
Worst Cases for Correct Rounding of the Elementary

Functions in Double Precision

Vincent Lefèvre

INRIA, Projet Spaces, LORIA, Campus Scientifique

B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, FRANCE

Vincent.Lefevre@loria.fr

Jean-Michel Muller

CNRS, Projet CNRS/ENS Lyon/INRIA Arnaire

LIP, Ecole Normale Supérieure de Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, FRANCE

Jean-Michel.Muller@ens-lyon.fr

August 14, 2003

Abstract

We give the results of our search for the worst cases for correct rounding of the major elementary

functions in double precision floating-point arithmetic. These results allow the design of reasonably

fast routines that will compute these functions with correct rounding, at least in some interval, for

any of the four rounding modes specified by the IEEE-754 standard. They will also allow one to

easily test libraries that are claimed to provide correctly rounded functions.

Keywords Elementary functions, floating-point arithmetic, computer arithmetic, Table Maker’s

Dilemma.

1

1 Introduction

In general, the result of an arithmetic operation on two floating-point (FP) numbers is not exactly

representable in the same FP format: it must be rounded. In a FP system that follows the IEEE 754

standard [2, 6], the user can choose an active rounding mode from:

• rounding towards +∞, or upwards: RU(x) is the smallest FP number that is greater than or

equal to x;

• rounding towards −∞, or downwards: RD(x) is the largest FP number that is less than or

equal to x;

• rounding towards 0: RZ(x) is equal to RU(x) if x < 0, and to RD(x) otherwise;

• rounding to the nearest even: RN(x) is the FP number that is closest to x. If x is exactly halfway

between two consecutive FP numbers, RN(x) is the one whose last mantissa bit is a zero.

The standard requires that the system should behave as if the results of the operations +, −, ÷,

× and
√

x were first computed with “infinite precision”, and then rounded accordingly to the active

rounding mode. Operations that satisfy this property are called correctly (or exactly) rounded.

Correctly rounding these operations is easily feasible. Consider for instance division. One can

show that the quotient of two n-bit numbers either is exactly representable as an n-bit number, or

cannot contain a string of more than n − 1 consecutive zeros or ones in its binary representation.

From this, we deduce that rounding an approximation to such a quotient with 2n bits of accuracy will

always be equivalent to rounding the exact result. Information on correct rounding of the algebraic

functions1 can be found in references [3, 8].

Unfortunately, there is no such requirement for the elementary functions2, because the accuracy

with which these functions must be computed to make sure that we can round them correctly was

1Function f is algebraic if there exists a 2-variable polynomial P with integer coefficients such that y = f(x) ⇔ P (x, y) =

0.
2By elementary functions we mean the radix 2, e and 10 logarithms and exponentials, and the trigonometric and hyperbolic

functions.

2

not known for double and double extended precisions (for single precision, since checking 232 input

numbers is rather quickly done, there already exist libraries that provide correct rounding. See for

instance [14]).

Requiring correctly rounded results would not only improve the accuracy of computations: it

would help to make numerical software more portable. Moreover, as noticed by Agarwal et al. [1],

correct rounding facilitates the preservation of useful properties such as monotonicity, symmetry 3

and important identities. See [13] for more details.

Before going further, let us start with definitions.

Definition 1 (Infinite mantissa) We call Infinite mantissa of a nonzero real number x the number

M∞(x) = x/2blog2 |x|c.

M∞(x) is the real number x′ such that 1 ≤ x′ < 2 and x = x′ × 2k, where k is an integer.

For instance,

M∞(1/3) = 4/3 = 1.01010101 · · ·

(in binary) and

M∞(π) = π/2 = 1.1001001000011111101101 · · ·

Definition 2 (Mantissa distance) If x is a FP number, thenM∞(x) is the mantissa of its FP representation.

If a and b belong to the same “binade” (they have the same sign and satisfy 2p ≤ |a|, |b| < 2p+1, where p is an

integer), we call their Mantissa distance the distance between their infinite mantissas, that is, |a− b|/2p.

For instance, the mantissa distance between 7/2 and 8/3 is 5/12 = 0.416666 · · ·

Let f be an elementary function and x a FP number. Unless x is a very special case – e.g., log(1),

arccos(1) or sin(0) –, y = f(x) cannot be exactly computed. The only thing we can do is to compute an

approximation y∗ to y. If we wish to provide correctly rounded functions, we have to know what the

accuracy of this approximation should be to make sure that rounding y∗ is equivalent to rounding y.

In other words, from y∗ and the known bounds on the approximation, the only information we have

is that y belongs to some interval Y .
3With the RN and RZ modes.

3

Definition 3 (breakpoint) Let us call � the rounding function. We call a breakpoint a value z where the

rounding changes, that is, if t1 and t2 are real numbers satisfying t1 < z < t2 then �(t1) < �(t2).

For “directed” rounding modes (i.e., towards +∞, −∞ or 0), the breakpoints are the FP numbers.

For rounding to the nearest (RN) mode, they are the exact middle of two consecutive FP numbers.

If Y contains a breakpoint, then we cannot provide �(y): the computation must be carried again

with a larger accuracy. There are two ways of solving that problem:

• iteratively increase the accuracy of the approximation, until interval Y no longer contains a

breakpoint4. The problem is that it is difficult to predict how many iterations will be necessary;

• compute, only once and in advance, the smallest nonzero mantissa distance between the image5

of a FP number and a breakpoint. This makes it possible to deduce the accuracy with which

f(x) must be approximated, in the worst case, to make sure that rounding the approximation

is equivalent to rounding the exact result.

The first solution was suggested by Ziv [15]. It has been implemented in a library available

through the internet6. The last iteration uses 768 bits of precision. Although there is no formal proof

that this suffices (the results presented in this paper actually give the proof for the functions and

domains considered here), elementary probabilistic arguments [4, 5, 13] show that requiring a larger

precision is extremely unlikely.

