On the maximum relative error when computing x^n in floating-point arithmetic

Jean-Michel Muller

Joint work with S. Graillat and V. Lefèvre INVA 2014

ありがとうございます

Floating-Point numbers, roundings

Precision-*p* binary FP number (set \mathbb{F}_p): either 0 or

$$x = X \cdot 2^{e_x - p + 1},$$

where X and $e_x \in \mathbb{Z}$, with $2^{p-1} \le |X| \le 2^p - 1$.

- unlimited exponent range → results valid unless underflow/overflow occurs;
- X: integral significand of x;
- $2^{1-p} \cdot X$: significand of *x*;
- e_x : exponent of x.

- In general, the sum, product, quotient, etc., of two FP numbers is not an FP number: it must be rounded;
- correct rounding: Rounding function ○, and when (a⊤b) is performed, the returned value is ○(a⊤b);
- default rounding function RN:
 - (i) for all FP numbers y, $|RN(t) t| \le |y t|$
 - (*ii*) if there are two FP numbers that satisfy (*i*), RN(t) is the one whose integral significand is even.

Let $t \in \mathbb{R}, 2^e \leq t < 2^{e+1}$.

• we have $2^{e} \leq \mathsf{RN}(t) \leq 2^{e+1}$, and

$$|\operatorname{RN}(t) - t| \le 2^{e-p}.$$
(1)

 \rightarrow upper bound on the relative error due to rounding *t*:

$$\left|\frac{\mathsf{RN}(t)-t}{t}\right| \le 2^{-p}.$$
 (2)

• $u = 2^{-p}$: rounding unit.

Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative error due to rounding to nearest is bounded by $u = 2^{-p}$.

Floating-point multiplication $a \times b$:

- exact result z = ab;
- computed result $\hat{z} = RN(z)$;

$$(1-u) \cdot z \leq \hat{z} \leq (1+u) \cdot z; \tag{3}$$

 \rightarrow when we approximate $\pi_n = a_1 \cdot a_2 \cdot \cdot \cdot \cdot a_n$ by

$$\hat{\pi}_n = \mathsf{RN}(\cdots \mathsf{RN}(\mathsf{RN}(a_1 \cdot a_2) \cdot a_3) \cdot \cdots) \cdot a_n),$$

we have

Theorem 1

$$(1-u)^{n-1}\pi_n \leq \hat{\pi}_n \leq (1+u)^{n-1}\pi_n.$$

 \rightarrow relative error on the product $a_1 \cdot a_2 \cdot \cdot \cdot \cdot a_n$ bounded by

$$\psi_{n-1} = (1+u)^{n-1} - 1.$$

• if we define (Higham)

$$\gamma_k = \frac{ku}{1-ku},$$

then, as long as ku < 1 (always holds in practical cases),

 $k \cdot u \leq \psi_k \leq \gamma_k.$

- \rightarrow classical bound: γ_{n-1} .
 - For "reasonable" n, ψ_{n-1} is very slightly better than γ_{n-1} , yet γ_{n-1} is easier to manipulate;
 - in single and double precision we never observed a relative error $\geq (n-1) \cdot u$.

Special case: $n \le 4$

The bound on the relative error due to rounding can be slightly improved (using a remark by Jeannerod and Rump):

if
$$2^e \leq t < 2^{e+1}$$
, then $|t - \mathsf{RN}(t)| \leq 2^{e-p} = u \cdot 2^e$, and

• if
$$t \ge 2^e \cdot (1+u)$$
, then $|t - RN(t)|/t \le u/(1+u)$
• if $t = 2^e \cdot (1 + \tau \cdot u)$ with $\tau \in [0, 1)$, then
 $|t - RN(t)|/t = \tau \cdot u/(1 + \tau \cdot u) < u/(1+u)$,

- \rightarrow the maximum relative error due to rounding is bounded by u/(1+u) (attained \rightarrow no further improvement);
- $\rightarrow\,$ we can replace (4) by

$$\left(1-\frac{u}{1+u}\right)^{n-1}\pi_n \le \hat{\pi}_n \le \left(1+\frac{u}{1+u}\right)^{n-1}\pi_n.$$
 (5)

