
On various ways to split a floating-point number

Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann

Inria, CNRS, ENS Lyon, Université de Lyon, Université de Lorraine
France

ARITH-25
June 2018

-1-

Splitting a floating-point number

X = ?

X
X
X
X

All products are
computed exactly
with one FP
multiplication
(Dekker product)

Dekker product (1971)

20

round(x)

frac(x)

First bit of x = ufp(x)
(for scalings)

√
a2 + b2 → 2k

√(a

2k

)2
+

(
b

2k

)2

-2-

Splitting a floating-point number

In each "bin", the sum is
computed exactly

Matlab program in a paper by
Zielke and Drygalla (2003),

analysed and improved by Rump,
Ogita, and Oishi (2008),

reproducible summation, by
Demmel & Nguyen.

absolute splittings (e.g., bxc),
vs relative splittings (e.g., most
significant bits, splitting of the
significands for multiplication);

no bit manipulations of the
binary representations (would
result in less portable
programs) → only FP
operations.

-3-

Notation and preliminary definitions

IEEE-754 compliant FP arithmetic with radix β, precision p, and
extremal exponents emin and emax;

F = set of FP numbers. x ∈ F can be written

x =

(
M

βp−1

)
· βe ,

M, e ∈ Z, with |M| < βp and emin 6 e 6 emax, and |M| maximum
under these constraints;

significand of x : M · β−p+1;

RN = rounding to nearest with some given tie-breaking rule (assumed
to be either “to even” or “to away”, as in IEEE 754-2008);

-4-

Notation and preliminary definitions

Definition 1 (classical ulp)

The unit in the last place of t ∈ R is

ulp(t) =

{
βblogβ |t|c−p+1 if |t| > βemin ,

βemin−p+1 otherwise.

Definition 2 (ufp)

The unit in the first place of t ∈ R is

ufp(t) =

{
βblogβ |t|c if t 6= 0,

0 if t = 0.

(introduced by Rump, Ogita and Oishi in 2007)

-5-

Notation and preliminary definitions

significand exponent

x = 1.xxxxxxxxx . 2
e

ufp(x) = 1.00000000 . 2
e

ulp(x) = 0.00000001 . 2
e

Guiding thread of the talk: catastrophic cancellation is your friend.

-6-

Absolute splittings: 1. nearest integer

Uses a constant C . Same operations as Fast2Sum, yet different
assumptions.

Algorithm 1

Require: C , x ∈ F
s ← RN(C + x)
xh ← RN(s − C)
x` ← RN(x − xh) {optional}
return xh {or (xh, x`)}

1.10000000000…0
+ x
C

1.100s =
- C 1.10000000000…0

0000

First occurrence we found: Hecker (1996) in radix 2 with C = 2p−1 or
C = 2p−1 + 2p−2. Use of latter constant referred to as the 1.5 trick.

Theorem 3

Assume C integer with βp−1 6 C 6 βp. If βp−1 − C 6 x 6 βp − C , then
xh is an integer such that |x − xh| 6 1/2. Furthermore, x = xh + x`.

-7-

Absolute splittings: 2. floor function

An interesting question is to compute bxc, or more generally bx/βkc.

Algorithm 2

Require: x ∈ F
y ← RN(x − 0.5)
C ← RN(βp − x)
s ← RN(C + y)
xh ← RN(s − C)
return xh

Theorem 4

Assume β is even, x ∈ F, 0 6 x 6 βp−1. Then Algorithm 2 returns
xh = bxc.

-8-

Relative splittings

expressing a precision-p FP number x as the exact sum of a
(p − s)-digit number xh and an s-digit number x`;

first use with s = bp/2c (Dekker product, 1971)

another use: s = p − 1→ xh is a power of β giving the order of
magnitude of x . Two uses:

evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

→ exact information

power of β close to |x |: for scaling x , such a weaker condition suffices,
and can be satisfied using fewer operations.

→ approximate information

-9-

Relative splittings

expressing a precision-p FP number x as the exact sum of a
(p − s)-digit number xh and an s-digit number x`;

first use with s = bp/2c (Dekker product, 1971)

another use: s = p − 1→ xh is a power of β giving the order of
magnitude of x . Two uses:

evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

→ exact information

power of β close to |x |: for scaling x , such a weaker condition suffices,
and can be satisfied using fewer operations.

