
ÉCOLE NORMALE SUPÉRIEURE DE LYON

AN INTERNSHIP REPORT
ON

Skolemisation in First-Order Logic :
Certification and Optimisation

Submitted in partial fullfilment of the requirements for the award of the degree of

LICENCE 3
IN

INFORMATIQUE FONDAMENTALE

by

Johann Rosain
Under the Guidance of

Julie Cailler
David Delahaye
Olivier Hermant
Simon Robillard

2

Contents

1 Introduction 2

2 Context and Challenges Faced 3
2.1 First-Order Language 3
2.2 Some Proof Systems: Focus on the

Tableaux Method and GS3 4
2.3 From Tableaux to GS3, a Deskolemisa-

tion Problem 5
2.4 Discussion and Objectives 7

3 A Deskolemisation Algorithm 7
3.1 Presentation of the Algorithm 8
3.2 Soundness of the Translation over Inner

Skolemisation 9
3.3 Extending Deskolemisation to δ+

+
. 13

4 Implementation and Performances Evalua-
tion 15
4.1 A Framework for Proof Certification: an

Implementation in Goéland 15
4.2 Testing the Algorithm: Towards an Effi-

cient Translation for Different Skolemi-
sation Strategies 16

5 Conclusion and Future Work 18

A Additional Proofs 21
A.1 No Self Dependency 21
A.2 δ+-Proofs Mapping 21

B Coq’s GS3 Embedding 22

1 Introduction

Proofs — sequences of sentences composing an argu-
ment — have been part of the scientists standards for
millennia. They are the best (and only) way to believe
the affirmations stated to describe the world. Yet, iron-
ically, they have not always been foolproof. False proofs
are published every year, and famous minds are not
exempt of mistakes, as illustrated by Legendre’s tries
on the parallel postulate [29] or Hilbert’s attempted
proof of the continuum hypothesis [26]. It thus raises
the question of a proof’s trustworthiness (or soundness),
i.e., how to believe in proofs. Hilbert and Gentzen, act-
ing as forefathers, proposed formal systems that allow
syntactical reasoning over sentences, easily providing
sound proofs by construction. However, the difficulty
of verifying this kind of proof by human means together

with Gödel’s incompleteness theorem [23] and, subse-
quently, Church’s undecidability theorem [14], show-
ing that there exists sentences that can not be proven
in such systems, thwarted these plans. As such, it has
made the semantics arguments, i.e., the arguments in-
volving the deep meaning of the manipulated objects,
being preferred over the years.

A fundamental shift in the way of proving has how-
ever occurred in the 1960s due to the discovery of the
Curry-Howard isomorphism [16, 27], which offers an
automatic way of verifying the soundness of a syntactic
proof. This mechanism has birthed computer programs,
called proof assistants [6, 31, 17], which make use of
the isomorphism to mechanically check the proofs en-
tered in their language. Nevertheless, the shift has not
been immediate, as only a narrow range of specialists
were convinced by their usage. However, as time ad-
vanced, the features added have enabled a wider use of
those programs and, for instance, certified (i.e., proven
to satisfy a given specification) pieces of software were
produced [28]. Nowadays, more and more critical pro-
grams (i.e., programs that, if they fail, put human lives
in danger) are developed, and the need for powerful
tools to prove them has never been more keenly felt.

Although the proof assistants have seen a wider range
of features over the past few decades, the usage of back-
ground reasoners could provide an effective boost for
such tools to allow the users to automate the tedious
bits of a proof. Automated theorem provers make a fine
candidate for this kind of job as such tools [39, 35] have
had an extended research history, and have been grow-
ing more and more efficient [37]. Nevertheless, to make
those tools the right candidates, the century-old ques-
tion still persists — even though now aimed towards
machines and not humans — are the proofs output by
automated theorem provers sound?

Indeed, as humans have implemented those tools, it
is natural to expect bugs to appear somewhere in the
code. In this kind of system, bugs can be disastrous,
making it prove non-theorems and thus compromising
the kernel of proof assistants. Fortunately, there are
two ways to avoid inconsistencies in automated theo-
rem provers: fully certify the kernel of the prover using
a proof assistant or produce machine-checkable proofs.
The former is a time-consuming, arduous and long-term
work [34], whereas the later is, in general, more easily
accessible.

This internship focuses on the second line of thought.
Nonetheless, over the years, proof-search algorithms
have been thoroughly optimised by using multiple se-
mantics arguments for the preservation of the proofs

3

soundness. It thus led the automated theorem provers
to yield proofs that can not trivially be machine-
checked, as the languages of the tools involved differ
greatly. Thus, the main objective of the internship has
been to develop and implement a method to translate a
prover’s output to a proof-assistant system, i.e., to make
an automated tool output machine-checkable proofs.
The contributions to the field have thus been many-fold:
a novel algorithm that generalises gently to multiple
proof optimisations have been proposed, proved sound
and implemented in an automated prover that validates
its in-practice use.

As such, this document is organised as follows. Sec-
tion 2 presents the detailed challenges addressed dur-
ing the internship and defines the notions needed
throughout it. Section 3 then proceeds to exhibit the
main contributions, i.e., the proposed algorithm and its
soundness proof over some optimisations. Finally, Sec-
tion 4 gives an overview of the implementation process
needed to certify proofs and summarises the results ob-
tained by the algorithm in practice.

2 Context and Challenges Faced

The work carried out during this internship relies heav-
ily on first-order logic. As such, a solid basis of this logic
is needed to smoothly understand the topics discussed
and is offered in Subsec. 2.1. Subsec. 2.2 then gives an
overview of proof systems and focuses on two in par-
ticular: the tableaux method and GS3. Subsec. 2.3
presents the need of a translation, called deskolemisa-
tion, between those two systems and introduces some
the state-of-the-art work. Finally, Subsec. 2.4 discusses
the limitations of the existing solutions, expresses the
internship’s objectives and highlights the contributions
made to the field.

2.1 First-Order Language

First-Order Language. As defined by Cori and Lascar
in [15], a first-order logic language, denoted L , is an
alphabet composed of four disjoint sets: an infinitely
countable set of variables V , a set regrouping propo-
sitional logic connectors, quantifiers, brackets, commas
and the symbols > and ⊥ (read true and false), a set
of function symbols SF with each symbol having its ar-
ity associated and a set of relational symbols and their
arity SP , also called predicates. The sentences of this
language are called formulas and are built upon words
called terms and atomic formulas. The definitions will
be given from bottom to top: starting from the words

(terms) and going all the way up to build sentences (for-
mulas).

Definition 2.1: Term

The set of terms of first-order logic T over L
is recursively defined by the family (Tn)n∈N as
follows.

• T0 = V ∪S 0
F where S 0

F denotes the func-
tions of arity 0 ;

• Tn = Tn−1 ∪ { f (t1, . . . , tk) | k ∈ N ∧ f ∈
S k

F ∧ t1, . . . , tk ∈Tn−1} ;

• T =
⋃

n∈NTn.

In essence, T is the smallest subset of words over
L which contains constants, variables and is stable by
associating any n-uple (for n ¾ 1) of words to be the
arguments of a function symbol of S n

F . Another con-
struction can yield words and composes the first layer
of the sentences of this language: the atomic formulas.

Definition 2.2: Atomic Formula

A word M over L is an atomic formula if and
only if there exists n ∈ N∗, an n-ary relational
symbol R of SP and n terms t1, . . . , tn of L such
that M = R(t1, . . . , tn).

To express events, those words can be combined to-
gether using logical connectors such as ∧ (the conjunc-
tion), ∨ (the disjunction),⇒ (the implication) or ¬ (the
negation) and can be quantified universally (∀) or ex-
istentially (∃). This combination yields a sentence, also
called a formula.

Definition 2.3: Formula

The set of formulas of first-order logic F over
L is recursively defined by the family (Fn)n∈N
as follows.

• F0 is the set of atomic formulas plus> and
⊥ ;

• Fn =Fn−1 ∪ {¬F | F ∈Fn−1} ∪ {F1 α F2 |
F1, F2 ∈Fn−1}∪ {β x . F | F ∈Fn−1} where
α ∈ {∧,∨,⇒} and β ∈ {∀,∃} ;

• F =
⋃

n∈NFn.

As it can be remarked, variables can be quantified us-
ing an existential (∃) or a universal (∀) binder, but they

4

can also appear without being bound. The set of un-
bound variables of a formula P is called free variables of
P and is denoted FV (P). A formula that does not fea-
ture free variables is said closed. Throughout this doc-
ument, bound variables will be denoted x , x ′, x1, y, . . . ,
whereas free variables will use the same letters but cap-
italised X , X ′, X1, Y, Constants will use the start of
the alphabet a, a′, a1, b, . . . , n-ary functions will be de-
noted as usually done with f , f ′, f1, g, . . . and formulas
will be denoted by capital letters such as P, P ′, P1,Q or
eventually by greek letters ϕ,ϕ′,ϕ1,ψ. Furthermore,
P⇔Q can be used as a shortcut for (P ⇒Q)∧(Q⇒ P).

Syntactic Manipulations. Formulas and terms con-
taining free variables can be syntactically manipulated
to replace them by other terms using a function from V
to T usually denoted σ and called substitution.

Definition 2.4: Term’s Substitution

Let σ be a substitution and t a term of T . Ap-
plying σ upon t is denoted tσ and defined by
induction over t.

• If t is a variable x then there are two cases:

◦ if x ∈ dom(σ), then tσ = σ(x) ;

◦ else, tσ = x .

• If t is an n-ary function f (t1, . . . , tn) then
tσ = f (t1σ, . . . , tnσ).

Definition 2.5: Formula’s Substitution

Let σ be a substitution and P a formula of F .
Applying σ upon P is denoted Pσ and defined
by induction over P.

• If P is an n-ary predicate R(t1, . . . , tn) then
Pσ = R(t1σ, . . . , tnσ).

• If P = ¬Q then Pσ = ¬(Qσ).

• If P is a binary formula F1 α F2 with
the connector α ∈ {∧,∨,⇒} then Pσ =
(F1σ) α (F2σ).

• If P is a formula β x .Q quantified by β ∈
{∀,∃} then there are two cases:

◦ if x ∈ dom(σ) then Pσ = P ;

◦ else Pσ = β x . (Qσ).