Special case: $n \le 4$

Property 1

If $1 \le k \le 3$ then

$$\left(1+\frac{u}{1+u}\right)^k < 1+k\cdot u.$$

• *k* = 2:

۲

$$\left(1+\frac{u}{1+u}\right)^2 - (1+2u) = -\frac{u^2 \cdot (1+2u)}{(1+u)^2} < 0;$$

 $k = 3:$

$$\left(1+rac{u}{1+u}
ight)^3-(1+3u)=-rac{u^3\cdot(2+3u)}{(1+u)^3}<0.$$

 $k = n - 1 \rightarrow$ for $n \leq 4$, the relative error of the iterative product of n FP numbers is bounded by $(n - 1) \cdot u$.

The particular case of computing powers

- "General" case of an iterated product: no proof for n ≥ 5 that (n-1) · u is a valid bound (when starting the study we conjectured this is the case);
- \rightarrow focus on x^n , where $x \in \mathbb{F}_p$ and $n \in \mathbb{N}$;
 - we assume the "naive" algorithm is used:

```
y \leftarrow x<br/>for k = 2 to n do<br/>y \leftarrow RN(x \cdot y)<br/>end for<br/>return y
```

• notation: \hat{x}_j = value of y after the iteration corresponding to k = j in the **for** loop.

Main result

We wish to prove

Theorem 2

Assume $p \ge 5$ (holds in all practical cases). If

 $n \leq \sqrt{2^{1/3}-1} \cdot 2^{p/2},$

then

$$|\hat{x}_n - x^n| \le (n-1) \cdot u \cdot x^n.$$

• we can assume $1 \le x < 2$;

• two cases: x close to 1, and x far from 1.

Preliminary results

First,

$$(1-u)^{n-1} \ge 1-(n-1) \cdot u$$

for all $n \ge 2$ and $u \in [0, 1]$.

 $\rightarrow\,$ the left-hand bound of

$$(1-u)^{n-1}\pi_n \leq \hat{\pi}_n \leq (1+u)^{n-1}\pi_n.$$

suffices to show that

$$1-(n-1)\cdot u\cdot x_n\leq \hat{x}_n$$

 $\rightarrow\,$ to establish the Theorem, we only need to focus on the right-hand bound.

Preliminary results

For $t \neq 0$, define

$$\bar{t} = \frac{t}{2^{\lfloor \log_2 |t| \rfloor}}.$$

We have,

Lemma 3

Let t be a real number. If

$$2^{e} \leq w \cdot 2^{e} \leq |t| < 2^{e+1}, e \in \mathbb{Z}$$

(6)

(in other words, if $w \leq |\overline{t}|$) then

$$\left|\frac{\mathsf{RN}(t)-t}{t}\right| \leq \frac{u}{w}.$$

Figure 2: The bound on the relative error due to rounding to nearest can be reduced to u/(1+u). Furthermore, if we know that $w \leq \overline{t} = t/2^e$, then $|\operatorname{RN}(t) - t|/t \leq u/w$.

Figure 3: Relative error due to rounding, namely |RN(t) - t|/t, for $\frac{1}{5} \le t \le 8$, and p = 4.

Local maximum error for x^6 as a function of x (p = 53)

Figure 4: The input interval [1, 2) is divided into 512 equal-sized subintervals. In each subinterval, we calculate x^6 for 5000 consecutive FP numbers x, compute the relative error, and plot the largest attained error.

Main idea behind the proof

At least once in the execution of the algorithm, $\overline{x \cdot y}$ is far enough from 1 to sufficiently reduce the error bound on the multiplication $y \leftarrow \text{RN}(x \cdot y)$, so that the overall error bound becomes $\leq (n-1) \cdot u$.

$$y \leftarrow x$$

for $k = 2$ to n do
 $y \leftarrow RN(x \cdot y)$
end for
return y

$$\psi_{n-1} = (1+u)^{n-1} - 1 = (n-1)u + (1/2n^2 - 3/2n + 1)u^2 + \cdots$$

 \rightarrow we have to save $\approx \frac{n^2}{2}u^2$, which requires one of the values $\overline{x \cdot y}$ to be larger than $\approx 1 + \frac{n^2}{2}u$.

