The Classical Relative Error Bounds for Computing

v a’+ b? and ¢/v/a? + b? in Binary Floating-Point

Arithmetic are Asymptotically Optimal

Claude-Pierre Jeannerod Jean-Michel Muller Antoine Plet

Inria, CNRS, ENS Lyon, Université de Lyon,
Lyon, France

ARITH 24, London, July 2017

E e
—

UNIV=RSITE D= LYON -
sl Y < neremataes ==
&zua,- NS OE LYON

K an
[l I

va*+ b? and c/Va?> + b?

@ basic building blocks of numerical computing: computation of
2D-norms, Givens rotations, etc.;

@ radix-2, precision-p, FP arithmetic, round-to-nearest, unbounded
exponent range;

@ Classical analyses: relative error bounded by 2u for v/a2 + b?, and by
3u+ O(u?) for c¢/v/a? + b2, where u = 27" is the unit roundoff.
@ main results:
o the O(u?) term is not needed;
@ these error bounds are asymptotically optimal;
o the bounds and their asymptotic optimality remain valid when an FMA
is used to evaluate a® + b2.

Introduction and notation

radix-2, precision-p FP number of exponent e and integral significand
M| < 2P —1:

x = M .28 P+L

@ RN(t) is t rounded to nearest, ties-to-even (— RN(a?) is the result of
the FP multiplication a*a, assuming the round-to-nearest mode)

RD(t) is t rounded towards —oo,

u = 27P is the“unit roundoff.”

we have RN(t) = t(1 + €) with [e| < %, < u.

Relative error due to rounding (Knuth)

if 2¢ <t < 2°"! then |t — RN(t)| <2°7P =u-2¢ and

o if t >2%-(1+ u), then |t — RN(¢t)|/t < u/(1+ u);
o if t=2°-(147-u)with 7 €[0,1), then
[t —RN(t)|/t=7-u/(1+7T-u) <u/(1+u),

— the maximum relative error due to rounding is bounded by
u

1+u

attained — no further “general” improvement.

e— 1
26 (1+u) 2¢7P = Julp(t)
2¢ ! t ‘ﬂ% 2e+1

T |t —t] <27

“Wobbling” relative error

For t # 0, define (Rump’s ufp function)
ufp(t) = 2oe2 Il

We have,

Lemma 1
Lett e R. If

2 < w28 < |t < 2°TL e = log, ufp(p) € Z
(in other words, if 1 < w < t/ufp(t)) then

’RN(t)—t <

t

u
w

w2€ [t—RN(t)]|

‘ £ Sw

i
|

2¢y : z Qe+l
|

1 1 l 1 1 1 1 1 1 M 1 1 1 1 l 1
[y— e |
7 = RN(y) 2= RN(z)

Figure 1: If we know that w < t/ufp(t) = t/2¢, then |RN(t) — t|/t < u/w.

— the bound on the relative error of rounding t is largest when t is just
above a power of 2.

0.06

0.05

0.04

0.03

0.02

0.01

-
N}
w
IS
v
o
N
©

Figure 2: Relative error |RN(t) — t|/t due to rounding for ¢ < t < 8, and p = 4.

1
5

On the quality of error bounds

When giving for some algorithm a relative error bound that is a function
B(p) of the precision p (or, equivalently, of u = 27P),
e if there exist FP inputs parameterized by p for which the bound is
attained for every p > pp , the bound is optimal;

e if there exist some FP inputs parameterized by p and for which the
relative error E(p) satisfies E(p)/B(p) — 1 as p — oo (or,
equivalenty, u — 0), the bound is asymptotically optimal.

If a bound is asymptotically optimal: no need to try to obtain a
substantially better bound.

Computation of /a2 4 b?