Using substitutions, two formulas can become syntac-
tically equal through instantiating their free variable(s)
with the corresponding term(s). As such, if for two for-
mulas P and Q there exists a substitution σ such that
Pσ = Qσ, then these two formulas are said unifiable
with σ being their unifier. It is however necessary to be
careful when applying a substitution upon a formula,
so as not to accidentally have a free variable wrongly
interact with a bound variable carrying the same name
and thus also becoming bound when substituting. As
such, an α-conversion of the substituted formula may
have to be realised. Two formulas are said α-equivalent
or α-convertible if they are syntactically identical when
renaming the bound variables “properly”. For example,
∀x . P(x) is α-equivalent to ∀y. P(y), but ∀x .Q(x , y)
and ∀y.Q(y, y) are not α-equivalent, as y is free in the
first formula and not in the second.

Proofs. Syntactically reasoning over formulas is
called a derivation. Such derivation involves applying
rules of a particular logical system to rewrite a formula
by breaking its connectors or instantiating its quantified
variables. For example, when reasoning over P∧Q, it is
clear that P and Q should hold for P∧Q to hold. As such,
if applying a logical rule on a formula F yields a for-
mula F ′ then one step of derivation is denoted F −→ F ′

with −→∗ denoting the reflexive and transitive closure
of−→. A derivation stops when an axiomatic rule, often
denoted �, is applied and a formal proof of a formula
F is a derivation such that F −→∗ �. It is important to
note that derivations only apply over closed formulas.
If there exists a formal proof of a formula F , it means
that F is a logical theorem and is simply called theorem
or valid. On the contrary, if there exists a formal proof
of ¬F , it means that F is countersatisfiable. The deriva-
tion steps forming a proof depends on the system used,
and some of those will be presented in more details in
the next section.

2.2 Some Proof Systems: Focus on the
Tableaux Method and GS3

Since Hilbert and his Entscheidungsproblem1, proof sys-
tems to automatically and syntactically reason over
formulas have been developed. Two disjoints cate-
gories [33] have emerged as a result of the researches
led — sequent-based systems [24, 18] and resolution-
based systems [32]. The former relies on deriving a
proof by keeping the syntactic integrity of a formula,

1Hilbert’s decision problem: is there an algorithm which decides
if a formula is valid.

5

while the later simplifies the formulas by preprocess-
ing them to allow an efficient reasoning. A sequent-
like system, by keeping the syntactic integrity of formu-
las, has the advantage of enabling the production of a
human-readable and machine-checkable proof, advan-
tage which is lost in favor to computational efficiency
by resolution systems due to the formulas’ preprocess-
ing. This section focuses on presenting the two sequent-
based systems used throughout this document: a vari-
ant of the method of analytic tableaux, first introduced
by Beth and Hittinka [7] and the Gentzen-Schütte cal-
culus, denoted GS3 [38].

Free-Variable Tableaux. Free-variable tableaux is a
variant of the original method introduced in [21]which
allows the use of free variables instead of directly in-
stantiating with ground terms in order to improve the
performances of automated theorem provers. It is based
upon a refutational calculus, i.e., given a set of formulas
Γ called hypotheses and a conjecture F , a derivation in
this method involves proving that the conjunction of Γ
and ¬F is countersatisfiable. The calculus is deductive,
i.e., reads top to bottom and is presented in Figure 1. It
is composed of α–, γ– and δ–rules that extend a branch
with one formula, β–rules that divide a branch by ex-
tending it with two formulas and �–rules that close a
branch.
γ–rules deal with universally quantified formulas,

yielding a formula where the bound variable has been
substituted by a fresh free variable (i.e., by a free vari-
able that does not yet appear in the proof). In essence,
free variables are not part of a proof and are instead
used as a placeholder while waiting for an instantiation
that is usually done upon finding a contradiction, i.e., a
�–rule. A non-trivial closure rule, i.e., a �-rule involv-
ing actual formulas and neither > nor ⊥, yields such a
substitution [X1 7→ t1, . . . , Xn 7→ tn] denoted σ when
there exists two formulas P and ¬Q unifiable using σ,
i.e., when Pσ = (¬Q)σ.
δ–rules deal with existentially quantified formulas,

instantiating them on the fly using a Skolem function
symbol, i.e., a fresh symbol which does not appear in the
language of the branch. In the rules of Figure 1, sko is
a meta function which takes all the free variables of the
branch as parameters and returns a Skolem (function-
nal) symbol parameterised by those very free variables.
This method is called Skolemisation and is used to en-
sure freshness of the Skolem symbol independently of
variable instantiation.

When all the branches of a tableau are closed by
�–rules, the tableau is also said closed: the formula F is

a theorem under the hypotheses Γ . A standard tableaux
proof is shown in Figure 3a.

GS3. The Gentzen-Schütte calculus, presented in Fig-
ure 2 and conveniently arranged in a way that mirrors
the tableaux rules of Figure 1, is a variant of the orig-
inal Gentzen’s sequent calculus. GS3 differs from the
method of analytic tableaux as it is read from bottom
to top as the rules are abductive and make a copy of
the formulas of a node instead of extending it. Fur-
thermore, a sequent is used to label the nodes, i.e., a
two-sided system where hypotheses are at the left of
the symbol ` and conclusions at the right. Neverthe-
less, GS3 is also a refutational calculus and thus only
the left-side, the hypotheses side, is used. Indeed, ex
falso sequitur quodlibet2, so if a contradiction is found
in the hypotheses, then a branch can be closed. Fur-
thermore, contraction (i.e., duplication) is implicitly ex-
ecuted upon an hypothesis once it is processed. As
such, the tableaux method sticks closely to this cal-
culus, where all the processed formulas are also kept
in the branch. One important difference to note be-
tween both methods are the first-order rules, i.e., the
rules involving quantifiers. GS3 is a non-automated fo-
cused proof-system, so no free variables are involved
during the proof-search, thus instantiating variables to
known terms when dealing with γ–equivalent rules and
Skolemising with fresh constants. This system is closely
related to the usual systems implemented in interactive
theorem provers [6, 31, 17] and can thus easily be em-
bedded inside such tools, as Subsec. 4.1 will show. The
main properties that those systems share is the way of
dealing with quantifiers and, as such, a translation of
Skolemised formulas has to be devised in order to for-
mally certify tableaux proofs.

2.3 From Tableaux to GS3, a Deskolemi-
sation Problem

Problematic. The standard free-variable tableaux cal-
culus uses outer Skolemisation for δ–rules, as can be
remarked in Figure 3a. This strategy makes the final
tableau totally equivalent to original tableaux [21] and
therefore to a GS3 proof, the processing needed for a
translation being thus minimal (reduced to only a one-
to-one mapping between the rules of the two systems).
However, to optimise tableaux proofs, Skolemisation
strategies have been widely studied, offering δ+–, δ+

+
–,

δ∗–, δ∗
∗
– and δε–rules [25, 5, 3, 12, 22], where the

most optimised strategies δε and δ∗
∗

are shown to yield

2From falsehood, anything follows.

6

⊥ �⊥�
¬> �¬>�

P,¬Q �σ, Pσ =Qσσ

(a) �–rules

¬¬P α¬¬P
P ∧Q

α∧P,Q
¬(P ∨Q)

α¬∨¬P,¬Q
¬(P ⇒Q)

α¬⇒P,¬Q
(b) α–rules

P ∨Q
β∨P Q

P ⇒Q
β⇒¬P Q

¬(P ∧Q)
β¬∧¬P ¬Q

P⇔Q
β⇔¬P,¬Q P,Q

¬(P⇔Q)
β¬⇔P,¬Q ¬P,Q

(c) β–rules

∃x . P δ∃P[x 7→ sko(X1, . . . , Xn)]
¬∀x . P δ¬∀¬P[x 7→ sko(X1, . . . , Xn)]

(d) δ–rules

∀x . P γ∀
P[x 7→ X]

¬∃x . P γ¬∃¬P[x 7→ X]

(e) γ–rules

Figure 1: Rules of the Free-Variable Tableaux Calculus.

proofs shorter (for a number n of branches) by a fac-
tor of 222n

compared to standard Skolemisation. This
is a great boon for proof-search procedures, but it in-
duces problems when translating tableaux proof to cer-
tify them.

For instance, a proof in the δ+–rules (inner Skolemi-
sation rules), the weakest amelioration over standard
tableaux, is developed in Figure 3b, and whereas no
branch is created in this proof, it is already shorter than
its outer-Skolemisation counterpart in a way that makes
the proof not readily translatable into a GS3 sequent.
Figure 4 is an attempt of a naive translation which fails
when the rule denoted (?) is applied. Indeed, recall
that when Skolemising, the constant yielded needs to
be fresh which is not the case here as c is introduced by
the ¬∃ rule. If the constant is made fresh, i.e., if the rule
¬∀ yields c′, then the axiomatic rule can not be called,
as the closure in the tableaux proof is found between
D(c) and ¬D(c) when the GS3 sequent’s node will be
labelled by D(c) and ¬D(c′). To certify tableaux proofs
with smart Skolemisation strategies, a translation into
GS3 sequents thus needs to be devised.

Focus of the Work. During this internship, the focus
has been placed upon δ+– and δ+

+
– rules. The for-

mer optimises standard outer Skolemisation by solely
keeping the free-variables of the Skolemised formula
as arguments, which ensure a more local solution and
an exponential gain in proof-search size (in this docu-
ment, the size of a proof will always refer to the num-
ber of branches of said proof) over outer Skolemisation.
This Skolemisation strategy is usually referred to as in-
ner Skolemisation in the literature. The later is called
pre-inner Skolemisation, and as its name suggests, it
builds over inner Skolemisation and adds a restriction:
the Skolem symbol yielded by applying a δ+

+
–rule can

avoid the freshness condition if it has already been in-
stantiated by an α-equivalent formula.

State-of-the-Art Solutions. Translating tableaux
proofs into GS3 sequents appear as early as 1987 for
the connection tableaux [8]. These tableaux are a
restriction of the original method, where formulas
are preprocessed to apply an heuristic during the
branches’ exploration. Years later, [2, 4] have shown
that deskolemising functions in inner Skolemisation
results in a substantial increase of the proof size. [20]

7

ax
∆,⊥ `

ax
∆,¬> `

ax
∆, P,¬P `

∆ ` w
∆, P `

(a) Structural and Axiomatic Rules.

