

Do Integers Really Exist?

And Yet Another Talk about Gödel's Incompleteness Theorem

Johann Rosain

29 June 2023

LIRMM's Semindoc

Introduction

Dreams

- A physician's dream a theory of everything
- A mathematician's dream a theory to define mathematics

A Successful Endeavor?

That's what we are gonna talk about today.

A First Try

Frege

- First "true" formalisation of mathematics.
- End of 19th century.
- Invention of predicate logic (also called 1st order logic).
- Decades of hard work.

Frege

- First "true" formalisation of mathematics.
- $\bullet~$ End of 19^{th} century.
- Invention of predicate logic (also called 1st order logic).
- Decades of hard work.

Russel's Paradox (1901)

$$y := \{x \mid x \notin x\}$$

y is the set of sets that are not member of themselves. Then:

$$y \in y \Longleftrightarrow y \notin y$$

Hilbert

Subsequent Formalisations

- Principia Mathematica (Russel Whitehead)
- Zermelo-Frænkel's set theory.

Foundational Crisis

Loss of certainty of mathematicians in mathematics.

Hilbert

Subsequent Formalisations

- Principia Mathematica (Russel Whitehead)
- Zermelo-Frænkel's set theory.

Foundational Crisis

Loss of certainty of mathematicians in mathematics.

Hilbert's program (1930)

- "We must know. We will know."
- Prove that arithmetic isn't contradictory.
- Entscheidungsproblem (Hilbert's decision problem).

Theorem (Gödel, 1931)

We will never know.

Some Vocabulary

Terms and Formulas

- *x*, *y*, *a*, *b*, *c*, *f*(*x*, *y*, *z*), . . . are terms.
- Let *P* be an *n*-ary relational symbol and t_1, \ldots, t_n be *n* terms. $P(t_1, \ldots, t_n)$ is a formula. Furthermore, if F_1 and F_2 are formulas, $\neg F_1$, $F_1 \land F_2$, $F_1 \lor F_2$, $F_1 \rightarrow F_2$, $\forall x F_1$ and $\exists x F_1$ are also formulas.

Examples

$$\forall x \forall y (x + y = y + x)$$

$$\forall x \forall y (x \le y \to \exists z (x + z = y))$$

Definition (theory)

A theory is a (finite or countably infinite) set of formulas.

Definition (theory)

A theory is a (finite or countably infinite) set of formulas.

Definition (provability)

A formula F is provable in a theory T iff F is true in the theory. It is denoted $T \vdash F$ and read "T proves F".

Example

In any reasonable arithmetic theory T, the formula F representing the addition's commutativity is true, i.e. T proves F.

Definition (theory)

A theory is a (finite or countably infinite) set of formulas.

Definition (provability)

A formula F is provable in a theory T iff F is true in the theory. It is denoted $T \vdash F$ and read "T proves F".

Example

In any reasonable arithmetic theory T, the formula F representing the addition's commutativity is true, i.e. T proves F.

Definition (consistency)

A theory T is consistent iff it doesn't prove false, i.e., there doesn't exist F such that $T \vdash F$ and $T \vdash \neg F$.

Definition (decidability of a theory)

A theory T is decidable iff for every formula F, we can compute whether $T \vdash F$ or $T \vdash \neg F$.

Definition (decidability of a theory)

A theory T is decidable iff for every formula F, we can compute whether $T \vdash F$ or $T \vdash \neg F$.

Theorem (admitted)

There exists an injective computable function # such that every formula F can be encoded as an integer, i.e. $\exists n \in \mathbb{N}$ such that #F = n.

Definition (decidability of a theory)

A theory T is decidable iff for every formula F, we can compute whether $T \vdash F$ or $T \vdash \neg F$.

Theorem (admitted)

There exists an injective computable function # such that every formula F can be encoded as an integer, i.e. $\exists n \in \mathbb{N}$ such that #F = n.

Corollary

Given an integer *n*, it is easy to compute if there exists *F* such that #F = n.

Gödel's Incompleteness Theorem

Peano's Arithmetic

Language

- The constant 0.
- *s* an unary function symbol.
- $\bullet~+$ and $\times,$ binary function symbols.

Peano's Arithmetic

Language

- The constant 0.
- s an unary function symbol.
- $\bullet~+$ and $\times,$ binary function symbols.

