The Classical Relative Error Bounds for Computing $\sqrt{a^2 + b^2}$ and $c/\sqrt{a^2 + b^2}$ in Binary Floating-Point Arithmetic are Asymptotically Optimal

Claude-Pierre Jeannerod Jean-Michel Muller Antoine Plet Inria, CNRS, ENS Lyon, Université de Lyon, Lyon, France

ARITH 24, London, July 2017

 $\sqrt{a^2+b^2}$ and $c/\sqrt{a^2+b^2}$

- basic building blocks of numerical computing: computation of 2D-norms, Givens rotations, etc.;
- radix-2, precision-*p*, FP arithmetic, round-to-nearest, unbounded exponent range;
- Classical analyses: relative error bounded by 2u for $\sqrt{a^2 + b^2}$, and by $3u + O(u^2)$ for $c/\sqrt{a^2 + b^2}$, where $u = 2^{-p}$ is the unit roundoff.
- main results:
 - the $\mathcal{O}(u^2)$ term is not needed;
 - these error bounds are asymptotically optimal;
 - the bounds and their asymptotic optimality remain valid when an FMA is used to evaluate $a^2 + b^2$.

• radix-2, precision-*p* FP number of exponent *e* and integral significand $|M| \leq 2^p - 1$:

$$x = M \cdot 2^{e-p+1}.$$

- RN(t) is t rounded to nearest, ties-to-even (→ RN(a²) is the result of the FP multiplication a*a, assuming the round-to-nearest mode)
- RD(t) is t rounded towards $-\infty$,
- $u = 2^{-p}$ is the "unit roundoff."
- we have $RN(t) = t(1 + \epsilon)$ with $|\epsilon| \leq \frac{u}{1+u} < u$.

Relative error due to rounding (Knuth)

if $2^e \leqslant t < 2^{e+1}$, then $|t - \mathsf{RN}(t)| \leqslant 2^{e-p} = u \cdot 2^e$, and

• if
$$t \ge 2^e \cdot (1+u)$$
, then $|t - RN(t)|/t \le u/(1+u)$;
• if $t = 2^e \cdot (1 + \tau \cdot u)$ with $\tau \in [0, 1)$, then
 $|t - RN(t)|/t = \tau \cdot u/(1 + \tau \cdot u) < u/(1+u)$,

 $\rightarrow\,$ the maximum relative error due to rounding is bounded by

$$\frac{u}{1+u}.$$

"Wobbling" relative error

For $t \neq 0$, define (Rump's ufp function)

$$ufp(t) = 2^{\lfloor \log_2 |t| \rfloor}$$

We have,

Lemma 1

Let $t \in \mathbb{R}$. If

$$2^{e} \leqslant w \cdot 2^{e} \leqslant |t| < 2^{e+1}, e = \log_2 \operatorname{ufp}(p) \in \mathbb{Z}$$

(in other words, if $1 \leq w \leq t/ufp(t)$) then

$$\left|\frac{\mathsf{RN}(t)-t}{t}\right| \leqslant \frac{u}{w}.$$

(1)

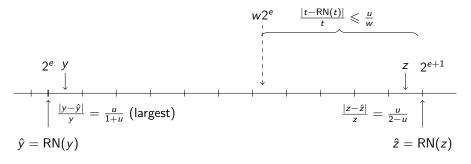


Figure 1: If we know that $w \leq t/ufp(t) = t/2^e$, then $|RN(t) - t|/t \leq u/w$.

 \rightarrow the bound on the relative error of rounding *t* is largest when *t* is just above a power of 2.

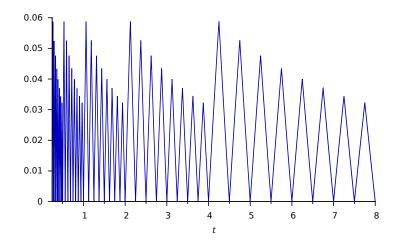


Figure 2: Relative error |RN(t) - t|/t due to rounding for $\frac{1}{5} \leq t \leq 8$, and p = 4.

