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Goal. We aim at improving the best approaches to fast multiplication of big integers and high-degree
polynomials. As the best known algorithms for this are based on Fourier transforms (either in C or in finite
fields), the internship aims at improving and certifying the quality of some commonly-used numerical
calculation routines, revolving around the Fast Fourier Transform (FFT) and related operations such as the
Discrete Cosine Transform (DCT). One of the main difficulties is to keep the accuracy of these operations
under control.

Context. When using computers, numerical approximations appear almost everywhere. Usually, num-
bers are stored and manipulated in finite precision floating-point arithmetic, and they represent only a
finite subset of the real axis. For each basic computation (addition, multiplication) a rounding error may
occur. Then, most numerical methods introduce errors. How can we then be sure of the number of digits in
the answer that are correct? How can we validate from a mathematical point of view what we have com-
puted? These questions of numerical safety are essential for many problems, ranging from computer-aided
mathematics to practical applications in critical systems.

Description. The FFT was introduced in 1965 by Cooley and Tukey in its modern form [2, 3, 9], but can be
traced back to Gauss [5]. The FFT and the DCT are widely used in digital signal processing [10]. The FFT
also plays a central role in fast multiple-precision arithmetic, since it lies at the heart of some of the most
efficient big polynomial and big integer multiplication algorithms [15, 8]. There is a large literature on the
error analysis of the FFT (see [14, 7, 11, 12]). Most authors bound the relative mean-square error. For our
applications, we also need bounds in terms of infinity norm. Henrici [6] gave such a bound. In [1] we have
improved Henrici’s bound, and built ”bad input cases”, for which the attained error is around one eighth
of the bound.

When the polynomials to be multiplied are represented on the Chebyshev basis, the DCT is often
used [16, 13, 4]. The first objective of this internship is to extend and adapt our error analysis of FFT [1] to
the DCT. A second and more prospective objective is to adapt FFT/DCT routines to the implementation of a
fast and accurate polynomial multiplication routine when the coefficients of the polynomials are intervals.
The work will be well balanced between theoretical and algorithmic studies and fine-tuned implementa-
tions (in C or Julia).

Location and funding The internship will take place at the LIP lab, ÉNS Lyon. The trainee will receive in-
demnities if her/his status makes this possible. Depending on the results of the internship, an opportunity
to continue with a PhD thesis could be available.
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