
A Ghost Sort for Proof-Relevant yet Erased Data in Rocq

and MetaRocq

Johann Rosain1, Matthieu Sozeau1, and Théo Winterhalter2

1 LS2N & Inria de l’Université de Rennes,
Nantes, France

2 LMF & Inria Saclay,
Saclay, France

Abstract

We present an extension of Rocq’s type theory and implementation with a new Ghost

sort that models proof relevant data that is erased at extraction, inspired by recent work
on ghost types [11], sort polymorphism [9] and certified erasure [3] in MetaRocq [10].

Rocq is based on a dependent type theory with two main kinds of universes, the Type pred-
icative universes that contain computationally relevant data and the Prop/SProp impredicative
universes that represent irrelevant data that can be erased at extraction to produce (relatively)
efficient programs from Rocq definitions. The initial work on extraction in Rocq was done by
Paulin-Mohring [8] during her PhD and followed up by the PhD of Letouzey [5], which gives an
accurate account of the current state of extraction in Rocq. Technically, extraction is based
on elimination restrictions that ensure that propositional content (in Prop or SProp) cannot be
used in a relevant way to produce computational data (with a type in the Type universe), with
only one exception: so-called sub-singleton propositions can be inspected when producing com-
putational data (e.g. natural numbers). The trivial (True) and absurd (False) propositions, the
conjunction of propositions (A ∧ B), the propositional equality type (eq) and the accessibility
predicate (Acc) all fall into this criterion: they have at most one constructor, whose arguments
(if any) are all propositional. In contrast, disjunction (A ∨ B) and existential quantification
(∃ x : nat. P) fall outside this criterion, with good reason: if one could write a program that
takes a disjunction proof A ∨ B and produces 0 in case the proof comes from the left branch and
returns 1 otherwise, then proofs would have to be kept during extraction! Forster et al. [3] pro-
vide a formal proof on top of MetaRocq that the process of extraction based on elimination
restrictions preserves semantics, while erasing all propositional content and type annotations.
However, there are cases where data that should be erased remains in extracted terms.

The case of Accessibility. Singleton elimination of Prop applies to accessibility:

Inductive Acc {A} (R : relation A) (x : A) : Prop :=
| Acc_intro : (∀ y, R y x → Acc R y) → Acc R x.

Definition well_founded {A} R :=
∀ x, Acc R x.

This inductive type represents accessibility proofs of relations, and is used to define constructive
well-foundedness of relations. Thanks to singleton elimination, this allows to derive principles
of well-founded (a.k.a. Noetherian) recursion and induction for Type-valued predicates:

Definition nat_lt_ind (P : nat → Type) : (∀ n, (∀ m, m < n → P m) → P n) → ∀ n, P n :=
. . . Acc_rect . . .

The justification to erase uses of Acc during extraction is a bit more involved than for
other (sub)singletons: indeed as Acc is a recursive type, we need to ensure that definitions in
Rocq cannot distinguish between two accessibility proofs of potentially different depths. The
correctness theorem of extraction crucially holds only on closed Rocq terms, for which we can



A Ghost Sort for Proof-Relevant yet Erased Data Rosain, Sozeau and Winterhalter

assume by the canonicity property of the theory that any fixed-point definition on Acc proofs
will be able to consume as many Acc_intro constructors as necessary to reach a normal form.
This is however not the case in Rocq itself, where definitional equality is checked on open
terms and the theory does distinguish between accessibility proofs, e.g. one that is a variable
and one that starts with a constructor cannot be considered definitionally equal, otherwise
non-termination can ensue. Putting Acc in Prop while still considering it a (sub)singleton hence
goes against a definitional proof irrelevance interpretation of Prop, even if the weaker principle
of propositional proof irrelevance in Prop can be added consistently to Rocq.

So, in the definitionally proof-irrelevant sort SProp in Rocq, accessibility is restricted to
eliminations to SProp only.1 This is an unfortunate situation, as this precludes using SProp as a
replacement for Prop in many situations. A better compromise is to recognize that accessibility
is definitionally proof-relevant (so cannot live in SProp) but still erasable: this is one purpose
of the new Ghost sort we introduce.

