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Floating-Point numbers, roundings

Precision-p binary FP number (set F,): either 0 or
x=X- 2‘5‘X*P+17

where X and e, € Z, with 2P~ < |X| < 2P — 1.

@ unlimited exponent range — results valid unless underflow/overflow
occurs;

e X: integral significand of x;
e 217P. X: significand of x;

@ e, exponent of x.



Floating-Point numbers, roundings

@ In general, the sum, product, quotient, etc., of two FP numbers is not
an FP number: it must be rounded:

e correct rounding: Rounding function o, and when (aTb) is performed,
the returned value is o(aT b);

e default rounding function RN:

(i) for all FP numbers y, |RN(t) — t| < |y — t|
(if) if there are two FP numbers that satisfy (i), RN(t) is the one whose
integral significand is even.




Relative error due to roundings, u and = notations

Let t € R,2¢ < t < 261,

o we have 2¢ < RN(t) < 2¢*1, and

|RN(t) — t| < 2¢7P. (1)

— upper bound on the relative error due to rounding t:

RN(? — t‘ <27P. (2)

|

@ u = 2"P: rounding unit.



Relative error due to roundings, u and = notations
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Figure 1: In precision-p binary FP arithmetic, in the normal range, the relative
error due to rounding to nearest is bounded by u = 27P.



Relative error due to roundings, u and = notations

Floating-point multiplication a x b:
@ exact result z = ab;

e computed result 2 = RN(z);
(1-u)-z<2<(1+4u)-z (3)
— when we approximate 7, = a;-a»--- --- - a, by
7in = RN(--- RN(RN(ay - a2) - a3) - --+) - apn),

we have

Theorem 1

(1—u)"tr, <#p < (1+u)" 1, (4)




Relative error due to roundings, u and = notations

— relative error on the product a; - ax--- -+ - a, bounded by
Y1 =(1+u)"t -1

o if we define (Higham)
_ ku

then, as long as ku < 1 (always holds in practical cases),
k- u<ip <.

— classical bound: y,_1.

o For “reasonable” n, 1,_1 is very slightly better than ~,_1, yet v,_1 is
easier to manipulate;

@ in single and double precision we never observed a relative error
>(n—1) u.



Special case: n <4

The bound on the relative error due to rounding can be slightly improved
(using a remark by Jeannerod and Rump):

if 2¢ <t < 2°! then |t — RN(t)| < 2°7P = u - 2¢, and
o if t >2%.(1+ u), then |t — RN(t)|/t < u/(1+ v);

o if t=2%-(1+7-u)with 7 €[0,1), then
[t —=RN(t)|/t=7-u/(1+7-u) <u/(l+u),

— the maximum relative error due to rounding is bounded by u/(1 + u)

(attained — no further improvement);

— we can replace (4) by

u n—1 U n—1
<1_1+u> 77,,§7AT,,§<1—0—1+U> Th. (5)




Special case: n <4

Property 1

If1 < k <3 then

k
<1+u) <1l+k-u.
14+ u

e k=2:

u 2 u? - (14 2u
(1+1+u> —(1+2u)_—(1(+t)2)<0;

o k=23:

u 3 ud (24 3u
<1+1+u> (1+3u):(1(+t)3)<o.

k=n—1— for n < 4, the relative error of the iterative product of n FP
numbers is bounded by (n—1) - u.



The particular case of computing powers

@ "“General” case of an iterated product: no proof for n > 5 that
(n—1) - uis a valid bound (when starting the study we conjectured
this is the case);

— focus on x”, where x € F, and n € N;

@ we assume the “naive” algorithm is used:

y =X

for k =2 to ndo
y < RN(x - y)

end for

return y

@ notation: X; = value of y after the iteration corresponding to k = j in
the for loop.



Main result

We wish to prove

Theorem 2
Assume p > 5 (holds in all practical cases). If

n<+2uU3_1. 2P/2’

then

1% = x"| < (n—=1)-u-x".

@ we can assume 1 < x < 2;

@ two cases: x close to 1, and x far from 1.



Preliminary results

First,
A-—u)"1>1—-(n-1)-u

forall n>2and u € [0, 1].
— the left-hand bound of
(1—u)"'mn < #p < (14 u)" .
suffices to show that
1—(n=1)-u-xp <X,

— to establish the Theorem, we only need to focus on the right-hand
bound.