What we are going to show

Unless x is very near 1, at least once $\overline{x \cdot y} \ge 1 + n^2 u$, so that in (4) the term $(1 + u)^{n-1}$ can be replaced by

$$(1+u)^{n-2}\cdot\left(1+\frac{u}{1+n^2u}\right).$$

 \rightarrow we need to bound this last quantity. We have,

Lemma 4

If $0 \le u \le 2/(3n^2)$ and $n \ge 3$ then $(1+u)^{n-2} \cdot \left(1 + \frac{u}{1+n^2u}\right) \le 1 + (n-1) \cdot u.$ (7)

Proof of Lemma 4 (with the help of Bruno Salvy)

Proving the Lemma reduces to proving that

 $P(u) = (1 + (n-1)u)(1 + n^2u) - (1 + u)^{n-2}(1 + n^2u + u) \ge 0$

for $0 \le u \le 2/(3n^2)$. We have

$$\ln(1+u) \le u - \frac{u^2}{2} + \frac{u^3}{3}.$$

•
$$\ln(1+u) \le u \Rightarrow (n-2)\ln(1+u) < 1/(2n) \le 1/6;$$

• For $0 \le t \le 1/6$, $e^t \le 1+t+\frac{3}{5}t^2;$

 \rightarrow for $0 \le u \le 2/(3n^2)$, to prove that $P(u) \ge 0$ it suffices to prove that

$$Q(n, u) = (1 + (n - 1) u) (n^{2}u + 1) - (1 + (n - 2) (u - \frac{1}{2}u^{2} + \frac{1}{3}u^{3}) + \frac{3}{5}(n - 2)^{2} (u - \frac{1}{2}u^{2} + \frac{1}{3}u^{3})^{2})$$
(8)
$$\times (n^{2}u + u + 1) \ge 0.$$

Proof of Lemma 4 (with the help of Bruno Salvy)

By defining $a = n^2 u$, $(5n^2/a^2) \cdot Q(n, u)$ is equal to

$$S(n,a) = -3a + 2 + \frac{\frac{29}{2}a + \frac{19}{2}}{n} + \frac{3a^2 - 17a - 7}{n^2} - \frac{1}{6}\frac{a(82a - 5)}{n^3}$$

$$-\frac{1}{12}\frac{a(33a^2 - 187a + 20)}{n^4} + \frac{1}{3}\frac{a^2(33a - 8)}{n^5} + \frac{1}{12}\frac{a^2(12a^2 - 153a + 52)}{n^6}$$

$$-\frac{a^3(4a - 7)}{n^7} - \frac{1}{3}\frac{a^3(a^2 - 14a + 21)}{n^8} + \frac{4}{3}\frac{a^4(a - 2)}{n^9} - \frac{1}{3}\frac{a^4(5a - 8)}{n^{10}}$$

$$+\frac{4}{3}\frac{a^5}{n^{11}} - \frac{4}{3}\frac{a^5}{n^{12}}$$

(9)

We wish to show that $S(n, a) \ge 0$ for $0 \le a \le 2/3$.

We examine the terms of S(n, a) separately. For $a \in [0, 2/3]$ and $n \ge 3$:

•
$$-3a + 2$$
 is always larger than 0;

•
$$(\frac{29}{2}a + \frac{19}{2})n^{-1}$$
 is always larger than $19/(2n)$;

•
$$\frac{3 a^2 - 17 a - 7}{n^2}$$
 is always larger than $-6/n$;

•
$$-\frac{1}{6} \frac{a(82a-5)}{n^3}$$
 is always larger than $-7/(10n)$;

•
$$-\frac{1}{12} \frac{a(33 a^2 - 187 a + 20)}{n^4}$$
 is always larger than $-17/(10000 n)$;

•
$$\frac{1}{3} \frac{a^2(33a-8)}{n^5}$$
 is always larger than $-3/(10000n)$;

•
$$\frac{1}{12} \frac{a^2 (12 a^2 - 153 a + 52)}{n^6}$$
 is always larger than $-69/(10000n)$;

•
$$-\frac{a^3(4a-7)}{n^7}$$
 is always larger than 0;

•
$$-\frac{1}{3} \frac{a^3(a^2-14a+21)}{n^8}$$
 is always larger than $-6/(10000n)$;

•
$$\frac{4}{3} \frac{a^4(a-2)}{n^9}$$
 is always larger than $-6/(100000n)$;

•
$$-\frac{1}{3} \frac{a^4(5a-8)}{n^{10}}$$
 and $\frac{4}{3} \frac{a^5}{n^{11}}$ are always larger than 0;

•
$$-\frac{4}{3} \frac{a^5}{n^{12}}$$
 is always larger than $-1/(1000000n)$.

