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Thank you!



Floating-Point numbers, roundings

Precision-p binary FP number (set Fp): either 0 or

x = X · 2ex−p+1,

where X and ex ∈ Z, with 2p−1 ≤ |X | ≤ 2p − 1.

unlimited exponent range → results valid unless underflow/overflow
occurs;
X : integral significand of x ;
21−p · X : significand of x ;
ex : exponent of x .



Floating-Point numbers, roundings

In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded;
correct rounding: Rounding function ◦, and when (a>b) is performed,
the returned value is ◦(a>b);
default rounding function RN:
(i) for all FP numbers y , |RN(t)− t| ≤ |y − t|
(ii) if there are two FP numbers that satisfy (i), RN(t) is the one whose

integral significand is even.



Relative error due to roundings, u and γ notations

Let t ∈ R, 2e ≤ t < 2e+1.

we have 2e ≤ RN(t) ≤ 2e+1, and

|RN(t)− t| ≤ 2e−p. (1)

→ upper bound on the relative error due to rounding t:∣∣∣∣RN(t)− t
t

∣∣∣∣ ≤ 2−p. (2)

u = 2−p: rounding unit.



Relative error due to roundings, u and γ notations

2e−p

2e 2e+1

t̂ = RN(t)

t

|t − t̂| ≤ 2e−p

≤ u · t.

Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative
error due to rounding to nearest is bounded by u = 2−p.



Relative error due to roundings, u and γ notations

Floating-point multiplication a × b:
exact result z = ab;
computed result ẑ = RN(z);

(1− u) · z ≤ ẑ ≤ (1 + u) · z ; (3)

→ when we approximate πn = a1 · a2 · · · · · · · an by

π̂n = RN(· · · RN(RN(a1 · a2) · a3) · · · · ) · an),

we have

Theorem 1

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn. (4)



Relative error due to roundings, u and γ notations

→ relative error on the product a1 · a2 · · · · · · · an bounded by

ψn−1 = (1 + u)n−1 − 1.

if we define (Higham)

γk =
ku

1− ku
,

then, as long as ku < 1 (always holds in practical cases),

k · u ≤ ψk ≤ γk .

→ classical bound: γn−1.
For “reasonable” n, ψn−1 is very slightly better than γn−1, yet γn−1 is
easier to manipulate;
in single and double precision we never observed a relative error
≥ (n − 1) · u.



Special case: n ≤ 4

The bound on the relative error due to rounding can be slightly improved
(using a remark by Jeannerod and Rump):

if 2e ≤ t < 2e+1, then |t − RN(t)| ≤ 2e−p = u · 2e , and

if t ≥ 2e · (1 + u), then |t − RN(t)|/t ≤ u/(1 + u);
if t = 2e · (1 + τ · u) with τ ∈ [0, 1), then
|t − RN(t)|/t = τ · u/(1 + τ · u) < u/(1 + u),

→ the maximum relative error due to rounding is bounded by u/(1 + u)
(attained → no further improvement);

→ we can replace (4) by(
1− u

1 + u

)n−1

πn ≤ π̂n ≤
(
1 +

u
1 + u

)n−1

πn. (5)



Special case: n ≤ 4

Property 1

If 1 ≤ k ≤ 3 then (
1 +

u
1 + u

)k

< 1 + k · u.

k = 2: (
1 +

u
1 + u

)2

− (1 + 2u) = −u2 · (1 + 2u)

(1 + u)2
< 0;

k = 3: (
1 +

u
1 + u

)3

− (1 + 3u) = −u3 · (2 + 3u)

(1 + u)3
< 0.

k = n − 1→ for n ≤ 4, the relative error of the iterative product of n FP
numbers is bounded by (n − 1) · u.



The particular case of computing powers

“General” case of an iterated product: no proof for n ≥ 5 that
(n − 1) · u is a valid bound (when starting the study we conjectured
this is the case);

→ focus on xn, where x ∈ Fp and n ∈ N;
we assume the “naive” algorithm is used:

y ← x
for k = 2 to n do

y ← RN(x · y)
end for
return y

notation: x̂j = value of y after the iteration corresponding to k = j in
the for loop.



Main result

We wish to prove

Theorem 2

Assume p ≥ 5 (holds in all practical cases). If

n ≤
√

21/3 − 1 · 2p/2,

then
|x̂n − xn| ≤ (n − 1) · u · xn.

we can assume 1 ≤ x < 2;
two cases: x close to 1, and x far from 1.



