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Will you Take Some Howard with your Curry?

The (very hard) “composition problem”.

• Formula: (A → B) → (B → C) → A → C .
• Proof: assume (i) that A → B, (ii) that B → C and (iii) that A. By
(i), we have B. By (ii), we have C .

• Program: given f : A → B, g : B → C , x : A, return g(f(x)).
• Type: (f : A → B) → (g : B → C) → (x : A) → C .

Fig. 1: Curry’s Realization
(I swear this figure is from his paper)
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Coq Rock(q)s

Immediate consequence: not all of computer science is useless*!! �

What do you mean?
• Proving a formula is building an algorithm.
• This algorithm is typed.
• =⇒ checking a proof = type-checking an algorithm!

*Under the (trivial, of course) condition that type-checking is decidable

And what about the rooster?
• Softwares (ITPs) do that for us.
• Coq, Cubical Agda, …
• Each one runs on a particular type theory.
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Yet Another Type Theory…

Did you say hot? No, I said HoTT!
• Get all the useful tools of others type theories.
• + isomorphic structures are equal!! �
• Can formalize proofs up to isomorphism.

+ everything is secretly geometry, but shhh! Don’t tell it too loud, mathematicians will hear you!

Original image: https://xkcd.com/927/
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Why Would I Want This?

We can compute things up to isomorphism!! What the hell?

=⇒ let’s do some dumb things �

OEIS-A000001
• Surely very important seeing that’s it’s OEIS-A000001.
• i.e., the number of groups of finite order.
• We shall compute that naively.
• Group = monoid where all elements are invertible.
• Expected complexity for naive algorithm: O(nn2

n!).
• For n = 2, 32α operations, good! (α shouldn’t be too big)
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First Disappointment
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I Hear Confusion in the Room

What happened?!? Let’s take a look at the algorihm.

FinSemiGroupStr : FinSet ℓ → FinSet ℓ
FinSemiGroupStr X .fst =

Σ[ p ∈ (X .fst → X .fst → X .fst) ]
((x y z : X .fst) → p (p x y) z ≡ p x (p y z))

FinSemiGroupStr X .snd =
isFinSetΣ (_ , isFinSetΠ2 X (λ _ → X) (λ _ _ → X))

(λ p → _ ,
isFinSetΠ3 X

(λ _ → X)
(λ _ _ → X)
(λ _ _ _ → _ , isFinSet≡ X _ _))

OK, maybe it was a bad idea…
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A Talk about Disappointments

Our Goal
Find the reason(s) that make(s) it so bad.

Our Tool
postt, experimental type-checker s.t. HoTT computes (+ analysis).

Today
• Proof that structures over finite types are finite (a fragment).
• A computational analysis of the proof with magma semigroups.
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Homotopical Type Theory



Martin-Löf Type Theories

Dependent Types

λx.t :
∏
x : A

B(x)

think of as ∀x, B(x)

(x, p) :
∑
x : A

P (x)

think of as ∃x, P (x) + explicit witness

A → B shortcut for
∏

(_ : A) B and A × B for
∑

(_ : A) B.

Inductive Types

inl(x), inr(y) : A + B

think of as A ∨ B

? : 1, 0
think of as >, ⊥

0 : N, sucN(n) : N unary encoding of integers

Johann Rosain Computational Difficulties in Cubical Type Theory: a Case Study LORIA, Oct. 28, 2024 8 / 28



Martin-Löf Type Theories

Dependent Types

λx.t :
∏
x : A

B(x)

think of as ∀x, B(x)

(x, p) :
∑
x : A

P (x)

think of as ∃x, P (x) + explicit witness

A → B shortcut for
∏

(_ : A) B and A × B for
∑

(_ : A) B.

