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Abstract

You want to show that your favorite computer number system is far better
than anything humankind has designed until now. We survey some tips that can
help you to support your (of course, rightful!) claim.

Introduction
Representing real numbers in computers requires �nding an adequate compromise
between many goals that are frequently antagonistic: accuracy, speed, low power
consumption, low memory consumption, large dynamic range, easiness of use, re-
producibility, easiness of proof of properties of programs. . .

Nowadays, Floating-Point arithmetic is by far the most widely used computer
number system in scienti�c computing for representing real numbers with words of
�xed size, but many alternative systems have been suggested throughout the history
of computer arithmetic (examples can be found in [18, 13, 21, 14, 5, 15, 17, 20, 1, 19, 8]).
In the following, we assume that your favorite guru (or maybe yourself) has designed
a new number system, where real numbers are represented by a w-bit word (systems
with variable-length representations are therefore excluded). You wish to convince
the world that it is far better than any other number system invented by humankind
since the dawn of time. Let us review some tips that can help you in that purpose. Of
course, any resemblance to real and actual situations is purely coincidental.

In this paper, we only focus on accuracy matters. As said above, there are obvi-
ously many other aspects that are worth being considered when promoting a number
system, for instance, the speed, complexity and power consomption of the arithmetic
operators. However these aspects are already very often taken into account, as if they
were the only ones that matter (as Kahan once pointed out [12], The Fast drives out
the Slow even if the Fast is wrong).

Assume thatM is the (�nite) set of the numbers that are exactly representable in
your system, thatMmin andMmax are the smallest and largest �nite elements ofM,
respectively. For x ∈ M, x 6= Mmax, x+ is the smallest element ofM larger than
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x, and For x ∈ M, x 6= Mmin, x− is the largest element of M less than x. Some
notions, classical in �oating-point arithmetic but easily generalizable to any �nite-
word-length arithmetic will be used here and there. They are de�ned as follows.

• if x̂ ∈M is the result of a computation that approximates an exact value x ∈ R,
we will say that x̂ is a faithful result if:

– x ∈M and x̂ = x; or
– x /∈M and x̂ is either the largest element ofM less than x or the smallest

element ofM larger than x.

• if x /∈ M then ulp(x) is the distance between the two consecutive elements of
M that surround x. If x ∈M then ulp(x) is the largest of x− x− and x+ − x.

• if x ∈ R, RN(x) is the element of M that is closest to x. If there are two
such elements (i.e., x is halfway between two consecutive elements ofM), we
assume there is a tie-breaking rule for deterministically choosing which one of
them is chosen.

These de�nitions are not necessarily valid when the number x does not lie in the
interval (Mmin,Mmax) but this does not matter for the purposes of this paper.

1 Build arti�cial problems whose solution is an ex-
act number in your small format

This is by far the most useful trick. Assume that w is small (say, 8 to 32 bits). There
are in�nitely many real numbers, and there are at most 2w numbers that can be rep-
resented in a w-bit format. Hence, the probability that the exact solution of a given
real-life problem of a signi�cant size should be exactly representable in your system
(i.e., belongs to M) is 0 or very near 0. But of course, one can always easily build
arti�cial problems whose solutions belong toM. With such problems, if we are skill-
full (and possibly lucky) enough, we will obtain a faithful result, i.e., in this case, an
exact result (just because for small values of w, there are not so many elements of
M near that exact result). Then we perform the same calculation in quad precision
�oating-point arithmetic to obtain (almost certainly) a nonzero error.

You are then able to proclaim that your small w-bit format is far superior to quad
precision! (of course, don’t mention that for an overwhelming majority of problems
quad precision is much more accurate).