We decided to implement the second solution, since the only way to implement the first one

safely is to overestimate the accuracy that is needed in the worst cases.

For some algebraic functions, it is possible to directly build worst cases as a function of the num-

ber n of mantissa bits of the floating-point format being considered. For instance, for the reciprocal
4This is not possible if f(x) is equal to a breakpoint. And yet, x = 0 is the only FP input value for which sin(x), cos(x),

tan(x), arctan(x) and ex have a finite radix-2 representation – and the breakpoints do have finite representations –, and x = 1

is the only FP input value for which ln(x), arccos(x) and cosh−1(x) have a finite representation. Concerning 2x and 10x, 2x

has a finite representation if and only if x is an integer, and 10x has a finite representation if and only if x is a nonnegative

integer. Also, log2(x) (resp. log10(x)) has a finite representation if and only if x is an integer power of 2 (resp. 10). All these

cases are straightforwardly handled separately, so we do not discuss them in the rest of the paper.
5We call image of x the numberf(x), where f is the elementary function being considered.
6 http://www.alphaWorks.ibm.com/tech/mathlibrary4java.

4

Table 1: Worst cases for the exponential function between 1 and 2 and small values of n. They have

been computed through exhaustive searching

n worst case x exp(x)

5 29/16 110.00 10000000110 · · ·

6 57/32 101.111 01111111100 · · ·

7 47/32 100.0101 100000000011 · · ·

8 47/32 100.01011 00000000011 · · ·

9 135/128 10.1101111 01111111011 · · ·

10 937/512 110.0011101 111111111111010 · · ·

11 1805/1024 101.11010011 11111111111111011 · · ·

12 1805/1024 101.110100111 1111111111111011 · · ·

13 5757/4096 100.0001001111 011111111111111000 · · ·

14 12795/8192 100.11000100100 011111111111110101 · · ·

function 1/x, a worst case is x = 1 − 2−n. Unfortunately, when we deal with the transcendental

functions, there is no known way of directly getting worst cases: the only known solution is to try

all possible input numbers. Table 1 gives the worst cases for the exponential function between 1 and

2 and small values of n. Nobody succeeded in finding some “regularity” in such a table, that could

have helped to predict worst cases for larger values of n. The basic principle of our algorithm

for searching the worst cases was outlined in [11]. We now present properties that have allowed

us to hasten the search, as well as the results obtained after having run our algorithms on several

workstations, and consequences of our results. The results we have obtained are worst cases for the

Table Maker’s Dilemma, that is, FP numbers whose image is closest to a breakpoint. For instance,

the worst case for the natural logarithm in the full double precision range is attained for

x = 1.011000101010100010000110000100110110001010

0110110110× 2678

whose logarithm is

log x =

53 bits︷ ︸︸ ︷
111010110.0100011110011110101 · · · 110001

000000000000000000 · · · 000000000000000︸ ︷︷ ︸
65 zeros

1110...

5

This is a “difficult case” in a directed rounding mode, since it is very near a FP number. One of the

two worst cases for radix-2 exponentials in the full double precision range is

1.1110010001011001011001010010011010111111

100101001101× 2−10

whose radix-2 exponential is

53 bits︷ ︸︸ ︷
1.0000000001010011111111000010111 · · · 0011

0 11111111111111111 · · · 1111111111111111︸ ︷︷ ︸
59 ones

0100 · · ·

It is a difficult case for rounding to the nearest, since it is very close to the middle of two consecutive

FP numbers.

2 Our Algorithms for Finding the Worst Cases

2.1 Basic principles

The basic principles are given in [11], so we only quickly describe them and focus on new aspects.

Assume we wish to find the worst cases for function f in double precision. Let us call test number

(TN) a number that is representable with 54 bits of mantissa (it is either a FP number or the exact

middle of two consecutive FP numbers). The TNs are the values that are breakpoints for one of

the rounding modes. Finding worst cases now reduces to the problem of finding FP numbers x

such that f(x) is closest (for the mantissa distance) to a TN. We proceed in two steps: we first use a

fast “filtering” method that eliminates all points whose distance to the closest breakpoint is above a

given threshold. The value of the threshold is chosen so that this filtering method does not require

highly accurate computations, and so that the number of values that remain to be checked after the

filtering is so small that an accurate computation of the value of the function at each remaining value

is possible. Details on the choice of parameters are given in [10].

In [11], we suggested to perform the filtering as follows:

• first, the domain where we look for worst cases is split into “large subdomains” where all input

values have the same exponent;

6

• each large subdomain is split into “small subdomains” that are small enough so that in each

of them, within the accuracy of the filtering, the function can be approximated by a linear

function. Hence in each small subdomain, our problem is to find a point on a grid that is

closest to a straight line. We solve a slightly different problem: given a threshold ε we just try

to know if there can be a point of the grid at distance less than ε from the straight line. ε is

chosen so that for one given small subdomain this event is very unlikely.

• using a variant to the Euclidean algorithm suggested by V. Lefèvre [9], we solve that problem.

If we find that there can be a point of the grid at distance less than ε from the straight line, we

check all points of the small subdomain.

2.2 Optimization: f and f−1 simultaneously

Let us improve that method. Instead of finding floating-point numbers x such that f(x) is closest to

a test number, we look for test numbers x such that f(x) is closest to a TN. This makes it possible

to compute worst cases for f and for its inverse f−1 in one pass only, since the image f(a) of a

breakpoint a is near a breakpoint b if and only if f−1(b) is near a. One could object that by checking

the TNs instead of checking the double precision FP numbers only, we double the number of points

that are examined. So getting in one pass the results for two functions (f and f−1) seems to be a

no-win no-loss operation. This is not quite true, since there are sometimes much fewer values to check

for one of the two functions than for the other one.

Consider as an example the radix-2 exponential and logarithm, with input domain I = [−1, 1] for

2x, which corresponds to input domain J = [1/2, 2] for log2(y). The following two strategies would

lead to the same final result: the worst cases for 2x in I and for log2(y) in J .