Axioms of \mathcal{P}_0

- (A_1) 0 is not a successor.
- (A₂) If x is not 0, then there exists y such that x = s(y).
- (A_3) The successor function *s* is injective.
- (A_4) Forall x, x + 0 = x.
- (A₅) Forall x, y, x + s(y) = s(x + y).
- (A_6) Forall x, $x \times 0 = 0$.
- (A₇) Forall x, y, $x \times s(y) = (x \times y) + x$.

Survey

Who finds these axioms reasonable?

Survey

Who finds these axioms reasonable?

Theorem (admitted)

Every computable function can be represented by a formula. Furthermore, if a characteristic function of a set A, $\mathbf{1}_A$, is represented by a formula F then for any p-uple (n_1, \ldots, n_p) :

•
$$(n_1,\ldots,n_p) \in A$$
 iff $\mathcal{P}_0 \vdash F(n_1,\ldots,n_p)$

•
$$(n_1,\ldots,n_p)\notin A$$
 iff $\mathcal{P}_0 \not\vdash F(n_1,\ldots,n_p)$

Example

Let $A := 2\mathbb{N}$. The following formula F represents A :

$$F(y) := \exists x (y = 2 \times x)$$

Gödel's Incompleteness Theorem (1)

Theorem

Let T be a consistent theory. If $\mathcal{P}_0 \subseteq T$, then T is undecidable.

Theorem

Let T be a consistent theory. If $\mathcal{P}_0 \subseteq T$, then T is undecidable.

Proof

$$\theta := \{ (m, n) \mid m = \#F(x) \land T \vdash F(n) \}$$

If \mathcal{T} is decidable, then $\mathbf{1}_{ heta}$ is computable.

 $B:=\{n\in\mathbb{N}\mid (n,n)\notin\theta\}$

As $\mathbf{1}_{\theta}$ is computable, $\mathbf{1}_{B}$ is also computable. Let G(x) be the formula that represents B and a := #G(x). Thus:

- $a \in B \Longrightarrow (a, a) \notin \theta \Longrightarrow T \nvDash G(a)$ but $\mathcal{P}_0 \vdash G(a) \Longrightarrow T \vdash G(a)$.
- $a \notin B \implies (a, a) \in \theta \implies T \vdash G(a)$ but $a \notin B$ thus $\mathcal{P}_0 \vdash \neg G(a)$ and so $T \vdash \neg G(a)$. But T is consistent, so T cannot prove G(a) and $\neg G(a)$.

Theorem (Gödel, 1931)

Let T be a consistent theory with $\mathbf{1}_T$ computable. If $\mathcal{P}_0 \subseteq T$, then T is incomplete, i.e. there exists a formula F such that $T \not\vdash F$ and $T \not\vdash \neg F$.

Theorem (Gödel, 1931)

Let T be a consistent theory with $\mathbf{1}_T$ computable. If $\mathcal{P}_0 \subseteq T$, then T is incomplete, i.e. there exists a formula F such that $T \not\vdash F$ and $T \not\vdash \neg F$.

Proof

If T was consistent, complete and with $\mathbf{1}_T$ computable, it would be decidable. However, T is consistent and contains \mathcal{P}_0 so T is undecidable and thus incomplete.

Philosophy

For every system containing a definition of integers, there exists a true sentence that cannot be proved. Hence the entirety of mathematics might be inconsistent and we cannot know if, at some point, a contradiction will occur and render all the mathematics invalid.

Philosophy

For every system containing a definition of integers, there exists a true sentence that cannot be proved. Hence the entirety of mathematics might be inconsistent and we cannot know if, at some point, a contradiction will occur and render all the mathematics invalid.

"Fun" Fact

There is a rumor that Gödel's incompleteness theorem lead Von Neumann to give up mathematics entirely.

Philosophy

For every system containing a definition of integers, there exists a true sentence that cannot be proved. Hence the entirety of mathematics might be inconsistent and we cannot know if, at some point, a contradiction will occur and render all the mathematics invalid.

"Fun" Fact

There is a rumor that Gödel's incompleteness theorem lead Von Neumann to give up mathematics entirely.

Mathematical Beliefs

- The gold duplication paradox of Banach-Tarski (the axiom of choice).
- Do you know others?

C'est la fin !

Thanks for your attention, do you have questions?