Preliminary results

First,
(1− u)n−1 ≥ 1− (n − 1) · u

for all n ≥ 2 and u ∈ [0, 1].

→ the left-hand bound of

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn.

suffices to show that

1− (n − 1) · u · xn ≤ x̂n

→ to establish the Theorem, we only need to focus on the right-hand
bound.



Preliminary results

For t 6= 0, define

t =
t

2blog2 |t|c
.

We have,

Lemma 3

Let t be a real number. If

2e ≤ w · 2e ≤ |t| < 2e+1, e ∈ Z (6)

(in other words, if w ≤ |t|) then∣∣∣∣RN(t)− t
t

∣∣∣∣ ≤ u
w
.



2e 2e+1

ŷ = RN(y)

y

w |t−RN(t)|
t ≤ u

w

|y−ŷ |
y = u

1+u (largest)

ẑ = RN(z)

z

|z−ẑ|
z = u

2−u

Figure 2: The bound on the relative error due to rounding to nearest can be
reduced to u/(1 + u). Furthermore, if we know that w ≤ t = t/2e , then
|RN(t)− t|/t ≤ u/w.
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Figure 3: Relative error due to rounding, namely |RN(t)− t|/t, for 1
5 ≤ t ≤ 8,

and p = 4.



Local maximum error for x6 as a function of x (p = 53)

Figure 4: The input interval [1, 2) is divided into 512 equal-sized subintervals. In
each subinterval, we calculate x6 for 5000 consecutive FP numbers x , compute
the relative error, and plot the largest attained error.



Main idea behind the proof

At least once in the execution of the algorithm, x · y is far enough from 1
to sufficiently reduce the error bound on the multiplication y ← RN(x · y),
so that the overall error bound becomes ≤ (n − 1) · u.

y ← x
for k = 2 to n do

y ← RN(x · y)
end for
return y

ψn−1 = (1 + u)n−1 − 1 = (n − 1) u +
(
1/2 n2 − 3/2 n + 1

)
u2 + · · ·

→ we have to save ≈ n2

2 u2, which requires one of the values x · y to be
larger than ≈ 1 + n2

2 u.



What we are going to show

Unless x is very near 1, at least once x · y ≥ 1 + n2u, so that in (4) the
term (1 + u)n−1 can be replaced by

(1 + u)n−2 ·
(
1 +

u
1 + n2u

)
.

→ we need to bound this last quantity. We have,

Lemma 4

If 0 ≤ u ≤ 2/(3n2) and n ≥ 3 then

(1 + u)n−2 ·
(
1 +

u
1 + n2u

)
≤ 1 + (n − 1) · u. (7)



Proof of Lemma 4 (with the help of Bruno Salvy)

Proving the Lemma reduces to proving that

P(u) = (1 + (n − 1)u)(1 + n2u)− (1 + u)n−2(1 + n2u + u) ≥ 0

for 0 ≤ u ≤ 2/(3n2). We have

ln(1 + u) ≤ u − u2

2
+

u3

3
.

ln(1 + u) ≤ u ⇒ (n − 2) ln(1 + u) < 1/(2n) ≤ 1/6;
For 0 ≤ t ≤ 1/6, et ≤ 1 + t + 3

5 t
2;

→ for 0 ≤ u ≤ 2/(3n2), to prove that P(u) ≥ 0 it suffices to prove that

Q(n, u) = (1 + (n − 1) u)
(
n2u + 1

)
−
(
1 + (n − 2)

(
u − 1

2 u2 + 1
3 u3

)
+ 3

5 (n − 2)2
(
u − 1

2 u2 + 1
3 u3

)2)
×
(
n2u + u + 1

)
≥ 0.

(8)



Proof of Lemma 4 (with the help of Bruno Salvy)

By defining a = n2u, (5n2/a2) · Q(n, u) is equal to

S(n, a) = −3 a + 2 +
29
2 a+ 19

2
n + 3 a2−17 a−7

n2 − 1
6

a(82 a−5)
n3

− 1
12

a(33 a2−187 a+20)
n4 + 1

3
a2(33 a−8)

n5 + 1
12

a2(12 a2−153 a+52)
n6

−a3(4 a−7)
n7 − 1

3
a3(a2−14 a+21)

n8 + 4
3

a4(a−2)
n9 − 1

3
a4(5 a−8)

n10

+4
3

a5

n11 − 4
3

a5

n12

(9)

We wish to show that S(n, a) ≥ 0 for 0 ≤ a ≤ 2/3.