→ for $0 \le a \le 2/3$ and $n \ge 3$, $S(n, a) \ge 2790439/(1000000n)$.

Two remarks

Remark 1

Assume $n \leq \sqrt{2/3} \cdot 2^{p/2}$. If $\exists k \leq n \text{ s.t. } RN(x \cdot \hat{x}_{k-1}) \leq x \cdot \hat{x}_{k-1}$ (i.e., if in the algorithm at least one rounding is done downwards), then

 $\hat{x}_n \leq (1+(n-1)\cdot u)x^n.$

Proof.

We have

$$\hat{x}_n \leq (1+u)^{n-2} x^n.$$

Lemma 4 implies $(1 + u)^{n-2} < 1 + (n - 1) \cdot u$. Therefore,

$$\hat{x}_n \leq (1+(n-1)\cdot u)x^n.$$

Two remarks

Remark 2

Assume $n \leq \sqrt{2/3} \cdot 2^{p/2}$. If $\exists k \leq n-1$, s.t. $\overline{x \cdot \hat{x}_k} \geq 1 + n^2 \cdot u$, then $\hat{x}_n \leq (1 + (n-1) \cdot u) x^n$.

Proof.

By combining Lemmas 3 and 4, if there exists k, $1 \le k \le n-1$, such that

$$\overline{x\cdot\hat{x}_k}\geq 1+n^2\cdot u,$$

then

$$\hat{x}_n \leq (1+u)^{n-2} \cdot \left(1+rac{u}{1+n^2u}\right) \cdot x^n \leq (1+(n-1)\cdot u) \cdot x^n.$$

Proof of Theorem 2

We assume $n \ge 5$. Proof articulated as follows

- if x is close enough to 1, then when computing RN(x²), the rounding is done downwards;
- in the other cases, $\exists k \leq n-1$ such that $\overline{x \cdot \hat{x}_k} \geq 1 + n^2 \cdot u$.

Lemma 5

If
$$1 < x < 1 + 2^{p/2} \cdot u$$
, then $\hat{x}_2 = \mathsf{RN}(x^2) < x^2$.

Proof.

 $x < 1 + 2^{p/2} \cdot u \Rightarrow x = 1 + k \cdot 2^{-p+1} = 1 + 2ku$, with $k < 2^{p/2-1}$. We have $x^2 = 1 + 2k \cdot 2^{-p+1} + k^2 \cdot 2^{-2p+2}$, which gives $RN(x^2) = 1 + 2k \cdot 2^{-p+1} < x^2$.

In the following, we assume that no rounding is done downwards, which implies $x \ge 1 + 2^{p/2} \cdot u$.

Proof of Theorem 2: case $x^2 \le 1 + n^2 u$

•
$$x \ge 1 + 2^{p/2}u > 1 + nu \Rightarrow x^n > (1 + nu)^n > 1 + n^2u;$$

• no downward rounding $\Rightarrow \hat{x}_{n-1} \cdot x > (1 + n^2 u)$.

Therefore

- if $\hat{x}_{n-1}x < 2$, then $\overline{\hat{x}_{n-1}x} \ge (1 + n^2u)$, so that, from Remark 2, $x^n \le (1 + (n-1) \cdot u) \cdot x^n$;
- if $\hat{x}_{n-1}x \ge 2$, let k be the smallest integer such that $\hat{x}_{k-1}x \ge 2$. $x^2 \le 1 + n^2 u \Rightarrow k \ge 3$. We have

$$\hat{x}_{k-1} \geq \frac{2}{x} \geq \frac{2}{\sqrt{1+n^2u}},$$

hence

$$\hat{x}_{k-2} \cdot x \ge \frac{2}{\sqrt{1+n^2 u} \cdot (1+u)}.$$
 (10)