Preliminary results

For t # 0, define
t

t= Sl el -

We have,

Lemma 3

Let t be a real number. If
22 <w-2°<|t| <28 ec

(in other words, if w < [t|) then

<

’RN(t) —t
t

SRS

(6)
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Figure 2: The bound on the relative error due to rounding to nearest can be
reduced to u/(1+ u). Furthermore, if we know that w <t = t/2¢, then
[RN(t) — t|/t < u/w.
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Figure 3: Relative error due to rounding, namely | RN(t) — t[/t, for 1 <t <8,
and p = 4.



Local maximum error for x° as a function of x (p = 53)
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Figure 4: The input interval [1,2) is divided into 512 equal-sized subintervals. In
each subinterval, we calculate x® for 5000 consecutive FP numbers x, compute
the relative error, and plot the largest attained error.



Main idea behind the proof

At least once in the execution of the algorithm, X~y is far enough from 1
to sufficiently reduce the error bound on the multiplication y « RN(x - y),
so that the overall error bound becomes < (n—1) - u.

y—X

for k =2 to ndo
y < RN(x-y)

end for

return y

Yno1= (14wt —1=(n—-1)u+(1/2n° =3/2n+1) v’ + -

2 . . -
— we have to save =~ %uz, which requires one of the values X~y to be
2
~ n
larger than ~ 1+ - u.



What we are going to show

Unless x is very near 1, at least once X~y > 1+ nu, so that in (4) the
term (14 u)"~! can be replaced by

(1+u)”_2~<1+ = >

1+ n2u

— we need to bound this last quantity. We have,
Lemma 4

If0 < u<2/(3n) and n > 3 then

(1+u)"—2-<1+1+“n2u) <1+ (n-1)-u

(7)




Proof of Lemma 4 (with the help of Bruno Salvy)
Proving the Lemma reduces to proving that
P(u)= (14 (n—1u)1+n*u) =1+ u)"2(1+nPu+u)>0

for 0 < u <2/(3n%). We have

o In(l+u)<u=(n—-2)In(1+u) <1/(2n) <1/6;
@ For0<t<1/6, et§1+t+§t2;
— for 0 < u < 2/(3n?), to prove that P(u) > 0 it suffices to prove that
Q(n,u) =1+ (n—1)u) (nPu+1)
(-2 et b 2P - R L)) @)
x (nPu+u+1)>0.



Proof of Lemma 4 (with the help of Bruno Salvy)

By defining a = nu, (5n%/a%) - Q(n, u) is equal to

29 19
_ S2t5 | 3a%—17a—7 _ 1 a(82a-5)
S(n,a) = —3a+2+4 252 23 — 2 205
1 a(3322-187a+20) | 1 2%(33a-8) 1 2%(122%2-153 a+52)
12 n* + 3 nd + 12 n®
_B(4a-7) 1 a*(a2-14a+21) ! a*a=2) 1 2*(5a-8)
n? 3 n8 3 n9 3 n10

We wish to show that S(n,a) > 0 for 0 < a <2/3.



We examine the terms of S(n, a) separately. For a € [0,2/3] and n > 3:
@ —3a+ 2 is always larger than 0;
o (2a+ 1) ntisalways larger than 19/(2n);

° 332*"% is always larger than —6/n;
o -1 % is always larger than —7/(10n);
o — % w is always larger than —17/(10000n);

° 1 w is always larger than —3/(10000n);

32 32— a
o L w is always larger than —69/(10000n);

=

° —‘33(4n?,_7) is always larger than 0;
° *% a(aijw is always larger than —6/(10000n);

° 3 34(5.;2) is always larger than —6/(100000n);

*(5a—8 N
0o 12 (nfo ) and % 2 are always larger than 0;

° -3 na% is always larger than —1/(1000000n).
— for 0 < a<2/3and n>3, S(n,a) > 2790439/(1000000n).



Two remarks

Remark 1

Assume n < \/2/3-2P/2. If 3k < n s.t. RN(x - %_1) < x - X1 (i.e., if in
the algorithm at least one rounding is done downwards), then

fn < (14 (n—1)-u)x".

Proof.

We have
Rn < (14 u)"2x".

Lemma 4 implies (1 + u)""2 < 1+ (n—1) - u. Therefore,

fn < (14 (n—1)-u)x".




Two remarks

Remark 2
Assume n < \/2/3 - 2°P/2 If3k<n—1,st x-X >1+n?-u, then

X < (1+(n—1)-u)x".

Proof.
By combining Lemmas 3 and 4, if there exists k, 1 < k < n—1, such that

X-Xe>14n% u,

then

u

S -2
an(l—i-u)” (1+m

)-x”§(1+(n—1)-u)-x".




Proof of Theorem 2

We assume n > 5. Proof articulated as follows

e if x is close enough to 1, then when computing RN(x?), the rounding
is done downwards:

@ in the other cases, 3k < n — 1 such that x - & > 1+ n®- u.