We examine the terms of S(n, a) separately. For a ∈ [0, 2/3] and n ≥ 3:
−3 a + 2 is always larger than 0;( 29

2 a + 19
2

)
n−1 is always larger than 19/(2n);

3 a2−17 a−7
n2 is always larger than −6/n;

− 1
6

a(82 a−5)
n3 is always larger than −7/(10n);

− 1
12

a(33 a2−187 a+20)
n4 is always larger than −17/(10000n);

1
3

a2(33 a−8)
n5 is always larger than −3/(10000n);

1
12

a2(12 a2−153 a+52)
n6 is always larger than −69/(10000n);

− a3(4 a−7)
n7 is always larger than 0;

− 1
3

a3(a2−14 a+21)
n8 is always larger than −6/(10000n);

4
3

a4(a−2)
n9 is always larger than −6/(100000n);

− 1
3

a4(5 a−8)
n10 and 4

3
a5

n11 are always larger than 0;

− 4
3

a5

n12 is always larger than −1/(1000000n).

→ for 0 ≤ a ≤ 2/3 and n ≥ 3, S(n, a) ≥ 2790439/(1000000n).



Two remarks

Remark 1

Assume n ≤
√

2/3 · 2p/2. If ∃k ≤ n s.t. RN(x · x̂k−1) ≤ x · x̂k−1 (i.e., if in
the algorithm at least one rounding is done downwards), then

x̂n ≤ (1 + (n − 1) · u)xn.

Proof.
We have

x̂n ≤ (1 + u)n−2xn.

Lemma 4 implies (1 + u)n−2 < 1 + (n − 1) · u. Therefore,

x̂n ≤ (1 + (n − 1) · u)xn.



Two remarks

Remark 2

Assume n ≤
√

2/3 · 2p/2. If ∃k ≤ n − 1, s.t. x · x̂k ≥ 1 + n2 · u, then

x̂n ≤ (1 + (n − 1) · u)xn.

Proof.
By combining Lemmas 3 and 4, if there exists k , 1 ≤ k ≤ n − 1, such that

x · x̂k ≥ 1 + n2 · u,

then

x̂n ≤ (1 + u)n−2 ·
(
1 +

u
1 + n2u

)
· xn ≤ (1 + (n − 1) · u) · xn.



Proof of Theorem 2

We assume n ≥ 5. Proof articulated as follows
if x is close enough to 1, then when computing RN(x2), the rounding
is done downwards;
in the other cases, ∃k ≤ n − 1 such that x · x̂k ≥ 1 + n2 · u.

Lemma 5

If 1 < x < 1 + 2p/2 · u, then x̂2 = RN(x2) < x2.

Proof.

x < 1 + 2p/2 · u ⇒ x = 1 + k · 2−p+1 = 1 + 2ku, with k < 2p/2−1. We
have x2 = 1 + 2k · 2−p+1 + k2 · 2−2p+2, which gives
RN(x2) = 1 + 2k · 2−p+1 < x2.

In the following, we assume that no rounding is done downwards, which
implies x ≥ 1 + 2p/2 · u.



Proof of Theorem 2: case x2 ≤ 1 + n2u

x ≥ 1 + 2p/2u > 1 + nu ⇒ xn > (1 + nu)n > 1 + n2u;
no downward rounding ⇒ x̂n−1 · x > (1 + n2u).

Therefore
if x̂n−1x < 2, then x̂n−1x ≥ (1 + n2u), so that, from Remark 2,
xn ≤ (1 + (n − 1) · u) · xn;
if x̂n−1x ≥ 2, let k be the smallest integer such that x̂k−1x ≥ 2.
x2 ≤ 1 + n2u ⇒ k ≥ 3. We have

x̂k−1 ≥
2
x
≥ 2√

1 + n2u
,

hence
x̂k−2 · x ≥

2√
1 + n2u · (1 + u)

. (10)



x̂k−2 · x ≥
2√

1 + n2u · (1 + u)
.

Define

αp =

√(
2p+1

2p + 1

)2/3

− 1.

For all p ≥ 5, αp ≥ α5 = 0.745 · · · , and αp ≤
√

22/3 − 1 = 0.766 · · · . If

n ≤ αp · 2p/2, (11)

then
2√

1 + n2u · (1 + u)
≥ 1 + n2u.