$$\hat{x}_{k-2} \cdot x \geq rac{2}{\sqrt{1+n^2u}\cdot(1+u)}$$

Define

$$\alpha_p = \sqrt{\left(\frac{2^{p+1}}{2^p+1}\right)^{2/3} - 1}.$$

For all $p \ge 5$, $\alpha_p \ge \alpha_5 = 0.745 \cdots$, and $\alpha_p \le \sqrt{2^{2/3} - 1} = 0.766 \cdots$. If

$$n \le \alpha_p \cdot 2^{p/2},\tag{11}$$

•

then

$$\frac{2}{\sqrt{1+n^2u}\cdot(1+u)}\geq 1+n^2u.$$

 $\rightarrow \hat{x}_{k-2} \cdot x \ge 1 + n^2 u$. Also, $\hat{x}_{k-2} \cdot x < 2$ since k is the smallest integer such that $\hat{x}_{k-1}x \ge 2$. Therefore

$$\overline{\hat{x}_{k-2}\cdot x} \ge 1 + n^2 u.$$

Which implies $x^n \leq (1 + (n-1) \cdot u) \cdot x^n$.

Proof of Theorem 2: case $x^2 > 1 + n^2 u$

• if
$$x^2 < 2$$
 then $\overline{x^2} > 1 + n^2 u \Rightarrow x^n \le (1 + (n - 1) \cdot u);$
• $x^2 = 2$ impossible (x is rational);
 \Rightarrow we assume $x^2 > 2$ we also assume $x^2 < 2 + 2n^2 u$ (otherwise,

 $\overline{x^2} \ge 1 + n^2 u$). This gives

$$x^{n-1} < (2+2n^2u)^{\frac{n-1}{2}},$$

therefore, using the classical bound (Theorem 1),

$$\hat{x}_{n-1} < (2+2n^2u)^{\frac{n-1}{2}} \cdot (1+u)^{n-2},$$

which implies

$$x \cdot \hat{x}_{n-1} < (2+2n^2u)^{\frac{n}{2}} \cdot (1+u)^{n-2}.$$
(12)

Reminder:

$$x \cdot \hat{x}_{n-1} < (2+2n^2u)^{n/2} \cdot (1+u)^{n-2}$$
 and $n \ge 5$

Define

$$\beta = \sqrt{2^{1/3} - 1}.$$

If $n \leq \beta \cdot 2^{p/2}$ then $2 + 2n^2 u \leq 2^{4/3}$, so that

$$(2+2n^2u)^{n/2} \cdot (1+u)^{n-2} \le 2^{2n/3} \cdot (1+u)^{n-2}.$$
(13)

The function

$$g(t) = 2^{t-1} - 2^{2t/3} \left(1 + \frac{1}{2^p} \right)^{t-2} = 2^{2t/3} \left[2^{t/3-1} - \left(1 + \frac{1}{2^p} \right)^{t-2} \right]$$

is continuous, goes to $+\infty$ as $t \to +\infty$, has one root only:

$$\frac{\log(2)+2\log\left(1+\frac{1}{2^p}\right)}{\frac{1}{3}\log(2)-\log\left(1+\frac{1}{2^p}\right)},$$

which is < 4 as soon as $p \ge 5 \Rightarrow$ if $p \ge 5$ then $x \cdot \hat{x}_{n-1} < 2^{n-1}$.

Reminder: if $p \ge 5$ then $x \cdot \hat{x}_{n-1} < 2^{n-1}$.

- define k as the smallest integer for which $x \cdot \hat{x}_{k-1} < 2^{k-1}$,
- $3 \le k \le n$ (we have assumed $x^2 > 2$),

•
$$x \cdot \hat{x}_{k-2} \geq 2^{k-2} \Rightarrow \hat{x}_{k-1} = \mathsf{RN}(x \cdot \hat{x}_{k-2}) \geq 2^{k-2}.$$

Therefore, \hat{x}_{k-1} and $x \cdot \hat{x}_{k-1}$ belong to the same binade, therefore,

$$\overline{x \cdot \hat{x}_{k-1}} \ge x > \sqrt{2}. \tag{14}$$

The constraint $n \leq \beta \cdot 2^{p/2}$ implies

$$1 + n^2 u \le 1 + \beta^2 = 2^{1/3} < \sqrt{2}.$$
 (15)

By combining (14) and (15) we obtain

$$\overline{x\cdot \hat{x}_{k-1}} \ge 1 + n^2 u.$$

Therefore, using Remark 2, we deduce that $\hat{x}_n \leq (1 + (n-1) \cdot u) \cdot x^n$.