1. check 2x for every test number x in I ;

2. check log2(y) for every test number y in J .

If we use the first strategy, we need to check all TNs of exponent between7 −53 and −1. There are
7For numbers of smaller absolute value, there is no longer any problem of implementation: their radix-2 exponential is 1

or 1− = 1− ulp (1/2) or 1+ = 1 + ulp (1) depending on their sign and the rounding mode.

7

106 × 253 such numbers. With the second strategy, we need to check all positive TNs of exponent

equal to −1 or 0, that is, 2× 253 numbers. Hence, with the second strategy, we check approximately

53 times fewer values than with the first one.

If we separately check all FP numbers in I and all FP numbers in J , we check 106× 252 + 2× 252

numbers.

Hence, in the considered domain, it is better to check log2(y) for every TN y in [1/2, 2]. In other

domains, the converse holds: when we want to check both functions in the domain defined by x > 1

(for 2x) or y > 2 (for log2(y)), we only have to consider 10 values of the exponent if we check 2x

for every TN in the domain, whereas we would have to consider 1022 values of the exponent if we

decided to check log2(x) for the TNs in the corresponding domain.

The decision whether it is better to base our search for worst cases on the examination of f in a

given domain I or f−1 in J = f(I) can be helped by examining Tf (x) = |x× f ′(x)/f(x)| in I . If

Tf (x) � 1, then I contains fewer test numbers than J , so it is preferable to check f in I . If Tf (x) � 1,

it is preferable to check f−1 in J . When Tf (x) ≈ 1, a more thorough examination is necessary. Of

course, in all cases, another important point is which of the two functions is better approximated by

a polynomial of small degree.

2.3 Optimization: special input values

For most functions, it is not necessary to perform tests for the input arguments that are extremely

close to 0. For example, consider the exponential of a very small positive number ε, on a FP format

with p-bit mantissas, assuming rounding to nearest. If ε < 2−p then (since ε is a p-bit number),

ε ≤ 2−p − 2−2p. Hence,

eε ≤ 1 + (2−p − 2−2p) +
1
2
(2−p − 2−2p)2 . . . < 1 + 2−p.

therefore exp(ε) < 1 + (1/2) ulp (1). Thus, the correctly rounded value of exp(ε) is 1. A similar

reasoning can be done for other functions and rounding modes. Some results are given in Tables 2

and 3.

There are also some special cases for which we have a small number of values only to check, so

8

Table 2: Some results for small values in double precision, assuming rounding to the nearest. These results

make finding worst cases useless for negative exponents of large absolute value.

This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−53

exp(ε), ε ≤ 0 1 |ε| ≤ 2−54

ln(1 + ε) ε |ε| <
√

2× 2−53

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−53

2ε, ε ≤ 0 1 |ε| < 1.4426 · · · × 2−54

sin(ε), arcsin(ε), sinh(ε), sinh−1(ε) ε |ε| ≤ 1.4422 · · · × 2−26

cos(ε) 1 |ε| <
√

2× 2−27

cosh(ε) 1 |ε| < 2−26

tan(ε), tanh(ε), arctan(ε), tanh−1(ε) ε |ε| ≤ 1.817 · · · × 2−27

that it can be done without using our programs. Consider, for the double-precision format, the cosine

of numbers of absolute value less than 2−25. Since |x| < 2−25 implies cos(x) > 1− 2−51, the only TNs

in the area where cos(x) lies are the values 1− k × 2−54, for k = 0, 1, . . . , 8.

• the case k = 0, related to the TN 1, corresponds to the special case cos(0) = 1. It is solved as

follows:

– with rounding to the nearest, if x ≤ RN(2−27
√

2) = 6369051672525773
604462909807314587353088 then return 1;

– with rounding towards +∞, if x ≤ 2−26 then return 1.

• for each other value of k (from 1 to 8),

– compute {
t−k = RD(arccos(1− k × 2−54))

t+k = RU(arccos(1− k × 2−54))

– compute ∣∣cos(t−k)−
(
1− k × 2−54

)∣∣
and ∣∣cos(t+k)−

(
1− k × 2−54

)∣∣
9

Table 3: Some results for small values in double precision, assuming rounding towards −∞. These results

make finding worst cases useless for negative exponents of large absolute value. x− is the largest FP number

strictly less than x.

This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−52

exp(ε), ε < 0 1− = 1− 2−53 |ε| ≤ 2−53

ln(1 + ε), ε 6= 0 ε− |ε| <
√

2× 2−52

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−52

2ε, ε < 0 1− = 1− 2−53 |ε| < 1.4426 · · · × 2−53

sin(ε), sinh−1(ε), ε > 0 ε− ε ≤ 1.817 · · · × 2−26

sin(ε), sinh−1(ε), ε ≤ 0 ε |ε| ≤ 1.817 · · · × 2−26

arcsin(ε), sinh(ε), ε ≥ 0 ε ε ≤ 1.817 · · · × 2−26

arcsin(ε), sinh(ε), ε < 0 ε− ε ≤ 1.817 · · · × 2−26

cos(ε), ε 6= 0 1− = 1− 2−53 |ε| < 2−26

cosh(ε), ε 6= 0 1 |ε| <
√

2× 2−26

tan(ε), tanh−1(ε), ε ≥ 0 ε ε ≤ 1.4422 · · · × 2−26

tan(ε), tanh−1(ε), ε < 0 ε− |ε| ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε > 0 ε− ε ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε ≤ 0 ε |ε| ≤ 1.4422 · · · × 2−26

to know if x = t−k or t+k is a hard-to-round input value for the cosine function.

The wort case among these ones appears for k = 2. It corresponds to

cos(2−26) = 0.