No ghost data. Currently, as extraction is based on the Prop/Type separation, it is impossible
to erase proof-relevant data at extraction. A typical use-case appears when using indexed or
dependent data types in programs, e.g. finite numbers:

Inductive fin : nat → Set :=
| finO {n} : fin (S n)
| finS {n} : fin n → fin (S n).

Fixpoint lookup {A} (l : list A) : fin (length l) → A :=
match l return fin (length l) → A with

| nil ⇒ fun (f : fin 0) ⇒
False_rect (match f in (fin 0) with end)

| cons a l ⇒ fun f ⇒ match f with

| finO ⇒ a

| finS f’ ⇒ lookup l f’
end

end.

(* Extraction to OCaml: *)

type fin =
| Fin0 of nat

| FinS of nat ∗ fin

let rec lookup l f =
match l with

| Nil → assert false

| Cons (a, l0) →
begin

match f with

| FinO _ → a

| FinS (_, f’) → lookup l0 f’
end

In the computation of the lookup function, the indices of the fin structure are never in-
spected. They are only used to logically justify that the first branch is unreachable. Extraction
is unaware of that intention2 and carries around all the index data of fin, as witnessed by the
way fin is extracted to OCaml.

Here, we would like to state in fin’s type declaration that the natural number cannot be used
computationally, but only in ghost contexts, so that Rocq can enforce that the lookup function
does not inspect unduly these indices and that they hence can be erased during extraction.

Progress on this subject was made recently by Winterhalter [11], who introduced Ghost
Type Theory (GTT), an extension of dependent type theory with a new sort for ghost types
and values. This theory allows marking indices such as the fin index as ghost data and ensures
the extraction property we expect. However, the meta-theory of GTT is not yet complete, and
it shares the same defect as the SProp sort, being unable to accommodate a useful accessibility
relation. We simplify this proposal, drawing inspiration from the system of Keller and Lasson
[4] which already introduced a distinction between two predicative hierarchies named Set and
Type which played the roles of non-erasable and erasable proof-relevant types. That system was
designed with parametricity in mind though, not extraction.

1Lean deliberately ignores this issue and breaks transitivity of conversion due to that choice.
2One could in fact write functions that do inspect the indices.

2



A Ghost Sort for Proof-Relevant yet Erased Data Rosain, Sozeau and Winterhalter

Our work. Thanks to Rocq’s recent support of sort polymorphism [9] and the new imple-
mentation of sort elimination constraints (see the companion abstract), we can experiment with
different elimination rules for the Ghost sort. We are considering the following designs:

1. A term of a Ghost type can only be eliminated (i.e. in a match) to produce ghost content,
except for ⊥ which always has large elimination. Moreover, Fixpoint elimination is allowed
from Ghost into any sort.

2. The Ghost sort can be eliminated into itself and SProp (which enables large elimination
for ⊥ by transitivity). Fixpoint elimination is also allowed from Ghost into any sort.

3. We restrict elimination to avoid creating computational content (i.e. we disable elimina-
tion of Ghost into Type), but always allow it for other sorts.

All of those enjoy the same desired property: they accommodate the accessibility predicate.
Moreover, introducing a new sort allows one to add specific annotations for proof-relevant
content to be erased at extraction — here, it would simply be to use the ghost version of the
types/functions. For instance, it becomes possible to define a lookup function where extraction
leads to a code that totally discards fin’s indices:

Inductive fin : nat@{Ghost|} → Set :=
| finO {n} : fin (S n)
| finS {n} : fin n → fin (S n).

Fixpoint lookup {A} (l : list A)
: fin (length@{Ghost} l) → A :=
match l return fin (length@{Ghost} l) → A with

| nil ⇒ fun (f : fin 0) ⇒
False_rect (match f in (fin 0) with end)

| cons a l ⇒ fun f ⇒ match f with

| finO ⇒ a

| finS f’ ⇒ lookup l f’
end

end.