→ x̂k−2 · x ≥ 1 + n2u. Also, x̂k−2 · x < 2 since k is the smallest integer
such that x̂k−1x ≥ 2. Therefore

x̂k−2 · x ≥ 1 + n2u.

Which implies xn ≤ (1 + (n − 1) · u) · xn.



Proof of Theorem 2: case x2 > 1 + n2u

if x2 < 2 then x2 > 1 + n2u ⇒ xn ≤ (1 + (n − 1) · u);
x2 = 2 impossible (x is rational);

→ we assume x2 > 2 we also assume x2 < 2 + 2n2u (otherwise,
x2 ≥ 1 + n2u). This gives

xn−1 < (2 + 2n2u)
n−1

2 ,

therefore, using the classical bound (Theorem 1),

x̂n−1 < (2 + 2n2u)
n−1

2 · (1 + u)n−2,

which implies
x · x̂n−1 < (2 + 2n2u)

n
2 · (1 + u)n−2. (12)



Reminder:

x · x̂n−1 < (2 + 2n2u)n/2 · (1 + u)n−2 and n ≥ 5

Define
β =

√
21/3 − 1.

If n ≤ β · 2p/2 then 2 + 2n2u ≤ 24/3, so that

(2 + 2n2u)n/2 · (1 + u)n−2 ≤ 22n/3 · (1 + u)n−2. (13)

The function

g(t) = 2t−1 − 22t/3
(
1 +

1
2p

)t−2

= 22t/3

[
2t/3−1 −

(
1 +

1
2p

)t−2
]
.

is continuous, goes to +∞ as t → +∞, has one root only:

log(2) + 2 log
(
1 + 1

2p

)
1
3 log(2)− log

(
1 + 1

2p

) ,
which is < 4 as soon as p ≥ 5⇒ if p ≥ 5 then x · x̂n−1 < 2n−1.



Reminder: if p ≥ 5 then x · x̂n−1 < 2n−1.
define k as the smallest integer for which x · x̂k−1 < 2k−1,
3 ≤ k ≤ n (we have assumed x2 > 2),
x · x̂k−2 ≥ 2k−2 ⇒ x̂k−1 = RN(x · x̂k−2) ≥ 2k−2.

Therefore, x̂k−1 and x · x̂k−1 belong to the same binade, therefore,

x · x̂k−1 ≥ x >
√
2. (14)

The constraint n ≤ β · 2p/2 implies

1 + n2u ≤ 1 + β2 = 21/3 <
√
2. (15)

By combining (14) and (15) we obtain

x · x̂k−1 ≥ 1 + n2u.

Therefore, using Remark 2, we deduce that x̂n ≤ (1 + (n − 1) · u) · xn.



Final steps

∀p ≥ 5, αp ≥ β → combining the conditions found in the cases
x2 ≤ 1 + n2u and x2 > 1 + n2u, we deduce

If p ≥ 5 and n ≤ β · 2p/2, then for all x,

(1− (n − 1) · u) · xn ≤ x̂n ≤ (1 + (n − 1) · u) · xn.

where β =
√

21/3 − 1 = 0.5098245285339 · · ·

Q.E.D.
Questions:

is the restriction n ≤ β · 2p/2 problematic?
is the bound sharp?
any hope of generalizing to iterated products?



On the restriction n ≤ β · 2p/2

format p nmax

binary32/single 24 2088
binary64/double 53 48385542
binary128/quad 113 51953580258461959

With the first n larger than the bound, xn under- or overflows, unless
in single precision, 0.95905406 ≤ x ≤ 1.0433863,
in double precision, 0.999985359 ≤ x ≤ 1.000014669422,

and nobody will use the “naive” algorithm for a huge n.



On the restriction n ≤ β · 2p/2

Furthermore, that restriction is not just a “proof artefact”. For very big n,
the bound does not hold:

If p = 10 and x = 891, when computing x2474, relative error 2473.299u.

Notice that:
for p = 10, nmax = β · 2p/2 = 16.31;
2474 is the smallest exponent for which the bound does not hold when
p = 10.