53 bits︷ ︸︸ ︷
111111111 · · · 1111 0 00 · · · 00000000︸ ︷︷ ︸

54 zeros
1010 · · ·

A similar study can be done for the hyperbolic cosine function. We get very similar results:

• in RN mode, if x ≤ 9007199254740991
604462909807314587353088 = 2−26 − 2−79 then return 1;

• in RZ mode, if x ≤ 1592262918131443
75557863725914323419136 = RD(2−26

√
2) then return 1;

• for the other values, the worst case for x < 2−25 is

cosh(2−26) =

53 bits︷ ︸︸ ︷
1.00000000 · · · 0000 1 00 · · · 00000000︸ ︷︷ ︸

55 zeros
1 · · ·

10

2.4 Normal and subnormal numbers

Our algorithms assume that input and output numbers are normalized FP values. Hence, we have

to check whether there exist normalized FP numbers x such that f(x) is so small that we should

return a subnormal number. To do that, we use a method based on the continued fraction theory,

suggested by Kahan [7], and originally designed for finding the worst cases for range reduction. It

gives the normalized FP number that is closest to an integer nonzero multiple of π/2. This number

is α = 16367173 × 272 in single precision, and β = 6381956970095103 × 2797 in double precision.

Therefore, A = | cos(α)| ≈ 1.6 × 10−9 and B = | cos(β)| ≈ 4.7 × 10−19 are lower bounds on the

absolute value of the sine, cosine and tangent of normalized single precision (for A) and double

precision (for B) FP numbers. These values are larger than the smallest normalized FP numbers.

Hence the sine, cosine and tangent of a normalized FP number can always be rounded to normalized

FP numbers.

3 Implementation of the Method

3.1 Overview of the implementation

The tests are implemented in three steps:

1. As said above, the first step is a filter. It amounts to testing if 32 (in general) consecutive bits are

all zeros8 thus keeping one argument out of 232, in average. This step is very slow and needs

to be parallelized.

2. The 2nd step consists in reducing the number of worst cases obtained from the first step and

grouping all the results together in the same file. This is done with a slower but more accurate

test than in the 1st step. As the number of arguments has been drastically reduced, this step is

performed on a single machine.

8These are the bits following the first 54 bits of the mantissa, unless the exponent of the output values changes in the tested

domain.

11

3. The 3rd step is run by the user to restrict the number of worst cases. Results on the inverse

function are also obtained. This step is very fast.

Our programs are written in C, and use the MPN routines of GMP.

3.2 Details on the first step

Let us give more details about the first step. The user chooses a function f , an exponent, a mantissa

size (usually 53), and the first step starts as follows.9

• First, the tested interval is split into 213 subintervals Ji containing 240 TNs and f is approxi-

mated by polynomials Pi of degree di (∼ 4 to 20) on Ji. For each i, we start with di = 1, and

increase di until the approximation is accurate enough. Pi is expressed modulo the distance

between two consecutive TNs, as we only need to estimate the bits following the rounding bit.

• Then, each Ji is split into subintervals Ki,j containing 215 arguments and Pi is approximated

by degree-2 polynomials Qi,j on Ki,j , with 64-bit precision.

• On Ki,j : Qi,j is approximated by a degree-1 polynomial (by ignoring the degree-2 coefficient)

and the variant of the Euclidean algorithm is used. If it fails, that is, if the obtained distance is

too small, then:

• Ki,j is split into 4 subintervals Li,j,k.

• For each k: the Euclidean algorithm is used on Li,j,k, and if it fails, the arguments are

tested the one after the other, using two 64-bit additions for each argument.

The first step requires much more time than the other ones, thus it is parallelized (we use around

40 workstations, in background). As the calculations in different intervals are totally independent,

there is no need for communications between the different machines. The workstations have primary

users. We must not disturb them. So, the programs were written so that they can run with a low

priority, automatically stop after a given time, and automatically detect when a machine is used and

stop if this is the case.
9The numbers given here are just those that are generally chosen; other values may be chosen for particular cases.

12

4 Results: ex and ln(x)

For these functions, there is no known way of deducing the worst cases in a domain from the worst

cases in another domain. And yet, we have obtained the worst cases for all possible double preci-

sion FP inputs. They are given in Tables 4 and 5. From these results we can deduce the following

properties.

Property 1 (Computation of exponentials) Let y be the exponential of a double-precision number x. If

|x| < 2−54 then the results given Tables 2 and 3 apply, so that correctly rounding ex is easy. Otherwise, let y∗

be an approximation to y such that the mantissa distance10 between y and y∗ is bounded by ε.

• for |x| ≥ 2−30, if ε ≤ 2−53−59−1 = 2−113 then for any of the 4 rounding modes, rounding y∗ is

equivalent to rounding y;

• for 2−54 ≤ |x| < 2−30, if ε ≤ 2−53−104−1 = 2−158 then rounding y∗ is equivalent to rounding y;

• for |x| < 2−54, correctly rounding ex consists in returning:

– 1 in RN mode;

– 1 + 2−52 in RU mode if x > 0;

– 1 in RD or RZ mode if x ≥ 0;

– 1 in RU mode if x ≤ 0;

– 1− 2−53 in RD or RZ mode if x < 0.

Property 2 (Computation of logarithms) Let y be the natural (radix-e) logarithm of a double-precision

number x. Let y∗ be an approximation to y such that the mantissa distance between y and y∗ is bounded by ε.

If ε ≤ 2−53−64−1 = 2−118 then for any of the 4 rounding modes, rounding y∗ is equivalent to rounding y.

10If one prefers to think in terms of relative error, one can use the following well-known properties: if the mantissa distance

between y and y∗ is less than ε then their relative distance |y − y∗|/|y| is less than ε. If the relative distance between y and y∗

is less than εr then their mantissa distance is less than 2εr .

13

Table 4: Worst cases for the exponential function in the full range. Exponentials of numbers less than

ln(2−1074) are underflows (a routine should return 0 or the smallest nonzero positive representable number,

depending on the rounding mode). Exponentials of numbers larger than ln(21024) are overflows. 159 means “a

chain of 59 consecutive ones”. The input values so small that the results given Tables 2 and 3 can be applied

are omitted.

