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1 Introduction

Homotopy type theory (HoTT) arose from Vladimir Vœvodsky’s desire to write mathematics without “worry[ing]
about making a mistake in [his] work”1. The achievement of this goal has necessitated to dispense with others
mathematicians, as “who would ensure that [he] did not forget something and did not make a mistake, if even the
mistakes in much more simple arguments take years to uncover?”1, and to replace them with a more trustworthy
partner — a computer.

Indeed, machine-checked proof systems have been in development since the early sixties, taking full advantage
of the constructivity of proofs in Per Martin-Löf type theories [ML82] (MLTT) to yield computable proof terms
and provide a witness to the truth of a logical formula. However, taking root in predicate logic, the theoretic
foundations of these tools were too limited to express high-level mathematics: many objects could not be defined,
and arguments often used by mathematicians were unable to be formalized.

Consequently, HoTT has been constructed to be naturally suited as a foundation of mathematics (i.e., as a
theory in which mathematics can be stated formally) that can be implemented in a proof assistant. It is composed
of three building blocks, presented in details in §2, MLTT, the univalence axiom, and higher inductive types, and
has seen successful development in popular proof assistants such as Coq and its UniMath [VAG+] library or Agda
with agda-unimath [RSPC+].

Moreover, the computability of those proofs is not compromised, as univalence has an actual meaning in
cubical sets [BCH13], that is, univalence is actually provable in proof assistants implementing this theory such as
Cubical Agda [VMA19]. However, such tools suffer from a severe lack of efficiency [Kov23]when evaluating proof
terms. For instance, computing the number of groups of order n up to isomorphism is nigh impossible in Cubical
Agda’s implementation, for n ¾ 22. Recently, two solutions have been envisaged to counteract the performances
issues, the first one being the optimization of the evaluation function, as proposed in [Kov23], and the second
one leaning more towards the optimization of the proof itself.

This work takes place in the latter context, with the aim to analyze the computation of Egbert Rijke’s proof
of finiteness of groups of finite order up to isomorphism [Rij22a], and find out which operation(s) make(s) the
computation so difficult. In order to meet this goal, a new formalization of this proof have been implemented in

1c.f. his blog post about the origin of univalent foundations: https://www.ias.edu/ideas/2014/voevodsky-origins.
2See: https://agda.github.io/cubical/Cubical.Experiments.CountingFiniteStructure.html

https://www.ias.edu/ideas/2014/voevodsky-origins
https://agda.github.io/cubical/Cubical.Experiments.CountingFiniteStructure.html


2

a tool called postt3, that implements head-linear reduction — a step-by-step unfolding of the head symbol — of
λ-terms and consequently allows an analysis of the computation.

As the first large-scale project of postt, this work has led to three main contributions: (i) the start of a HoTT
standard library containing results of [Uni13, Rij22b] for postt’s proof language, (ii) an implementation of E.
Rijke’s proof in this language and (iii) an analysis of the computation of this proof for fixed values of n.

This document presents these contributions, and is organized as follows. §2 exposes preliminary knowledge,
from MLTT to Vœvodsky’s univalent mathematics. Then, §3 details the proof of [Rij22a] about finiteness of finite
structures up to isomorphism, and §4 analyzes the complexity of the algorithm underlying this proof.

Throughout the document, clickable pictograms λ are present. Each one leads to the formal definition or
proof associated to the previous or following statement.

2 Preliminary Knowledge

This section introduces a chosen subset of homotopy type theory that is sufficient to make this document self-
contained. However, although §2.1 exposes important concepts and notations, these will be skimmed over as they
are standard in the literature. Hence, a reader unfamiliar with type theory may directly refer to [Rij22b, §1, §6]
or [Uni13, §1] for a more comprehensive presentation of these essential notions. Then, §2.2 presents Per Martin-
Löf’s dependent type theory [ML98] by relating types with (the hopefully more familiar) logic formulae (using the
so-called Curry-Howard isomorphism). Afterwards, §2.3 tackles the main peculiarity of HoTT — identity types
— and §2.4 states standard lemmas and theorems that follow from this interpretation.

2.1 Basic Notions and Notations

Type theory is a formalism that aims to be a foundation for constructive mathematics. Conversely to set theory,
type theory is intrinsically equipped with a formal system that is used to construct any object manipulated. These
objects are of two kinds: elements (or terms, like λx .x , 3, . . . ) and types (like X → X , N, . . . ). The former
automatically come together with a type, that is unique. The latter also come with a type, but the definition is
more subtle and needs to drop unicity to avoid the type-theoretic version of Russel’s paradox λ [Coq92].

Formal Type System. In type theory, introducing a new kind of type is done by giving rules: (i) the formation
rules, (ii) the introduction rules, (iii) the elimination rules and (iv) the computation rules. The first explain how
to form types of this kind, the second how to construct elements of that type by introducing constructor(s) and the
third how to use elements of that type by introducing eliminator(s). The fourth specifies how an eliminator acts
on a constructor. In this document, we follow Rijke’s [Rij22b] presentation and use inference rules to represent
type theory’s formal system. An inference rule is written

H1 H2 · · · Hn

C
where H1,H2, . . . ,Hn are judgments for the premises that allow to conclude C, a judgment for the conclusion.
A judgment for terms has two forms. The first is Γ ` a : A, where a is an element of type A in the context Γ .
A context is a finite list of variable declarations x1 : A1, x2 : A2, . . . , xn : An. The shortcut a : A will be used in
place of ; ` a : A as the terms considered in this document are always closed, that is, no context is needed to
type them. The second judgment for terms follows the notations of [Uni13] and is of the form Γ ` a ≡ b : A,
where a and b are definitionally (or judgmentally) equal elements of type A, ensuring that a can be rewritten
to b. For instance, defining the square function will be denoted (−)2 :≡ λx .x · x , and the judgment 32 ≡ 9 : N
can be derived, i.e., there exists a finite tree rooted at 32 ≡ 9 : N such that all its leaves are axioms — inference
rules without hypotheses. We assume the standard rules [Rij22b, §1.3, §1.4] about the formation of contexts,
types, their elements and judgmental equality (which state that definitional equality is an equivalence relation),
together with capture-free substitution and weakening rules.

3Available at: https://github.com/JonasHoefer/poset-type-theory/

https://jrosain.github.io/Homotopy-Finiteness/
https://jrosain.github.io/Homotopy-Finiteness/Lib/Sorry.html
https://github.com/JonasHoefer/poset-type-theory/
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Universes. To give a type to types while avoiding the type-theoretic version of Russel’s paradox, a hierarchy
of universes U0 : U1 : U2, . . . is considered, where every universe Ui is an element of the next universe Ui+1.
Cumulative universes are assumed, i.e., universes are such that all elements of the ith universe are also elements
of the (i + 1)th universe. It is convenient in most ways, but has the consequence that types do not have a unique
type. Indeed, A is a type if it inhabits some universe Ui , but as universes are cumulative, if A : Ui then A : Ui+1.
However, this property has the pleasant advantage to, given Ui and U j two universes, offer maps Ui → UitU j and
U j → UitU j , where UitU j is the universe that contains all elements of Ui and of U j . This map is straightforward
as Ui t U j is Umax(i, j). As such, it is common practice to (purposefully) forget the level of a universe in pen-and-
paper presentations of type theory, writing A : Ui as A : U . As such, to complete the formal system, judgments
for types be defined as follows: Γ ` A : U if A is a type, and Γ ` A≡ B : U if A and B are two definitionally equal
types.