∆,¬¬P, P ` ¬¬
∆,¬¬P `

∆, P ∧Q, P,Q `
∧

∆, P ∧Q `
∆,¬(P ∨Q),¬P,¬Q ` ¬∨
∆,¬(P ∨Q) `

∆,¬(P ⇒Q), P,¬Q ` ¬⇒
∆,¬(P ⇒Q) `

(b) Non-Branching Propositional Rules.

∆, P ∨Q, P ` ∆, P ∨Q,Q `
∨

∆, P ∨Q `
∆, P ⇒Q,¬P ` ∆, P ⇒Q,Q `

⇒
∆, P ⇒Q `

∆,¬(P ∧Q),¬P ` ∆,¬(P ∧Q),¬Q ` ¬∧
∆,¬(P ∧Q) `

∆, P⇔Q,¬P,¬Q ` ∆, P⇔Q, P,Q `
⇔

∆, P⇔Q `
∆,¬(P⇔Q), P,¬Q ` ∆,¬(P⇔Q),¬P,Q ` ¬⇔

∆,¬(P⇔Q) `
(c) Branching Propositional Rules.

∆,∃x . P, P[x 7→ c] `
∃

∆,∃x . P `
∆,¬∀x . P,¬P[x 7→ c] ` ¬∀

∆,¬∀x . P `
(d) Skolemisation Rules, where c is a Fresh Constant.

∆,∀x . P, P[x 7→ t] `
∀

∆,∀x . P `
∆,¬∃x . P,¬P[x 7→ t] ` ¬∃

∆,¬∃x . P `
(e) Instantiation Rules, where t is a Ground Term.

Figure 2: Rules of the GS3 Calculus.

also proposes a framework of proof deskolemisation,
but is aimed towards the resolution method and as
such does not conserve the syntactic integrity of the
formula. Proof deskolemising for outer Skolemisation
in others sequent-like systems has also been explored
in [13] and [30]. Deskolemisation of δε–rules have
been implemented in [9], but it is done during the
proof-search procedure, thus enabling an immediate
one-to-one mapping over proof assistants languages
and excluding the need for a proof-to-proof translation.
Finally, [10] proposes a theoretic yet generic method
to translate standard tableaux into GS3 sequents.
Furthermore, as far as the author knows, no work has
been done yet on deskolemising proofs using pre-inner
Skolemisation rules.

2.4 Discussion and Objectives

The only solution known by the author for standard
tableaux as of yet, i.e., the one presented in [10],
is highly theoretic and lacks in-practice efficiency, as
the exponential bound is attained for every translated
proof. The objectives of the internship is thus twofold
— (i) propose an automated procedure to efficiently
translate tableaux proofs using δ+ and δ+

+
rules into

GS3 sequents and (ii) add the optimised Skolemisa-
tion strategies in Goéland [11], an automated tableaux-
based theorem prover, and implement the translation
algorithm. Once implemented, the objective is to em-
bed GS3 sequents into a proof assistant, the first target
being Coq, and certify Goéland’s proofs by outputting a
Coq-compatible proof and thus experimentally validate
the approach. The genericity of the method should al-
low further certification, with the end goal being the
Dedukti [1] framework, so as to endow Goéland with
an inter-operable proof output.

3 A Deskolemisation Algorithm

Use of on-the-fly optimised Skolemisation strategies in a
tableaux proof, such as δ+ or δ+

+
rules and their equiv-

alent, induce non-trivial translations of such proofs into
GS3 sequents as the former’s number of branches is
(theoretically) shorter by an exponential factor over the
later’s. This gain does not bode well for the trans-
lation as it means that it should create an exponen-
tial number of branches to solve the ordering problem
faced, and that naive means such as topologically sort-
ing the rules applied by their dependencies fail (as this

8

¬(∃x . D(x)⇒∀y. D(y))
γ¬∃¬(D(X)⇒∀y. D(y))
α¬⇒

D(X),¬(∀y. D(y))
δ¬∀¬D(f (X))
γ¬∃¬(D(f (X))⇒∀y. D(y))
α¬⇒

D(f (X)),¬∀y. D(y)
��

(a) Outer-Skolemisation Tableau.

¬(∃x . D(x)⇒∀y. D(y))
γ¬∃¬(D(X)⇒∀y. D(y))
α¬⇒

D(X),¬(∀y. D(y))
δ+¬∀¬D(c)

�σ{X 7→ c}

(b) Inner-Skolemisation Tableau.

Figure 3: Proof of the Drinker Paradox in Outer and Inner Skolemisation.

ax
¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)),¬D(c) `

¬∀ (?)¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)) `
¬⇒

¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)) `
¬∃

¬(∃x . D(x)⇒∀y. D(y)) `

Figure 4: Incorrect Proof Yielded by a Naive Translation of an Inner-Skolemisation Tableaux Proof.

kind of solution uses linear-time to compute). The goal
of this section is to propose an easily-generalisable —
generalisable in the sense of different Skolemisation
strategies or even different logics — algorithm to au-
tomatically translate a tableaux proof in a valid GS3 se-
quent. Hence, it starts by defining such an algorithm for
δ+–rules in Subsec. 3.1 and prove its soundness in Sub-
sec. 3.2. Furthermore, we have taken the first step for
the validation of the method’s genericity by extending
the algorithm to δ+

+
–rules in Subsec. 3.3.

3.1 Presentation of the Algorithm

As it has been mentioned in the previous section and
highlighted in Figure 3b, a tableau proof is sound even
if a free variable is instantiated by a term which does
not (yet) exist in the said proof. However, the naive
translation of such a proof into a GS3 sequent is impos-
sible, as the freshness condition of the Skolemisation
rules (∃,¬∀) does not hold. The algorithm developed
in this section overcomes this problem by offering an
on-the-fly translation that refines the algorithm of [10]
and which should gently generalise to other Skolemisa-
tion strategies, not relying on a syntactic preprocessing
of formulas as in [8].

Inspiration. The idea behind the algorithm of [10] is
to, given a closed tableau T , build a sequent by follow-
ing the rules executed from the root of T until reaching
a δ+–rule applied over a formula D. Then, the sequent
is made to forget everything (by, in practice, weaken-
ing the relevant formulas) except the very formula D
and the initial formula to prove. After the weakening
process, the sequent is grown back by grafting the pre-
weakened proof tree. In effect, this processing arranges
the sequent to apply first and foremost every δ+–rule
needed in a branch before applying any other rule. It
is achieved by this grow, weaken and graft strategy. As
it happens, Figure 5 is an illustration of this strategy,
and coincides with the more efficient version of the al-
gorithm that will be subsequently presented.

Preliminary Definitions. The algorithm presented in
the last paragraph is pathologically inefficient due to the
weakening-and-grafting strategy incurred when seeing
a δ+–rule. As proofs in inner-Skolemisation gain an ex-
ponential number of branches over the GS3 proof, this
strategy always creates a sequent that is exponentially
bigger than the original proof. It is however possible
to craft an on-the-whole better translation that is in the
worst case the same as previously presented but much
better in average. For this, we need to introduce the

9

notions of dependency and descendants.

Definition 3.1: Dependency

Let D be a formula on which a δ+–rule can be
applied, and δD the Skolem symbol yielded by
the application of the rule on D. Let Γγ be the set
of formulas on which a γ–rule can be applied. A
formula F ∈ Γγ depends on D if and only if F −→
F ′ and there exists ω such that F ′|ω = δD (i.e.,
the subterm at the index ω of F ′ is δD). The
set of formulas which depend on D is denoted
∆(D) and defined as follows:

∆(D) = {F ∈ Γγ | F −→ F ′ ∧ ∃ω. F ′|ω = δD}

This set allows the algorithm to know exactly which
formulas introduce a forbidden Skolem symbol δD and
thus to have a starting point to subsequently select the
formulas that need to be weakened, where the previous
algorithm would always weaken everything. To keep
the amount of formulas weakened to a minimum, this
set must then be smartly extended by adding solely the
formulas descended from the formulas in∆(D) that have
an occurrence of δD.

Definition 3.2: Descendance

Let F be a formula of a leaf f of a tableaux. An-
other formula G ∈ f is said to be descending from
F if and only if F −→ F1 −→ . . . −→ Fn and
there exists k ¶ n such that G = Fk. If there
exists D such that F ∈ ∆(D), then the set of
formulas descending from F which are also de-
pendant on D is denoted Λ(F) and defined as
follows:

Λ(F) = {G ∈ f | F −→∗ G ∧ ∃ω. G|ω = δD}

Algorithm. The main ideas behind the new algorithm
are the same as the ones behind the previous algorithm,
i.e., follow the tableaux proof by seamlessly applying
the GS3 rule corresponding to the tableaux rules while
the later is not a δ+–rule. Once it is a δ+–rule, weaken
the relevant formulas and make the tree grow back to its
pre-weakened state. This last step is now called growing
back instead of grafting, as the pre-weakened tree can
not simply be grafted back now that only some picked-
out formulas are weakened. As such, the algorithm is
defined as follows.

• While the rule applied is not a δ+–rule, apply the
GS3 rule corresponding to the tableaux rule and
mark the formula on which it is applied (Figure
5a).

• Let D be the formula on which the δ+–rule is ap-
plied.

• For every formula F in ∆(D), weaken the sequent
to remove all marked formulas of Λ(F) and record
the rules used to derive these formulas in their ap-
plication order in a set called R (Figure 5b).

• Apply the δ+–rule on D (first step of Figure 5c).

• Apply back the rules recorded in R (last two steps
of the Figure 5c)3.

• Repeat while a rule is applied in the corresponding
tableaux leaf.

Let us note that if D is descending from a formula F in
∆(D), then the algorithm fails (or does not terminate).
Fortunately, it can not happen as stated in the following
lemma.

Lemma 3.3: No Self Dependency

Let D be ∃x . D′ or ¬∀x . D′, i.e., a δ+–rule can
be applied on D. Then forall F ∈∆(D), D′[x 7→
δD] is not in Λ(F).

Proof: See Appendix A.1.

�

The rest of this section focuses on proving the sound-
ness of the algorithm that has just been presented. It
starts by proving soundness for inner Skolemisation,
and it then extends the proof to δ+

+
–rules. The proofs

are implicitly a part of the algorithm, as technical de-
tails that could arise when implementing it are featured
inside.