(* Extraction to OCaml: *)

type fin =
| Fin0
| FinS of fin

let rec lookup l f =
match l with

| Nil → assert false

| Cons (a, l0) →
begin

match f with

| FinO → a

| FinS f’ → lookup l0 f’
end

We are also considering replacing the equality of Prop by one in Ghost, using a specific
cast term à la GTT. This would effectively get rid of the need of singleton elimination, and
maybe of the Prop sort. This approach might fix the long-standing extraction inconsistency
in the presence of univalence. Indeed, one can show that the equality in Prop and in Type are
equivalent, meaning, from negation, one gets an equality B = B in Prop, transporting true along
that equality will yield an element that is provably equal to false and yet extracts to true.
Choosing one of the first two designs would remove the extraction inconsistency, as in either of
these cases, Ghost equality is not equivalent to Type equality.

While our initial experiments are made in Rocq, we plan to develop a MetaRocq proof to
show the erasure theorem [10] when using Ghost extraction, and to make sure we do not break
any meta-theoretical properties already proven about Rocq.

In this talk, we will present the Ghost sort through the development of examples, focusing
on the treatment of accessibility and indexed data types, and summarize the status of the
MetaRocq formalization. We will also compare our new Ghost sort with recent developments
of quantitative type theories [7, 1], the type theory internalizing reasoning on non-interference
of Liu et al. [6] and its logical properties with the ones of the erasure modality [2] (we expect
to satisfy the same properties).

3



A Ghost Sort for Proof-Relevant yet Erased Data Rosain, Sozeau and Winterhalter

References

[1] Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 56–65,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355834.
doi: 10.1145/3209108.3209189. URL https://doi.org/10.1145/3209108.3209189.

[2] Nils Anders Danielsson. Logical properties of a modality for erasure. 2019. URL https:

//www.cse.chalmers.se/~nad/publications/danielsson-erased.html.

[3] Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. Verified Extraction from Coq
to OCaml. Proc. ACM Program. Lang., 8(PLDI), June 2024. doi: 10.1145/3656379.

[4] Chantal Keller and Marc Lasson. Parametricity in an Impredicative Sort. In Patrick
Cégielski and Arnaud Durand, editors, CSL, volume 16 of LIPIcs, pages 381–395. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. ISBN 978-3-939897-42-2.

[5] Pierre Letouzey. Programmation fonctionnelle certifiée: l’extraction de programmes dans
l’assistant Coq. Thèse de doctorat, Université Paris-Sud, July 2004. URL http://www.

pps.jussieu.fr/~letouzey/download/these_letouzey.pdf.

[6] Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. Internalizing Indistin-
guishability with Dependent Types. Proc. ACM Program. Lang., 8(POPL), January 2024.
doi: 10.1145/3632886. URL https://doi.org/10.1145/3632886.

[7] Conor McBride. I Got Plenty o’ Nuttin’. In Sam Lindley, Conor McBride, Philip W.
Trinder, and Donald Sannella, editors, A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600
of Lecture Notes in Computer Science, pages 207–233. Springer, 2016. doi: 10.1007/
978-3-319-30936-1\ 12. URL https://doi.org/10.1007/978-3-319-30936-1_12.

[8] Christine Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions.
(Program Extraction in the Calculus of Constructions). PhD thesis, Paris Diderot Univer-
sity, France, 1989. URL https://tel.archives-ouvertes.fr/tel-00431825.

[9] Josselin Poiret, Gaëtan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Matthieu Sozeau,
Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025. doi: 10.
1145/3704912. URL https://doi.org/10.1145/3704912.

[10] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas
Tabareau, and Théo Winterhalter. Correct and Complete Type Checking and Certified
Erasure for Coq, in Coq. To appear in Journal of the ACM, April 2023. URL https:

//inria.hal.science/hal-04077552.

[11] Théo Winterhalter. Dependent Ghosts Have a Reflection for Free. Proc. ACM Program.
Lang., 8(ICFP):630–658, 2024. doi: 10.1145/3674647. URL https://doi.org/10.1145/

3674647.

4

https://doi.org/10.1145/3209108.3209189
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.html
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.html
http://www.pps.jussieu.fr/~letouzey/download/these_letouzey.pdf
http://www.pps.jussieu.fr/~letouzey/download/these_letouzey.pdf
https://doi.org/10.1145/3632886
https://doi.org/10.1007/978-3-319-30936-1_12
https://tel.archives-ouvertes.fr/tel-00431825
https://doi.org/10.1145/3704912
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04077552
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647