Algorithm 1 Without FMA. Algorithm 2 With FMA.
s, + RN(2?) sp < RN(b?)
sp < RN(b?) s < RN(a? + sp)
s < RN(s, + sp) p + RN(v/s)
p < RN(\/s)
return p return p

e classical result: relative error of both algorithms < 2u + O(u?)
@ Jeannerod & Rump (2016): relative error of Algorithm 1 < 2u.

@ tight bounds: in binary64 arithmetic, with
a = 1723452922282957 /2% and b = 4503599674823629/2°2, both
algorithms have relative error 1.99999993022. .. vu.

— both algorithms rather equivalent in terms of worst case error;

Comparing both algorithms 7

@ both algorithms rather equivalent in terms of worst case error;

e for 1,000,000 randomly chosen pairs (a, b) of binary64 numbers with
the same exponent, same result in 90.08% of cases; Algorithm 2
(FMA) is more accurate in 6.26% of cases; Algorithm 1 is more
accurate in 3.65% of cases;

e for 100,000 randomly chosen pairs (a, b) of binary64 numbers with
exponents satisfying e, — e, = —26, same result in 83.90% of cases;
Algorithm 2 (FMA) is more accurate in 13.79% of cases; Algorithm 1
is more accurate in 2.32% of cases.

— Algorithm 2 wins, but not by a big margin.

~10-

Our main result for v a2 + b2

Theorem 2

For p > 12, there exist floating-point inputs a and b for which the result p
of Algorithm 1 or Algorithm 2 satisfies

p— a2+ b2

=2u—c¢, |ef=0(P?).
VAT = o)

Consequence: asymptotic optimality of the relative error bounds.

~11-

Building the “generic” input values a and b

(generic: they are given as a function of p)
@ We restrict to a and b such that 0 < a < b.

@ b such that the largest possible absolute error—that is,
(1/2)ulp(b?)—is committed when computing b?>. To maximize the
relative error, b> must be slightly above an even power of 2.

@ a small enough — the computed approximation to a® + b? is slightly
above the same power of 2;

We choose
o b=1+2"r/2 if p is even;
o b=1+ [ﬁzj] 2Pt if pis odd.
Example (p even): b =1+ 27P/2 gives
b2 =14 27P/2F1 L 27P s RN(B?) = 1 +27P/2+1,

~12-

Building the “generic” input values a and b

@ In Algorithm 1, when computing s, + sp, the significand of s, is

right-shifted by a number of positions equal to the difference of their
exponents. Gives the form s, should have to produce a large relative

error.
© We choose a = square root of that value, adequately rounded.

s | |

s2 l | l
We would like this part (J J
to maximize the error
of the computation of /s. We would like that part

to be of the form 01111 ---
or 10000 - - - to maximize the error
of the computation of s.

Figure 3: Constructing suitable generic inputs to Algorithms 1 and 2.

~13-

Generic values for v/ a2 + b2, for even p

b=1+27P2
and
a= RD(2—¥\WG),
where
G— [25 (xfz—l) +5] 2841 4 0%
with

_{1 if [ﬁﬁ] is odd,

2 otherwise,

14

Table 1: Relative errors of Algorithm 1 or Algorithm 2 for our generic values a
and b for various even values of p between 16 and 56.

p || relative error

16 || 1.97519352187392...
20 || 1.99418559548869. . .
24 || 1.99873332158282...
28 || 1.99967582969338.. . .
32 || 1.99990783760560 . ..
36 || 1.99997442258505. . .
40 || 1.99999449547633 . . .
44 |1 1.99999835799502. . .
48 || 1.99999967444005. ..
52 || 1.99999989989669 . . .
56 || 1.99999997847972. ..

clo|os|s|ls|s|s|js|S|T|&

Generic values for /a2 + b2, for odd p

We choose
b=1+n,
with o
and
a=RN(VH),
with
—p+3 —3p+3

H=2"% —2p—-3.27P4277 .

~16-

Table 2: Relative errors of Algorithm 1 or Algorithm 2 for our generic values a

and b and for various odd values of p between 53 and 113.

relative error

53

1.9999999188175005308 . . .