3.2 Soundness of the Translation over In-
ner Skolemisation

The idea of the soundness proof is to build a correspon-
dence function, which will be subsequently called map-
ping, between a valid GS3 sequent and the reference
tableaux proof. The function’s domain will be total, thus
associating every leaf of a valid sequent to a leaf of the

3This step requires some technical details, subsequently developed
in the soundness proof.

10

¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)) ` ¬⇒
¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)) `

¬∃
¬(∃x . D(x)⇒∀y. D(y)) `

(a) First Steps of the Proof.

¬(∃x . D(x)⇒∀y. D(y)),¬(∀y. D(y)) `
w

¬(∃x . D(x)⇒∀y. D(y)), D(c),¬(∀y. D(y)) `
w

¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)) `
¬⇒¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)) ` ¬∃¬(∃x . D(x)⇒∀y. D(y)) `

(b) Cleaning the Relevant Formulas Descending from ∆(D).

ax
¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)),¬D(c) `

¬⇒
¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)),¬(∀y. D(y)),¬D(c) `

¬∃
¬(∃x . D(x)⇒∀y. D(y)),¬(∀y. D(y)),¬D(c) `

¬∀
¬(∃x . D(x)⇒∀y. D(y)),¬(∀y. D(y)) `

w
¬(∃x . D(x)⇒∀y. D(y)), D(c),¬(∀y. D(y)) `

w
¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)), D(c),¬(∀y. D(y)) ` ¬⇒¬(∃x . D(x)⇒∀y. D(y)),¬(D(c)⇒∀y. D(y)) ` ¬∃¬(∃x . D(x)⇒∀y. D(y)) `

(c) Skolemisation, Applying Back R ’s Rules and Finalisation.

Figure 5: Sound Translation of the Drinker δ+ Proof in GS3 Using the Algorithm.

reference tableau, and follows closely the definition of
the algorithm. As the mapping is conserved all along
the execution of the later, it ensures that when it termi-
nates, the sequent yielded is valid and that all its leaves
are closed. This section starts by formally defining the
notions that will be needed to prove the soundness the-
orem and continues directly by developing the proof.

Definition 3.4: Tableau Proof

Let T be a tableau with F as its root formula,
closed by a substitution σ. Then Tσ is the
tableau proof of F . In this document, it will of-
ten be denoted T somewhat imprecisely.

After finishing its proof-search procedure, Goéland
yields a tableau proof of a formula F . This proof will

then be used as a reference to subsequently build the
GS3 sequent corresponding to the proof of F . As the
goal is to make correspond each leaf of the under-
construction sequent to a leaf of the reference tableau,
it is necessary to define the intermediate tableaux with
relevant leaves, as it is difficult to match the leaves of a
partial proof and the leaves of a final proof.

Definition 3.5: Initial Part

Let Tσ be a tableau proof. T0 is an initial part
of Tσ if and only if T0 and Tσ share the same
root, the same rule is applied on this very root
and all the children of T0 are initial parts of the
corresponding children in Tσ.

The notion of initial part is defined between tableaux,

11

but it can be extended seamlessly to GS3 sequents as it
is defined in the exact same way. Furthermore, both
notions of leaf and initial segment are also shared defi-
nitions between tableaux and sequents, with a leaf in-
tuitively being the last node of a branch identified by
the set of formulas that labels it and the initial segment
being the analogy of an initial part but for branches,
i.e., an initial segment of a branch is a prefix of this
very branch. The notion of leaf is extended to all the
branches of a tableau T or a sequent π, with the set
of all leaves being denoted L(T) or L(π). Let us now
formally define the correspondence function between a
tableau and a sequent, called the mapping.

Definition 3.6: Mapping

Let T be a tableau proof and π a GS3 sequent.
A mapping µ : L(π)→ L(T) is a total function
which, for every leaf f ∈ π associates a leaf in T
such that f ⊇ µ(f).

As previously done, the notion of mapping can be
seamlessly extended between two GS3 sequents. For
ease of understanding, a mapping between a GS3 se-
quent and a tableau will often be denoted µ while a
mapping between two GS3 sequents will be denoted λ.
The inclusion condition between a leaf and its preim-
age is useful then, as otherwise, for δ+ rules, there is a
direct identity between a leaf of the tableau and a leaf
of the sequent.

Theorem 3.7: Soundness

Let T be a tableau proof of a formula F . Then
the algorithm of Subsec. 3.1 yields a sound GS3
proof.

Proof: By definition, the algorithm properly orders the
application of δ–rule for them to yield fresh constants
when they are applied in the sequent. Indeed, suppose
that the Skolem symbol is not fresh, thus there should
exist a formula G such that δD appears in G when the
δ–rule is applied on D. Furthermore, all descendants
of a formula depending from δD are weakened before
applying the δ–rule, thus G is not a descendant of any
such formula. So either δD is a ground term, either it
has been generated on the application of a δ–rule on an
antecedent of G. Both cases are impossible, as the sym-
bol introduced comes from the tableau proof T which
is sound by assumption. Therefore, every constant gen-
erated by a Skolemisation rule in the final sequent is
fresh. Let π be the GS3 proof given by the algorithm.

Let µ : L(π) → L(T) and π′ respectively be the map-
ping and GS3 sequent given by applying the Lemma 3.8
on T (which is in fact an initial part of itself). Then, for
every leaf f ∈ π′, f ⊇ µ(f). As µ(f) contains a contradic-
tion, f also does and thus all the leaves of π′ are closed.
Furthermore, as π′ is an initial part of π with all its
leaves closed, by definition π′ is π. Therefore, π’s well
and truly a sound proof of F .

�

The idea behind Lemma 3.8 is to step-by-step build
a mapping between the sequent generated by the al-
gorithm and a well-chosen tableaux proof (which is, in
fact, an initial part of the reference tableau). In most
cases, it is simple to make the mapping grow along the
sequent, as almost every rule (except for a δ+–rule)
only extends it and follows the tableaux proof quite
literally, thus yielding a clear mapping between both
proofs. However, it is not so clear for δ+–rule and
Lemma 3.10 goes over the technical details needed to
retain the mapping after weakening the formulas and
growing back the sequent up to its previous state.

Lemma 3.8: δ+-Proof Mapping

If T is a tableau proof of a formula F and π
the GS3 proof generated by the algorithm, then
forall initial part T0 of T , there exists an initial
part π0 of π such that µ0 : L(π0)→ L(T0) is a
mapping.

Proof: By induction on the number of rules applied
in T0. Most cases are trivial and done in Appendix A.2.
The δ+–rules case is detailed in Lemma 3.10.

�

The preservation of the mapping is difficult for
δ+–rules, as it is first lost when applying the weaken-
ing rules, and it is regained only when the sequent has
been fully grown back. It is thus necessary to prove that
every leaf of the sequent provided after applying the
routine still maps properly over T0. In effect, it is not
too difficult to build it for most rules, except for β–rules
where the mapping should be carefully picked up from
a previously-generated leaf of the sequent.

Furthermore, to prove that the sequent can properly
grow back up, a mapping between sequents is necessary
so as to make correspond the work-in-progress one to
the one yielded by the induction hypothesis of Lemma
3.8, π1. But π1 can not be directly taken as the target
of the mapping, as by definition the image of a leaf by

12

Tableau Proof

Mapping loss

GS3 Proof

Mapping recovery

Weakening

Skolem symbol

Dependent formula

Non-dependant formula

Figure 6: Mapping Conservation After Reapplication of
a β–Rule.

a mapping should be included in said leaf and the algo-
rithm removes formulas from the relevant leaf. Thus, a
particular initial part of π1 has to be picked out to serve
as the target.

Definition 3.9: Subsumed Initial Parts

Let π be a sequent, B be a branch of this se-
quent and E a set of formulas. The subsumed
initial parts of π by E is denoted Π(π,B, E) and
contains all the initial parts of π such that the
set labelling the leaf of the branch B is included
in E.

In essence, the following lemma specifies what needs
to be done when applying back rules in the algorithm.
It is easy for α– and γ–rules, as the branch just needs to
be extended with the formula yielded by the application
of this rule. It is a bit tricky for β–rules, as only one of
the leaves created by its application is a prefix of the
branch being grown back. Thus the other leaf needs
to be mapped to the same tableau node as the node
generated by the original application of the β–rule that
is not a prefix of the branch being extended.

Lemma 3.10: δ+–Rules Mapping Conservation

Let µ1 : L(π1)→ L(T1) be a mapping, f be an
open leaf of T1 such that the next rule applied
on f is a δ+–rule on a formula D, π0 be the GS3
sequent after execution of the routine onπ1 and
µ−1

1 (f) and T0 the tableau T1 after application

of the δ+–rule, which generates δD. Then there
exists a mapping µ0 : L(π0) → L(T0) which
extends µ1.

Proof: This proof is done by building families of map-
pings and sequents by induction on the number of δ-
terms which depend on δD, i.e., the number of δ-terms
such that δD is a sub-term of those very δ-terms. With
the right extension, the last item of these families can
then yield the desired mapping. As the rules generat-
ing these δ-terms are applied back, it is important to
note that δD can not depend of itself (by Lemma 3.3)
and that, by transitivity, it can not depend on any of
its dependencies. Let π0

0 be π1 where the branch B
carrying µ−1(f) is extended by following the algorithm
before applying back the rules, i.e., where all formulas
of Λ(D) are weakened and the Skolemisation rule has
been applied on D, generating D′. As such, let Π0

1 be
Π(π1,B,µ−1(f)), i.e., the subsumed initial parts of π1
over B and the set µ−1(f). Π0

1 can be totally ordered by
inclusion and we can thus take π0

1 to be max(Π0
1), with

b being its leaf on B. π0
0 can then be mapped to π0

1 by
the function λ0

1 : L(π0
0)→ L(π0

1) defined as follows for
every leaf n of π0

0:

λ0
1(n) =

¨

b if n is (µ−1(f) \Λ(D))∪ {D′}
n otherwise

We then construct by induction over the number n of
formulas that have been weakened a family of mappings
(λi

1)i¶n, initial parts (πi
1)i¶n and sequents (πi

0)i¶n as fol-
lows.

• If no δ-term depends on δD, then the kth member
of the families are built depending on the kth rule
r that needs to be applied back as follows:

◦ r is neither a closure rule nor a δ+–rule as no
such rules depend from δD.

