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Introduction



In Search of a Beautiful Theory

Dreams
• A physician’s dream – a theory of everything
• A mathematician’s dream – a theory to define mathematics

A Successful Endeavor?
That’s what we are gonna talk about today.
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A First Try

Frege
• First “true” formalisation of mathematics.
• End of 19th century.
• Invention of predicate logic (also called 1st order logic).
• Decades of hard work.

Russel’s Paradox (1901)
y := {x | x /∈ x}

y is the set of sets that are not member of themselves. Then:

y ∈ y ⇐⇒ y /∈ y
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Hilbert

Subsequent Formalisations

• Principia Mathematica (Russel – Whitehead)
• Zermelo-Frænkel’s set theory.

Foundational Crisis
Loss of certainty of mathematicians in mathematics.

Hilbert’s program (1930)
• “We must know. We will know.”
• Prove that arithmetic isn’t contradictory.
• Entscheidungsproblem (Hilbert’s decision problem).
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Gödel

Theorem (Gödel, 1931)
We will never know.
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Some Vocabulary



Predicate Logic

Terms and Formulas

• x, y, a, b, c, f(x, y, z), . . . are terms.
• Let P be an n-ary relational symbol and t1, . . . , tn be n terms.

P(t1, . . . , tn) is a formula. Furthermore, if F1 and F2 are formulas,
¬F1, F1 ∧ F2, F1 ∨ F2, F1 → F2, ∀x F1 and ∃x F1 are also formulas.

Examples

∀x∀y (x + y = y + x)
∀x∀y (x ≤ y → ∃z (x + z = y))
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Theories (1)

Definition (theory)
A theory is a (finite or countably infinite) set of formulas.

Definition (provability)
A formula F is provable in a theory T iff F is true in the theory. It is
denoted T ⊢ F and read “T proves F”.

Example
In any reasonable arithmetic theory T, the formula F representing the
addition’s commutativity is true, i.e. T proves F.

Definition (consistency)
A theory T is consistent iff it doesn’t prove false, i.e., there doesn’t exist
F such that T ⊢ F and T ⊢ ¬F.
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Theories (2)

Definition (decidability of a theory)
A theory T is decidable iff for every formula F, we can compute whether
T ⊢ F or T ⊢ ¬F.

Theorem (admitted)
There exists an injective computable function # such that every formula
F can be encoded as an integer, i.e. ∃n ∈ N such that #F = n.

Corollary
Given an integer n, it is easy to compute if there exists F such that
#F = n.
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Gödel’s Incompleteness Theorem



Peano’s Arithmetic

Language
• The constant 0.
• s an unary function symbol.
• + and ×, binary function symbols.

Axioms of P0

(A1) 0 is not a successor.
(A2) If x is not 0, then there exists y such that x = s(y).
(A3) The successor function s is injective.
(A4) Forall x, x + 0 = x.
(A5) Forall x, y, x + s(y) = s(x + y).
(A6) Forall x, x × 0 = 0.
(A7) Forall x, y, x × s(y) = (x × y) + x.
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Representation Theorem

Survey
Who finds these axioms reasonable?

Theorem (admitted)
Every computable function can be represented by a formula.
Furthermore, if a characteristic function of a set A, 1A, is represented by
a formula F then for any p-uple (n1, . . . , np) :

• (n1, . . . , np) ∈ A iff P0 ⊢ F(n1, . . . , np)

• (n1, . . . , np) /∈ A iff P0 ̸⊢ F(n1, . . . , np)

Example
Let A := 2N . The following formula F represents A :

F(y) := ∃x (y = 2 × x)
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Gödel’s Incompleteness Theorem (1)

Theorem
Let T be a consistent theory. If P0 ⊆ T, then T is undecidable.

Proof
θ := {(m, n) | m = #F(x) ∧ T ⊢ F(n)}

If T is decidable, then 1θ is computable.

B := {n ∈ N | (n, n) /∈ θ}

As 1θ is computable, 1B is also computable. Let G(x) be the formula
that represents B and a := #G(x). Thus:

• a ∈ B =⇒ (a, a) /∈ θ =⇒ T ̸⊢ G(a) but P0 ⊢ G(a) =⇒ T ⊢ G(a).
• a /∈ B =⇒ (a, a) ∈ θ =⇒ T ⊢ G(a) but a /∈ B thus P0 ⊢ ¬G(a)

and so T ⊢ ¬G(a). But T is consistent, so T cannot prove G(a) and
¬G(a).
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Gödel’s Incompleteness Theorem (2)

Theorem (Gödel, 1931)
Let T be a consistent theory with 1T computable. If P0 ⊆ T, then T is
incomplete, i.e. there exists a formula F such that T ̸⊢ F and T ̸⊢ ¬F.

Proof
If T was consistent, complete and with 1T computable, it would be
decidable. However, T is consistent and contains P0 so T is undecidable
and thus incomplete.
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Consequences

Philosophy
For every system containing a definition of integers, there exists a true
sentence that cannot be proved. Hence the entirety of mathematics
might be inconsistent and we cannot know if, at some point, a
contradiction will occur and render all the mathematics invalid.

“Fun” Fact
There is a rumor that Gödel’s incompleteness theorem lead Von
Neumann to give up mathematics entirely.

Mathematical Beliefs

• The gold duplication paradox of Banach-Tarski (the axiom of choice).
• Do you know others?
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The End

C’est la fin !
Thanks for your attention, do you have questions?
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