On various ways to split a floating-point number

Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann Inria, CNRS, ENS Lyon, Université de Lyon, Université de Lorraine France

> ARITH-25 June 2018

Splitting a floating-point number

Dekker product (1971)

Splitting a floating-point number

In each "bin", the sum is computed exactly

- Matlab program in a paper by Zielke and Drygalla (2003),
- analysed and improved by Rump, Ogita, and Oishi (2008),
- reproducible summation, by Demmel & Nguyen.

- absolute splittings (e.g., [x]), vs relative splittings (e.g., most significant bits, splitting of the significands for multiplication);
- no bit manipulations of the binary representations (would result in less portable programs) → only FP operations.

Notation and preliminary definitions

- IEEE-754 compliant FP arithmetic with radix β , precision p, and extremal exponents e_{\min} and e_{\max} ;
- $\mathbb{F} = \mathsf{set} \mathsf{ of } \mathsf{FP} \mathsf{ numbers.} \ x \in \mathbb{F} \mathsf{ can be written}$

$$\mathbf{x} = \left(\frac{M}{\beta^{p-1}}\right) \cdot \beta^{e},$$

M, $e \in \mathbb{Z}$, with $|M| < \beta^p$ and $e_{\min} \leq e \leq e_{\max}$, and |M| maximum under these constraints;

- significand of x: $M \cdot \beta^{-p+1}$;
- RN = rounding to nearest with some given tie-breaking rule (assumed to be either "to even" or "to away", as in IEEE 754-2008);

Notation and preliminary definitions

Definition 1 (classical ulp)

The unit in the last place of $t \in \mathbb{R}$ is

$$\mathsf{ulp}(t) = \begin{cases} \beta^{\lfloor \log_{\beta} |t| \rfloor - p + 1} & \text{if } |t| \ge \beta^{e_{\min}} \\ \beta^{e_{\min} - p + 1} & \text{otherwise.} \end{cases}$$

Definition 2 (ufp)

The unit in the first place of $t \in \mathbb{R}$ is

$$u fp(t) = \begin{cases} \beta^{\lfloor \log_{\beta} |t| \rfloor} & \text{if } t \neq 0, \\ 0 & \text{if } t = 0. \end{cases}$$

(introduced by Rump, Ogita and Oishi in 2007)

Notation and preliminary definitions

Guiding thread of the talk: catastrophic cancellation is your friend.

Absolute splittings: 1. nearest integer

Uses a constant C. Same operations as Fast2Sum, yet different assumptions.

Algorithm 1

First occurrence we found: Hecker (1996) in radix 2 with $C = 2^{p-1}$ or $C = 2^{p-1} + 2^{p-2}$. Use of latter constant referred to as the 1.5 trick. Theorem 3

Assume *C* integer with $\beta^{p-1} \leq C \leq \beta^p$. If $\beta^{p-1} - C \leq x \leq \beta^p - C$, then x_h is an integer such that $|x - x_h| \leq 1/2$. Furthermore, $x = x_h + x_\ell$.

Absolute splittings: 2. floor function

An interesting question is to compute $\lfloor x \rfloor$, or more generally $\lfloor x/\beta^k \rfloor$.

Algorithm 2	
Require: $x \in \mathbb{F}$	
$y \leftarrow RN(x - 0.5)$	
$C \leftarrow RN(\beta^p - x)$	
$s \leftarrow RN(C + y)$	
$x_h \leftarrow RN(s-C)$	
return x _h	

Theorem 4

Assume β is even, $x \in \mathbb{F}$, $0 \leq x \leq \beta^{p-1}$. Then Algorithm 2 returns $x_h = \lfloor x \rfloor$.

- expressing a precision-p FP number x as the exact sum of a (p − s)-digit number x_h and an s-digit number x_ℓ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: s = p − 1 → x_h is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;

- expressing a precision-p FP number x as the exact sum of a (p − s)-digit number x_h and an s-digit number x_ℓ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: s = p − 1 → x_h is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;
 - \rightarrow exact information

- expressing a precision-p FP number x as the exact sum of a (p − s)-digit number x_h and an s-digit number x_ℓ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: s = p − 1 → x_h is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;

 \rightarrow exact information

• power of β close to |x|: for scaling x, such a weaker condition suffices, and can be satisfied using fewer operations.

- expressing a precision-p FP number x as the exact sum of a (p − s)-digit number x_h and an s-digit number x_ℓ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: s = p − 1 → x_h is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;

 \rightarrow exact information

 power of β close to |x|: for scaling x, such a weaker condition suffices, and can be satisfied using fewer operations.