◦ If r is an α– or a γ–rule generating ϕ, then
πk

0 is πk−1
0 where B has been extended with

ϕ, yielding the leaf f′, Πk
1 is Π(πk

0,B, f′) and
thus πk

1 = max(Πk
1). Let b be the leaf of B

in πk
1. Then λk

1 is defined as follows for every
leaf n of πk

0:

λk
1(n) =

¨

b if n is f′

λk−1
1 (n) otherwise

◦ If r is a β–rule which produces ϕ1 and ϕ2,
then let us suppose without loss of general-
ity that ϕ1 ∈ µ−1

1 (f). Let us define π2 to be

13

πk−1
0 where f′ the leaf of B has been extended

into two leaves f1 (3 ϕ1) and f2 (3 ϕ2), Πk
1

is Π(π2,B, f1) and thus πk
1 = max(Πk

1). As
such, let b be the parent of B’s leaf in πk

1. The
mapping of f1 is straightforward as it is simply
b∪{ϕ1}. However, selecting πk

0 and f2’s map-
ping is not. Indeed, the node b∪ {ϕ2} might
not be a leaf, as the sequent could have been
previously developed. As such, let π3 be the
sequent starting at the node b∪{ϕ2} inπk

1. πk
0

is defined to be π2 where the subsequent tree
that is rooted at f2 becomes π3 (therefore, if
π3 is rooted at f3 then f2 ⊇ f3) as illustrated
in Figure 6. Then λk

1 is defined as follows for
every leaf n of πk

0:

λk
1(n) =

b∪ {ϕ1} if n is f1
n if n is a leaf of π3

λk−1
1 (n) otherwise

• In case at least one δ-term depends on δD, the
kth mapping, initial part and sequent are the same
as those defined for the previous case, except for
the δ+–rule where they are seamlessly defined as
the induction hypothesis directly yields (π′ i0)i¶m,
(π′ i1)i¶m and (λ′ i1)i¶m and thus giving πk

1 = π
′m
1 ,

πk
0 = π

′m
0 and λk

1 = λ
′m
1 .

Finally, πn
0 is the sequent where all the rules have been

applied back and thus is π0 and if b is its branch B’s
leaf, then b ⊇ µ−1

1 (f) and πn
1 is π1. As such, as λn

1(b) ⊆ b
and λn

1(b) ∈ L(π1) then b ⊇ µ1(λn
1(b)) and µ1 can be

extended for every leaf n of π0 as follows to yield µ0:

µ0(n) =

¨

µ1(λn
1(n))∪ {D

′} if n is b

µ1(λn
1(n)) otherwise

�

3.3 Extending Deskolemisation to δ+
+

Most of the problems faced when translating δ+
+

tableaux proofs to GS3 sequents are properly man-
aged by the translation algorithm. Indeed, as those
rules build over inner Skolemisation, the ordering of
the rules applied are naturally taken into account when
deskolemising. However, on-the-fly Skolemisation gen-
erating the same symbol for α-equivalent formulas in-
troduces a new factor in-between the original proof and
the translated sequent: a γ-formula (i.e., a formula on
which a γ–rule can be applied) can depend of multiple

different δ-formulas. In turn, this change unknowingly
makes the algorithm proposed in Subsec. 3.1 diverge,
as shown in Figure 7.

Figure 7a is the closed tableaux of a (somewhat un-
natural) formula, where both δ+

+
–rules give the same

symbol and use it to close their respective branch, hav-
ing the same final substitution. The translation of this
proof by the deskolemisation algorithm is illustrated in
Figure 7b. As the root formula Γ depends of the δ-
formulas found in the two branches, and as they gener-
ate the exact same Skolem symbol, weakening the for-
mulas of the other branch when applying back a β–rule
(or, independently, weakening the dependent formulas
before a δ+

+
–rules) to graft the right-hand side of the

proof induces a divergence: the δ–rule is also applied
on the other side of the proof and thus a grafting of this
side is subsequently needed, leading to an infinite loop
between the two branches.

Intuitively, when downgrading a δ+
+

proof to a δ+

proof, there are two cases when applying a Skolemisa-
tion rule generating a symbol δD: either δD does not
yet exist and thus nothing needs to be done, either δD
exists and as such, every formula which depends on it
needs to be reintroduced. For instance, Figure 8 shows
the proof in δ+, which is the counterpart of the δ+

+

proof of Figure 7a. In fact, such a proof is eerily similar
to the GS3 sequent given by the translation algorithm
of Figure 7b, minus the fact that no δ–rules are applied
back after reintroducing as the needed-for-closure for-
mula (¬P(c1)) is not weakened when branching.

As such, extending the translation algorithm to δ+
+

proofs is fairly straightforward: it suffices to avoid
weakening the Skolemised formulas and reapplying a
δ+

+
–rule over a previously Skolemised formula. In-

tuitively, two cases can then happen — (i) the non-
weakened Skolemised formula is useless in the branch
and as such the weakening serves no purpose and (ii)
the non-weakened formula should have been generated
subsequently, but as it already appears in the branch
with the right Skolem symbol, the mapping is pre-
served. To formalise this intuition, the proof of Lemma
3.10 should be reworked for β–rules to properly select
the sequent over which both resulting branches map to.

Lemma 3.11: δ+
+
–Rules Mapping Conservation

Let µ1 : L(π1)→ L(T1) be a mapping, f be an
open leaf of T1 such that the next rule applied
on f is a δ+

+
–rule on a formula D, π0 be the GS3

sequent after execution of the routine onπ1 and
µ−1

1 (f) and T0 the tableau T1 after application

14

∀y. ((P(y)∧ (∃x .¬P(x))∨ (P(y)∧ (∃x .¬P(x)))))
γ∀

((P(Y)∧ (∃x .¬P(x)))∨ (P(Y)∧ (∃x .¬P(x))))
β∨P(Y)∧ ∃x .¬P(x)

α∧
P(Y),∃x .¬P(x)

δ+
+

∃¬P(c)
�

{Y 7→ c}

P(Y)∧ ∃x .¬P(x)
α∧

P(Y),∃x .¬P(x)
δ+

+

∃¬P(c)
�

{Y 7→ c}

(a) Tableaux Proof Yielding the Same δ+
+
-Symbol.

ax
· · · , P(c),∃x .¬P(x) `

∧
· · · , P(c)∧ (∃x .¬P(x)) `

...
Γ ,∃x .¬P(x) `

w ×3· · · , P(c),∃x .¬P(x) `
∧

· · · , P(c)∧ (∃x .¬P(x)) `

ax
· · · , P(c),∃x .¬P(x) `

∧
· · · , P(c)∧ (∃x .¬P(x)) `

∨
· · · , (P(c)∧ (∃x .¬P(x)))∨ (P(c)∧ (∃x .¬P(x))) `

∀
· · · ,¬P(c) `

∃
Γ ,∃x .¬P(x) `

w
· · · , P(c),∃x .¬P(x) `

∧
Γ , P(c)∧ (∃x .¬P(x)) `

w ×3· · · , P(c)∧ (∃x .¬P(x)) `
∨

· · · , (P(c)∧ (∃x .¬P(x)))∨ (P(c)∧ (∃x .¬P(x))) `
∀

· · · ,¬P(c) `
∃

Γ ,∃x .¬P(x) `
w ×3· · · , P(c),∃x .¬P(x) `
∧

· · · , P(c)∧ (∃x .¬P(x)) `
...
∨

· · · , (P(c)∧ (∃x .¬P(x)))∨ (P(c)∧ (∃x .¬P(x))) `
∀

Γ = ∀y. ((P(y)∧ (∃x .¬P(x))∨ (P(y)∧ (∃x .¬P(x))))) `

(b) A Diverging Translation Using The Algorithm.

Figure 7: Formula that makes the Translation Algorithm Diverge.

of the δ+
+
–rule, which generates the formula

D′ and the Skolem term δD. Then there exists
a mapping µ0 : L(π0) → L(T0) which extends
µ1.

Proof: Recall that this proof relies on building families
of (i) initial parts of π1 denoted πi

1, (ii) sequents that
grow to become π0 denoted πi

0 and (iii) mappings be-
tween the last elements of (i) and (ii) denoted λi

1. Also
recall that µ−1

1 (f) is considered to be on the branch B in
π0

0, and, by extension, in every πi
0. The induction cases

(over the number of δ-terms which depend on δD) only

change when applying back a β–rule. In this case, let
ϕ1 and ϕ2 the formulas yielded by applying the β–rule
in πk−1

0 . Without loss of generality, let us suppose that
ϕ1 ∈ µ−1

1 (f). As such, let π2 be πk−1
0 where the leaf of

B in πk−1
0 has been extended in two leaves f1 (3 ϕ1)

and f2 (3 ϕ2). Let πk
1 be max(Π(π2,B, f1)) and f′ be

λk−1
1 (f1 \ {ϕ1}), i.e., the parent node of the leaf of B in
πk

1. Recall that f′ ∪ {ϕ1} is a leaf of π2 as well as πk
1

so the mapping is straightforward. On the other hand,
f′∪{ϕ2}might not be a leaf of πk

1, and as such let π3 be
the sequent starting at the node λk−1

1 (f′) ∪ {ϕ2} in πk
1.

Then, let π′3 be π3 where all the nodes have been aug-

15

∀y. ((P(y)∧ (∃x .¬P(x))∨ (P(y)∧ (∃x .¬P(x)))))
γ∀

((P(Y)∧ (∃x . P(x)))∨ (P(Y)∧ (∃x .¬P(x))))
β∨P(Y)∧ (∃x . P(x))

α∧
P(Y),∃x .¬P(x)

δ+∃¬P(c)
�

{Y 7→ c}

P(Y)∧ (∃x . P(x))
α∧

P(Y),∃x .¬P(x)
δ+∃¬P(c1) γ∀

((P(Y1)∧ (∃x . P(x)))∨ (P(Y1)∧ (∃x .¬P(x))))
β∨P(Y1)∧ (∃x . P(x))

α∧
P(Y1),∃x .¬P(x)

�
{Y1 7→ c1}

P(Y1)∧ (∃x . P(x))
α∧

P(Y1),∃x .¬P(x)
�

{Y1 7→ c1}

Figure 8: Translation of the δ+
+

Proof to the δ+ Proof.

mented with D′, i.e., if n is a node ofπ3, then n∪{D′} is a
node of π′3. Thus it suffices to define πk

0 to be π2 where
f2 is replaced by grafting π′3, i.e., where the sub-tree f2
is replaced by the tree π′3. As such, λk

1 : L(πk
0)→ L(πk

1)
can be defined as follows for every leaf b of πk

0:

λk
1(b) =

f′ ∪ {ϕ1} if b is f1
b \ {D′} if b ∈ π′3 and the corresponding

node is not labelled with D′ in π3

b if b ∈ π3

λk−1
1 (b) otherwise

It is important to note that every leaf ofπ′3 is either a leaf
of πk

1 (and as such, D′ does not need to be weakened
on it) or either it should be weakened of D′ to be a leaf
of πk

1. In both cases, the invariant of the mapping (i.e.,
b ⊇ λk

1(b)) is preserved, and as such λk
1 is a mapping.