Interval worst case (binary)

[ln(2−1074),−2−30]
exp(−1.1110110100110001100011101111101101100010011111101010× 2−27)

= 1.1111111111111111111111111000010010110011100111000100 1 1590001...× 2−1

[−2−30, ln(1− 2−46)]
exp(−1.0100110010× 2−46)

= 1.1101100000 0 0841010...× 2−1

[ln(1− 2−46), 0)
exp(−1.0001× 2−51)

= 1.1100 0 01001010...× 2−1

(0, ln(1 + 2−45)]
exp(1.11× 2−53)

= 1.00 1 11040101...

[ln(1 + 2−45), 2−30]
exp(1.1110000000× 2−46)

= 1.0001111111 1 1830101...

exp(1.000110101111× 2−45)

= 1.0010001111 1 1830000...

[2−30, ln(21024)]
exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...

5 Results: 2x and log2(x)

5.1 Radix-2 exponentials

Using the identity 2n+x = 2n2x allows one to efficiently speed the search. First, getting the worst

cases for x ∈ [1, 2) makes it possible to derive all worst cases for x < −1 and x > 1. The worst cases

for |x| < 1 were obtained through the radix-2 logarithm in (1/2, 2). These results, given in Table 6,

make it possible to deduce the following property.

Property 3 (Computation of radix-2 exponentials) Let y be the radix-2 exponential 2x of a double-

precision number x. Let y∗ be an approximation to y such that the mantissa distance between y and y∗ is

bounded by ε. If ε ≤ 2−53−59−1 = 2−113 then for any of the 4 rounding modes, rounding y∗ is equivalent to

rounding y.

14

Table 5: Worst cases for the natural (radix e) logarithm in the full range.

Interval worst case (binary)

[2−1074, 1)
log(1.1110101001110001110110000101110011101110000000100000× 2−509)

= −101100000.00101001011010100110011010110100001011111111 1 1600000...

log(1.1001010001110110111000110000010011001101011111000111× 2−384)

= −100001001.10110110000011001010111101000111101100110101 1 0601010...

log(1.0010011011101001110001001101001100100111100101100000× 2−232)

= −10100000.101010110010110000100101111001101000010000100 0 0601001...

log(1.0110000100111001010101011101110010000000001011111000× 2−35)

= −10111.111100000010111110011011101011110110000000110101 0 1600011...

(1, 21024]
log(1.0110001010101000100001100001001101100010100110110110× 2678)

= 111010110.01000111100111101011101001111100100101110001 0 0641110...

5.2 Radix-2 logarithms

Concerning radix-2 logarithms, let us show that it suffices to test the input numbers greater than 1,

and whose exponent is a power of 2.

First, it suffices to test the input numbers whose exponent is a positive power of 2 to get the worst

cases for all input values greater than 1. Consider x = m × 2p, with p ≥ 1 and 1 < m < 2. Define

y = log2(x) = p + log2(m). M∞(y) begins with `p = blog2(p)c bits that represent p, followed by the

representation of log2(m). Let p′ = 2`p . Since blog2(p′)c = blog2(p)c = `p, the infinite mantissa of the

radix-2 logarithm y′ of x′ = m × 2p′
has the same bits as M∞(y) after position `p. Hence, there is a

chain of k consecutive 1s (or 0s) after bit 54 of M∞(y) if and only if there is a chain of k consecutive

1s (or 0s) after bit 54 of M∞(y′). Hence, from the worst cases for an exponent equal to 2` we deduce

the worst cases for exponents between 2` + 1 and 2`+1 − 1. In Table 7, we only give one of the worst

cases: the input value has exponent 512. The other ones have the same mantissa, and exponents

between 513 and 1023.

Now, let us show how to deduce the worst cases for numbers less than 1 from the worst cases for

numbers greater than 1. Consider a FP number x = m × 2−p, with 1 < m < 2, and p ≥ 1. Define

y = log2(x) = −p + log2(m). The integer part of |y| is p − 1 and its fractional part is 1 − log2(m). So

M∞(y) begins with the bits that represent p−1, followed by the bits that represent 1− log2(m). Now,

consider the FP number x′ = m×2p−1. Define y′ = log2(x′) = (p−1)+log2(m). M∞(y′) begins with

15

the bits that represent p − 1 (the same as for y), followed by the bits that represent log2(m). But the

bits that represent 1− log2(m) are obtained by complementation11 of the bits that represent log2(m).

Hence, there is a chain of k consecutive 1s (or 0s) after bit 54 of M∞(y) if and only if there is a chain

of k consecutive 0s (or 1s) after bit 54 of M∞(y′). Therefore, x is a worst case for input values < 1 if

and only if x′ is a worst case for input values > 1. This is illustrated in Table 7: the infinite mantissa

of the worst case for x > 1 starts with the same bit chain (1000000000) as the mantissa of the worst

case for x < 1, then the bits that follow are complemented (100010001111110 . . . 000110 0 0551100...

for the case x < 1 and 011101110000001 . . . 111001 1 1550011... for x > 1).

Using these properties, we rather quickly obtained the worst cases for the radix-2 logarithm of

all possible double precision input values: it sufficed to run our algorithm for the input numbers of

exponents 0, 1, 2, 4, 8, 16, . . . 512.

These results, given in Table 7, make it possible to deduce the following property.

Property 4 (Computation of radix-2 logarithms) Let y be the radix-2 logarithm log2(x) of a double-

precision number x. Let y∗ be an approximation to y such that the mantissa distance between y and y∗ is

bounded by ε. If ε ≤ 2−53−55−1 = 2−109 then for any of the 4 rounding modes, rounding y∗ is equivalent to

rounding y.

6 Results: Trigonometric Functions

The results given in Tables 8 to 13 give the worst cases for functions sin, arcsin, cos, arccos, tan and

arctan. For these functions, we have worst cases in some bounded domain only, because they are

more difficult to handle than the other functions. And yet, it is sometimes possible to prune the

search. Consider the arc-tangent of large values. The double precision number that is closest to π/2

is

α = 884279719003555/249.