 \rightarrow approximate information

Veltkamp splitting

 $x \in \mathbb{F}$ and $s two FP numbers <math>x_h$ and x_ℓ s.t. $x = x_h + x_\ell$, with the significand of x_h fitting in p-s digits, and the one of x_ℓ in s digits (s - 1 when $\beta = 2$ and $s \ge 2$).

Remember: catastrophic cancellation is your friend!

- Dekker (1971): radix 2 analysis, implicitly assuming no overflow;
- extended to any radix β by Linnainmaa (1981);
- works correctly even in the presence of underflows;
- Boldo (2006): Cx does not overflow \Rightarrow no other operation overflows.

Veltkamp splitting: FMA variant

If an FMA instruction is available, we suggest the following variant, that requires fewer operations.

Algorithm 4 FMA-based relative splitting.

Require:
$$C = \beta^{s} + 1$$
 and x in \mathbb{F}
 $\gamma \leftarrow \mathsf{RN}(Cx)$
 $x_{h} \leftarrow \mathsf{RN}(\gamma - \beta^{s}x)$
 $x_{\ell} \leftarrow \mathsf{RN}(Cx - \gamma)$
return (x_{h}, x_{ℓ})

Remarks

- x_{ℓ} obtained in parallel with x_h
- even without an FMA, γ and β^sx can be computed in parallel,
- the bounds on the numbers of digits of x_h and x_ℓ given by Theorem 5 can be attained.

Theorem 5

Let $x \in \mathbb{F}$ and $s \in \mathbb{Z}$ s.t. $1 \leq s < p$. Barring underflow and overflow, Algorithm 4 computes $x_h, x_\ell \in \mathbb{F}$ s.t. $x = x_h + x_\ell$. If $\beta = 2$, the significands of x_h and x_ℓ have at most p - s and s bits, respectively. If $\beta > 2$ then they have at most p - s + 1 and s + 1 digits, respectively.

Extracting a single bit (radix 2)

- computing ufp(x) or ulp(x), or scaling x;
- Veltkamp's splitting (Algorithm 3) to x with s = p 1: the resulting x_h has a 1-bit significand and it is nearest x in precision p s = 1.
- For computing sign(x) · ufp(x), we can use the following algorithm, introduced by Rump (2009).

Algorithm 5

Require:
$$\beta = 2$$
, $\varphi = 2^{p-1} + 1$, $\psi = 1 - 2^{-p}$, and $x \in \mathbb{F}$
 $q \leftarrow \mathsf{RN}(\varphi x)$
 $r \leftarrow \mathsf{RN}(\psi q)$
 $\delta \leftarrow \mathsf{RN}(q - r)$
return δ

Very rough explanation:

•
$$q \approx 2^{p-1}x + x$$

•
$$r \approx 2^{p-1}x$$

 \rightarrow $q - r \approx x$ but in the massive cancellation we loose all bits but the most significant.

Extracting a single bit (radix 2)

These solutions raise the following issues.

- If |x| is large, then an overflow can occur in the first line of both Algorithms 3 and 5.
- To avoid overflow in Algorithm 5: scale it by replacing φ by ¹/₂ + 2^{-p} and returning 2^pδ at the end. However, this variant will not work for subnormal x.
- \rightarrow to use Algorithm 5, we somehow need to check the order of magnitude of x.
 - If we are only interested in scaling x, then requiring the exact value of ufp(x) is overkill: one can get a power of 2 "close" to x with a cheaper algorithm.

Extracting a single bit (radix 2)

Algorithm 6 sign(x) · ulp_H(x) for radix 2 and $|x| > 2^{e_{\min}}$. **Require:** $\beta = 2$, $\psi = 1 - 2^{-p}$, and $x \in \mathbb{F}$ $a \leftarrow \text{RN}(\psi x)$ $\delta \leftarrow \text{RN}(x - a)$ **return** δ

Theorem 6

If $|x| > 2^{e_{\min}}$, then Algorithm 6 returns

sign(x)
$$\cdot \begin{cases} \frac{1}{2} ulp(x) & if |x| \text{ is a power of 2,} \\ ulp(x) & otherwise. \end{cases}$$

Similar algorithm for ufp(x), under the condition $|x| < 2^{e_{\max}-p+1}$.

Underflow-safe and almost overflow-free scaling

- $\beta = 2$, $p \ge 4$;
- RN breaks ties "to even" or "to away";
- $\eta = 2^{e_{\min}-p+1}$: smallest positive element of \mathbb{F} .