�

The soundness of this algorithm can thus be directly
deduced by combining this proof with the following ar-
gument of termination: in all branches, the number
of formulas depending on a Skolem term not yet cre-
ated decreases strictly every time the grafting routine is
carried out. This argument can also be used to prove
the termination of the algorithm when applied over δ+-
proofs, but has not been explicitly given as in this case,
the termination is clear.

The successful extension of the algorithm to
δ+

+
–rules also achieves the initial goal of building

an algorithm which can serve as a solid basis for
deskolemising. The author is hopeful that it generalises
well for other logics and Skolemisation strategies,
and that only slight modifications will be needed

when applying back rules to lift the method to all the
different δ–rules available.

4 Implementation and Perfor-
mances Evaluation

Implementing the theoretic solution proposed in Sec-
tion 3 has been a key part of the internship and has
served two purposes: (i) speed-up Goéland’s proof-
search by using smarter Skolemisation strategies and
(ii) prove that the algorithm has real-world value by
deskolemising state-of-the-art proofs and show that
translation is, in practice, cheap, even though it is, in
theory, exponential. As such, an overview of the im-
plementation of all the mechanisms needed to certify a
proof is given in Subsec. 4.1. In turn, Subsec. 4.2 ex-
hibits the results of the method by giving a key metric
over different Skolemisation strategies and details the
testing strategy used to obtain those results.

4.1 A Framework for Proof Certification:
an Implementation in Goéland

This section exposes the implementation work that
has been done during the internship. It is split into
two parts, starting upstream by presenting the updates
needed in the proof-search procedure to support both
more Skolemisation strategies and a proof output and
ending downstream by explaining how the translation
to Coq has been set up in Goéland, detailing the in-
between GS3 framework established and thus giving a
complete overview of a proof certification’s process.

16

Updates to the Proof-Search. The core of Goéland,
its proof-search procedure, has needed two updates
during the internship. One minor taking form in an im-
plementation of different Skolemisation strategies and
one major in its proof output.

The former has been easily managed by adding meth-
ods in the interface of a formula to store the internal
free-variables present in it. It may sound like a redun-
dancy as free-variables can usually directly be found
inside the formula in question. However, the proof-
search of Goéland is destructive by nature, which means
that once a substitution is found, it is applied on the
whole tableau. Thus, free-variables are lost during this
process. As such, this storage becomes necessary to
pass the right arguments when Skolemising. Further-
more, two flags have been set up to change the Skolemi-
sation mode: -inner which activates δ+–rules and -
preinner that makes use of δ+

+
–rules.

The later, the proof output’s update, has needed a
more thorough investigation and a dive into the proof-
search procedure is needed. Goéland is a concurrent
automated theorem prover, launching its proof-search
procedure in parallel on each child when applying a
β–rule. The children search by themselves until they
find a contradiction and, potentially, a substitution. If a
substitution involving free-variables introduced by the
parent or a node higher in the tree is indeed found by
any child, then the parent has to launch a reconcilia-
tion algorithm between all of them. In general, this
algorithm has to select a child, apply its returned sub-
stitution and launch back the proof-search on the oth-
ers. However, if all the children have replied back a
compatible substitution, i.e., when the composition of
all the children’s substitutions is a functional relation,
then the parent considers that they agree and can thus
propagate the substitution upwards without informing
its children. This, in turn, causes a substitution-induced
bug in the proof output. Indeed, as can be seen in
Figure 9, the parent selects the compatible substitution
{X 7→ a} and thus, both A and B choose an arbitrary sub-
stitution to close their proof. Then, A can select the sub-
stitution containing {X 7→ b}, which, in turn, induces
an inconsistency in the proof. As reliable proofs are
needed in an automated theorem proving tool, a mech-
anism yielding sound proofs (highlighted in the figure)
has been implemented: the global unifier. This name is
fitting, as it builds an unifier on-the-fly for the whole
free-variable tableau. This mechanism offers at least
one unifier that closes it when the proof-search proce-
dure ends, thus outputting a sound proof.

Translating the Proof. The sound proof output of
Goéland is a mean towards the goal of outputting cer-
tified proofs. A translation must then take place in or-
der to transform Goéland’s tableaux proof to a machine-
checkable system. We have chosen to implement this
translation using two layers: the deskolemisation layer
and the transformation layer. The former transforms a
tableaux proof to a deskolemised GS3 sequent. It is a
straightforward implementation of the algorithm given
in Section 3 and can be found in the Goéland’s public
repository4. The advantage of this deskolemisation step
is that it offers a sequent proof that is easily checkable
by any proof-assistant, as GS3 can be embed in most
of such tools. For instance, a Coq embedding of GS3
has been implemented during this internship and can be
found in Appendix B. Most of the file consists solely of
lemmas that represent the GS3 rules, which can be used
almost instantly. As such, to finish the translation work,
a one-to-one mapping between the GS3 proof and the
Coq embedding has to be applied to finally produce a
proof that can be automatically certified. Coq is the first
proof assistant that has been chosen due to the author
familiarity with this system, but the layer of abstraction
added by the GS3 sequent allows to easily translate Goé-
land’s proofs into the language of any proof-assistant.
It is planned to implement a Goéland-to-Dedukti trans-
lation to validate the genericity and re-usability of the
method.

4.2 Testing the Algorithm: Towards an
Efficient Translation for Different
Skolemisation Strategies

Since 1993, benchmarks around automated theorem
provers have revolved around the Thousand of Prob-
lems for Theorem Provers (TPTP) problem library [36].
This library is the de facto reference for testing the de-
veloped tools as it has developed a standardised way to
represent logical problems and features over nine thou-
sand (first-order logic) problems, ranging from syntac-
tic theorems all the way to industrial proof obligations.
As such, we have also tested Goéland and some of its
variants over a select few TPTP problems to test the
proof certification algorithm. The results yielded are
summarised in Table 1. This section is divided in two
parts. First, the methodology to select the problems and
run the benchmarks is discussed to allow reproduction
of the results. Second, the result’s table and its implica-
tions are explained.

4https://github.com/GoelandProver/Goeland, on the
branch dev/jro, in the folder plugins/gs3

https://github.com/GoelandProver/Goeland

17

A B

[X 7→ a, Y1 7→ b] {X 7→ a}
[X 7→ b, Y1 7→ a] {X 7→ b}

{X 7→ a} [X 7→ a, Y2 7→ c]
[X 7→ a, Y2 7→ b]

Y1 Y2
introduced by introduced by

{X 7→ a, Y1 7→ b}
{X 7→ b, Y1 7→ a}

�
{X 7→ a, Y2 7→ c}
{X 7→ a, Y2 7→ b}

�

X {X 7→ a} [X 7→ a, Y1 7→ b, Y2 7→ b]
[X 7→ a, Y1 7→ b, Y2 7→ c]

Figure 9: Global Unifier to Fix the Bug of the Proof-Search Procedure.

Problems Proved Percentage Certified Avg. Size Increase Max. Size Increase
Goéland 261 100% 0% -

Goéland+δ+ 272 100% 8.1% 5.3
Goéland+δ++ 274 100% 10.3% 10.3
Goéland+DMT 363 100% 0% -

Goéland+DMT+δ+ 375 100% 4.5% 3.9
Goéland+DMT+δ+

+
377 100% 7.4% 5.2

Table 1: Comparison Between the Different Skolemisation Strategies and their Proof-Size Increase.

Methodology. Usually, due to the CADE ATP System
Competition (CASC) [37], the timeout is set at 300s
when launching an automated theorem prover over a
particular problem. As such, we have also adopted this
practice to set state-of-the-art benchmarks for the pro-
posed method. However, in order to test the prover over
all the TPTP first-order problems using this time limit,
more than a month is (in the worst case) necessary. A
set of problems has thus been selected to drastically de-
crease the time needed to run the benchmarks. The
problems selected are part of two categories: the syn-
tactic (SYN) problems and the naive set theory (SET)
problems. The former is composed of problems that are
made mostly to test different aspects of a tool. It offers
the insurance that if everything works properly for this
category, then it should also work as expected for all
the others categories. The later proposes standard rea-

soning over real-world problems inside a theory. Such
problems are, in general, harder to prove. Neverthe-
less, an extension of Goéland, the deduction modulo
theory (DMT) [19], allows it to reason efficiently in-
side the SET category and as such offers a wider range
of problems to certify. Once these two categories were
focused, another selection took place by launching Goé-
land and Goéland+DMT (Goéland with deduction mod-
ulo theory activated) on an HPC platform equipped with
28 cores (Intel Xeon E5-2680 v4 2.4 GHz) and 128 giga-
bytes of RAM to create a subset of the problems proved
by the two variants. These subsets, together with Goé-
land and the benchmark script, are available online5.
Then, the tests have been launched on a quadra-core

5Benchmarked problems available on https://
github.com/GoelandProver/GoelandBenchmarks/ in the
PROOF_CERTIFICATION folder.

https://github.com/GoelandProver/GoelandBenchmarks/
https://github.com/GoelandProver/GoelandBenchmarks/

18

(Intel Core i5-1145G7 2.6GHz) machine with 16 gi-
gabytes of RAM on the six following variants: Goé-
land, Goéland+δ+, Goéland+δ++ , Goéland+DMT, Goé-
land+DMT+δ+ and Goéland+DMT+δ+

+
. Each variant

corresponds to a particular Goéland’s option set, where
the δ+–rules can be activated using the -inner flag,
δ+

+
–rules with the -preinner flag and DMT with the

-dmt flag. Each benchmark generates a folder contain-
ing, for every problem proved (i) its tableau proof and
(ii) its Coq proof, certified by Coq’s compiler. Then, the
statistics for a test can be generated using a script, also
available online6. It is important to note that, as Goé-
land is a parallel theorem prover, its proof-search algo-
rithm is non-deterministic and as such, the results pre-
sented here may not be perfectly reproducable. Never-
theless, in any case, the percentage of problems certified
should near 100%.