→ approximate information

-9-

Relative splittings

expressing a precision-p FP number x as the exact sum of a
(p − s)-digit number xh and an s-digit number x`;

first use with s = bp/2c (Dekker product, 1971)

another use: s = p − 1→ xh is a power of β giving the order of
magnitude of x . Two uses:

evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

→ exact information

power of β close to |x |: for scaling x , such a weaker condition suffices,
and can be satisfied using fewer operations.

→ approximate information

-9-

Relative splittings

expressing a precision-p FP number x as the exact sum of a
(p − s)-digit number xh and an s-digit number x`;

first use with s = bp/2c (Dekker product, 1971)

another use: s = p − 1→ xh is a power of β giving the order of
magnitude of x . Two uses:

evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

→ exact information

power of β close to |x |: for scaling x , such a weaker condition suffices,
and can be satisfied using fewer operations.

→ approximate information

-9-

Veltkamp splitting

x ∈ F and s < p → two FP numbers xh and x` s.t. x = xh + x`, with the
significand of xh fitting in p − s digits, and the one of x` in s digits (s − 1
when β = 2 and s > 2).

Algorithm 3 Veltkamp’s splitting.

Require: C = βs + 1 and x in F
γ ← RN(Cx)
δ ← RN(x − γ)
xh ← RN(γ + δ)
x` ← RN(x − xh)
return (xh, x`)

Remember: catastrophic can-
cellation is your friend!

+ x

- γ

δ =

0000

- xxxxxxxxxxxxxxxx
s

- xxxxxxxxxxxxxxxx

+ γ xxxxxxxxxxxxxxxx

p - s

Dekker (1971): radix 2 analysis, implicitly assuming no overflow;

extended to any radix β by Linnainmaa (1981);

works correctly even in the presence of underflows;

Boldo (2006): Cx does not overflow ⇒ no other operation overflows.

-10-

Veltkamp splitting: FMA variant

If an FMA instruction is available, we suggest the following variant, that
requires fewer operations.

Algorithm 4 FMA-based relative
splitting.

Require: C = βs + 1 and x in F
γ ← RN(Cx)
xh ← RN(γ − βsx)
x` ← RN(Cx − γ)
return (xh, x`)

Remarks

x` obtained in parallel with xh

even without an FMA, γ and
βsx can be computed in
parallel,

the bounds on the numbers of
digits of xh and x` given by
Theorem 5 can be attained.

Theorem 5

Let x ∈ F and s ∈ Z s.t. 1 6 s < p. Barring underflow and overflow,
Algorithm 4 computes xh, x` ∈ F s.t. x = xh + x`. If β = 2, the
significands of xh and x` have at most p − s and s bits, respectively. If
β > 2 then they have at most p − s + 1 and s + 1 digits, respectively.

-11-

Extracting a single bit (radix 2)

computing ufp(x) or ulp(x), or scaling x ;

Veltkamp’s splitting (Algorithm 3) to x with s = p − 1: the resulting
xh has a 1-bit significand and it is nearest x in precision p − s = 1.

For computing sign(x) · ufp(x), we can use the following algorithm,
introduced by Rump (2009).

Algorithm 5

Require: β = 2, ϕ = 2p−1+1, ψ =
1− 2−p, and x ∈ F
q ← RN(ϕx)
r ← RN(ψq)
δ ← RN(q − r)
return δ

Very rough explanation:

q ≈ 2p−1x + x

r ≈ 2p−1x

→ q − r ≈ x but in the massive
cancellation we loose all bits
but the most significant.

-12-

Extracting a single bit (radix 2)

These solutions raise the following issues.

If |x | is large, then an overflow can occur in the first line of both
Algorithms 3 and 5.

To avoid overflow in Algorithm 5: scale it by replacing ϕ by 1
2 + 2−p

and returning 2pδ at the end. However, this variant will not work for
subnormal x .

→ to use Algorithm 5, we somehow need to check the order of
magnitude of x .

If we are only interested in scaling x , then requiring the exact value of
ufp(x) is overkill: one can get a power of 2 “close” to x with a
cheaper algorithm.

-13-

Extracting a single bit (radix 2)

Algorithm 6 sign(x) · ulpH(x) for radix 2 and |x | > 2emin .

Require: β = 2, ψ = 1− 2−p, and x ∈ F
a← RN(ψx)
δ ← RN(x − a)
return δ

Theorem 6

If |x | > 2emin , then Algorithm 6 returns

sign(x)·

{
1
2ulp(x) if |x | is a power of 2,

ulp(x) otherwise.