Inductive Types

inl(x), inr(y) : A + B

think of as A ∨ B

? : 1, 0
think of as >, ⊥

0 : N, sucN(n) : N unary encoding of integers

Johann Rosain Computational Difficulties in Cubical Type Theory: a Case Study LORIA, Oct. 28, 2024 8 / 28



Identity Types

• Defined inductively by: reflx : x =A x.
• Multiple proofs of identity types are spaces.

x y

p

q

p, q : x =A y continuous paths

A

Transporting through a path:

b
tr(q, b)

tr(p, b)

∑
(x : A) B(x) B(x) B(y)
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Exploring Space

Definition (Contractible Type)
A type A is contractible if it comes together with a term

is-contr(A) :≡
∏

x,y : A

x = y

Actually:

Definition (Homotopy Levels)
A type A is an n-type if it comes equipped with a term is-n-type(A):

is-(−2)-type(A) :≡ is-contr(A)

is-(n + 1)-type(A) :≡
∏

x,y : A

is-n-type(x = y)
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An Amusing Fact

We can define usual structures using h-levels:

• A type is a proposition if it is a (−1)-type (proof irrelevance).
• A type is a set if it is a 0-type (axiom K).
• Notations: PropU and SetU .

Mindblowing, right?

But let’s come back to our protagonist.
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Bi-inverses or Inverses, That is the Question

Definition (Equivalence)
A ' B if there exists maps f : A → B, g, h : B → A s.t.

f(g(x)) = x and h(f(x)) = x

Theorem
A ' B iff there exists f : A → B and g : B → A such that

f(g(x)) = x and g(f(x)) = x

Proof: blackboard.

 we use these notions interchangeably.
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The Additional Axiom that Changes Everything

HoTT: everything we have seen before, plus:

(A ' B) ' (A = B)

and HITs, but eh, don’t spoil the mood.

Great consequence: isomorphic types are equal!

Dumb consequence: all singletons are equal (� contradicts set
theory (but who cares, nobody still believes in set theory in 2024,
right?)).
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(A ' B) ' (A = B)

and HITs, but eh, don’t spoil the mood.

Great consequence: isomorphic types are equal!

Dumb consequence: all singletons are equal (� contradicts set
theory (but who cares, nobody still believes in set theory in 2024,
right1?)).

1Otherwise, they are clearly wrong, don’t listen to them.
Johann Rosain Computational Difficulties in Cubical Type Theory: a Case Study LORIA, Oct. 28, 2024 13 / 28



Another Amusing Fact

Another dumb consequence: two elements that are equal are not…
“the same elements”!

Can you guess why?

Here, “the same” means that the path between the elements is refl.
But we can have “holes” in the space.

Examples: circles, semigroups, monoids, groups, …

By this same argument: the type of all sets is not a set!
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Filling the Holes

Filling the holes in the space: “truncating” to an h-level.

Truncation Levels
Depend on what we care about:

• Propositional truncation: inhabitation.
• Set truncation: connected components.

Can be defined as an HIT or by universal property. Here: the latter.
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Truncation Levels
Depend on what we care about:

• Propositional truncation: inhabitation.
• Set truncation: connected components.

Can be defined as an HIT or by universal property. Here: the latter2.

2HITs are really bad news: look, we even do categories over them!
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I Think We’re Getting Squashed, Mate

Theorem (h-Truncation)
For every type A, there exists a type ‖ A ‖n and a morphism | · |n :
A → ‖ A ‖n such that for every n-type X and morphism f : A → X ,
the following diagram commutes:

A

‖ A ‖n P

| · |n

f

∃!g

Note that I’m cheating here: this theorem does not hold for n = −1
in MLTT. We admit that it does though.
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Come Forth, Examples!

Using propositional truncation, we get back classical logic:

• ∃x : A, B(x) is Σ(x : A)B(x) without explicit inhabitant.
• Isn’t that exactly

∥∥ Σ(x : A)B(x)
∥∥? (spoiler: yes it is).

• The law of excluded middle? No, but don’t worry, it’s false
anyway.

Using the magic of set truncation, we transform circles into disks!

| · |0
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A Total Coincidence3

Recall our objective (yes, it’s tough, I know, it’s been a long time).

• Isomorphic (semi)groups are equal!
• Can we count them like this? No: there are holes in their space.
• But look, we can fill holes now!

=⇒ counting up to isomorphism = counting the number of
connected components, i.e., counting the set truncation.

All our tools are finally ready, it’s time for some fun things.

3I’m sure nobody believes me, I don’t understand why…
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Finiteness of Structures over
Finite Types



Everyone Learns How to Count, Eventually

Definition (Standard Finite Types)

Fin0 :≡ 0
FinsucN(n) :≡ Finn + 1

i.e., there are exactly n elements, ordered, in Finn.