Given a nonzero FP number x, compute a scaling factor δ s.t.:

- |x|/δ is much above the underflow threshold and much below the overflow threshold (so that, for example, we can safely square it);
- δ is an integer power of 2 (\rightarrow no rounding errors when multiplying or dividing by it).

Algorithms proposed at the beginning of this talk: simple, but underflow or overflow can occur for many inputs x.

Underflow-safe and almost overflow-free scaling

Following algorithm: underflow-safe and *almost* overflow-free in the sense that only the two extreme values $x = \pm (2 - 2^{1-p}) \cdot 2^{e_{\max}}$ must be excluded.

Algorithm 7

```
Require: \beta = 2, \Phi = 2^{-p} + 2^{-2p+1}, \eta = 2^{e_{\min}-p+1}, and x \in \mathbb{F}

y \leftarrow |x|

e \leftarrow \mathsf{RN}(\Phi y + \eta) {or e \leftarrow \mathsf{RN}(\mathsf{RN}(\Phi y) + \eta) without FMA}

y_{sup} \leftarrow \mathsf{RN}(y + e)

\delta \leftarrow \mathsf{RN}(y_{sup} - y)

return \delta
```

Underflow-safe and almost overflow-free scaling

First 3 lines of Algorithm 7: algorithm due to Rump, Zimmermann, Boldo and Melquiond, that computes the FP successor of $x \notin [2^{e_{\min}}, 2^{e_{\min}+2}]$. We have,

Theorem 7

For $x \in \mathbb{F}$ with $|x| \neq (2 - 2^{1-p}) \cdot 2^{e_{\max}}$, the value δ returned by Algorithm 7 satisfies:

- if RN is with "ties to even" then δ is a power of 2;
- if RN is with "ties to away" then δ is a power of 2, unless $|x| = 2^{e_{\min}+1} 2^{e_{\min}-p+1}$, in which case it equals $3 \cdot 2^{e_{\min}-p+1}$;
- if $x \neq 0$, then

$$1 \leqslant \left|\frac{x}{\delta}\right| \leqslant 2^p - 1.$$

- \rightarrow makes δ a good candidate for scaling x;
- \rightarrow in the paper: application to $\sqrt{a^2+b^2}$.

Experimental results

Although we considered floating-point operations only, we can compare with bit-manipulations.

The C programs we used are publicly available (see proceedings).

Experimental setup: Intel i5-4590 processor, Debian testing, GCC 7.3.0 with -O3 optimization level, FPU control set to rounding to double.

Computation of round or floor:

	round	floor
Algorithms 1 and 2	0.106s	0.173s
Bit manipulation	0.302s	0.203s
GNU libm rint and floor	0.146s	0.209s

Note: Algorithms 1 and 2 require $|x| \leq 2^{51}$ and $0 \leq x \leq 2^{52}$ respectively.

Splitting into x_h and x_ℓ :

	Xh	x_ℓ	time
Algorithm 3	26 bits	26 bits	0.108s
Algorithm 4	26 bits	27 bits	0.106s
Algorithm 4 with FMA	26 bits	27 bits	0.108s
Bit manipulation	26 bits	27 bits	0.095s

Algorithms 3 and 4 assume no intermediate overflow or underflow.

time Algorithm 5 0.107s Algorithm 7 of the paper 0.107s Bit manipulation **0.095s**

Algorithms 5 and 7 assume no intermediate overflow.

- systematic review of splitting algorithms
- found some new algorithms, in particular with FMA
- many applications for absolute and relative splitting
- in their application range, these algorithms are competitive with (less-portable) bit-manipulation algorithms

Motivation

Question of Pierrick Gaudry (Caramba team, Nancy, France):

Multiple-precision integer arithmetic in Javascript.

Javascript has only a 32-bit integer type, but 53-bit doubles!

Storing 16-bit integers in a double precision register, we can accumulate up to 2^{21} products of 32 bits, and then have to perform floor(x/65536.0) to normalize.

The Javascript code Math.Floor(x/65536.0) is slow on old internet browsers (Internet Explorer version 7 or 8)!

The Javascript standard says it is IEEE754, with always round to nearest, ties to even.

Pierrick Gaudry then opened the "Handbook of Floating-Point Arithmetic"...

First algorithm (designed by Pierrick Gaudry):

Assume $0 \le x < 2^{36}$ and x is an integer

We can compute floor(x) as follows:

Let $C = 2^{36} - 2^{-1} + 2^{-17}$.

 $s \leftarrow \mathsf{RN}(C + x)$

Return RN(s - C)

Question: can we get rid of the condition "x integer"?