2.2 Martin-Löf’s Dependent Types

Π-types. The core idea of dependent types is to define functions such that their output type is parameterized by
their input type(s). For example, assume that for all n : N, array(n) is a type. Then, in Martin-Löf’s type theory,

append(n, m) : array(n)→ array(m)→ array(n+m)

is a dependent function, i.e., for all n, m : N, there is a function append(n, m) that concatenates arrays of respective
sizes n and m. The type of append is then denoted

∏

(n,m:N) array(n)→ array(m)→ array(n+m). Here,
∏

can
be thought of as the type-theoretical equivalent to the logical ∀. As such, the grammar of the expressions of
dependent type theory cannot be split into a term and a type grammar, and is thus given by

e, e′ ::= x | (e) e′ | λx .e |
∏

x:e

e′ | U .

Then, as mentioned in §2.1, four types of rules [Mim20, §8.1] are needed to understand and manipulate Π-types.

(formation rule) This rule defines the type family B over A.

Γ ` A : U Γ , x : A` B(x) : U
ΠF

Γ `
∏

(x:A) B(x) : U

(introduction rule) A type family B over A is the type of a dependent function, hence the associated term of this
kind of type is a λ-abstraction.

Γ , x : A` t : B(x)
ΠI

Γ ` λx .t :
∏

(x:A) B(x)

(elimination rule) Using a function is done by applying a value of the correct type to it.

Γ ` t :
∏

(x:A) B(x) Γ ` u : A
ΠE

Γ ` t u : B(u)

(computation rules) Dependent functions behave as expected.

Γ , x : A` t : B(x) Γ ` u : A
ΠC

Γ ` (λx .t) u≡ t[u/x] : B(u)

Γ ` f :
∏

(x:A) B(x)
ΠU

Γ ` λx . f x ≡ f :
∏

(x:A) B(x)

The first rule is exactly the defining rule of the β-reduction (i.e., the β-reduction is the least binary relation
containing ΠC), while the second is known as the η-rule and states the uniqueness of functions.
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Remark: There are some points to take note of in the above rules. First, if the λ-terms are erased, then the
introduction (resp. elimination) rule is the same as ∀’s introduction (resp. elimination) rule in higher-order natural
deduction. As such, a term of a type can be constructed if its associated logical formula is true. Such a type is said
inhabited. Moreover, Π-types define functions, thus the type A → B is simply the constant type family B over A.
Hence, the type of functions from A to B is defined as:

A→ B :≡
∏

_ :A

B.

Finally, two types A and B are logically equivalent whenever there are back-and-forth maps between those types.

Inductive Types. The others type-theoretic equivalents of logic connectors are called inductive types, as (i) the type
corresponding to their logical induction principle is inhabited and therefore offers a way to construct terms of an
(inductive) type from its constructors and (ii) they are an instance of a more general inductive framework [Uni13,
§5], [Rij22b, §20] (not covered in this document). Hence, they could also be defined using inference rules, but
from this paragraph on, a more informal style is adopted.

A straightforward example of inductive types is the unit type λ , denoted 1 and equipped with a unique term
? : 1. It satisfies the induction principle ind1, that is, for any family of types P indexed by 1, there is a function

ind1 : P(?)→
∏

x:1

P(x).

This induction principle can also be thought of as the eliminator for 1. As such, it induces the computation rule
ind1(p,?) ≡ p. Moreover, as 1 has a unique element, the η-rule behaves as expected — that is, if Γ ` t : 1, then
Γ ` t ≡ ? : 1 λ .

As there is a type with a unique element, it is natural to wonder whether there is also a type with no elements.
In fact, there is one such type — the empty type 0 λ — that is a degenerate inductive type, in the sense that
it is a type with no constructors. It, however, comes with an induction principle ind0 :

∏

(x:0) P(x) that should
be familiar: a special case of this induction principle is the ex falso quodlibet. That is, for any type A, there is a
function ex-falso :≡ ind0 : 0→ A. As should now be clear, 1 and 0 are the type-theoretic equivalents of > and ⊥.
As such, for any type A, its negation is defined by ¬A :≡ A→ 0 λ . Sometimes, a type A will be qualified as empty
if there is an element of type ¬A, i.e., is-empty(A) :≡ ¬A.

The disjunction is another uncomplicated inductive type, but one that features multiple constructors and (in
general) more than one element. For A and B two types, the coproduct A+ B λ is the type with two constructors
inl : A→ A+ B and inr : B→ A+ B such that, for any family of types P indexed by A+ B, there is a term

ind+ :

�

∏

x:A

P(inl(x))
�

→

 

∏

y:B

P(inr(y))

!

→
∏

z:A+B

P(z)

for which the computation rules ind+( f , g, inl(x))≡ f (x) and ind+( f , g, inr(y))≡ g(y) hold.
The last type corresponding to a logical connector is also the second dependent type of Martin-Löf’s type

theory, the Σ-type. Σ-types correspond to existential quantifiers. In constructive mathematics, the subtle point
of such quantifiers is that, conversely to classical logic, a proof of the statement “there exists x such that P(x)”
requires an explicit exhibition of x . Thus, Σ-types are pairs (x , p) where p : P(x). Σ-types are defined by the
following rules.

Γ ` A : U Γ , x : A` B(x) : U
ΣF

Γ `
∑

(x:A) B(x) : U
Γ , x : A` B(x) : U Γ ` t : A Γ , t : A` u : B(t)

ΣI
Γ ` (t, u) :

∑

(x:A) B(x)

Γ , z :
∑

(x:A) B(x) ` P(z) : U Γ ` t :
∑

(x:A) B(x) Γ , x : A, y : B(x) ` g : P(x , y)
ΣE

Γ ` indΣ(g, t) : P(t)

Γ ` x : A Γ , x : A` u : B(x) Γ , z :
∑

(x:A) B(x) ` P(z) : U Γ ` g :
∏

(x:A)

∏

(y:B(x)) P(x , y)
ΣC

Γ ` indΣ(g, (x , y))≡ g(x)(y) : P(x , y)

https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Unit.html
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Unit.html#orgb2fdcbc
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Empty.html
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Empty.html#orgcde206e
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Coprod.html
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For instance, the first and second projections are defined by Σ-induction:

fst :

�

∑

x:A

B(x)

�

→ A snd :
∏

t:
∑

(x:A) B(x)

B(fst(t))

fst(x , y) :≡ indΣ(λx y.x , (x , y)) snd(x , y) :≡ indΣ(λx y.y, (x , y))

Consequently, if B is a constant family of types over A, then (x , y) where x : A and y : B is a witness of A∧ B.
The corresponding type is, of course, the cartesian product and defined as:

A× B :≡
∑

_ :A

B.

Actually, this follows the intuition from natural numbers, where m × n ≡
∑(m−1)
(i=0) n. The dependant sum corre-

sponds to summing a finite family (ni)0¶i<m of natural numbers, while the cartesian product is the special case
where ni = n for all i.

The final (for our purposes) useful inductive type outside logical connectors are natural numbers N. In type
theory, they are defined λ as a unary encoding using two constructors, 0N : N and succN : N→ N, equipped with
the usual induction principle λ on N for any type family P over N:

indN : P(0N)→

 

∏

(n:N)

P(n)→ P(succN(n))

!

→
∏

(n:N)

P(n).

The computation rules of N are the usual ones of primitive recursion, i.e.,

indN(p0, pS , 0N)≡ p0

indN(p0, pS , succN(n))≡ pS(n, indN(p0, pS , n))

Note that, in the informal paragraphs, multiple shortcuts have been used. In particular, right associativity of
the arrow is assumed, and functions are parameterized by pairs instead of functional application. The latter is
justified by Σ-induction (i.e., curryfication and uncurryfication of expressions). Finally, note that the judgmental
equality is actually the reflexive, transitive and symmetric closure of the βη-reduction. As such, judgmental
equality can be decided as if a term can be (dependently) typed, then it is strongly normalizing [ML98].