An example? Let us consider the evaluation of function

f(x) =

√
1

cos2(arctan(x))
− 1, (1)

and let us pretend we do not know that f(x) = |x| (so that by de�nition, the result
is exactly representable in your small format). Let us compare binary �oating-point
formats with various values of the precision p. If we evaluate f by straightforwardly
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following (1) in round-to-nearest, ties-to-even arithmetic, and assuming that the arc-
tangent and the cosine are correctly rounded, then, for x = 513/512, we will obtain
an exact result in IEEE 754 binary16 arithmetic [9] (p = 11), while binary64/double
precision arithmetic will give an error 2−52. The conclusion is inescapable: binary16
is much more accurate than binary64!

Even better, let me invent the M-numbers: a �oating-point format with 3-bit sig-
ni�cands, and extremal exponents −2 and 1 (so that with an adequate coding, the
exponents �t in 2 bits): appending a sign bit, the whole format requires 6 bits. In
that format, with x = 5/4, f(x) is computed exactly, whereas binary128 (p = 113)
arithmetic painfully gives error 2−111. I can proudly claim that the 6-bit M-number
system is much more accurate than the 128-bit quad precision format!

In a similar vein, consider the following example (not so infrequent in the litera-
ture: it is used to illustrate the non-associativity of �oating-point addition). We want
to compute

(1 + 2200)− 2200.

If we perform that calculation in quad precision, we obtain 0. If we perform it in
double-double arithmetic we get the correct result. Does it mean that double-double
arithmetic is better than quad precision? Of course not: in the overwhelming majority
of cases the relative errors of double-double arithmetic operations are of the order of
2−106 [11], whereas those of quad precision operations are bounded by 2−113. We
just used the highly arti�cial fact that the result of the �rst operation (1 + 2200) is
exactly representable in double-double arithmetic.

A hint: when someone claims a small error, he or she may well be right. If he or
she claims zero error, this might well be because the trick presented in this section is
used (quite possibly not consciously, of course).

2 Build arti�cial calculations that favor the domains
where your number system is more accurate

A nonzero number x is represented by RN(x) with relative error |x − RN(x)|/|x|,
which can be as large as 1

2ulp(x)/|x|. Hence, that value—let us call it ρ(x)—is a good
measurement of the local relative accuracy of a number system. Logarithmic number
systems [13, 21] have a constant relative representation error bound ρ(x) in all their
range. A radix-β �oating-point system has an “almost constant” relative representa-
tion error bound: the ratio between the maximum and the minimum value of ρ(x)
equals β. More exotic number systems (such as Clenshaw and Olver’s Level-index
systems [5, 20], Morris’ Tapered �oating-point arithmetic [18], of which Gustafson
and Yonemoto’s Posits [8, 7] are a skillfully crafted recent descendent) have a ρ func-
tion that varies much, with the e�ect of “focusing” the accuracy at places where it is
considered most important (typically, around moderate orders of magnitude, the idea
being that tiny and huge numbers do not need much accuracy and are less likely to
appear in calculations).

A good way of building examples for which your number system looks great is to
devise them so that all (or almost all) intermediate values of the calculation lie in the
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areas where function ρ is small.
To illustrate this, let us pretend we are not aware of the pioneering works on the

comparison of �oating-point systems by Kuki and Cody [16], Cody [6], and Brent [3],
and let us consider two di�erent �oating-point arithmetics: radix 2 without implicit
�rst bit convention,1 and radix 16. Fair comparison requires that for both arithmetics,
the word length w should be the same, and the largest (and smallest positive) rep-
resentable numbers should be almost the same. Since radix 16 requires two less ex-
ponent bits than radix 2 to represent extremal values of similar order of magnitude
(because 16k = 24k), if we allow p bits to the signi�cands of the radix-2 system, we
must allow p+ 2 bits to the signi�cands of the radix-16 system (and since a radix-16
digit �ts in 4 bits, p+ 2 must be a multiple of 4).