Insight into the Results. Table 1 presents an
overview of the results for the previously-explained
benchmarks. The first column contains the name of the
variant that corresponds to the row’s results. The sec-
ond shows the number of problems on which a tableaux
proof has been output by the variant. The third col-
umn gives the percentage of tableaux proofs that have
been successfully translated to Coq’s proofs. The fourth
and fifth columns present the size increase between the
tableaux proof and the Coq’s proof. The former ex-
hibits the average size increase between both proofs
while the later indicates the maximum ratio obtained
in the considered subset. The results obtained are very
promising as (i) every proof of all the variants have been
properly certified and (ii) the average size increase be-
tween the two versions of the proof is low. Indeed,
in theory, a tableaux proof is exponentially better than
its GS3 counterpart in inner Skolemisation. However,
for both variants featuring this Skolemisation strategy,
the average and maximum size increase are low. In-
deed, for the Goéland+δ+ variant, in average, only two
more branches are created during the translation. Fur-
thermore, the maximum increase is realised on a 48-
branches proof (of SYN867+1). The translation fea-
tures 255 branches, i.e., 28 − 1 branches, which is 240

times less than the theoretical bound. The variant Goé-
land+DMT+δ+ is even better, as in average it does not
even increase the proof size of one branch, and the max-
imum ratio is attained for the same problem as the for-
mer variant, yielding a 153-branches proof from a 39-
branches one. For δ+

+
-variants, as expected, the in-

crease is more pronounced. It is still, however, a rel-

6Still in the previous directory.

atively low increase in proof-size, as this Skolemisation
strategy is theoretically exponentially better compared
to δ+-rules. The average increase in non-DMT mode
consists of more than two and a half branches while the
maximum ratio (still on the same problem) is attained
on a 34-branches proof, with the translation yielding
352 branches, which is also a long way from the theo-
retical bound. Meanwhile, the DMT variant is even bet-
ter, with an average size increase of a little more than
one branch with the maximum ratio being attained by
a 25-branches proof. It is not necessary to expand on
variants with an outer Skolemisation strategy, as it be-
haves as expected: a one-to-one translation between
the tableaux proof and the Coq proof is realised, eas-
ily certifying everything with the exact same proof size.
All in all, the results obtained are more than satisfac-
tory as they validate the translation algorithm by yield-
ing relatively short proofs. It means that it is cheap, in
practice, to certify proofs using the proposed translation
algorithm together with an embedding in a proof assis-
tant. The author thus hopes that this result creates a
bridge between automated theorem provers using opti-
mised proof-search strategies and proof assistants that
do not natively handle the proofs output of such strate-
gies.

5 Conclusion and Future Work

In summary, we have proposed a new generic algo-
rithm to deskolemise tableaux proofs with different
Skolemisation strategies by combining the ideas from
[10, 21] and showed its soundness. This algorithm
shows promises as, as far as the author knows, it is the
first one that generalises properly to a more optimised
Skolemisation strategy. As such, the author hopes that
it can become a solid basis for further deskolemisation
investigations.

In parallel, this algorithm has been implemented in
Goéland, a tool which provides a standard tableaux-
proof output, and has thus enabled the translation of its
proofs to GS3, the system used in the algorithm. Then,
a Coq embedding of GS3 has been built thus allowing
an implementation of a translation from GS3 to Coq in
Goéland.

The promising results showed in practice by the al-
gorithm over δ+–rules proofs has then comforted us in
implementing the extensions to handle δ+

+
–rules and

deduction modulo theory, two others proof optimisa-
tion techniques. Empirically, these extensions also yield
promising results, thus showing an alluring future work
path in the lifting of the translation towards the other

19

forms of Skolemisation: δε–, δ∗– and δ∗
∗
–rules.

Nonetheless, the next goal should come in the form
of proving the soundness of the method in the context
of deduction modulo, as it has been implemented but
no guarantees whatsoever are given for the translation
to remain sound. Empirical results have however sug-
gested that it may integrate seamlessly in the proposed
framework.

Furthermore, instead of implementing a deskolemi-
sation process in every automated theorem prover, a
standard for outputting tableaux proofs could be de-
vised to feed such proofs to a tool that implements the
translation algorithm. This tool could be built inside
a certified environment such as Coq and thus allow an
automatic certification of tableaux proofs.

References

[1] Ali Assaf, Guillaume Burel, Raphaël Cauderlier,
David Delahaye, Gilles Dowek, Catherine Dubois,
Frédéric Gilbert, Pierre Halmagrand, Olivier Her-
mant, and Ronan Saillard. Dedukti : a Logi-
cal Framework based on the λΠ-Calculus Modulo
Theory. 2016.

[2] Jeremy Avigad. Eliminating Definitions and
Skolem Functions in First-Order Logic. In 16th
Annual IEEE Symposium on Logic in Computer
Science, pages 139–146. IEEE Computer Society,
2001.

[3] Matthias Baaz and Christian G. Fermüller. Non-
elementary Speedups between Different Versions
of Tableaux. In Peter Baumgartner, Reiner Hähnle,
and Joachim Posegga, editors, TABLEAUX ’95, vol-
ume 918 of Lecture Notes in Computer Science,
pages 217–230. Springer, 1995.

[4] Matthias Baaz, Stefan Hetzl, and Daniel Weller.
On the Complexity of Proof Deskolemization. J.
Symb. Log., 77(2):669–686, 2012.

[5] Bernhard Beckert, Reiner Hähnle, and Peter H.
Schmitt. The Even More Liberalized δ-rule in
Free Variable Semantic Tableaux. In Georg Got-
tlob, Alexander Leitsch, and Daniele Mundici, ed-
itors, Computational Logic and Proof Theory, pages
108–119, Berlin, Heidelberg, 1993. Springer
Berlin Heidelberg.

[6] Yves Bertot and Pierre Castéran. Interactive The-
orem Proving and Program Development - Coq’Art:

The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series.
Springer, 2004.

[7] Evert Willem Beth. Formal Methods: An Introduc-
tion to Symbolic Logic and to the Study of Effective
Operations in Arithmetic and Logic, volume 4 of
Synthese Library. D. Reidel Pub. Co., 1970.

[8] Wolfgang Bibel. Automated theorem proving, 2nd
Edition. Artificial intelligence. Vieweg, 1987.

[9] Richard Bonichon, David Delahaye, and Damien
Doligez. Zenon : An Extensible Automated The-
orem Prover Producing Checkable Proofs. In
Nachum Dershowitz and Andrei Voronkov, edi-
tors, LPAR 2007, volume 4790 of Lecture Notes in
Computer Science, pages 151–165. Springer, 2007.

[10] Richard Bonichon and Olivier Hermant. A Syn-
tactic Soundness Proof for Free-Variable Tableaux
with on-the-fly Skolemization. 2013.

[11] Julie Cailler, Johann Rosain, David Delahaye,
Simon Robillard, and Hinde Lilia Bouziane.
Goéland: A Concurrent Tableau-Based Theo-
rem Prover (System Description). In Jasmin
Blanchette, Laura Kovács, and Dirk Pattinson,
editors, Automated Reasoning, pages 359–368.
Springer International Publishing, 2022.

[12] Domenico Cantone and Marianna Nicolosi As-
mundo. A Further and Effective Liberaliza-
tion of the δ-Rule in Free Variable Semantic
Tableaux. In Ricardo Caferra and Gernot Salzer,
editors, Automated Deduction in Classical and Non-
Classical Logics, Selected Papers, volume 1761 of
Lecture Notes in Computer Science, pages 109–125.
Springer, 1998.

[13] Kaustuv Chaudhuri, Matteo Manighetti, and Dale
Miller. A Proof-Theoretic Approach to Certifying
Skolemization. In Assia Mahboubi and Magnus O.
Myreen, editors, CPP 2019, pages 78–90. ACM,
2019.

[14] Alonzo Church. A Note on the Entscheidungsprob-
lem. Journal of Symbolic Logic, 1(1):40–41, 1936.

[15] René Cori and Daniel Lascar. Mathematical Logic:
Part 1: Propositional Calculus, Boolean Algebras,
Predicate Calculus, Completeness Theorems. OUP
Oxford, 2000.

20

[16] Haskell B. Curry, Robert Feys, and William Craig.
Combinatory Logic, Volume I. Philosophical Re-
view, 68(4):548–550, 1959.

[17] Leonardo Mendonça de Moura, Soonho Kong,
Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean Theorem Prover (System De-
scription). In Amy P. Felty and Aart Middeldorp,
editors, CADE-25, volume 9195 of Lecture Notes in
Computer Science, pages 378–388. Springer, 2015.

[18] Anatoli Degtyarev and Andrei Voronkov. The In-
verse Method. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Rea-
soning (in 2 volumes), pages 179–272. Elsevier
and MIT Press, 2001.

[19] Gilles Dowek, Thérèse Hardin, and Claude Kirch-
ner. Theorem proving modulo. J. Autom. Reason.,
31(1):33–72, 2003.

[20] Michael Färber and Cezary Kaliszyk. No Choice:
Reconstruction of First-order ATP Proofs without
Skolem Functions. In Pascal Fontaine, Stephan
Schulz, and Josef Urban, editors, Proceedings of
the 5th Workshop on Practical Aspects of Automated
Reasoning, volume 1635 of CEUR Workshop Pro-
ceedings, pages 24–31. CEUR-WS.org, 2016.

[21] Melvin Fitting. First-Order Logic and Automated
Theorem Proving. Springer, 1990.

[22] Martin Giese and Wolfgang Ahrendt. Hilbert’s ε-
Terms in Automated Theorem Proving. In Neil V.
Murray, editor, TABLEAUX ’99, volume 1617 of
Lecture Notes in Computer Science, pages 171–185.
Springer, 1999.