Lemma 5

If1< x <1+2P/2.u, then % = RN(x?) < x2.

Proof.

X <1422 4= x=1+k-27PH1 =1 4 2ku, with k < 2P/2~1. We
have x? =1+ 2k - 2P+ 4 k2. 272P*2 which gives

RN(x?) =1+ 2k -27P+1 < x2, O

In the following, we assume that no rounding is done downwards, which
implies x > 1+ 2P/2. 4.



Proof of Theorem 2: case x2 < 1+ nu

0 x>1+2P2u>14nu= x">(1+nu)">1+n’y;

@ no downward rounding = X, 1 - x > (1 + n?u).

Therefore
o if £,_1x < 2, then %,_1x > (1 + n2u), so that, from Remark 2,
xX"< 1+ (n=1) u)-x"
@ if X,_1x > 2, let k be the smallest integer such that X,_1x > 2.
x2 <1+ n?u= k> 3. We have

2 2
R 1> ">
X T VIt
hence 5
Xp—o - x> (10)

T V1+nPu-(14u)



2
Vi+n2u-(1+u)

op+1 \ 2/3

Forall p>5, ap > as=0.745---, and ap < /22/3 —1=0.766---. If

POEPED

Define

n<ap-2°2 (11)

then
2

V1+n?u-(1+u)

— Ri_p - x > 14 nu. Also, Rk_» - x < 2 since k is the smallest integer
such that X,_1x > 2. Therefore

> 1+ nu.

Xp_o - x > 1+ nu.

Which implies x” < (1+ (n—1) - u) - x".



Proof of Theorem 2: case x2 > 1 + n?u

o if x2<2then x2>1+nu=x"<(1+(n—1)-u);
@ x? =2 impossible (x is rational);

— we assume x? > 2 we also assume x? < 2 + 2n?u (otherwise,
x2 > 1+ n?u). This gives

n—1

x" 1 < (2+2n%u)"7,

therefore, using the classical bound (Theorem 1),

n—1

Soo1 < (2420°0)"7 - (14 0)" 2,

which implies
X fpo1 < (242n%u)2 - (14 u)"2 (12)



Reminder:
X %1 < (242n%u)"? - (14+u)"2and n>5

Define

=213 -1

If n < 3-2P/2 then 2 + 2n%u < 2*/3, so that
(24 2n2u)"? (14 u)""2 < 2273 (1 4 u)" 2 (13)

The function
2 —2
(t) — 2t—1 _ 22t/3 1 + i ‘ — 22t/3 2t/3—1 _ 1 + i ‘
g 2p 2p ’

is continuous, goes to +o00 as t — +00, has one root onIy:

log(2) + 2log (1 + 55)
3 log(2) —log (1+ 5)

which is < 4 as soon as p > 5 = if p > 5 then x - %,_; < 271,



Reminder: if p > 5 then x - %,_1 < 2",
o define k as the smallest integer for which x - &,_; < 2K71,
@ 3 < k < n (we have assumed x? > 2),
0 X R_p>2K"2= %1 = RN(x - Xe_p) > 2k72.

Therefore, X,_1 and x - Xx_1 belong to the same binade, therefore,
m > X > V2.
The constraint n < 3 - 2°/2 implies
1+nPu<14+ 3 =213<V2
By combining (14) and (15) we obtain
X-Ke_1>1+ nu.

Therefore, using Remark 2, we deduce that %, < (1+ (n—1) - u) - x".

(14)

(15)



Final steps

Vp > 5, ap > 3 — combining the conditions found in the cases
x2 <1+ n?uand x2 > 1+ n?u, we deduce

If p>5andn<f-2P/2 then for all x,
1-(n=1)u)- x"<%,<Q+(n-1)-u) x"

where 3 = \/21/3 — 1 = 0.5098245285339 - - -

Q.E.D.
Questions:

e is the restriction n < 3 - 2P/2 problematic?
@ is the bound sharp?

@ any hope of generalizing to iterated products?



On the restriction n < 3 - opP/2

’ format ‘ p ‘ Nmax
binary32/single | 24 | 2088
binary64/double | 53 | 48385542
binary128/quad | 113 | 51953580258461959

With the first n larger than the bound, x” under- or overflows, unless
@ in single precision, 0.95905406 < x < 1.0433863,
@ in double precision, 0.999985359 < x < 1.000014669422,

and nobody will use the “naive” algorithm for a huge n.



On the restriction n < 3 - opP/2

Furthermore, that restriction is not just a “proof artefact”. For very big n,
the bound does not hold:

If p =10 and x = 891, when computing x>*"*, relative error 2473.299u.