Final steps

 $\forall p \geq 5, \ \alpha_p \geq \beta \rightarrow \text{combining the conditions found in the cases} \ x^2 \leq 1 + n^2 u \text{ and } x^2 > 1 + n^2 u$, we deduce

If
$$p \ge 5$$
 and $n \le \beta \cdot 2^{p/2}$, then for all x ,
 $(1 - (n - 1) \cdot u) \cdot x^n \le \hat{x}_n \le (1 + (n - 1) \cdot u) \cdot x^n$.
where $\beta = \sqrt{2^{1/3} - 1} = 0.5098245285339 \cdots$

Q.E.D. Questions:

- is the restriction $n \leq \beta \cdot 2^{p/2}$ problematic?
- is the bound sharp?
- any hope of generalizing to iterated products?

format	р	n _{max}
binary32/single	24	2088
binary64/double	53	48385542
binary128/quad	113	51953580258461959

With the first *n* larger than the bound, x^n under- or overflows, unless

- in single precision, $0.95905406 \le x \le 1.0433863$,
- in double precision, $0.999985359 \le x \le 1.000014669422$,

and nobody will use the "naive" algorithm for a huge n.

Furthermore, that restriction is not just a "proof artefact". For very big n, the bound does not hold:

If p = 10 and x = 891, when computing x^{2474} , relative error 2473.299u.

Notice that:

• for p = 10, $n_{\max} = \beta \cdot 2^{p/2} = 16.31$;

• 2474 is the smallest exponent for which the bound does not hold when p = 10.

The case of huge values of n

- \hat{x}_n computed approximation to x^n ;
- $\overline{\hat{x}_n} = \hat{x}_n / 2^{\lfloor \log_2 \hat{x}_n \rfloor};$
- one can build examples for which $\exists m \text{ s.t. } \overline{\hat{x}_m} = 1 \text{ (and } \overline{x^m} \neq 1 \text{)};$
- \rightarrow for all *i*, $\hat{x}_{m+i} = \hat{x}_i$;
 - let α be the relative error on x_m :

$$\hat{x}_m = (1 + \alpha) \cdot x^m,$$

• relative error on x^{mk} ?

$$\hat{x}_{mk} = (1+\alpha)^k \cdot x^{mk},$$

→ the relative error grows exponentially with k→ ultimately it will be larger that $(mk - 1) \cdot u$.

Tightness of the bound $(n-1) \cdot u$

Small p and not-too-large n: an exhaustive test is possible.

Table 1: Actual maximum relative error assuming p = 8, compared with γ_{n-1} and our bound (n-1)u.

n	actual maximum	γ_{n-1}	our bound
4	1.73903 <i>u</i>	3.0355 <i>u</i>	3и
5	2.21152 <i>u</i>	4.06349 <i>u</i>	4 <i>u</i>
6	2.53023 <i>u</i>	5.099601 <i>u</i>	5 <i>u</i>
7	2.69634 <i>u</i>	6.1440 <i>u</i>	6 <i>u</i>
$8 = n_{max}$	3.42929 <i>u</i>	7.1967 <i>u</i>	7 <i>u</i>

 \rightarrow our bound seems to be quite poor... however...

For larger values of p:

- single precision (p = 24), exhaustive search still possible, largest error 4.328005619u for n = 6, and 7.059603149u for n = 10;
- double precision (p = 53), we have a case with error 4.7805779u for n = 6 and 7.8618 $\cdots u$ for n = 10;
- quad precision (p = 113), case with error 4.8827888185u for n = 6;
- \rightarrow we seem to get close to $(n-1) \cdot u$ for large p.