The case of huge values of n

x̂n computed approximation to xn;
x̂n = x̂n/2blog2 x̂nc;
one can build examples for which ∃m s.t. x̂m = 1 (and xm 6= 1);

→ for all i , x̂m+i = x̂i ;
let α be the relative error on xm:

x̂m = (1 + α) · xm,

relative error on xmk ?

x̂mk = (1 + α)k · xmk ,

→ the relative error grows exponentially with k
→ ultimately it will be larger that (mk − 1) · u.



Tightness of the bound (n − 1) · u

Small p and not-too-large n: an exhaustive test is possible.

Table 1: Actual maximum relative error assuming p = 8, compared with γn−1 and
our bound (n − 1)u.

n actual maximum γn−1 our bound
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u 5u
7 2.69634u 6.1440u 6u
8 = nmax 3.42929u 7.1967u 7u

→ our bound seems to be quite poor. . . however. . .



Tightness of the bound (n − 1) · u

For larger values of p:

single precision (p = 24), exhaustive search still possible, largest error
4.328005619u for n = 6, and 7.059603149u for n = 10;
double precision (p = 53), we have a case with error 4.7805779u for
n = 6 and 7.8618 · · · u for n = 10;
quad precision (p = 113), case with error 4.8827888185u for n = 6;

→ we seem to get close to (n − 1) · u for large p.



Rough explanation

n is not too large
the x · x̂k are close to 1;
we assume that each elementary relative rounding error εi is uniformly
distributed in [−u,+u].

x̂n = xn · (1 + ε1)(1 + ε2) · · · (1 + εn−1) ≈ xn · (1 + ε1 + ε2 + · · · εn−1).

Define αi = (εi + u)/(2u). The αi are uniform in [0, 1]→ cumulative
distribution function of α1 + α2 + · · · + αn−1:

F (x) =
1

(n − 1)!

bxc∑
k=0

(−1)k
(

n − 1
k

)
(x − k)n−1.

For a given x , probability that |x̂10 − x10|/x10 ≥ 8.9: 5.38× 10−18.
→ There are just not enough possible single precision significands for that
to happen!



Repartition of relative error

Figure 5: Repartition of the relative error (divided by u), for p = 53 and n = 6,
for a sample of 100000 random values of x uniformly chosen between 1 and 2.



Building “bad cases” for the iterated product

Still in precision-p binary FP arithmetic, we approximate

a1 · a2 · · · · · · · an,

by
RN(· · · RN(RN(a1 · a2) · a3) · · · · ) · an)

πk = a1 · · · ak ,
π̂k = computed value,
relative error |πn − π̂n|/πn upper-bounded by γn−1,
conjecture: if n is “not too large” it is bounded by (n − 1)u.

Let us now show how to build a1, a2, . . . , an so that the relative error
becomes extremely close to (n − 1) · u.



Building “bad cases” for the iterated product

define a1 = 1 + k1 · 2−p+1, and a2 = 1 + k2 · 2−p+1. We have

π2 = a1a2 = 1 + (k1 + k2) · 2−p+1 + k1k2 · 2−2p+2.

If k1 and k2 are not too large, 1 + (k1 + k2) · 2−p+1 is a FP number
→ we wish k1 + k2 to be as small as possible, while k1k2 · 2−2p+2 is as
close as possible (yet ess than) to 2−p. Hence a natural choice is

k1 = k2 =
⌊
2

p
2−1
⌋
,

which gives π̂2 < π2.
Now, if at step i − 1 we have

π̂i = 1 + gi · 2−p+1, with π̂i < πi ,

we choose ai+1 of the form 1 + ki+12−p+1, with
ki+1 =

⌈
2p−2

gi
− 1
⌉
if gi ≤ 2

p
2−1;

ki+1 = −
⌊

2p−2

gi
+ 1
⌋
otherwise.



Building “bad cases” for the iterated product

Table 2: Relative errors achieved with the values ai generated by our method.

p n relative error
24 10 8.99336984 · · · u
24 100 98.9371972591 · · · u
53 10 8.99999972447 · · · u
53 100 98.9999970091 · · · u
113 10 8.99999999999999973119 · · · u
113 100 98.99999999999999701662 · · · u



Conclusion

error bound (n − 1) · u for computation of xn by the naive algorithm;

valid for n ≤
√

21/3 − 1 · 2p/2 → all practical cases;
small improvement: the main interest lies in the simplicity of the
bound;
seems to be “asymptotically sharp” (as p →∞) but not sure;
unsolved issue: iterated products and n “not too large”;
if this is the case, it is very sharp.

Thank you for your attention.