2.3 A Homotopic Interpretation of Identity Types

In Martin Löf’s type theory, the equality is also a type, called propositional equality to distinguish it from the
judgmental one. Indeed, it is often desirable to prove that two things, not necessarily judgmentally equal, are
propositionally equal. For instance, consider the following functions:

addN(m, 0N) :≡ m add′N(0N, n) :≡ n

addN(m, succN(n)) :≡ succN(addN(m, n)) add′N(succN(m), n) :≡ succN(add′N(m, n)).

They are not judgmentally equal — as can be seen from the defining λ-terms for these functions:

addN ≡ λmn. indN(m,λn′r. succN(r), n) add′N ≡ λmn. indN(n,λm′r. succN(r), m).

Nevertheless, for any m, n : N, addN(m, n) ≡ add′N(m, n). As such, one may want to state that addN is equal to
add′N, and that is exactly the purpose of propositional equality, written addN =N→N→N add′N or addN = add′N as
there is no ambiguity on the type.

But as propositional equality is a type, there have to be terms (or proofs) of this type. Actually, in Martin-Löf
type theories, propositional equality is defined as an inductive type with one constructor, reflx : x = x . As such,

https://github.com/JonasHoefer/poset-type-theory/blob/main/library/Nat/Base.ctt
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Nat.html
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an induction principle follows, stating that if P(x , y, p) is a type family indexed over x , y : A and p : x =A y , then
there is a function:

ind= :

�

∏

x:A

P(x , x , reflx)

�

→
∏

x ,y:A

∏

p:x=y

P(x , y, p)

such that ind=( f , x , x , reflx)≡ f (x). Often, it is easier to use based path induction λ that considers a fixed element
a : A and a type family P(x , p) over x : A and p : a = x . The inductive principle then becomes:

ind′= : P(a, refla)→
∏

x:A

∏

p:a=x

P(x , p)

with computation rule ind′=(u, a, refla) ≡ u. As ind= and ind′= are equivalent [Uni13, §1.12], a (purposeful)
confusion between them will be made throughout this document when proving properties.

Note that, as the identity x = y is a type, it may be populated by multiple elements — that is, there may be
multiple proofs that x and y can be identified. This situation is analogous to homotopy theory, where two elements
can be connected by more than one (continuous) path. Hence, homotopy type theory chooses to interpret types
as topological spaces, where elements of a type are points in the type’s space and identifications are continuous
paths (also called continuous deformations) between points in the space.

Moreover, this interpretation gives a complex algebraic structure to types — types are higher groupoids. Indeed,
consider (i) the path concatenation operation λ and (ii) the inversion function λ :

concat :
∏

x ,y,z:A

(x = y)→ (y = z)→ (x = z) inv :
∏

x ,y:A

(x = y)→ (y = x).

Given x , y, z : A, p : x = y and q : y = z, concat(p, q) is denoted p � q and constructed by path induction over
p. Assuming that y is x and p ≡ reflx , the goal4 is to give a function of type (x = z)→ (x = z) and the identity
suffices. In turn, given x , y : A and p : x = y , inv(p) is denoted p−1 and also constructed by path induction over
p, with defining equation refl−1

x :≡ reflx . Then:

Theorem 2.1: Types are Higher Groupoids

Let A : U , x , y, z, w : A and p : x = y , q : y = z, r : z = w. The following types are inhabited:

(i) p = p � refly λ and p = reflx
� p λ ;

(ii) p−1 � p = refly λ and p � p−1 = reflx λ and ;

(iii) (p � q) � r = p � (q � r) λ .

The three proofs are straightforward by path induction over p. Moreover, note that for p, q : x =A y , p =x=A y q
is also a type, and may also be inhabited. This goes on infinitely, thus giving the structure of a (weak)∞-groupoid
to types. Nevertheless, they keep the usual properties of equality — that is, an equivalence relation equipped with
congruence.

Lemma 2.2:

(i) Let A, B : U and f : A → B. Then there is an action on path operation ap f :
∏

(x ,y:A)(x = y) →
( f (x) = f (y)) λ .

(ii) Let A : U and B : A→ U . Then there is a transport operation trB :
∏

(x ,y:A)(x = y)→ B(x)→ B(y) λ .

Proof: Both by path induction: (i) ap f (reflx) :≡ refl f (x) and (ii) trB(reflx) :≡ idB(x). �

4To be completely formal, the goal would be to give an element of
∏

(z:A)(x = z)→ (x = z). For instance, λz.id suffices. One can then
easily show that the order of (non inter-dependent) arguments of a function can be swapped.

https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L51
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L82
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L67
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L91
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L85
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L134
https://github.com/jrosain/Homotopy-Finiteness/blob/master/src/Lib/Prop/Comp.org#inversion-of-paths
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L120
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L39
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L42
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2.4 The Univalent Foundations of Mathematics

Univalent foundation of mathematics arises from the formalization of mathematics in dependent type theory, using
the homotopy interpretation of identity types and Vœvodsky’s univalence axiom [Voe15]. The latter characterizes
the identity types of universes, stating that equivalent types are equal

(A=U B)' (A' B).

This axiom is very useful, as it makes isomorphic structures identifiable, turning an often-used informal argument
mechanizable. For instance, it is an important element of the proof that there are a finite number of groups of
finite order k, that will be developed later in this document. Moreover, it has been found to be consistent when
interpreting types as Kan simplicial sets [KL18], hence validating homotopy type theory as a plausible system
to formalize mathematics in. Finally, a system that offers an actual computational meaning to univalence has
been discovered when interpreting types as cubical sets [BCH13], overcoming the last objection of constructivists
toward univalent mathematics. Most of the material covered in this section can be found in greater details
in [Uni13, §3–4, §6–7] and [Rij22b, §9–10, §12–18].

Furthermore, the natural hierarchization of types originating from their homotopic interpretation gives a way
to formally describe natural constructions such as propositions and sets. This hierarchy starts at level −2 so that
the usual set-level mathematics take place at level 0.

Definition 2.3: Contractible Type λ

A type A is contractible if it comes equipped with an element of type

is-contr(A) :≡
∑

a:A

∏

x:A

a = x .

Given (a, C) : is-contr(A), a : A is the center of contraction of A and C :
∏

(x:A) a = x is the contraction of A.

Example: The unit type is contractible λ as (?, ind1(refl?)) : is-contr(1).

Definition 2.4: Vœvodsky’s Homotopy Levels λ

Vœvodsky’s homotopy levels (also called h-levels) are defined by induction on Z¾−2 by

is-(−2)-type(A) :≡ is-contr(A)

is-(k+ 1)-type(A) :≡
∏

x ,y:A

is-k-type(x = y)

Definition 2.5: Proposition λ , Set λ

A type A is a proposition if it is a (−1)-type and a set if it is a 0-type. In particular, given a universe U , the
type of U -propositions and U -sets are defined as:

λ PropU :≡
∑

X :U
is-prop(X ) λ SetU :≡

∑

X :U
is-set(X )

Example: 0 is a proposition by vacuity and N is a set λ (by Thm. 2.15).

Remark: For any A : U , is-prop(A) is logically equivalent λ to:

all-elements-equal(A) :≡
∏

x ,y:A

x = y.

Moreover, λ a type is a set iff the only path of a point to itself is reflexivity5.
5This principle is also known under the name of axiom K.

https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L9
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Unit.html#org1dd025f
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L308
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L245
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L258
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L248
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L261
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Nat.html#org5290c7b
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Proposition.html#orgc7c0e01
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Set.html#orgb50523b
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(a) Contractible type (b) Set (c) Not a set (d) Not a 1-type

Figure 1: Some examples and counter-examples of n-types as spaces.