111 is replaced by 0 and 0 is replaced by 1.

16

Table 6: Worst cases for the radix-2 exponential function 2x in the full range. Integer values of x are omitted.

Interval worst case (binary)

[−1074, 0)
2 ∗ ∗(−1.0010100001100011101010111010111010101111011110110010× 2−15)

= 0.11111111111111100110010100011111010001100000111101111 0 0571110...

2 ∗ ∗(−1.0100000101101111011011000110010001000101101011001111× 2−20)

= 0.11111111111111111111001000010011001010111010011001110 1 1570000...

2 ∗ ∗(−1.0000010101010110000000011100100010101011001111110001× 2−32)

= 0.11111111111111111111111111111111010010101101101100001 1 1570000...

2 ∗ ∗(−1.0001100001011011100011011011011011010101100000011101× 2−33)

= 0.11111111111111111111111111111111100111101101010111100 0 0571100...

(0, 1024]
2 ∗ ∗(1.1011111110111011110111100100010011101101111111000101× 2−25)

= 1.0000000000000000000000001001101100101100001110000101 0 0591011...

2 ∗ ∗(1.1110010001011001011001010010011010111111100101001101× 2−10)

= 1.0000000001010011111111000010111011000010101101010011 0 1590100...

Assuming rounding to the nearest, the breakpoint that is immediately below α is β =

14148475504056879/253. For any FP number x, if arctan(x) ≥ β then the correctly rounded (to

the nearest) value that should be returned when evaluating arctan(x) in double precision is α.

Hence, for x ≥ 5805358775541311, we should return α. Similarly, for 2536144836019042 ≤ x ≤

5805358775541310, we should return α− ulp (α).

For rounded to nearest arc-tangent, the worst case for input numbers larger than 2.25× 1012 is

4621447055448553/211 = 2256565945043.23876953125

whose arc-tangent is
53 bits︷ ︸︸ ︷

1.100100100001111110 . . . 100 1 045111011 . . .

From the result given in Table 8 we deduce:

Property 5 (Computation of sines) Let y be the sine of a double-precision number x satisfying 2−24 ≤

|x| ≤ 2 + 4675/8192. Let y∗ be an approximation to y such that the mantissa distance between y and y∗ is

bounded by ε. If ε ≤ 2−53−72−1 = 2−126 then for any of the 4 rounding modes, rounding y∗ is equivalent to

rounding y.

Using Tables 9 to 13, similar properties are deduced for the other trigonometric functions: ε ≤ 2−126

17

Table 7: Worst cases for log2(x) in the full range. Values of x that are integer powers of 2 are omitted.

Concerning values larger than 1/2, we only give one of the worst cases: the one with exponent 512. The other

ones have the same mantissa, and exponents between 513 and 1023. Concerning values less than 1/2, we also

give one of the worst cases only: the one with exponent −513. The other ones have the same mantissa and

exponents between −1024 and −514.

Interval worst case (binary)

(0, 1/2)
log2(1.0110000101010101010111110111010110001000010110110100× 2−513)

= −1000000000.1000100011111101001011111100001011001000110 0 0551100...

(1/2, 21024)
log2(1.0110000101010101010111110111010110001000010110110100× 2512)

= 1000000000.0111011100000010110100000011110100110111001 1 1550011...

for arc-sine between sin(2−24) and 1; ε ≤ 2−142 for cosine between 2−25 and 12867/8192; ε ≤ 2−116 for

arc-cosine between cos(12867/8192) and 1− 2−53; ε ≤ 2−122 for tangent between 2−25 and arctan(2);

and ε ≤ 2−126 for arc-tangent between tan(2−25) and 2.

Table 8: Worst cases for the sine function in the range [2−24, 2 + 4675
8192].

Interval worst case (binary)

[2−24, 2−17]
sin 1.11100111000010× 2−20

= 1.1101111111111111111111111111111111111111000000101110 0 0721110...× 2−20

[2−17, 1/32]
sin 1.0101100110001011101011101001111001100011001011110110× 2−7

= 1.0101100110001010000010101110101001001000100110010110 0 1590000...× 2−7

[1/32, 1]
sin 1.1111111001110110011101110011100111010000111101101101× 2−2

= 1.1110100110010101000001110011000011000100011010010101 1 1650000...× 2−2

[1, 2 + 4675
8192

]

sin 1.1001001000011111101101010100010001000010110100011000

= 0.111 1 1540110...

sin 1.0110011101010110011101000101011101110000101001010001× 21

= 1.0100111111110011010100001110010000010010100000100001 0 0541010...× 2−2

7 Results: Hyperbolic Functions

The results given in Tables 14 to 17 give the worst cases for functions cosh, sinh, and sinh−1.

From Table 14, we deduce the following property.

18

Table 9: Worst cases for the arc-sine function in the range [sin(2−24), 1].

Interval worst case (binary)

[sin(2−24), sin(2−19)]
arcsin 1.1101111111111111111111111111111111111111000000101110× 2−20

= 1.11100111000001 1 1720001...× 2−20

[sin(2−19), sin(2−18)]
arcsin 1.1101111111111111111111111111111111111100000010111000× 2−19

= 1.1110000000000000000000000000000000000000011100000111 1 1660001...× 2−19

[sin(2−18), 1]
arcsin 1.1110100110010101000001110011000011000100011010010110× 2−2

= 1.1111111001110110011101110011100111010000111101101101 0 0641000...× 2−2

Table 10: Worst cases for the cosine function in the range [2−25, 12867/8192]. 12867/8192 is slightly less

than π/2. The input values less than 2−25 are easily handled (see Section 2.3).

Interval worst case (binary)

[2−25, 2−22]
cos 1.10001001× 2−23

= 0.11101110000 0 0881101...

[2−22, 2−18]
cos 1.1000100100× 2−22

= 0.1110111000000 0 0821101...