When giving for some algorithm a relative error bound that is a function B(p) of the precision p (or, equivalently, of $u = 2^{-p}$),

- if there exist FP inputs parameterized by p for which the bound is attained for every p ≥ p₀, the bound is optimal;
- if there exist some FP inputs parameterized by p and for which the relative error E(p) satisfies E(p)/B(p) → 1 as p → ∞ (or, equivalenty, u → 0), the bound is asymptotically optimal.

If a bound is asymptotically optimal: no need to try to obtain a substantially better bound.

Computation of $\sqrt{a^2 + b^2}$

Algorithm 1 Without FMA.

 $s_{a} \leftarrow \mathsf{RN}(a^{2})$ $s_{b} \leftarrow \mathsf{RN}(b^{2})$ $s \leftarrow \mathsf{RN}(s_{a} + s_{b})$ $\rho \leftarrow \mathsf{RN}(\sqrt{s})$ return ρ

Algorithm 2 With FMA.

$$egin{aligned} s_b &\leftarrow \mathsf{RN}(b^2) \ s &\leftarrow \mathsf{RN}(a^2 + s_b) \
ho &\leftarrow \mathsf{RN}(\sqrt{s}) \end{aligned}$$

return ρ

- classical result: relative error of both algorithms $\leq 2u + \mathcal{O}(u^2)$
- Jeannerod & Rump (2016): relative error of Algorithm $1 \leq 2u$.
- tight bounds: in binary64 arithmetic, with $a = 1723452922282957/2^{64}$ and $b = 4503599674823629/2^{52}$, both algorithms have relative error **1.9999999**3022...*u*.
- ightarrow both algorithms rather equivalent in terms of worst case error;

Comparing both algorithms ?

- both algorithms rather equivalent in terms of worst case error;
- for 1,000,000 randomly chosen pairs (a, b) of binary64 numbers with the same exponent, same result in 90.08% of cases; Algorithm 2 (FMA) is more accurate in 6.26% of cases; Algorithm 1 is more accurate in 3.65% of cases;
- for 100,000 randomly chosen pairs (a, b) of binary64 numbers with exponents satisfying $e_a e_b = -26$, same result in 83.90% of cases; Algorithm 2 (FMA) is more accurate in 13.79% of cases; Algorithm 1 is more accurate in 2.32% of cases.

 \rightarrow Algorithm 2 wins, but not by a big margin.

Theorem 2

For $p \ge 12$, there exist floating-point inputs a and b for which the result ρ of Algorithm 1 or Algorithm 2 satisfies

$$\left|\frac{\rho-\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}\right|=2u-\epsilon, \quad |\epsilon|=\mathcal{O}(u^{3/2}).$$

Consequence: asymptotic optimality of the relative error bounds.

Building the "generic" input values a and b

(generic: they are given as a function of p)

- We restrict to a and b such that 0 < a < b.
- b such that the largest possible absolute error—that is,
 (1/2)ulp(b²)—is committed when computing b². To maximize the relative error, b² must be slightly above an even power of 2.
- a small enough → the computed approximation to a² + b² is slightly above the same power of 2;

We choose

•
$$b = 1 + 2^{-p/2}$$
 if *p* is even;
• $b = 1 + \left\lceil \sqrt{2} \cdot 2^{\frac{p-3}{2}} \right\rceil \cdot 2^{-p+1}$ if *p* is odd.

Example (p even): $b = 1 + 2^{-p/2}$ gives

$$b^2 = 1 + 2^{-p/2+1} + 2^{-p} \to \mathsf{RN}(b^2) = 1 + 2^{-p/2+1}$$

Building the "generic" input values a and b

- In Algorithm 1, when computing $s_a + s_b$, the significand of s_a is right-shifted by a number of positions equal to the difference of their exponents. Gives the form s_a should have to produce a large relative error.
- Solution We choose a = square root of that value, adequately rounded.

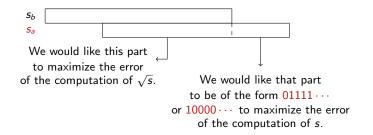


Figure 3: Constructing suitable generic inputs to Algorithms 1 and 2.