Figure 1 presents the respective ρ functions for two such systems: a radix-2 sys-
tem with p-bit signi�cands, and a radix-16 system with (p+ 2)/4-hexadecimal-digit
signi�cands (it su�ces to visualize these functions for x between 1 and 16 because for
both systems—barring under�ow or over�ow—ρ(16k ·x) = ρ(x)). Let us divide the set
of the real numbers whose absolute values lie between the minimum and maximum
representable numbers of both formats into three areas: area A is the reunion of the
intervals of the form 16k×[1, 2), areaB contains the intervals of the form 16k×[2, 4),
and area C consists of the union of the intervals of the form 16k × [4, 16).

From Figure 1, one will infer that the radix-2 system will be more accurate than
the radix-16 system in domain A, that the radix-16 system will be better than the
radix-2 system in domain C , and that both systems will be of comparable accuracy in
domain B.

Once you know that, the trick is easy: if you wish to “prove” that the radix-2 sys-
tem is the best, just build an arti�cial example of calculation for which all intermediate
results lie in domain A, and if you prefer “proving” than the hexadecimal system is
better, build your example so that all intermediate values belong to domain C . This
can be done as follows. Let us assume p = 14 (binary signi�cands with 14 bits, and
hexadecimal signi�cands with 4 digits), and consider the following “algorithm”:

Algorithm 1 (TakeRootThenSquare)
x← x0
for i from 1 to n do
x← RN(

√
x)

end for
for i from 1 to n do
x← RN(x2)

end for
return x

Of course, if the operations were exact, the returned result should be x0. To be
fair, we must choose a value of x0 that is exactly representable in both systems.

• An advocate of radix 2 can choose the starting point x0 = 1.00390625 and
n = 5, ensuring that all intermediate results are in area A. The returned result

1With the implicit �rst bit convention, radix 2 is always better.
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Figure 1: Relative representation error bounds for two di�erent �oating-point formats: radix
2 and precision-p without implicit bit convention (plain line); and radix 16 and precision (p+
2)/4.

will be exact in radix 2, and it will be 1 in radix 16: we therefore conclude that
radix 2 is far better than radix 16;

• a radix-16 fanatic can choose x0 = 0.8125 and n = 10. The returned result will
be 0.7781982421875 in radix 2 and 0.8032989501953125 in radix 16, which is
signi�cantly better (the di�erence is less impressive, probably because in real
life, radix 2 is better than radix 16).

Similarly, if one wishes to “show” that tapered arithmetics are better than con-
ventional �oating-point, it su�ces to build a calculation whose intermediate results
are of the order of magnitude of 1. Again, Algorithm 1 is a perfect candidate for this
because it forces all intermediate variables to be closer to 1 than x0. Indeed, when
running Algorithm 1 in binary32 [9] and Posit32 (with es = 2) [7] arithmetics, with
x0 = 1.5, and n = 15, the returned result is 1.49967239 · · · in Posit32 arithmetic
and 1.49517345 · · · in binary32 arithmetic. We can see that the Posit32 result is much
closer to the exact result than the binary32 result.

Conversely, to “show” the superiority of �oating-point, it su�ces to have big or
tiny intermediate results2 (not necessarily all: having a very tiny or big intermediate
value at a critical place may sometimes su�ce). A simple solution for obtaining that
is to modify Algorithm 1. In the �rst for loop, Algorithm 1 was building intermediate

2Not too big or tiny: we need to avoid over�ows and subnormal numbers!
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values closer and closer to 1 by iteratively taking square roots, and then, in the second
for loop, by iteratively computing squares we were supposed to retrieve the initial
value. If we switch both for loops, i.e., if we run Algorithm 2 (which, like Algorithm 1,
would return x0 if the arithmetic was exact), we will start by building intermediate
values farther and farther from 1, i.e., closer and closer to places where �oating-point
arithmetic is better.

