19

�3 4.21 × 10−2 2.62 × 10−3 1.03 × 10−5 2.24 × 10−10 1.06 × 10−19

�4 4.28 × 10−2 2.71 × 10−3 1.10 × 10−5 1.82 × 10−10 6.99 × 10−20

�5 4.32 × 10−2 2.75 × 10−3 1.14 × 10−5 1.95 × 10−10 5.68 × 10−20

�∞ 4.35 × 10−2 2.80 × 10−3 1.18 × 10−5 2.08 × 10−10 6.50 × 10−20

15
Repeating the computations, but now for a smaller interval, amin = 1 and amax = 1 + 2−4 we find the following

much smaller maximal errors.
17

x0 max |x1 − 1√
a
| max |x2 − 1√

a
| max |x3 − 1√

a
| max |x4 − 1√

a
| max |x5 − 1√

a
|

�0 3.46 × 10−4 1.85 × 10−7 8.96 × 10−19 4.37 × 10−27 2.96 × 10−53

�1 3.39 × 10−4 1.78 × 10−7 8.77 × 10−19 3.72 × 10−27 2.13 × 10−53

�2 3.42 × 10−4 1.75 × 10−7 8.70 × 10−19 3.49 × 10−27 1.89 × 10−53

�3 3.43 × 10−4 1.77 × 10−7 8.67 × 10−19 3.39 × 10−27 1.77 × 10−53

�4 3.44 × 10−4 1.77 × 10−7 8.69 × 10−19 3.34 × 10−27 1.72 × 10−53

�5 3.44 × 10−4 1.78 × 10−7 8.70 × 10−19 3.36 × 10−27 1.69 × 10−53

�∞ 3.44 × 10−4 1.78 × 10−7 8.70 × 10−19 3.39 × 10−27 1.72 × 10−53
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Although the effect of using the optimal starting value is much less significant here over a narrower interval, again1
we find the minimal values occurring after n iterations when using �n as the starting point.

4.2. Cube root reciprocal3

With amin = 1 and amax = 2 for p = −3 we obtain

x0 max |x1 − 1
3√a

| max |x2 − 1
3√a

| max |x3 − 1
3√a

| max |x4 − 1
3√a

| max |x5 − 1
3√a

|
�0 2.92 × 10−2 2.10 × 10−3 1.11 × 10−5 3.09 × 10−10 2.41 × 10−19

�1 2.37 × 10−2 1.39 × 10−3 4.83 × 10−6 5.88 × 10−11 8.71 × 10−21

�2 2.49 × 10−2 1.22 × 10−3 3.71 × 10−6 3.47 × 10−11 3.04 × 10−21

�3 2.55 × 10−2 1.28 × 10−3 3.26 × 10−6 2.65 × 10−11 1.78 × 10−21

�4 2.58 × 10−2 1.31 × 10−3 3.42 × 10−6 2.34 × 10−11 1.36 × 10−21

�5 2.59 × 10−2 1.32 × 10−3 3.50 × 10−6 2.45 × 10−11 1.20 × 10−21

�∞ 2.61 × 10−2 1.34 × 10−3 3.58 × 10−6 2.57 × 10−11 1.32 × 10−21

5
In this case, if we perform five iterations, starting the iterations from �5 leads to a result that is 201 times more

accurate than starting with �0.7

4.3. Square-root

With amin = 1 and amax = 2 for p = 2 we obtain
9

x0 max |x1 − √
a| max |x2 − √

a| max |x3 − √
a| max |x4 − √

a| max |x5 − √
a|

�0 1.78 × 10−2 1.55 × 10−4 1.20 × 10−8 7.23 × 10−17 2.61 × 10−33

�1 1.80 × 10−2 1.58 × 10−4 1.25 × 10−8 7.85 × 10−17 3.08 × 10−33

�2 1.93 × 10−2 1.34 × 10−4 9.00 × 10−9 4.05 × 10−17 8.21 × 10−34

�3 2.02 × 10−2 1.43 × 10−4 7.58 × 10−9 2.88 × 10−17 4.14 × 10−34

�4 2.07 × 10−2 1.49 × 10−4 7.87 × 10−9 2.42 × 10−17 2.92 × 10−34

�5 2.09 × 10−2 1.53 × 10−4 8.24 × 10−9 2.40 × 10−17 2.45 × 10−34

�∞ 2.12 × 10−2 1.56 × 10−4 8.61 × 10−9 2.62 × 10−17 2.43 × 10−34

Notice that in this case �5 is slightly better than �4 for four iterations, and that �∞ (and �6 but it is not shown in the11
table) is slightly better than �5 for five iterations. The same phenomenon occurs for �1 where �0 is a slightly better
starting point. This is obviously an effect of solving a slightly perturbed problem.13

4.4. Fifth roots

With amin = 1 and amax = 2 we obtain
15

x0 max |x1 − 5
√

a| max |x2 − 5
√

a| max |x3 − 5
√

a| max |x4 − 5
√

a| max |x5 − 5
√

a|
�0 1.10 × 10−2 2.08 × 10−4 7.51 × 10−8 9.82 × 10−15 1.68 × 10−28

�1 1.03 × 10−2 2.07 × 10−4 8.53 × 10−8 1.46 × 10−14 4.24 × 10−28

�2 1.06 × 10−2 1.94 × 10−4 7.52 × 10−8 1.13 × 10−14 2.56 × 10−28

�3 1.08 × 10−2 1.99 × 10−4 7.05 × 10−8 9.95 × 10−15 1.98 × 10−28

�4 1.09 × 10−2 2.03 × 10−4 7.15 × 10−8 9.33 × 10−15 1.74 × 10−28

�5 1.09 × 10−2 2.05 × 10−4 7.29 × 10−8 9.24 × 10−15 1.63 × 10−28

�∞ 1.10 × 10−2 2.07 × 10−4 7.42 × 10−8 9.59 × 10−15 1.60 × 10−28

In this case, although �n is always a better starting point than �0 for n iterations, the difference is negligible.17
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5. Conclusion1

We have suggested a strategy for getting optimal starting points for Newton–Raphson-based iterations for approxi-
mating a1/p . In many cases choosing these values, results in much smaller approximation errors, than using traditional3
seed values.
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