Note that these definitions of propositions and sets effectively capture the natural meaning usually given to
these objects — the formers are proof irrelevant (i.e., any two proofs of a proposition are the same) and the latters
are composed of a bunch of elements not identifiable between themselves. For instance, the space described by
Fig. 1b is a set as all identifications happen in a space without holes and thus the space always admits a continuous
deformation between two paths. In turn, Fig. 1c is not a set as, for any point, there is a clockwise path p and a
counter-clockwise path q such that p cannot be continuously deformed into q due to the hole inside the circle.
Likewise, the sphere of Fig. 1d is not a 1-type, as there are no continuous deformations between the continuous
deformation of the clockwise and counter-clockwise path between two points.

Another type that is not a set, but more familiar to mathematicians, is the type of all sets of a universe U , SetU .
A simple way to remark this is through the use of equivalences, that are defined very naturally using n-types as
maps A→ B such that all elements of B have a unique preimage in A.

Definition 2.6: Fiber λ

Let A, B : U , f : A→ B and y : B. The fiber of f at y is the type

fib f (y) :≡
∑

x:A

f (x) = y.

Remark: The fiber of f at y can be thought of as the type-theoretic version of the preimage of y by f .

Definition 2.7: Equivalence λ

Let A, B : U and f : A→ B. f is an equivalence whenever all its fibers are contractible; and A is equivalent
to B whenever there is a map f : A→ B that is an equivalence:

is-equiv( f ) :≡
∏

y:B

is-contr(fib f (y)), A' B :≡
∑

f :A→B

is-equiv( f ).

Note that A' A, as id has contractible fibers. The usual notion of equivalence, inverses, are defined in HoTT
using pointwise identification of back-and-forth maps with the identity. Recall that the homotopic interpretion
of identity types makes two points identifiable if there is a continuous deformation between those points in the
space of the type. Thus, functions are pointwise identifiable if it is possible to “fill the space” between the two
functions. This notion is an instance of a morphism between morphisms, also called a homotopy.

Definition 2.8: Homotopy λ

Let A : U , B : A→ U and f , g :
∏

(x:A) B(x). The type of homotopies from f to g is defined as

f ∼ g :≡
∏

x:A

f (x) = g(x).

Of course, being a homotopy is an equivalence relation λ , it is reflexive (with witness refl-htpy), symmetric
and transitive.

https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L6
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L12
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L155
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Htpy.html#orgd580ee8
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Definition 2.9: Inverse λ

Let A, B : U and f : A→ B. f has an inverse whenever there is a function g : B→ A and two homotopies
f ◦ g ∼ idB and g ◦ f ∼ idA,

has-inverse( f ) :≡
∑

g:B→A

( f ◦ g ∼ idB × g ◦ f ∼ idA).

This definition has the (practical) advantage to immediatly provide an actual inverse to f , denoted f −1.
Unfortunately, it introduces further structure on the map [Rij22b, Ex. 22.5], something deeply undesirable as one
would like being an equivalence to be a property of a map.

Definition 2.10: Subtype λ

A type family B over A is said to be a subtype of A if for each x : A, B(x) is a proposition. In this case, B(x)
is also said to be a property of A.

In fact, the definition of equivalences as a map with contractible fibers has the exact advantage of being a
property on the map. Indeed, as aΠ-type is a proposition whenever its target type is a (family of) proposition(s) λ ,
and is-k-type(X ) is a proposition λ forall k ∈ Z¾2, it follows directly that is-equiv is a proposition. As such, the
univalence axiom only states a property over a map.

Axiom 2.11: Univalence λ

All universes U are univalent, that is, for any two types A, B : U , the canonical map

λ path-to-equiv : A=U B→ A' B

given by path-to-equiv(refl) :≡ id is an equivalence.

This axiom implies function extensionality [Uni13, §4.9].

Definition 2.12: Function Extensionality λ

For any A : U , B : A→ U f , g :
∏

x:A B(x), the family of maps

htpy-eq : ( f = g)→ ( f ∼ g)

defined by htpy-eq(refl) :≡ refl-htpy f is a family of equivalences.

Moreover, as any equivalence has an inverse [Rij22b, Thm. 10.3.5] λ (given by the center of contraction),
the univalence axiom and the function extensionality principle yield the functions

equiv-to-path : A' B→ A=U B and eq-htpy : ( f ∼ g)→ ( f = g).

This allows Christian Sattler and David Wärn’s proof6 of the graduate lemma, that will be sketched here as it
differs greatly from the ones found in [Uni13, §4.2] or [Rij22b, §10.4].

6Note that function extensionality is not strictly necessary here, even though it simplifies the proof greatly (computation wise). For
instance, [Uni13, Thm. 2.11.1] shows that ap f has an inverse whenever f has an inverse directly.

https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/QInv.html
https://jrosain.github.io/Homotopy-Finiteness/Lib/SubTypes.html#org74d92cd
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L318
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L352
https://jrosain.github.io/Homotopy-Finiteness/Lib/Univalence.html#org229b2c0
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L367
https://jrosain.github.io/Homotopy-Finiteness/Lib/FunExt.html
https://jrosain.github.io/Homotopy-Finiteness/Lib/ContrMap.html#orga77e4da
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A B C D
f g h

(g ◦ f )−1 (h ◦ g)−1

Figure 2: Setting which gives an inverse to g.

Lemma 2.13: Graduate Lemma λ

Let A, B : U and f : A→ B. Then f is an equivalence iff f has an inverse.

Proof: Only the converse direction is sketched, refer to [Rij22b, Thm. 10.3.5] for the forward direction. Assume
that has-inverse( f ), that is, f : A→ B comes equipped with

g : B→ A, G : f ◦ g ∼ idB, H : g ◦ f ∼ idA.

By function extensionality, eq-htpy(G) : f ◦ g = idB and eq-htpy(H) : g ◦ f = idA. As id is the inverse of apid
(apid(p) = p by path induction λ ), let i : has-inverse(apid) and P :≡ λh.has-inverse(aph). Then, both ap f ◦g and
apg◦ f have an inverse

trP(eq-htpy(G)−1, i) : has-inverse(ap f ◦g) and trP(eq-htpy(H)−1, i) : has-inverse(apg◦ f ).

Moreover, in a setting of Fig. 2 where f : A→ B, g : B → C , h : C → D, if g ◦ f and h ◦ g have an inverse, then
g also has an inverse λ : f ◦ (g ◦ f )−1. Indeed, g ◦ f ◦ (g ◦ f )−1(x) = x and g ◦ f ◦ (g ◦ f )−1 ◦ g(x) = g(x).
Furthermore, g is injective as if p : g(x) = g(y), aph(p) : h(g(x)) = h(g(y)) and thus, by path concatenation,
x = y , so f ◦ (g ◦ f )−1 ◦ g(x) = x . Returning to the main proof, as ap f ◦g and apg◦ f both have an inverse, the
previous setting holds and thus ap f also has an inverse. As such, forall a : A,

∑

(x:A) f (x) = f (a) is contractible,
with center of contraction (a, refl f (a)). Then, given (x , p) :

∑

(x:A) f (x) = f (a), ap−1
f (p

−1) : a = x and so the path

between (a, refl f (a)) and (x , p) can be built by path induction over ap−1
f (p

−1). Finally, as f has an inverse, f (a)
corresponds to a y : B forall a : A and thus fib f (y) is contractible; that is, f is an equivalence. �

As such, the relation' is an equivalence relation λ . Indeed, given an equivalence e : A' B, there is an inverse
equivalence e−1 : B ' A by Lem. 2.13 as the inverse of an inverse also has an inverse. Moreover, equivalences are
transitive as the composition of two functions that have an inverse also has an inverse. Therefore, the notations
e(x) and e−1(x) will be used as a shortcut of the underlying maps fst(e)(x) and fst(e−1)(x).