[23] Kurt Gödel. Über formal unentscheidbare Sätze
der Principia Mathematica und verwandter Sys-
teme I. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

[24] Reiner Hähnle. Tableaux and Related Methods. In
John Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning (in 2 volumes),
pages 100–178. Elsevier and MIT Press, 2001.

[25] Reiner Hähnle and Peter H. Schmitt. The Liber-
alized δ-Rule in Free Variable Semantic Tableaux.
J. Autom. Reason., 13(2):211–221, 1994.

[26] D. Hilbert. Über das Unendliche. Mathematische
Annalen, 95:161–190, 1926.

[27] William A. Howard. The Formulae-as-Types No-
tion of Construction. 1969.

[28] Gerwin Klein, June Andronick, Matthew Fernan-
dez, Ihor Kuz, Toby C. Murray, and Gernot Heiser.
Formally Verified Software in the Real World.
Commun. ACM, 61(10):68–77, 2018.

[29] Adrien Marie Legendre. Éléments de géométrie.
Firmin-Didot, 1886.

[30] Dale A. Miller. A Compact Representation of
Proofs. Stud Logica, 46(4):347–370, 1987.

[31] Lawrence C. Paulson. Natural Deduction as
Higher-Order Resolution. J. Log. Program.,
3(3):237–258, 1986.

[32] J. A. Robinson. A Machine-Oriented Logic Based
on the Resolution Principle. J. ACM, 12(1):2341,
jan 1965.

[33] John Alan Robinson and Andrei Voronkov, editors.
Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[34] Anders Schlichtkrull, Jasmin Christian Blanchette,
and Dmitriy Traytel. A verified prover based on
ordered resolution. In Assia Mahboubi and Mag-
nus O. Myreen, editors, Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, pages 152–165. ACM, 2019.

[35] Stephan Schulz. E - a Brainiac Theorem Prover. AI
Commun., 15(2-3):111–126, 2002.

[36] Geoff Sutcliffe. The TPTP Problem Library and As-
sociated Infrastructure - From CNF to TH0, TPTP
v6.4.0. J. Autom. Reason., 59(4):483–502, 2017.

[37] Geoff Sutcliffe. The 9th IJCAR Automated Theo-
rem Proving System Competition - CASC-J9. AI
Commun., 31(6):495–507, 2018.

[38] Anne Sjerp Troelstra and Helmut Schwichtenberg.
Basic proof theory, Second Edition, volume 43 of
Cambridge tracts in theoretical computer science.
Cambridge University Press, 2000.

[39] Andrei Voronkov. The Anatomy of Vampire Imple-
menting Bottom-up Procedures with Code Trees.
J. Autom. Reason., 15(2):237–265, 1995.

21

A Additional Proofs

This appendix regroups the proofs that were skipped in the document, as they are not needed to fully understand
the work done during the internship.

A.1 No Self Dependency

Lemma 1.1:

Let D be ∃x . D′ or ¬∀x . D′, i.e., a δ+–rule can be applied on D. Then forall F ∈∆(D), D′[x 7→ δD] is not
in Λ(F).

Proof: Let us suppose that there exists F ∈∆(D) such that D′[x 7→ δD] ∈ Λ(F). By determinism of the tableaux
rules application, if D′[x 7→ δD] ∈ Λ(F), then D ∈ Λ(F) and so there exists ω such that D|ω = δD. Recall that
in inner Skolemisation, the free-variables occurring in a formula are taken as arguments of the Skolem symbol
yielded by the rule. By definition of the dependency, it means that δD should be a parameter of the symbol
returned by the δ+–rule over D and thus there exists ω such that δD |ω = δD, which can not happen by definition
of a term’s construction in first-order logic.

�

A.2 δ+-Proofs Mapping

Lemma 1.2:

If T is a tableau proof of a formula F and π the GS3 proof generated by the algorithm, then forall initial
part T0 of T , there exists an initial part π0 of π such that µ0 : L(π0)→ L(T0) is a mapping.

Proof: Let T0 be an initial part of T . The initial part π0 is selected and the mapping µ0 is built by induction on
the number of rules applied in T0, denoted |T0|.

• If |T0| = 0, then T0 is composed solely of one node: the root node of the sequent. Thus π0 also is the root
node of the tableau T and π0 trivially maps to T0.

• If |T0| > 0, then there is at least one leaf f of T0 which is different than the root, i.e., at least one rule r has
been applied on a formula ϕ to yield f. As such, let T1 be T0 without the formulas of f generated by its last
rule and let f′ be such a leaf. Let π1 and µ1 : L(π1) → L(T1) respectively be the initial part of π and the
mapping yielded by the induction hypothesis. π1 can not be closed as otherwise no rule would be applicable
in any leaf of T1, and in particular, no rule would have been applied on f′. Let thus π0 be π1 where the GS3
rule corresponding to the tableaux rule r is applied in µ−1(f′) on ϕ (which exists in this leaf, as f′ ⊆ µ−1(f′)).
µ0 is built by extending µ1 and depends on the applied rule r. There are several possible cases.

◦ r is a closure rule and in this case, µ0 = µ1 as no formula is added in f′ and thus f= f′.

◦ r is an α– or γ–rule and in this case, ϕ −→ψ. Thus, as ψ is also in f, the mapping µ0 : L(π0)→ L(T0)
is defined as follows for every leaf b of π0:

µ0(b) =

¨

f′ ∪ {ψ} if b is µ−1(f′)∪ {ψ}
µ1(b) otherwise

◦ r is a β–rule and in this case, ϕ −→ ψ1,ψ2. Thus, f′ is split into two leaves f1 and f2 where, without
loss of generality, ψ1 ∈ f1 andψ2 ∈ f2. The mapping µ0 : L(π0)→ L(T0) is defined as follows for every

22

leaf b of π0:

µ0(b) =

f1 if b is µ−1(f′)∪ {ψ1}
f2 if b is µ−1(f′)∪ {ψ2}
µ1(b) otherwise

◦ r is a δ+–rule and then µ0 is the mapping yielded by applying Lemma 3.10 on π0, T0,µ1 and f′.

�

B Coq’s GS3 Embedding

(* * The following presents the Coq file used to embed GS3 in Coq.
Each lemma corresponds to a GS3 rule.
They can be easily proven by importing the classical logic module. * *)

Lemma goeland_notnot : ∀ (P : Prop), P → ¬P → ⊥.
Lemma goeland_nottrue : ¬> → ⊥.
Lemma goeland_and : ∀ (P Q : Prop), (P → Q → ⊥) → (P ∧ Q → ⊥).
Lemma goeland_or : ∀ (P Q : Prop), (P → ⊥) → (Q → ⊥) → ((P → Q) → ⊥).
Lemma goeland_imply : ∀ (P Q : Prop), (¬P → ⊥) → (Q → ⊥) → ((P → Q) → ⊥).
Lemma goeland_equiv : ∀ (P Q : Prop), (¬P → ¬Q → ⊥) → (P → Q → ⊥) → ((P ↔ Q) → ⊥).
Lemma goeland_notand : ∀ (P Q : Prop), (¬P → ⊥) → (¬Q → ⊥) → (¬(P ∨ Q) → ⊥).
Lemma goeland_notor : ∀ (P Q : Prop), (¬P → ¬Q → ⊥) → (¬(P ∨ Q) → ⊥).
Lemma goeland_notimply : ∀ (P Q : Prop), (P → ¬ Q → ⊥) → (¬(P → Q) → ⊥).
Lemma goeland_notequiv : ∀ (P Q : Prop), (¬P → Q → ⊥) → (P → ¬Q → ⊥) → (¬(P ↔ Q) → ⊥).
Lemma goeland_ex : ∀ (T : Type) (P : T -> Prop),

(∀ (z : T), ((P z) → ⊥)) → (∃ (x : T), (P x)) → ⊥.
Lemma goeland_all : ∀ (T : Type) (P : T -> Prop) (t : T),

((P t) → ⊥) → ((∀ (x : T), (P x)) → ⊥).
Lemma goeland_notex : ∀ (T : Type) (P : T → Prop) (t : T),

(¬(P t) → ⊥) → (¬(∃ (x : T), (P x)) → ⊥).
Lemma goeland_notall : ∀ (T : Type) (P : T → Prop),

(∀ (z : T), (¬(P z) → ⊥)) → (¬(∀ (x : T), (P x)) → ⊥).

(* * Those lemmas are from the wrong side, which means that when proving, the rules are applied
on the left-side of the lemma. Indeed, during the proof-search, only formulas
on the right-side are treated.
As such, we define λ-terms which reverse the application of the rules. * *)

Definition goeland_and_s := fun P Q c h ⇒ goeland_and P Q h c.
Definition goeland_or_s := fun P Q c h i ⇒ goeland_or P Q h i c.
Definition goeland_imp_s := fun P Q c h i ⇒ goeland_imp P Q h i c.
Definition goeland_equiv_s := fun P Q c h i ⇒ goeland_equiv P Q h i c.
Definition goeland_notand_s := fun P Q c h i ⇒ goeland_notand P Q h i c.
Definition goeland_notor_s := fun P Q c h ⇒ goeland_notor P Q h c.
Definition goeland_notimp_s := fun P Q c h ⇒ goeland_notimp P Q h c.
Definition goeland_notequiv_s := fun P Q c h i ⇒ goeland_equiv P Q h i c.
Definition goeland_all_s := fun T P t c h ⇒ goeland_all T P t h c.
Definition goeland_ex_s := fun T P c h ⇒ goeland_ex T P h c.
Definition goeland_notall_s := fun T P c h ⇒ goeland_notall T P h c.
Definition goeland_notex_s := fun T P t c h ⇒ goeland_notex T P t h c.

	Introduction
	Context and Challenges Faced
	First-Order Language
	Some Proof Systems: Focus on the Tableaux Method and GS3
	From Tableaux to GS3, a Deskolemisation Problem
	Discussion and Objectives

	A Deskolemisation Algorithm
	Presentation of the Algorithm
	Soundness of the Translation over Inner Skolemisation
	Extending Deskolemisation to ++

	Implementation and Performances Evaluation
	A Framework for Proof Certification: an Implementation in Goéland
	Testing the Algorithm: Towards an Efficient Translation for Different Skolemisation Strategies

	Conclusion and Future Work
	Additional Proofs
	No Self Dependency
	+-Proofs Mapping

	Coq's GS3 Embedding