[2−18, 2−17]
cos 1.0010000000000000000000000000000000000000111100110000× 2−18

= 0.11111111111111111111111111111111111101011110000000000 0 0601001...

[2−17, 1/256]
cos 1.0000011010110101000001010101010100001110011010110010× 2−9

= 0.11111111111111111101111001001101000111111101111111110 0 0581100...

[1/256, 1]
cos 1.1001011111001100110100111101001011000100001110001111× 2−6

= 0.11111111111010111011001101011101010000111000010101000 1 1550111...

[1, 12867
8192

]
cos(1.0110101110001010011000100111001111010111110000100001)

= 1.0011001101111111110001011011000001110010110001010010 1 0541011...× 2−3

Property 6 (Computation of hyperbolic cosines) Let y be the hyperbolic cosine of a double-precision

number x satisfying 1/64 ≤ |x| ≤ 32. Let y∗ be an approximation to y such that the mantissa distance

between y and y∗ is bounded by ε. If ε ≤ 2−53−57−1 = 2−111 then for any of the 4 rounding modes, rounding

y∗ is equivalent to rounding y.

Similar properties are deduced for other hyperbolic functions: ε ≤ 2−126 for hyperbolic sine of

numbers between 2−25 and sinh−1(21024), and ε ≤ 2−126 for hyperbolic arcsine of numbers between

sinh(2−25) and 21024.

19

Table 11: Worst cases for the arc-cosine function in the range [cos(12867/8192), 1−2−53] ≈ [0.0001176, 1−

2−53]. The values less than cos(2−25) have been processed using our algorithm. The 4 possible double-precision

inputs between cos(2−25) and 1− 2−53 have been checked separately. It must be noticed that 1− 2−53 is the

largest FP number less than 1.

Interval worst case (binary)

[cos
(

12867
8192

)
, 1− 2−53]

arccos(1.1111110101110011011110111110100100010100010101111000× 2−11)

= 1.1001000111100000000001101101010000011101100011011000 1 1620010...

Table 12: Worst cases for the tangent function in the range [2−25, arctan(2)], with arctan(2) ≈ 1.107148.

Interval worst case (binary)

[2−25, 2−18]
tan 1.11011100011111× 2−22

= 1.11100101010001 0 1780100...2−22

[2−18, 2−17]
tan 1.0110011111111111111111111111111111111010000100010100× 2−18

= 1.0110100000000000000000000000000000001000111001100001 1 1570100...2−18

[2−17, arctan
(

1
2

)
]

tan(1.0101000001001000011010110010111110000111000000010100× 2−5)

= 1.0101000001111000110011101011111111111001110001110010 1 0571001...× 2−5

[arctan
(

1
2

)
, arctan(2)]

tan(0.10100011010101100001101110010001001000011010100110110)

= 0.10111101110100100100111110111001110011000001010011110 1 1540011...

Conclusion and Future Work

The worst cases we have obtained will make possible the design of efficient routines for evaluating

most common functions with correct rounding (at least in some intervals) in the four rounding modes

specified by the IEEE-754 standard. We are extending the domains for the functions for which we

have not yet obtained the worst cases in the full range. These worst cases will also be good test cases

for checking whether a library provides correct rounding or not. Since the machines are getting faster

and faster, what we have done for double precision will probably be feasible for double extended

precision within a few years. Concerning quad precision, the only hope of getting similar results in

the near future is a possible algorithmic breakthrough. The path to such a breakthrough could be a

reasonably fast algorithm for getting the point of a regular grid that is closest to a polynomial curve

20

Table 13: Worst cases for the arc-tangent function in the range [tan(2−25), 2].

Interval worst case (binary)

[tan(2−25), tan(2−18)]
arctan 1.1110000000000000000000000000000000000000010101000110× 2−21

= 1.1101111111111111111111111111111111111111110001111100 0 0721011...× 2−21

[tan(2−18), tan
(

1
128

)
]

arctan 1.0010001011101000110101110101111000101011110001111111× 2−11

= 1.0010001011101000110101010110100101001010110100101011 1 0591101...× 2−11

[tan
(

1
128

)
, 1

2]
arctan(1.1010100100110011111111100001011101101011001101110101× 2−3)

= 1.1010001100111111001100101010110001011100111010110100 1 1550110...× 2−3

[12 , 2]
arctan(0.10111101110100100100111110111001110011000001010011111)

= 0.10100011010101100001101110010001001000011010100110110 0 0551111...

of degree 2. Such ideas are under investigation [12].

21

Table 14: Worst cases for the hyperbolic cosine function in the range [1/64, 32].

Interval Worst Case (binary)[
1
64

, 1
2

] cosh(1.0001011111011000101010011111001000000110001000010111× 2−6)

= 1.0000000000001001100011110101111100001001101111100011 1 1540010...

cosh(1.1011111100000011000001011110001011000110110000110111× 2−3)

= 1.0000011000011111010011000011100111100001011011110010 0 0541101...[
1
2
, 1

] cosh(1.0000001110010010001111110010101101000111110000000111× 2−1)

= 1.0010000110011100000110011000100111100011001101110010 1 0541011...

cosh(1.1010011000000011000111001101010111111001001110111010× 2−1)

= 1.0101101111111111000001000001101100100110000011111101 1 1540001...

[1, 2]
cosh(1.0001000001001011011001001000111100010001001110100001)

= 1.1001111011111101110010100110001010110111000000001001 1 1550100...

[2, 32]
cosh(1.1110101001011111001011110010111001001011000011000101× 21)

= 10111.000100001101101100001100110100001111111011010101 1 0571110...

Table 15: Worst cases for the hyperbolic arccosine function in the range [cosh(1/64), cosh(32)] ≈

[1.000122, 3.948148× 1013].

Interval Worst Case (binary)

[cosh(1/64), cosh(2)]
cosh−1 1.1001111011111101110010100110001010110111000000001010

= 1.0001000001001011011001001000111100010001001110100001 0 0551001...