With those tools introduced, it is now easy to show that SetU is not a set. First, consider 2 :≡ 1+ 1 the type
of booleans, with true :≡ inl(?) and false :≡ inr(?).
Definition 2.14: Decidable Type λ

A type A is said decidable if A+¬A is inhabited. Moreover, it has a decidable equality whenever x =A y is
decidable for all x , y : A.

Theorem 2.15: Hedberg λ

Any type that has decidable equality is a set.

By Hedberg’s theorem, 2 is a set. But neg2 (that sends true to false and conversely) and id2 are both equiva-
lences, as they are their own inverse. As such, by univalence, there are two distinct paths 2= 2, and hence SetU
is not a set. Thus, equivalences carry further informations than the types themselves.

This is not always desirable — sometimes, the bijection must not be explicit. Examples of this situation arise
from finite sets or surjective maps. Stating “a set is finite” and “there is a bijection between this set and a standard
finite set” is fundamentally different, as in the latter case, the object manipulated is a totally ordered set. Likewise,

https://jrosain.github.io/Homotopy-Finiteness/Lib/ContrMap.html#org566f280
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Paths.html#org75935e0
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/BiInv.html#org70416e0
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Equiv.html#org21ba672
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Decidability.html#org3ba9bc1
https://jrosain.github.io/Homotopy-Finiteness/Lib/Hedberg.html#orgaedf2c5
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stating that “a map is surjective” and “for every element in the image of a map, its preimage can be computed”
makes a vast difference, as the latter defines a left inverse of the map7. In constructive mathematics, one thus
needs a way to express that a type P is inhabited, without exhibiting any of its inhabitant(s). Doing so yields a
subtype only containing the objects that satisfy the property, i.e., that satisfy the propositional version of P. In
homotopy type theory, this concept is called the propositional truncation of P, and often referred to as the “mere”
version of P.

Propositional truncation is defined as an higher inductive type, the last component of HoTT. Higher inductive
types have the peculiarity to introduce constructors to generate identifications between its elements. For instance,
the propositional truncation of a type A is defined as an higher inductive type with two constructors λ

| · | : A→ ‖A‖

α :
∏

x ,y:‖A‖

x = y.

The first states that any type has a propositional truncation, and the second that the propositional truncation of
a type is a proposition. Of course, for any family of propositions P over ‖A‖, it has an induction principle and a
recursor λ (when P is constant)

ind‖A‖ :

�

∏

x:A

P(| x |)

�

→
∏

x:‖A‖

P(x), rec‖A‖ : (A→ P)→ ‖A‖ → P

that enable proper reasoning when working with truncated objects. This notion can then be used to define the
notions of finite type and surjective map as properties of a type rather than an additional structure.

Definition 2.16: Standard Finite Types λ

The family of standard finite types are defined inductively over N by

Fin0 :≡ 0

Fink+1 :≡ Fink + 1.

Definition 2.17: Finite Type λ

A type X is said finite whenever it comes equiped with an unspecified equivalence Fink ' X for some k : N

is-finite(X ) :≡











∑

k:N

Fink ' X











.

Definition 2.18: Surjective Map λ

Let A, B : U and f : A→ B. f is said surjective whenever there is an unspecified x such that f (x) = b, for
any b ∈ B,

is-surj( f ) :≡
∏

b:B



fib f (b)


 .

Note that, by definition, both is-finite(X ) and is-surj( f ) are properties. However, for the former, one might
still want to get the cardinal of a finite set.

7Note that this is the exact argument used in the is-equiv( f )→ has-inverse( f ) proof.

https://jrosain.github.io/Homotopy-Finiteness/Lib/PropTrunc.html#org2525b80
https://jrosain.github.io/Homotopy-Finiteness/Lib/PropTrunc.html#orgf3a8c5a
https://jrosain.github.io/Homotopy-Finiteness/Lib/Data/Fin.html
https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org82281e5
https://jrosain.github.io/Homotopy-Finiteness/Lib/Image.html#org7ec681d
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(a) A space X

| · |0

(b) The set truncation of X

Figure 3: Example of set truncation on a space.

Theorem 2.19: Cardinality λ

For any X : U , the type
has-cardinality(X ) :≡

∑

k:N

‖Fink ' X ‖

is a proposition and there is a logical equivalence

has-cardinality(X )↔ is-finite(X ).

Proof: Let (k, e), (k′, e′) : has-cardinality(X ). As ‖Fink ' X ‖ is a proposition, (k, e) = (k′, e′) whenever k = k′ λ .
N is a set, hence its equality type is a proposition and thus rec‖Fink'X ‖ can be applied, as well as rec‖Fink′'X ‖ ,
yielding Fink ' X and Fink′ ' X . As such, Fink ' Fink′ and thus λ k = k′. The back-and-forth maps are given by

recis-finite(X )(λ(k, e).(k, | e |)) : is-finite(X )→ has-cardinality(X )
λ(k, e).rec‖Fink'X ‖(λe′.

�

� (k, e′)
�

� , e) : has-cardinality(X )→ is-finite(X ).

The cardinal of a finite type X is hence denoted |X |. �
Types can be truncated above the propositional level. An interesting example of that is the set truncation. Of

course, it can be defined as an higher inductive type λ , as the propositional truncation:

| · |0 : A→ ‖A‖0
α0 :

∏

x ,y:‖A‖0

∏

p,q:x=y

p = q

and is, de facto, equipped with an induction principle for any family of sets P over ‖A‖0

λ ind‖A‖0 :

�

∏

x:A

P(| x |0)

�

→
∏

x:‖A‖0

P(x),

such that ind‖A‖0( f , | x |0) ≡ f (x). But there is another, more insightful, way to define set truncation — as a set
quotiented by mere equality λ . Indeed, for any X , there is a map f :

∏

(x ,y:X )

∏

(p:‖ x=y ‖) | x |0 = | y |0 defined as

f (x , y) :≡ rec‖ x=y ‖(λp.ap| · |0(p)).

Hence, set truncating simply consists in choosing a representant given by the mere equality, as shown in Fig. 3.
An immediate consequence of this is that there is an equivalence | x |0 = | y |0 ' ‖ x = y ‖ λ . As such, the set
truncation of a type is also called the connected components of this type. Thus, a connected type is such that its set
truncation has a unique element; is-conn(A) :≡ is-contr(‖A‖0). An important property of set truncations is that,
for any map f from A to a set X , there is a unique extension g : ‖A‖0 → X of f such that g ◦ | · |0 ∼ f λ . Often,
this property is represented by saying that the following diagram commutes:

A

‖A‖0 X .

| · |0
f

For instance, the diagram introduced in Fig. 2 also commutes.

https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org0ba732b
https://github.com/JonasHoefer/poset-type-theory/blob/e1bbe90429f9627fdf6857eddb30c27ccff805d8/library/Prelude.ctt#L301
https://jrosain.github.io/Homotopy-Finiteness/Lib/Counting.html#org6b58895
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#orgdf8be99
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org91d0f35
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org8dc186d
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org097ede9
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#orgc648ad2
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SemigroupU

MonoidU

GroupU

Figure 4: Expected relationship between group structures.

3 Structures in Univalent Mathematics — an Application with Groups

One of the main goal of HoTT is to qualify the identity types of groupoids. Indeed, only a type that has its identity
types fully characterized can be wholly understood. In this section, a common structure of mathematics, groups,
are defined in §3.1. Then, the univalence axiom is used to demonstrate how any two isomorphic groups can
be identified. This allows to formalize long-used arguments such as “two isomorphic structures satisfy the same
properties” using a simple transport, and to mechanize proofs that hold “up to isomorphism”. §3.2 is an example
of such a proof, where finiteness of structures up to isomorphism is shown. Finally, §3.3 is an application of this
proof to the type of groups of finite order.