Rough explanation

- n is not too large
- the $\overline{x \cdot \hat{x}_k}$ are close to 1;
- we assume that each elementary relative rounding error ϵ_i is uniformly distributed in [-u, +u].

$$\hat{x}_n = x^n \cdot (1 + \epsilon_1)(1 + \epsilon_2) \cdots (1 + \epsilon_{n-1}) \approx x^n \cdot (1 + \epsilon_1 + \epsilon_2 + \cdots + \epsilon_{n-1}).$$

Define $\alpha_i = (\epsilon_i + u)/(2u)$. The α_i are uniform in $[0, 1] \rightarrow$ cumulative distribution function of $\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1}$:

$$F(x)=\frac{1}{(n-1)!}\sum_{k=0}^{\lfloor x \rfloor}(-1)^k \left(\begin{array}{c}n-1\\k\end{array}\right)(x-k)^{n-1}.$$

For a given x, probability that $|\hat{x}_{10} - x^{10}|/x^{10} \ge 8.9$: 5.38×10^{-18} . \rightarrow There are just not enough possible single precision significands for that to happen!

Repartition of relative error

Figure 5: Repartition of the relative error (divided by u), for p = 53 and n = 6, for a sample of 100000 random values of x uniformly chosen between 1 and 2.

Building "bad cases" for the iterated product

Still in precision-p binary FP arithmetic, we approximate

 $a_1 \cdot a_2 \cdots \cdot a_n$,

by

 $RN(\cdots RN(RN(a_1 \cdot a_2) \cdot a_3) \cdot \cdots) \cdot a_n)$

•
$$\pi_k = a_1 \cdots a_k$$
,

- $\hat{\pi}_k = \text{computed value},$
- relative error $|\pi_n \hat{\pi}_n|/\pi_n$ upper-bounded by γ_{n-1} ,
- conjecture: if n is "not too large" it is bounded by (n-1)u. Let us now show how to build a_1, a_2, \ldots, a_n so that the relative error

becomes extremely close to $(n-1) \cdot u$.

Building "bad cases" for the iterated product

• define
$$a_1 = 1 + k_1 \cdot 2^{-p+1}$$
, and $a_2 = 1 + k_2 \cdot 2^{-p+1}$. We have
 $\pi_2 = a_1 a_2 = 1 + (k_1 + k_2) \cdot 2^{-p+1} + k_1 k_2 \cdot 2^{-2p+2}$.

If k_1 and k_2 are not too large, $1 + (k_1 + k_2) \cdot 2^{-p+1}$ is a FP number \rightarrow we wish $k_1 + k_2$ to be as small as possible, while $k_1k_2 \cdot 2^{-2p+2}$ is as close as possible (yet ess than) to 2^{-p} . Hence a natural choice is

$$k_1=k_2=\left\lfloor 2^{\frac{p}{2}-1}\right\rfloor,$$

which gives $\hat{\pi}_2 < \pi_2$.

• Now, if at step i - 1 we have

$$\hat{\pi}_i = 1 + g_i \cdot 2^{-p+1}$$
, with $\hat{\pi}_i < \pi_i$,

we choose a_{i+1} of the form $1 + k_{i+1}2^{-p+1}$, with

•
$$k_{i+1} = \left\lceil \frac{2^{p-2}}{g_i} - 1 \right\rceil$$
 if $g_i \le 2^{\frac{p}{2}-1}$;
• $k_{i+1} = -\left\lfloor \frac{2^{p-2}}{g_i} + 1 \right\rfloor$ otherwise.

Building "bad cases" for the iterated product

Table 2: Relative errors achieved with the values a_i generated by our method.

р	n	relative error
24	10	8.99336984 · · · <i>u</i>
24	100	98.9371972591 · · · <i>u</i>
53	10	8.99999972447 · · · <i>u</i>
53	100	98.9999970091 · · · <i>u</i>
113	10	8.999999999999999973119···u
113	100	98.999999999999999701662··· <i>u</i>

Conclusion

- error bound $(n-1) \cdot u$ for computation of x^n by the naive algorithm;
- valid for $n \leq \sqrt{2^{1/3} 1} \cdot 2^{p/2} \rightarrow$ all practical cases;
- small improvement: the main interest lies in the simplicity of the bound;
- ullet seems to be "asymptotically sharp" (as $p o\infty$) but not sure;
- unsolved issue: iterated products and *n* "not too large";
- if this is the case, it is very sharp.

Thank you for your attention.