[cosh(2), cosh(32)]
cosh−1 1.0010100101111101111000110101110100000010111010010000× 213

= 1001.1101101010110001011010010011001010001101001011101 0 1610001...

22

Table 16: Worst cases for the hyperbolic sine function in the range [2−25, sinh−1
(
21024

)
]. The hyperbolic

sines of values larger than sinh−1
(
21024

)
are overflows.

Interval Worst Case (binary)[
2−25, 2−18

] sinh 1.11011000111110× 2−20

= 1.1110000000000000000000000000000000000000111111010001 1 1720001...× 2−20

[
2−18, 2−12

] sinh 1.1101111111111111111111111111111111111110001111100000× 2−18

= 1.1110000000000000000000000000000000001111110100011111 1 1600001...× 2−18

[
2−12, 1/16

] sinh 1.0001001101011110001100011111110111010000010111010011× 2−5

= 1.0001001101101011011110001011001001011100110001010111 0 0541011...× 2−5

[1/16, 1/4]
sinh 1.0000110111000110100011010101111010001111100101011001× 2−3

= 1.0000111010001110011100111101110001001111111011100011 1 0541000...× 2−3

[1/4, 1]
sinh 1.0110000101101100110001110101110101001001001000100110× 2−2

= 1.0110100001111011110100000110100011000001110000011110 0 0551100...× 2−2

[1, 16]
sinh 1.0011111111111100000100101011100000011100101111000010

= 1.1001101000001111111101000001001110100001101011110011 0 0531101...

sinh 10.111111100000000010001100010001001011101011001010001

= 1001.1111000010001010010000111110110100000011101011100 1 0531000...

[16, 32]
sinh 1.1100000010001001111111001111000101100110000101110001× 24

= 1.0101110001000101001011100000111000110111010101101001 0 0541001...× 239

[
32, sinh−1

(
21024

)) sinh 1.1110000001111110011100011011111111001111000001101111× 25

= 1.1001000111101100010001000001001011000011010001001111 0 0551000...× 285

sinh 1.0101010011001101000111111110101001110110011000111010× 27

= 1.1100100100001000000100001101001101010100011000011000 0 0551001...× 2244

sinh 1.1101011001000111100111101011101001111100100101110001× 28

= 1.0110001010101000100001100001001101100010100110110101 1 1550110...× 2677

Table 17: Worst cases for the hyperbolic arcsine function in the range
[
sinh(2−25), 21024

)
.

Interval Worst Case (binary)[
sinh(2−25), sinh(2−12)

] sinh−1 1.1110000000000000000000000000000000000000111111010010× 2−20

= 1.11011000111110 0 0721110...× 2−20

[
sinh(2−12), sinh(1/16)

] sinh−1 1.1000011100100011100110111011110101111000111101101110× 2−7

= 1.1000011100100001001110110000110101100000110011001111 0 1560100...× 2−7

[sinh(1/16), sinh(4)]
sinh−1 11.111110100100110001101001100101000111100100101111100

= 10.000101101101110000100110000110001000010100010100000 0 1580001...

[sinh(4), sinh(32)]
sinh−1 1.0101110001000101001011100000111000110111010101101001× 239

= 1.1100000010001001111111001111000101100110000101110000 1 1590001...× 24

[
sinh(32), 21024

) sinh−1 1.0110001010101000100001100001001101100010100110110110× 2677

= 1.1101011001000111100111101011101001111100100101110001 0 0641110...× 28

23

References

[1] R. C. Agarwal, J. C. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman, and B. Tuckerman.

New scalar and vector elementary functions for the IBM system/370. IBM J. of Research and

Development, 30(2):126–144, March 1986.

[2] American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE

standard for binary floating-point arithmetic. ANSI/IEEE Standard, Std 754-1985, New York,

1985.

[3] C. S. Iordache and D. W. Matula, Infinitely Precise Rounding for Division, Square root, and Square

Root Reciprocal, Proc. 14th IEEE Symp. on Computer Arithmetic, 1999, pp. 233-240.

[4] C. B. Dunham. Feasibility of “perfect” function evaluation. SIGNUM Newsletter, 25(4):25–26,

October 1990.

[5] S. Gal and B. Bachelis. An accurate elementary mathematical library for the IEEE floating point

standard. ACM Trans. on Math. Software, 17(1):26–45, March 1991.

[6] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM

Computing Surveys, 23(1):5–47, March 1991.

[7] W. Kahan. Minimizing q*m-n, text accessible electronically at

http://http.cs.berkeley.edu/∼wkahan/. At the beginning of the file ”nearpi.c”, 1983.

[8] T. Lang and J.M. Muller. Bound on run of zeros and ones for algebraic functions. In Burgess

and Ciminiera, editors, Proc. of the 15th IEEE Symposium on Computer Arithmetic (Arith-15). IEEE

Computer Society Press, 2001.

[9] V. Lefèvre. Developments in Reliable Computing, chapter An Algorithm That Computes a Lower

Bound on the Distance Between a Segment and Z2, pages 203–212. Kluwer, Dordrecht, Nether-

lands, 1999.

24

[10] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École Normale Supérieure de

Lyon, Lyon, France, 2000.

[11] V. Lefèvre, J.M. Muller, and A. Tisserand. Toward correctly rounded transcendentals. IEEE

Trans. Computers, 47(11):1235–1243, November 1998.

[12] D. Stehlé, V. Lefèvre and P. Zimmermann. Worst Cases and Lattice Reduction. In Bajard and

Schulte, editors, Proceedings of the 16th IEEE Symposium on Computer Arithmetic (Arith 16). IEEE

Computer Society Press, 2003.

[13] J.M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston, 1997.

[14] M. J. Schulte and E. E. Swartzlander. Hardware designs for exactly rounded elementary func-

tions. IEEE Trans. Computers, 43(8):964–973, August 1994.

[15] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit.

ACM Trans. on Math. Software, 17(3):410–423, September 1991.

25