3.1 Semigroups, Monoids and Groups

Recall that a group is a set, equipped with (i) an associative operation, (ii) a neutral element and (iii) such that
each element has an inverse. A set satisfying only condition (i) is called a semigroup, and one verifying conditions
(i) and (ii) is a monoid. Naturally, it is expected that the types behave as Fig. 4; that is, groups being subtypes of
monoids, themselves subtypes of semigroups. As such, by Def. 2.10, these structures should be defined carefully
using propositions.

Definition 3.1: Semigroup λ

A set G in a universe U is a semigroup if it is equipped with an associative multiplication

is-semigroup(G) :≡
∑

µ:G→G→G

∏

x ,y,z:G

µ(µ(x , y), z) = µ(x ,µ(y, z)).

The type of all semigroups of U is SemigroupU :≡
∑

(G:SetU ) is-semigroup(G).

Note that is-semigroup(G) is not a proposition, hence semigroups are not a subtype of sets.

Definition 3.2: Unital Semigroup λ

A semigroup G is unital whenever there exists a unit e : G which satisfies

right-unit-law(G, e) :≡
∏

x:G

µ(x , e) = x and left-unit-law(G, e) :≡
∏

y:G

µ(e, y) = y.

Hence, is-unital(G) :≡
∑

(e:G)(right-unit-law(G, e)× left-unit-law(G, e)).

Being unital is a property λ . Indeed, as the right and left unit laws state equalities over elements of a set,
they are both propositions. Thus, it suffices to show that the neutral element is unique. Let e, e′ : G. Then:

e = µ(e, e′) = e′.

https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#org3d0bb75
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#org0173311
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#org6756a15
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The type of all monoids of U is MonoidU :≡
∑

(G:SemigroupU )
is-unital(G).

Definition 3.3: Group λ

A unital semigroup has inverses if it comes equipped with a function (−)−1 : G→ G such that

right-inv(G, e, (−)−1) :≡
∏

x:G

µ(x , x−1) = e and left-inv(G, e, (−)−1) :≡
∏

y:G

µ(y−1, y) = e.

A semigroup G is a group whenever it is unital and has inverses;

is-group(G) :≡
∑

e:is-unital(G)

∑

(−)−1:G→G

(right-inv(G, e, (−)−1)× left-inv(G, e, (−)−1)).

The type of all groups of U is GroupU :≡
∑

(G:SemigroupU )
is-group(G).

Being a group is, once again, a property λ . Indeed, as being unital is a property, it suffices to show that the
type of triples ((−)−1,α,β) is a proposition. Of course, being a right inverse and a left inverse are propositions as
they state equalities over elements of a set. Hence, showing that (−)−1 is unique is enough. If (−)−1′ is an inverse
for G, by function extensionality, it suffices to show that x−1 = x−1′ for any x ∈ G:

x−1 = µ(x−1, e) = µ(x−1,µ(x , x−1′)) = µ(µ(x−1, x), x−1′) = µ(e, x−1′) = x−1′ .

Definition 3.4: (Semi)group Homomorphism λ

Let G and H be (semi)groups, with respective multiplications µG and µH . A map f : G → H preserves
multiplication if the type

preserves-mul( f ) :≡
∏

x ,y:G

f (µG(x , y)) = µH( f (x), f (y))

is inhabited. Homomorphisms are maps f equipped with preserves-mul( f ). The type of all homomor-
phisms from G to H is written hom(G, H) :≡

∑

( f :G→H) preserves-mul( f ).

Note that preserves-mul is a property over a map. Hence, for h f , hg : hom(G, H) with respective underlying
maps f and g,

λ (h f = hg)' ( f = g)' ( f ∼ g).

Definition 3.5: (Semi)group Isomorphism λ

Let h : hom(G, H). h is an isomorphism if it comes equipped with a triple (h−1, p, q)where h−1 : hom(H, G),

p : h−1 ◦ h= idG and q : h ◦ h−1 = idH .

Such triples have type is-iso(h), and the type of all isomorphisms between G and H is

G ∼= H :≡
∑

h:hom(G,H)

is-iso(h).

is-iso is a property of a map. Indeed, as h−1 ◦ h = idG ' h−1(h(x)) = x and h ◦ h−1 = idH ' h(h−1(y)) = y ,
these equalities are propositions. Hence, it suffices to show that the inverse is unique. Let h−1, h−1′ : hom(H, G)
two inverses of h. It is enough to show that h−1 ∼ h−1′ :

h−1(y) = h−1′(h(h−1(y))) = h−1′(y).

As Σ-types are closed under sets, and any proposition is a set, G ∼= H is also a set.

https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#orgec05658
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#orga771ac6
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#orgfc6432e
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#org1940bb6
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#org22ae48c
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Lemma 3.6:

A (semi)group homomorphism h : G → H is an isomorphism iff its underlying map is an equivalence.
Consequently, there is an equivalence

(G ∼= H)'
∑

e:G'H

preserves-mul(e)

Proof: The forward map is trivial by Lem. 2.13 as h has an inverse. For the converse, let h−1 : H → G be the
inverse of h. It is also a group homomorphism:

h−1(µH(x , y)) = h−1(µH(h(h
−1(x)), h(h−1(y)))) = h−1(h(µG(h

−1(x), h−1(y)))) = µG(h
−1(x), h−1(y)).

As is-iso and is-equiv are propositions, is-iso( f ) ' is-equiv( f ) and the equivalence is directly implied by λ
∑

(t:
∑

(x:A) B(x)) C(fst(t))'
∑

(t:
∑

(x:A) C(x)) B(fst(t)) whenever B(x)' C(x) forall x : A. �

Theorem 3.7: Isomorphic Groups are Equal λ

Let G, H be (semi)groups of a universe SetU . Then

(G ∼= H)' (G = H).

Proof: Remark that if p : G = H, then preserves-mul(path-to-equiv(p))' 1 as, by path induction, path-to-equiv(refl)≡
id and preserves-mul is a proposition. Hence, by univalence, there is a chain of equivalences

(G ∼= H)'
∑

e:G'H

preserves-mul(e)'
∑

p:G=H

preserves-mul(path-to-equiv(p))' (G = H).

�

3.2 A Counting of Structures up to Isomorphism

A structure finite up to isomorphism is not expected to be finite in general. For instance, take the type of types with
two elements. They are all equivalent to Fin2. Thus, the number of two-element types up to isomorphism is one.
But the number of such types is not finite. However, by univalence, types with two elements can be identified,
and hence form a unique connected component in the space of the universe. As presented in §2.4, the set of
connected components of a type can be represented by the set truncation of this type. The notion of finiteness up
to isomorphism takes full advantage of this contruction.

Definition 3.8: Homotopy Finiteness λ

A : U is said πn-finite if it has finitely many connected components, and all its ith paths have also finitely
many connected components, for i < n:

is-π0-finite(A) :≡ is-finite‖A‖0
is-πn+1-finite(A) :≡ is-finite‖A‖0 ×

∏

x ,y:A

is-πn-finite(x = y).

The goal of this section is to show that homotopy finiteness is closed by Σ-type former. Indeed, in univalent
mathematics, structures are built usingΣ-types. Moreover, as seen in §3.1, isomorphic structures can be identified.
As such, the notion of homotopy finiteness is adapted for counting up to isomorphism. The proof is done by
induction on n, and starts by a difficult base case.

https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Equiv.html#org4ba28a6
https://jrosain.github.io/Homotopy-Finiteness/Lib/Groups.html#orged93c91
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org07bede9
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Lemma 3.9: Finite Codomain λ

Let A, B : U such that A is finite and f : A→ B is surjective. Then, B is finite whenever it has decidable
equality.