57

1.9999999764537355319.. ..

61

1.9999999949811629228 . . .

65

1.9999999988096732861 . ..

69

1.9999999997055095283 . ..

73

1.9999999999181918151. ..

7

1.9999999999800815518.. . .

81

1.9999999999954499727 . ..

101

1.9999999999999949423 . .

105

1.9999999999999986669 . . .

109

1.9999999999999996677 . .

113

1.9999999999999999175 ..

clele|e|s|s|s|s|s|s|s|s

_17-

The case of c¢/v/a2 + b?

Algorithm 3 Without FMA. Algorithm 4 With FMA.
s, + RN(2?) sp < RN(b?)
Sp RN(b2) S RN(32 + Sb)
s < RN(s, + sp) p + RN(v/s)
p < RN(V/s) g < RN(c/p)
g < RN(c/p)
return g return g

Straightforward error analysis: relative error 3u 4+ O(u?).

Theorem 3

If p # 3, then the relative error committed when approximating
c/Va% + b? by the result g of Algorithm 3 or 4 is less than 3u.

_19.

Sketch of the proof

@ Previous result on the computation of squares — if p # 3, then

sa=a*(1+€1) and sp = b?(1 + €) with |e1], |ea| < Ti30 = Usi

@ Jez and €4 such that |es], [es| < ?“u =: uy and

)

(sa+sp)(1+e€3) for Algorithm 3,
S =
(a® + s5)(1 4+ €4) for Algorithm 4.

— in both cases:

(a° + %) (1 — ur)(1 — us) <5 < (&% +) (1 + ur)(L + us).

@ the relative error of division in radix-2 FP arithmetic is at most
u — 2u? (Jeannerod/Rump, 2016), hence

9
R e R

with |es| < uy and |eg| < v — 202

~-10-

Sketch of the proof

@ and then
. 2
c '1 u—+2u <

\f 14+ \g\\/g 1—u

o Consequently,
c c
< /

NV AN
with
o 1 1-u+2d
<= V(@4 un) (1 + u3) 1+uwu
and

1 14 u—2u?
VA-u) (1 -w) l1-wm

¢ =

To conclude, we check that 1 —3u < ¢ and ¢ <1+ 3u for all u <1/2.

c 14 u—202

-20-

Asymptotic optimality of the bound for ¢/v/a? + b?

Theorem 4

For p > 12, there exist floating-point inputs a, b, and ¢ for which the
result g returned by Algorithm 3 or Algorithm 4 satisfies

£~ \/m
\/az—i—b

=3u—c, |e|=0(%?).

The “generic” values of a and b used to prove Theorem 4 are the same as
the ones we have chosen for v/a% + b2, and we use

1+27P+L. |3y/2.2P/272] (even p),
C = —
1+3- (odd p).

21-

Table 3: Relative errors obtained, for various precisions p, when running
Algorithm 3 or Algorithm 4 with our generic values a, b, and c.

p || relative error
24 | 2.998002589136762596763498.. .. u
53 || 2.999999896465758351542169. .. u
64 || 2.999999997359196820010396. .. u
113 || 2.999999999999999896692295 . . . u
128 || 2.999999999999999999566038 . . . u

Conclusion

@ we have reminded the relative error bound 2u for Va2 + b2, slightly
improved the bound (3u + O(u?) — 3u) for ¢/v/a® + b2, and
considered variants that take advantage of the possible availability of
an FMA,

@ asymptotically optimal bounds — trying to significantly refine them
further is hopeless.

@ Unbounded exponent range — our results hold provided that no
underflow or overflow occurs.

@ handling “spurious” overflows and underflows: using an exception
handler and/or scaling the input values:
e if the scaling introduces rounding errors, then our bounds may not hold
anymore;
e if aand b (and ¢) are scaled by a power of 2, our analyses still apply.

23