Notice that:
o for p =10, Nmax = 3 - 2P/2 = 16.31;

@ 2474 is the smallest exponent for which the bound does not hold when
p = 10.



The case of huge values of n

@ X, computed approximation to x";

° )'Tn — )?n/2U°g2 5<,1J;

@ one can build examples for which 3m s.t. X, =1 (and x™ # 1);
— for all i, Xmei = Xi;

@ let o be the relative error on xp,:

fm=(1+a)-x™,
@ relative error on x™k ?

Sk = (14 @) x5,

— the relative error grows exponentially with k

— ultimately it will be larger that (mk — 1) - u.



Tightness of the bound (n—1) - u

Small p and not-too-large n: an exhaustive test is possible.

Table 1: Actual maximum relative error assuming p = 8, compared with ~,_; and
our bound (n — 1)u.

’ n ‘ actual maximum Yn—1 our bound
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u 5u
7 2.69634u 6.1440u 6u
8 = Nmax 3.42929u 7.1967u Tu

— our bound seems to be quite poor... however. ..



Tightness of the bound (n—1) - u

For larger values of p:

@ single precision (p = 24), exhaustive search still possible, largest error
4.328005619u for n = 6, and 7.059603149u for n = 10;

@ double precision (p = 53), we have a case with error 4.7805779u for
n=6 and 7.8618 - u for n = 10;

@ quad precision (p = 113), case with error 4.8827888185u for n = 6;

— we seem to get close to (n — 1) - u for large p.



Rough explanation

@ nis not too large
@ the x - X, are close to 1;
@ we assume that each elementary relative rounding error ¢; is uniformly
distributed in [—u, +u].
Xn=x"-(1+e)(l+e)  -(1+e1)=x"-(14+e+e2+--€1).
Define aj = (€¢; + u)/(2u). The «; are uniform in [0, 1] — cumulative
distribution function of a;y + o + - -+ + ap_1:

1)
Flx) = (n1 1)! Z(‘l)k< " >(X_k)"l'

k=0

For a given x, probability that [%10 — x19]/x1° > 8.9: 5.38 x 10718,
— There are just not enough possible single precision significands for that

to happen!



Repartition of relative error

0
] 1 2 3 4

Figure 5: Repartition of the relative error (divided by u), for p =53 and n = 6,
for a sample of 100000 random values of x uniformly chosen between 1 and 2.



Building “bad cases” for the iterated product

Still in precision-p binary FP arithmetic, we approximate

31.32...... .an’
RN(~-- RN(RN(al-az)-ag)- -~-)~a,,)

® T =ay - a,

e 7, = computed value,

e relative error |7, — #t,|/ 7, upper-bounded by v,_1,

@ conjecture: if nis “not too large” it is bounded by (n — 1)u.

Let us now show how to build a1, a», ..., a, so that the relative error
becomes extremely close to (n—1) - u.



Building “bad cases” for the iterated product

o definea; =1+ k; -27PTL, and ay = 1+ ko - 27PHL. We have
Ty =aijar =1+ (kl + kg) .p7ptl + kiko - 2—2p+2,

If ky and ko are not too large, 1+ (ky + k2) - 27P*1 is a FP number
— we wish k1 + k> to be as small as possible, while kiko - 272P12 is as
close as possible (yet ess than) to 27P. Hence a natural choice is

ky = ky = P%*lj ,
which gives Ty < m».
@ Now, if at step i — 1 we have
Ti=1+g- 2—p+1’ with 71; < 7,

we choose a1 of the form 14 k; 127P+!, with
° kit1 = P’_Z - 1} if g <2571

8i
2p—2

o kiy1=— { Faa 1J otherwise.




Building “bad cases” for the iterated product

Table 2: Relative errors achieved with the values a; generated by our method.

’ p ‘ n ‘ relative error

24| 10 |8.99336984 ---u

241100 | 98.9371972591 - - - u

53| 10 | 8.99999972447 ---u

53 | 100 | 98.9999970091 - - - u
113 | 10 | 8.99999999999999973119- - - u
113 | 100 | 98.99999999999999701662 - - - u




Conclusion

@ error bound (n — 1) - u for computation of x” by the naive algorithm;

e valid for n < \/21/3 —1.2P/2 _; al| practical cases;

@ small improvement: the main interest lies in the simplicity of the

bound;
@ seems to be “asymptotically sharp” (as p — o0) but not sure;
@ unsolved issue: iterated products and n “not too large”;
o if this is the case, it is very sharp.

Thank you for your attention.