Proof: As is-finite is a property, assume without loss of generality that (k, e) :
∑

(n:N) Finn ' A. Note that,
consequently, there is a map g :≡ f ◦ e : Fink → B that is surjective (as the composition of surjective maps is
surjective λ ). The proof is by induction on k. If k = 0, then 0' B as g is surjective and injective by definition of
0. If k > 0, then if inr(?) is the only preimage of g(inr(?)):

B '

 

∑

y:B

y 6= g(inr(?))

!

+ 1

which is finite as 1 is finite,
∑

(y:B) y 6= g(inr(?)) is finite by induction hypothesis (the map is g augmented with
a simple information, surjectiveness follows from the condition, and decidable equality follows from B’s own
decidable equality) and finiteness is closed by coproduct λ . If inr(?) is not the only preimage of g(inr(?)), then g
is still surjective when restraining the domain to Fink and thus the result follows by induction hypothesis. �

Lemma 3.10: Closure Under Σ-types, Base Case λ

Let B be a family of π0-finite types over a connected, π1-finite type A. Then the type
∑

(x:A) B(x) is π0-
finite.

Proof: Note that homotopy finiteness is a proposition, being either a proposition or a product of propositions.
As A is connected, it is merely inhabited by | a | : ‖A‖ λ . By the recursion principle of propositional truncation,
assume that a : A. Then, the function f :≡ λb.(a, b) : B(a)→

∑

(x:A) B(x) is surjective λ as for (x , y) :
∑

(x:A) B(x),
p : | a |0 = | x |0 by connectedness, hence q : ‖ a = x ‖ and, as is-surj is a proposition, r : a = x . By path induction,
f (y) = (x , y) for any (x , y) :

∑

(x:A) B(x). Consider ‖ f ‖0, defined so that the following diagram commutes:

B(a)
∑

(x:A) B(x)

‖B(a)‖0






∑

(x:A) B(x)






0

| · |0

f

| · |0

‖ f ‖0

‖ f ‖0 is also surjective λ , by surjectiveness of f and the induction principle of set truncation. As ‖B(a)‖0 is

finite by assumption, and ‖ f ‖0 is surjective,






∑

(x:A) B(x)






0
is finite if it has decidable equality by Lem. 3.9. The

following chain of equivalences hold:

�

| (x , y) |0 =
�

� (x ′, y ′)
�

�

0

�

'


 (x , y) = (x ′, y ′)


 '


 (a, y) = (a, y ′)


 '











∑

(p:a=a)

trB(p, y) = y ′










λ .

Hence, it suffices to show that






∑

(p:a=a) trB(p, y) = y ′




, or equivalently λ ,






∑

(p:a=a) ‖ trB(p, y) = y ′ ‖




 is de-

cidable. As it is a proposition, and decidability is not closed underΣ-types in general, we show that the underlying
type is finite, which suffices λ to show that it is decidable. As ‖B(a)‖0 is finite by assumption, it has decidable
equality λ , hence ‖ trB(p, y) = y ′ ‖ ' | trB(p, y) |0 = | y ′ |0 is a decidable proposition, so it is finite. But a = a has
no reason of being finite. However, as the universe of propositions is a set λ by univalence, let P be the type
family over ‖ a = a ‖0 defined by the induction principle of set truncation as follows:

https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org12bfec8
https://jrosain.github.io/Homotopy-Finiteness/Lib/Image.html#org4e9808d
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#orga821004
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#orgaf6095a
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org32b166c
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org47d332e
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#orge51e7b6
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Equiv.html#org94bad7d
https://jrosain.github.io/Homotopy-Finiteness/Lib/PropTrunc.html#orgd5a2ed1
https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org461af0d
https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org8205959
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Levels.html#org3ca93ff
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a = a

‖ a = a ‖0 PropU .

| · |0
p 7→ ‖ trB(p, y) = y ′ ‖

P

There is a trivial back-and-forth map between






∑

(p:a=a) ‖ trB(p, y) = y ‖




 and






∑

(ω:‖ a=a ‖0)
P(ω)





 by the recur-

sion principle of propositional truncation and the induction principle of set truncation as if ω≡ | p |0 for p : a = a
then P(ω) ≡ ‖ trB(p, y) = y ′ ‖ by the computation rule of the induction principle. Hence, as those two types
are propositions, they are equivalent. By hypothesis, A is π1-finite and consequently, ‖ a = a ‖0 is finite. Thus






∑

(ω:‖ a=a ‖0)
P(ω)





 is also finite as finiteness is closed under Σ-types λ . �

Theorem 3.11: Closure under Σ-types λ

Let B be a family of πn-finite types over a πn+1-finite type A. Then the type
∑

(x:A) B(x) is πn-finite.

Proof: By induction over n. For n = 0, by induction on the number of connected components of A. If there are
no connected components, then A is empty λ and hence, as 0 is πk-finite forall k ∈ N λ and

∑

(x:0) B(x)' 0, the
result follows. Otherwise, as ‖A‖0 is finite by assumption and a property is being proven, let e : Fink+1 ' ‖A‖0.
Then, it can be shown λ that there is a map f : Fink+1 → A such that | · |0 ◦ f ∼ e. The image λ of h : A→ B
is defined to be imh :≡

∑

(y:B) ‖fibh(y)‖. By taking advantage that (| x |0 = | y |0) ' ‖ x = y ‖, it can be shown
that λ

∑

x:A

B(x)'

 

∑

x:im f ◦inl

B ◦ fst

!

+

 

∑

x:im f ◦inr

B ◦ fst

!

.

Moreover, as Fink '


 im f ◦inl




0
λ ,
∑

(x:im f ◦inl)
B ◦ fst has a finite number of connected components by (inner)

induction hypothesis. Furthermore, as f ◦ inr : 1 → A, im f ◦inr is connected λ and thus Lem. 3.10 applies. As
homotopy finiteness is closed under coproduct, the result follows.

If n> 0, it suffices to remark that for t, u :
∑

(x:A) B(x), t = u'
∑

(p:fst(t)=fst(u)) trB(p, snd(t)) = snd(u), and the
result is immediate by (outer) induction hypothesis. �

3.3 The Finiteness of Groups of Finite Order

The goal of this section is to define groups of finite order such that Thm. 3.11 can be applied.

Definition 3.12: (Semi)groups of Finite Order λ

A (semi)group G is of finite order n if there is a mere equivalence between Finn and G,

Semigroup-of-Order(n) :≡
∑

G:SemigroupU

‖Finn ' G ‖ and Group-of-Order(n) :≡
∑

G:GroupU

‖Finn ' G ‖ .

Recall that being finite implies having decidable equality. Then, by Thm. 2.15, every finite type is a set. Hence,
in both Semigroup-of-Order(n) and Group-of-Order(n), there is a redundant information in the fact that G is a
set. Hence,

Semigroup-of-Order(n)'
∑

∑

G:U ‖Finn'G ‖

∑

µ:G→G→G

∏

x ,y,z:G

µ(µ(x , y), z) = µ(x ,µ(y, z))≡: Semigroup-of-Order′(n)

Whenever G is finite, the right-hand side of Semigroup-of-Order′(n) is finite as the equality is a decidable propo-
sition. In particular, a finite type is πn-finite for n ∈ N λ , hence it is π0-finite. Then:

https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#orgdb2afc6
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org523a276
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#org82c4514
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org66bb127
https://jrosain.github.io/Homotopy-Finiteness/Lib/SetTrunc.html#orgfaa972e
https://jrosain.github.io/Homotopy-Finiteness/Lib/Image.html#org145a693
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org75e569b
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org2756992
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#orgd2652a8
https://jrosain.github.io/Homotopy-Finiteness/GroupFiniteness.html#orgb4043e2
https://jrosain.github.io/Homotopy-Finiteness/HomotopyFiniteness.html#org0faee11
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Lemma 3.13:
∑

G:U ‖Finn ' G ‖ is connected. Consequently, it is πn-finite for n ∈ N.