Similar algorithm for ufp(x), under the condition |x | < 2emax−p+1.

-14-

Underflow-safe and almost overflow-free scaling

β = 2, p > 4;

RN breaks ties “to even” or “to away”;

η = 2emin−p+1: smallest positive element of F.

Given a nonzero FP number x , compute a scaling factor δ s.t.:

|x |/δ is much above the underflow threshold and much below the
overflow threshold (so that, for example, we can safely square it);

δ is an integer power of 2 (→ no rounding errors when multiplying or
dividing by it).

Algorithms proposed at the beginning of this talk: simple, but underflow
or overflow can occur for many inputs x .

-15-

Underflow-safe and almost overflow-free scaling

Following algorithm: underflow-safe and almost overflow-free in the sense
that only the two extreme values x = ±(2− 21−p) · 2emax must be
excluded.

Algorithm 7

Require: β = 2, Φ = 2−p + 2−2p+1, η = 2emin−p+1, and x ∈ F
y ← |x |
e ← RN(Φy + η) {or e ← RN(RN(Φy) + η) without FMA}
ysup ← RN(y + e)
δ ← RN(ysup − y)
return δ

-16-

Underflow-safe and almost overflow-free scaling

First 3 lines of Algorithm 7: algorithm due to Rump, Zimmermann, Boldo
and Melquiond, that computes the FP successor of x /∈ [2emin , 2emin+2].
We have,

Theorem 7

For x ∈ F with |x | 6= (2− 21−p) · 2emax , the value δ returned by
Algorithm 7 satisfies:

if RN is with “ties to even” then δ is a power of 2;

if RN is with “ties to away” then δ is a power of 2, unless
|x | = 2emin+1 − 2emin−p+1, in which case it equals 3 · 2emin−p+1;

if x 6= 0, then

1 6
∣∣∣x
δ

∣∣∣ 6 2p − 1.

→ makes δ a good candidate for scaling x ;

→ in the paper: application to
√
a2 + b2.

-17-

Experimental results

Although we considered floating-point operations only, we can compare
with bit-manipulations.

The C programs we used are publicly available (see proceedings).

Experimental setup: Intel i5-4590 processor, Debian testing, GCC 7.3.0
with -O3 optimization level, FPU control set to rounding to double.

Computation of round or floor:

round floor

Algorithms 1 and 2 0.106s 0.173s
Bit manipulation 0.302s 0.203s

GNU libm rint and floor 0.146s 0.209s

Note: Algorithms 1 and 2 require |x | 6 251 and 0 6 x 6 252 respectively.

-18-

Relative splitting of a double-precision number

Splitting into xh and x`:

xh x` time
Algorithm 3 26 bits 26 bits 0.108s
Algorithm 4 26 bits 27 bits 0.106s

Algorithm 4 with FMA 26 bits 27 bits 0.108s
Bit manipulation 26 bits 27 bits 0.095s

Algorithms 3 and 4 assume no intermediate overflow or underflow.

-19-

Computing sign(x) · ufp(x)

time
Algorithm 5 0.107s

Algorithm 7 of the paper 0.107s
Bit manipulation 0.095s

Algorithms 5 and 7 assume no intermediate overflow.

-20-

Conclusion

systematic review of splitting algorithms

found some new algorithms, in particular with FMA

many applications for absolute and relative splitting

in their application range, these algorithms are competitive with
(less-portable) bit-manipulation algorithms

-21-

Motivation

Question of Pierrick Gaudry (Caramba team, Nancy, France):

Multiple-precision integer arithmetic in Javascript.

Javascript has only a 32-bit integer type, but 53-bit doubles!

Storing 16-bit integers in a double precision register, we can accumulate
up to 221 products of 32 bits, and then have to perform
floor(x/65536.0) to normalize.

The Javascript code Math.Floor(x/65536.0) is slow on old internet
browsers (Internet Explorer version 7 or 8)!

The Javascript standard says it is IEEE754, with always round to nearest,
ties to even.

Pierrick Gaudry then opened the “Handbook of Floating-Point
Arithmetic”...

-22-

First algorithm (designed by Pierrick Gaudry):

Assume 0 6 x < 236 and x is an integer

We can compute floor(x) as follows:

Let C = 236 − 2−1 + 2−17.

s ← RN(C + x)

Return RN(s − C)

Question: can we get rid of the condition “x integer”?

-23-