Algorithm 2 (TakeSquareThenRoot)
x← x0
for i from 1 to n do
x← RN(x2)

end for
for i from 1 to n do
x← RN(

√
x)

end for
return x

With Algorithm 2, assuming x0 = 1.0625 and n = 10, we obtain the exact result
1.0625 in binary32 arithmetic, and 1.0624947 · · · in Posit32 arithmetic: as expected,
on this example, binary32 arithmetic is slightly better.

The point is that with arti�cially-designed toy examples one can “prove” anything
one wants: it is a vain exercise (even if it can be very e�ective at convincing non-
numerically-aware readers). What matters is: in real life applications, with problems
of a signi�cant size, what happens? Concerning tapered arithmetic for instance, for a
given numerical problem, can we really assume that huge or tiny intermediate values
will not appear at places where this might hinder the accuracy of the calculation?
The disappointing yet inescapable answer is: it depends on the problem. Fortunately,
careful studies are starting to appear [4] (with mixed conclusions, by the way: not
everything is black or white). Of course, when the appearance of huge or tiny inter-
mediate values cannot be excluded, with a very careful preliminary analysis (similar
to what our fathers—and still many people from the signal processing community—
would do when using the �rst computers with �xed-point arithmetic), one can try to
scale the calculations, by putting explicit scale factors here and there to ensure that
all intermediate results remain of a moderate order of magnitude. But if we are able
and willing to accomplish that long, tedious (and, above all, error-prone!) task, why
not just using good old �xed-point? Or, possibly, new �oating-point formats with a
smaller exponent �eld?

3 Performone billion experiments and just show the
three ones that support your claims

No need to explain: that trick has been used for decades, sometimes with much suc-
cess, in almost all areas of science. But nobody does that in computer arithmetic.
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4 Ignore exponential growth with disdain
If your number system is nonredundant, you can represent 2w di�erent numbers with
w-bit words. In practice, this will be slightly less: �rst because redundancy is some-
times a good idea, and maybe more importantly because in practice it is useful to
reserve special words for non-fully-numerical information such as in�nities and the
results of indeterminate or forbidden operations. However, we can reasonably assume
that the number of representable numbers grows exponentially with w (the converse
would mean that your number system is highly ine�cient). Exponential growth im-
plies that some problems that are very easily solved for smallw become very di�cult,
or even intractable, with large w. Let us call these problems arduously scalable prob-
lems. A typical example is function testing: the best solution to be absolutely certain
of the reliability of an implementation of the sine function in binary32 arithmetic is to
try it with all 232 possible input values, which takes at most a few hours on a recent
laptop. Of course, this becomes impossible with wider formats and certain validation
of a binary64 function requires formal proof, which is much more complex.

Here, the tip is subtle: for a problem that is arduously scalable in usual number
systems, show with your system a nice solution for small w, with beautiful and im-
pressive �gures, formulas and drawings, and just let the reader assume (without you
actually needing to say it) that it easily generalizes to larger values of w.

An example of an arduously scalable problem is the Table Maker’s Dilemma (TMD).
The TMD can be considered with all possible rounding functions, but for the sake of
simplicity, let us consider round-to-nearest only (with any choice in case of a tie—
indeed for implementing the most usual transcendental functions, Lindemann’s The-
orem [2] implies that there are no ties). The problem is the following: for a given
number system, characterized here by the discrete set S of its exactly representable
numbers) and a given transcendental function f (either one of the usual “elementary
functions” sin, cos, exp, arctan, . . . , or a more complex “special” function), we wish to
design a program that always returns, when being given x ∈ S in input, the element
of S that is nearest to f(x). There are two facts that cannot be escaped here:

• a transcendental function cannot be exactly expressed as a �nite sequence of
arithmetic operations. Hence, f can only be approximated (usually, by a piece-
wise polynomial or rational function). The approximation can (and in practice
must) be computed in a somehow wider format (this can be explicit, or implicit,
e.g. using tricks such as representing some intermediate results as unevaluated
sums or products of elements of S , i.e., as “double-words” or “triple-words”),
so that the information we have is that f(x) belongs to some (hopefully small)
interval Ix. Typically, we obtain an approximation f̂(x) that belongs to a set
wider than S and an error bound. Beware: in some cases (e.g. using an “al-
ternate” series and carefully playing with directed roundings in intermediate
calculations) we know the sign of the error. This does not solve the problem:3
this just means that f̂(x) is one of the ends of Ix, but still the only information
we have on f(x) is that it belongs to Ix;