Generic values for $\sqrt{a^2 + b^2}$, for even p

 and

with

$$b = 1 + 2^{-p/2},$$

and
$$a = RD\left(2^{-\frac{3p}{4}}\sqrt{G}\right),$$

where
$$G = \left\lceil 2^{\frac{p}{2}}\left(\sqrt{2} - 1\right) + \delta \right\rceil \cdot 2^{\frac{p}{2}+1} + 2^{\frac{p}{2}}$$

with
$$\delta = \begin{cases} 1 & \text{if } \left\lceil 2^{\frac{p}{2}}\sqrt{2} \right\rceil \text{ is odd,} \\ 2 & \text{otherwise,} \end{cases}$$

(2)

Table 1: Relative errors of Algorithm 1 or Algorithm 2 for our generic values a and b for various even values of p between 16 and 56.

p	relative error
16	1. 9 7519352187392 <i>u</i>
20	1. 99 418559548869 <i>u</i>
24	1. 99 873332158282 <i>u</i>
28	1. 999 67582969338 <i>u</i>
32	1. 9999 0783760560 <i>u</i>
36	1. 9999 7442258505 <i>u</i>
40	1. 999999 449547633 <i>u</i>
44	1. 99999 835799502 <i>u</i>
48	1. 9999999 67444005 <i>u</i>
52	1. 999999 89989669 <i>u</i>
56	1. 9999999 7847972 <i>u</i>

Generic values for $\sqrt{a^2 + b^2}$, for odd p

We choose $b = 1 + \eta,$ with $\eta = \left\lceil \sqrt{2} \cdot 2^{\frac{p-3}{2}} \right\rceil \cdot 2^{-p+1},$ and $a = \text{RN}(\sqrt{H}),$ with $H = 2^{\frac{-p+3}{2}} - 2\eta - 3 \cdot 2^{-p} + 2^{\frac{-3p+3}{2}}.$

Table 2: Relative errors of Algorithm 1 or Algorithm 2 for our generic values a and b and for various odd values of p between 53 and 113.

p	relative error
53	1. 9999999 188175005308 <i>u</i>
57	1. 9999999 764537355319 <i>u</i>
61	1. 999999999 49811629228 <i>u</i>
65	1. 99999999 88096732861 <i>u</i>
69	1. 999999999 7055095283 <i>u</i>
73	1. 9999999999 181918151 <i>u</i>
77	1. 9999999999 800815518 <i>u</i>
81	1. 99999999999 54499727 <i>u</i>
101	1. 999999999999999 49423 <i>u</i>
105	1. 999999999999999 86669 <i>u</i>
109	1. 99999999999999999 6677 <i>u</i>
113	1. 99999999999999999 175 <i>u</i>

The case of $c/\sqrt{a^2+b^2}$

Algorithm 3 Without FMA.	Algorithm 4 With FMA.
$s_a \leftarrow RN(a^2)$	$s_b \leftarrow RN(b^2)$
$s_b \leftarrow RN(b^2)$	$s \leftarrow RN(a^2 + s_b)$
$s \leftarrow RN(s_a + s_b)$	$ ho \leftarrow RN(\sqrt{s})$
$ ho \leftarrow RN(\sqrt{s})$	$\boldsymbol{g} \leftarrow RN(\boldsymbol{c}/\rho)$
$g \gets RN(c/\rho)$	
return g	return g

Straightforward error analysis: relative error $3u + O(u^2)$.

Theorem 3

If $p \neq 3$, then the relative error committed when approximating $c/\sqrt{a^2 + b^2}$ by the result g of Algorithm 3 or 4 is less than 3u.