Definition (Finite Type)
is-finite(A) :≡

∑
(k : N) ‖ Fink ' A ‖

Can you guess why we would want to use propositional truncation
here?

Without it, we get a fully ordered set.

Theorem
For every type A, is-finite(A) is a proposition.

Proof: blackboard.
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We Start Off Easy

Key Theorem 1: Finite Codomain
Let f : A → B a surjective function and A finite. Then B is finite
whenever its equality is decidable4.

Definition (Surjectivity)
is-surj(f) :≡

∏
(y : B) ∃x, f(x) = y

Exercise
Why use propositional truncation in the definition of surjectivity?

Definition (Decidable Type)
A is decidable if d : A + ¬A.

We can now prove and analyze the complexity of Key Thm. 1:
blackboard. Cheatsheet: we should have found O(|A|2d) (d =
complexity of one decidability check).

4Classically, we wouldn’t need this.
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Another Easy One

Key Theorem 2
If B is a family of finite type over a finite type A, then

∑
(x : A) B(x)

is also finite.

Proof and complexity analysis: blackboard.

Cheatsheet: we should
have found O(|A| · max(x:A) |B(x)|).

That’s more or less the only things we need to prove the main
theorem.

We need, however, two more definitions.
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Last Definitions

Connectedness
A is connected its set truncation is contractible.

Recall that we get disks from circles: the circle is connected.

A slightly more generic version of finiteness up to isomorphism:

Homotopy Finiteness

is-π0-finite(A) :≡ is-finite ‖ A ‖0

is-πsucN(n)-finite :≡ is-finite ‖ A ‖0 ×
∏

x,y : A

is-πn-finite(x = y)

Remark: is-πn-finite is again a proposition (by closure under
products).
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Finiteness up to Isomorphism

Key Theorem 3
For B family of π0-finite types over connected, π1-finite type A,∑

(x : A) B(x) is π0-finite.

Read: if B family of types finite up to isomorphism over A type with
one connected component s.t. its identity types are finite up to
isomorphism, then

∑
(x : A) B(x) is finite up to isomorphism.

Proof and complexity analysis: blackboard.

Cheatsheet: we should have found O(| ‖ B(a) ‖0 |3(| ‖ a = a ‖0 |))
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Application to Finite Semigroups

Definition (Finite Semigroup)
Finite Type G + associative multiplication µ : G → G → G

Conditions of Key Thm. 3 fulfilled:

• Finite type is connected (by univalence, Finn ' X implies
Finn = X + propositional truncation of equivalence).

• Associative multiplication is finite: equality on a set is a
proposition and finiteness is closed under Σ-types by Key Thm.
2.

Complexity added: O(|G → G → G|) negligible (why? in a minute).
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The Final Adversary

Complexity of Key Thm. 3: O(| ‖ B(a) ‖0 |3(| ‖ a = a ‖0 |))

Here:

• B: associative multiplications.

• ‖ B(G) ‖0 ' B(G) as B(G) is a set.
• A: finite types, equality: G = H is a set (as G, H sets).
• (G = H) ' (G ' H).

For a type of order n:

• |B(G)| = |G → G → G| = o(nn2)
• |G ' H| = n!

Total complexity: O(n3n2
n!)
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Numerical Application

Total complexity: O(n3n2
n!)

Recall our initial aimed complexity: O(nn2
n!). Not so bad, eh?

For n = 2? 8192α operations…Far from the 32α′ of the naive
algorithm.

But, computers are powerful, isn’t it easy to do that many operations?

=⇒ yes and no. We compute λ-terms, so it all depends on the
evaluation function. But proofs are big, term size explodes and
quickly slows down the evaluation.
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Conclusion5 (1)

Were cubical type theories a mistake?

Bottom line: we don’t know

• Large blow-up in the term size (is cubical involved? Or not?)
• Better proof? But what is better?
• Tradeoff between term size and theoretical complexity.

5Thanks to T. Coquand and J. Höfer for their precious advice
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Conclusion (2)
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Scribitur ad narrandum, non ad probandum.

Thanks for your attention!

A special thanks to Adrien M. for typesetting the xkcd.
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