3This is a frequent misunderstanding.
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• S is a discrete set. This implies that, unless we are in the special cases where
min Ix ≤ minS or max Ix ≥ maxS , if Ix is small enough, it contains 0 or 1
middle of two consecutive elements ofS (in the following, we call such elements
“midpoints”).

The TMD is the problem of i) determining all the x ∈ S such that f(x) is a mid-
point, and ii) the minimum distance between f(x) and a midpoint when f(x) is not
a midpoint (that distance can be a relative distance if this is more convenient for the
number system and function under consideration). Solving that problem is necessary
if one wishes to know what the accuracy of the approximation f̂(x) must be to always
guarantee correct rounding.

Point i) belongs to the realm of algebra: for many functions (sin(x), cos(x), arctan(x),
exp(x), ln(x)) Lindemann’s Theorem implies that f(x) is never a midpoint; and for
several algebraic functions, we have a partial answer [10]. For more general functions
(e.g., Bessel functions), almost nothing is known. For Point ii) the choice of the num-
ber system will not change much the problem: we need to consider a number of input
points that grows exponentially with the width w of the number format, and the only
possible improvements come from properties of the function itself (for instance in FP
arithmetic, this is the case of function 2x) that may allow one to somehow reduce the
considered input domain.

But the TMD is not a di�cult problem. . .whenw is small. It is very simple forw =
16, and not-so-di�cult for w = 32. Let me give just an example. It takes 9 seconds
only (on my Macbook Pro) to �nd that the hardest to round case for the arctangent
of a normal number in Binary16 arithmetic is attained with the input number:

x =
823

128
= 110.01101112.

We have (in binary)

arctan(x) = 1.01101010101000000000000000100012 · · ·

which implies that arctan(x) is within 8.4778× 10−6 ulps from the exact middle of
two consecutive Binary16 numbers. The toy Maple program used for that is ridicu-
lously simple:
checkp := proc(emin,emax,p);
maxulpdist := 7890; Digits := 90;
twotopminusone := 2^(p-1); twotop := 2*twotopminusone;
Mmin := twotopminusone; Mmax := twotop-1;
for exponent from emin to emax do

scalex := 2^(exponent-p+1);
scaley := 1;
for mantissa from Mmin to Mmax do

x := mantissa * scalex;
y := evalf(arctan(x));
if y > scaley then

while y >= 2*scaley do scaley := 2*scaley end do
else while y < scaley do scaley := scaley*0.5 end do

end if;
Y := y*Mmin/scaley;
if abs(frac(Y)-0.5) <= maxulpdist then
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maxulpdist := abs(frac(Y)-0.5);
xmax := x

end if;
end do;

end do;
printf("minimum distance to a midpoint %a ulps, attained for

x = %a\n", evalf(maxulpdist,15), xmax);
end:

Unfortunately, a rapid calculation shows that the same program would take around
80 million years to do the same thing in binary64 arithmetic.

Conclusion
I hope I have convinced you that one can “show” just anything one wants by carefully
crafting small examples (or by using the heavy artillery, as suggested in Section 3).
This is sterile: toy examples are not proofs. They are extremely useful for pedagogical
purposes, because they make it possible to illustrate various situations that may arise
in computing. They can also sometimes serve as counterexamples to wrong claims.
However, really showing the interest of a number system, a numerical method, etc.,
requires much more work: an in-depth analysis whenever possible, and when analysis
is not possible or not fully concluding, heavy testing on real-life, real-size, problems,
with real-life input data.
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