Sketch of the proof

- Previous result on the computation of squares \rightarrow if $p \neq 3$, then $s_a = a^2(1 + \epsilon_1)$ and $s_b = b^2(1 + \epsilon_2)$ with $|\epsilon_1|, |\epsilon_2| \leq \frac{u}{1+3u} =: u_3$;
- $\exists \epsilon_3$ and ϵ_4 such that $|\epsilon_3|, |\epsilon_4| \leqslant \frac{u}{1+u} =: u_1$ and

$$s = egin{cases} (s_a + s_b)(1 + \epsilon_3) & ext{for Algorithm 3,} \ (a^2 + s_b)(1 + \epsilon_4) & ext{for Algorithm 4.} \end{cases}$$

 \rightarrow in both cases:

$$(a^2+b^2)(1-u_1)(1-u_3)\leqslant s\leqslant (a^2+b^2)(1+u_1)(1+u_3).$$

• the relative error of division in radix-2 FP arithmetic is at most $u - 2u^2$ (Jeannerod/Rump, 2016), hence

$$g=rac{c}{\sqrt{s}\left(1+\epsilon_{5}
ight)}(1+\epsilon_{6})$$

with $|\epsilon_5| \leq u_1$ and $|\epsilon_6| \leq u - 2u^2$.

Sketch of the proof

and then

$$\frac{c}{\sqrt{s}} \cdot \frac{1-u+2u^2}{1+u_1} \leqslant g \leqslant \frac{c}{\sqrt{s}} \cdot \frac{1+u-2u^2}{1-u_1}.$$

• Consequently,

$$\zeta \frac{c}{\sqrt{a^2 + b^2}} \leqslant g \leqslant \zeta' \frac{c}{\sqrt{a^2 + b^2}}$$

with

$$\zeta := \frac{1}{\sqrt{(1+u_1)(1+u_3)}} \cdot \frac{1-u+2u^2}{1+u_1}$$

and

$$\zeta' := \frac{1}{\sqrt{(1-u_1)(1-u_3)}} \cdot \frac{1+u-2u^2}{1-u_1}$$

To conclude, we check that $1 - 3u < \zeta$ and $\zeta' < 1 + 3u$ for all $u \leqslant 1/2$.

Asymptotic optimality of the bound for $c/\sqrt{a^2+b^2}$

Theorem 4

For $p \ge 12$, there exist floating-point inputs a, b, and c for which the result g returned by Algorithm 3 or Algorithm 4 satisfies

$$\left|\frac{\frac{g-\frac{c}{\sqrt{a^2+b^2}}}{\frac{c}{\sqrt{a^2+b^2}}}\right| = 3u-\epsilon, \quad |\epsilon| = \mathcal{O}(u^{3/2}).$$

The "generic" values of *a* and *b* used to prove Theorem 4 are the same as the ones we have chosen for $\sqrt{a^2 + b^2}$, and we use

$$c = \begin{cases} 1 + 2^{-p+1} \cdot \lfloor 3\sqrt{2} \cdot 2^{p/2-2} \rfloor & (\text{even } p), \\ 1 + 3 \cdot 2^{\frac{-p-1}{2}} + 2^{-p+1} & (\text{odd } p). \end{cases}$$

Table 3: Relative errors obtained, for various precisions p, when running Algorithm 3 or Algorithm 4 with our generic values a, b, and c.

p	relative error
24	2. 99 8002589136762596763498 <i>u</i>
53	2. 999999 896465758351542169 <i>u</i>
64	2. 999999999 7359196820010396 <i>u</i>
113	2. 99999999999999999 896692295 <i>u</i>
128	2. 99999999999999999999 566038 <i>u</i>

Conclusion

- we have reminded the relative error bound 2u for $\sqrt{a^2 + b^2}$, slightly improved the bound $(3u + O(u^2) \rightarrow 3u)$ for $c/\sqrt{a^2 + b^2}$, and considered variants that take advantage of the possible availability of an FMA,
- asymptotically optimal bounds \rightarrow trying to significantly refine them further is hopeless.
- Unbounded exponent range \rightarrow our results hold provided that no underflow or overflow occurs.
- handling "spurious" overflows and underflows: using an exception handler and/or scaling the input values:
 - if the scaling introduces rounding errors, then our bounds may not hold anymore;
 - if a and b (and c) are scaled by a power of 2, our analyses still apply.