Proof: Take as center of contraction
�

� (Finn, | id |)
�

�

0. The contraction is trivial as, by recursion principle of
propositional truncation, Finn ' G and, by univalence, (Finn ' G) ' (Finn = G). The homotopy finiteness is
shown by induction on n. For n = 0, a contractible type is finite. For n > 0, the equality between two elements
of this type is equivalent to the equality between the underlying types as this is a Σ-type over a proposition. But
(G = H)' (G ' H) by univalence, and the number of equivalences between finite types is finite λ . �

Theorem 3.14: A Finite Number of Finite Semigroups

Semigroup-of-Order(n) is πk-finite, for n, k ∈ N.

Proof: As
∑

G:U ‖Finn ' G ‖ is πk+1-finite by Lem. 3.13, and
∑

(µ:G→G→G)

∏

(x ,y,z:G)µ(µ(x , y), z) = µ(x ,µ(y, z))
is finite and hence πk-finite, Semigroup-of-Order′(n) is πk-finite by application of Thm. 3.11. Consequently,
Semigroup-of-Order(n) is also πk-finite. �

Theorem 3.15: A Finite Number of Finite Groups λ

Group-of-Order(n) has a finite number of connected components.

Proof: First, note that is-group(G) is finite whenever G is finite. Moreover:

Group-of-Order(n)'
∑

G:Semigroup-of-Order(n)
is-group(G)

and Semigroup-of-Order(n) is π1-finite by Thm. 3.14. Thm. 3.11 applies, and Group-of-Order(n) is π0-finite. �

4 Computational Analysis of the Proof

As the proof of Thm. 3.15 is constructive, there is a λ-term

has-finite-connected-components(n) : is-π0-finite(Group-of-Order(n)).

Consequently, by definition of homotopy finiteness, the cardinal of ‖Group-of-Order(n)‖0 is computable, i.e., it
is possible to count the number of groups of order n up to isomorphism.

However, as far as the author knows, there are no implementations of this proof that compute well. For
instance, in Cubical Agda’s version8 as well as in ours λ , computing (semi)groups of order 0 and 1 is instantaneous,
but from order 2 onwards, the computation either takes tens of minutes or gets shut down due to a lack of RAM.

This section’s goal is to analyze the bottlenecks of the computation, taking full advantage of the head-linear
reduction of the tool used by the formalization. The complexity of the algorithm executed by Thm. 3.15 is
computed in §4.1 and §4.2 points out which steps make the computation difficult.

4.1 Complexity of the Underlying Algorithm of Thm. 3.15

In a proof term, it is difficult to know whether a subterm needs to be unfolded during the computation or not. For
instance, terms t that have a propositional type do not always need to be evaluated, as any inhabited proposition
is equivalent to 1 λ ; that is, t should be able to be replaced by ? without affecting the computation9.

8Available here: https://agda.github.io/cubical/Cubical.Experiments.CountingFiniteStructure.html
9This is not always true. For instance, finiteness is a proposition, but an information is still extracted from its proof term.

https://jrosain.github.io/Homotopy-Finiteness/Lib/IsFinite.html#org3117638
https://jrosain.github.io/Homotopy-Finiteness/GroupFiniteness.html#org79a13fd
https://github.com/jrosain/Homotopy-Finiteness/blob/master/src/Playground.ctt
https://jrosain.github.io/Homotopy-Finiteness/Lib/Prop/Proposition.html#orgf627b2f
https://agda.github.io/cubical/Cubical.Experiments.CountingFiniteStructure.html
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By analyzing the step-by-step unfolding10 of Lem. 3.14 for n= 2, a broad outline of the computation followed

can be summarized. For every element of






∑

(G:U ) ‖Finn ' G ‖






0
, Lem. 3.10 is called. In turn, the number of

elements of Semigroup-of-Order′(n) is counted by looping over the number of elements of associative functions.
At each iteration, the decidable equality of



Semigroup-of-Order′(n)




0 is unfolded for every associative function
to decide whether inr(?) is the sole preimage of ‖ f ◦ e(inr(?))‖011, which actually depends on the number of
isomorphisms between finite types of order n.

As such, the total complexity of the algorithm is in the range of O((nO(n2))n!). The factor nO(n2) comes from
the number of associative functions G→ G→ G, which is looped on in the loop, hence gaining O(n2) as exponent.
The other one, n!, is the number of isomorphisms between finite semigroups of order n. As the proof term of
Thm. 3.15 needs the computation of the number of semigroups up to isomorphism to start running, its complexity
is even worse.

4.2 Discussion over the Bottlenecks of the Computation

The asymptotic complexity of the β-reduction of has-finite-connected-components(n) is clearly high. It however
does not fully explain the inability to compute the result for small values of n. In fact, an additional factor should
be taken into account to understand the slow running time of the algorithm: the growth of the proof term.

A usual metric for a λ-term is the size of its abstract syntax tree. Formally, the function | · | : Λ→ N is defined
as

|x |= 1 |(e) e′|= |e|+ |e′| |λx .e|= 1+ |e|.

Note that the size of types are not defined, as their unfolding is not expected during the computation.
In practice, the runtime of a step of β-reduction depends on the size of the term. Moreover, it is well-known

that the reduction step
(λx .t) u→ t[u/x]

can lead to an exponential growth. In fact, the λ-terms involved in the proof of Thm. 3.15 are quite complex (and
thus, not especially short), and a rapid growth can be constated when unfolding the proof for n= 2, that reaches
a size of about a hundred thousand by the two-hundredth step.

As such, the theoretical complexity of O(nO(n2)n!) hides a non-small constant behind the Landau notation,
which may explain the lack of efficiency when computing has-finite-connected-components for small values of n.

Others bottlenecks come from a more theoretical perspective, as analyzed in §4.1. A naive algorithm would
be expected to have a factorial runtime. However, the key factor here is the number of associative functions
G → G → G, which all comes down from needing decidability over a type indexed by the type of associative
functions. Hence, any proof that makes use of this argument will suffer from the same computability problems
as Thm. 3.15.

5 Conclusion

In summary, we have implemented E. Rijke’s proof of the finiteness of structures up to isomorphism in the language
of postt, and applied this proof to standard structures of mathematics: semigroups and groups. The head-linear
β-reduction option of this tool has allowed us to analyze the computations of the proof term for (semi)groups of
different orders, and to single out the most likely culprit behind the lack of computational power of the proof,
even considering the naiveté of the underlying algorithm.

Moreover, as the first large-scale project of this tool, most standard definitions and results of homotopy type
theory found in [Uni13, Rij22b] had to be formalized, hence offering a sprout of standard library for postt.
Consequently, the total number of lines of λ-terms written for this project stands slightly above 9000. It has
also allowed the developers of the tool to witness the difficulties of analyzing a proof’s computation through a
step-by-step basis, where a lot of noise slips in, especially when a proof is composed of a number of intermediate

10Using the commands: postt repl, :load -s src/Playground.ctt and :unfold number-of-Semigroup-of-Order-two.
11Recall that f : B(a)→

∑

(x:A) B(x) with f (y)≡ (a, y) and e : Fink ' A.
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lemmas. This has led postt to grow throughout the duration of this internship into a better-suited tool for proof
analysis.

This work is but a first step in the field of proof analysis, and the future work is challenging. One could
imagine at least two directions — either by capitalizing on the analysis of this document to find a better proof
of the finiteness of structures up to isomorphism, either by the extraction of a more general principle by the
assessment of others difficult proofs (such as the Brunerie number [Bru16], . . . ) — both very exciting ventures.
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